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Abstract

We present a class of nonparametric change-point estimators for a possibly nonstationary sequence. The estimators are defin
using the empirical measures and a semi-norm on the space of measures defined via a family of functions. Using a general settin
we prove the rate of /ln convergence in probability. Surprisingly, this optimal rate holds for independent, short-range dependent
and long-range dependent sequentegite thisarticle: S. Ben Harizet al., C. R. Acad. Sci. Paris, Ser. | 341 (2005).
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Résumé

Estimation non-paramétrique de rupture pour des suites dépendanten présente une famille d’estimateurs du temps de
rupture dans une suite d'observations non nécessairement stationnaire. Les estimateurs sont définis & partir des mesures empiriq
et d’'une semi-norme sur I'espace des mesures, définie a I'aide d’'une famille de fonctions. Nous montrons alors dans une approct
unifiée, que les estimateurs convergent en probabilité avec la vitesse optimdle eedeci aussi bien pour des suites faiblement
dépendantes que pour des suites fortement dépendBate<iter cet article: S. Ben Harizet al., C. R. Acad. Sci. Paris, Ser. |
341 (2005).

0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

The change-point problem, in which one must detect a change in the marginal distribution of a random sequence
is important in a wide range of applications and has therefore become a classical problem in statistié&sa@$6rg
Horvéth [3]). In this Note we consider the general case of nonparametric estimation that must be used when nc
a priori information regarding the marginal distributions before and after the change-point is known. We consider
this challenging problem and develop a unified framework in which we can deal with sequences with quite general
dependence structures. For dependent data one typically expects that the rate of convergence of estimators will becon
worse as the dependence becomes stronger. However, we prove that the rate of convergence of a broad family
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nonparametric estimators ispOfl). This is a particularly surprising result because the dependence structure of the
sequence plays absolutely no role in determining the rate of convergence.

For independent sequences both parametric and nonparametric methods have been widely studied (Carlstein [
Dumbgen [4]). However, in recent years the importance of long-range dependent (LRD) processes has been realizec
E[X;])]? < oo asn — oo and LRD otherwise.

Parametric change-point estimation for LRD sequences, in which one typically has a priori knowledge about
the marginal distributions, has been considered by a number of authors (Kokoszka and Leipus [6], Horvath an
Kokoszka [5], Ben Hariz and Wylie [1]). Estimating change-points for LRD sequences poses a number of signifi-
cant challenges and there are much fewer known results in this case.

We adopt a very general framework that allows us to consider a general class of dependence structures. We ma
no assumption about stationarity in the dependence structure. This is especially important in practice because one ¢
confidently make use of the proposed estimators on a sequence without checking for such stationarity. Our framewo
represents a unified setting in which independent, SRD and LRD sequences can be treated. We prove the consistenc)
a Dumbgen-type estimator and show that tb;{}ﬁl) rate of convergence for independent sequences is also achieved
for both SRD and LRD sequences.

2. Outline of the results

Let (X;)i=1...n be areal sequence that may be either independent, SRD or LRD. The marginal distribution (which
may depend on the sequence lengj}lis given by

P, ifi<no,

Q, ifi>no,

where O< 6 < 1 is the location of the change-point. This means that we assume first-order stationarity (i.e. the mar-
ginal distribution is time independent) on either side of the change-point, but make no assumption about stationarit
in the dependence structure of the sequence.

Given the sequenceéX;);=1...», we aim to estimate the location of the change-péining an estimator of the
following general type:

L(Xi) :{

6, = }(argma>{N(Dk)}), (1)

n N 1<k<n
whereN is a (possibly random) semi-norm on the spAdeof signed finite measures,

k

1-y n
Dk=[§<1—§>] (%Z(Sxi—n%k > 5xl-)7 2

i=1 i=k+1

wheredy, is the delta measure andis a parameter satisfyingQ y < 1. This estimator considers each point as

a candidate for the change-point, evaluates the semi-norm and chooses the point with the largest semi-norm as t
change-point. In the unlikely event that the maximum valu&’6D;) in (1) occurs at multiple points one can choose

any of these points, but for definiteness we take the minimum.

We will develop a framework that can deal with a very general class of estimators. Different semi-norms represen
using different measures for the difference between the distributions before and after the change-point. We will shoy
that a very wide class of estimators are appropriate for estimating change-points in dependent data. The semi-norm
a measure is defined viav(f), f € F} wherev(f) = [ f(x)v(dx), andF is a family of functions.

2.1. Examples of semi-norms
- ForF={1..x,, i =1,...,n}, we define semi-norms via the quantitis= v(1..x,). This corresponds to the

setting of Carlstein [2]. For exampl&/(v) = sup¢; <, |di| OF N, (v) = (nl Yo |d;|?)Y/P. Observe that in this
example the family is random and therefore the semi-norm is also random.
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— ForF={fP: x> xP, p=1,...,+00} and a measure, we define the semi-norm by

N@)y= " d(f)|v(f)
feF
whered(f) is a sequence of positive weights. This includes the parametric estimators in which we estimate a
change in certain moments.
— ForF ={1._, x € R} we defineN by N(v) = Suprer V(NI This corresponds to the Kolmogorov—Smirnov
norm. Dumbgen [4], considered the family= {1p, D € D} whereD is a VC subclass, and used semi-norms
such thatV (v) < Suprer V().

3

We now turn our attention to the dependence structure of the sequence. For a given sequence we will allow the
estimator to use families of functions that satisfy the following condition.

Assumption 1.There exists constants > 0 andp > 0 independent of the sequence length such that

sup sup [corr(f(X;), f(Xitm)| <Cm™". 3)
feF1<i<n—m

This assumption simply states that for each of the functipresF, the correlation betweefi(X;) and f (X;4m)
must decay algebraically or fasterras— co. It is satisfied for a very general class of data. It only excludes the rather
artificial case in which the correlation gf(X;) and f (X;.,,) decays slower than algebraically.

In Theorem 2.1 we consider semi-norms that are bounded by weighted moments of a countable family of functions
and derive conditions under which the optimal convergence rate is achieved.

Theorem 2.1.Assume that the semi-nori satisfiesV (v) < Zfefd(f)|v(f)|, whereF is a countable family of
functions satisfying3) andd( f) are positive constants such tthefd(f)Hfu < o0. If there exists a real number
b > 0, such that

P[N(P,— Qn) >b] > 1 asn— oo, (4)

then we havé, — 6 = O, (n~1), whered, is defined in(1) and || f || = sup,en (Pu (f2) + Qn (£2)Y2.

We now turn our attention to the case in which the fandilycontains an uncountable infinity of functions. In this
case we need to control the size of the family by using the covering number defined below.

Definition 2.2. Given two functiond andu, the brackefl, «] is the set of all functiong with [ < f < u. Given a
norm|| - || on a space containing, anc—bracket for| - || is a bracketl, u] with ||l — u|| < . The bracketing number
Npi(e, || - I, F) is the minimal number of-brackets needed to covér.

The following theorem deals with an extremely general set of semi-norms including all of those considered by
Carlstein. The theorem essentially states that if the family has a finite bracketing number, we also obtairrate 1
of convergence.

Theorem 2.3.Assume that the semi-norm satisfiésv) < sup{|v(f)|, f € F}, where F is a class of functions
satisfying(3) and suf(|| fI|, f € F} < oco. We also assume th&k > 0, Njj(, | - |x, F) < oo, where| - | x is a
semi-norm satisfyingup,cy | Pn (1 f D1+ 10 (1 DI < I fll x. If (4) is fulfilled, then we have, — 0 = O,,(n*l).

3. Sketch of the proofs
We provide a sketch for the proof of Theorem 2.1. To prove the consistency of the estimator, welgéfine
Dy,s1 and decompos®, (r) into a mean part and a centered random @aitr) = (P, — Qn)h(t) + B (t), where

h®)=t77A =177t (1—-0)1;<9 +60(1—1)1;-6). Then, for anyy > 0, we show

IED[|én —0|> 77] < P[N(B,lf(én)) = %v |én — 0] > TI} +P|:N(B;LU(9)) = %] +P[N(Pn — QOn) > b] (5)
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We control the first term by decomposing the get|r — 0| > n} into shells
Sj={r 27 <t@-pt<2 U2y <@-nA-6-nt<27

We then use the following maximal inequality from Moricz [7]: there exists a con®@pj such that

2
) < D%(p)| f11?n?P. (6)

k
E(&l’“‘é‘n ;ﬂx,) E(f (X))
We control the second term using (6) and the third term tends to zero by assumption.

For the rate proof we first show that, for any positive inted€r positive real numbersé and ¢ and positive
sequence,, we haveP(r,|0, — 0| > 2M) < Ey + E» + E3, whereE; = P(N(B¥(0)) > ¢), Ez =P[r,|6, — 6] >
2M | N(BY(6,) — B (9)) > Cp(bh(0) — 20)|0, — 0|1, E3=P(N(8,) < b) andCy, is a constant that only depends
on 6 andy. We then boundE, using a decomposition of the sgt r,|t — 6] > 2M} into shells,S, ; = {r: 2/ <
ralt — 6] < 2711}, The consistency result (5) and the following lemma which controls the size of oscillatids(of
complete the proof.

Lemma 3.1.Assumg3) with p < 1, then there exist constan€¥(0, n) and D(p) such that forc < 7,

E( sup |(By' (1) — B}f(e))(f)|) <CO.MD)| flln~"2=02,
l1—61<K

To prove Theorem 2.3, we need a projection argument to deal with the uncountable family of functions. Although
the proof is more tedious, the procedure is similar to that for Theorem 2.1. We end this outline by noting that the proo
can easily be adapted to handle vector-valued sequences.
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