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Abstract

A graph G is said to be a functional graph if there exist two mappirfgand g from V(G) into a setF such thatxy is
an edge inG wheneverf (x) = g(y) or g(x) = f(y). Chvéatal and Ebenegger proved that recognizing functional graphs is an
NP-complete problem. Using the compactness theorem, we prove thés én infinite graph such that any finite subgraph of
G is a functional graph, the& is a functional graph. We give an elementary proof of this fact in the infinite countable case. In
the finite case, we prove that fadarge enough, any graph of girthcontaining at most/3— 7 vertices is a functional graph. It
will be shown by an example that this bound is the best possibleite thisarticle: A. El Sahili, C. R. Acad. Sci. Paris, Ser. |
341 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Graphes fonctionnelsUn grapheG est dit graphe fonctionnel s'il existe deux applicatighetg de V (G) dans un ensemble
F telles quexy est une aréte dé si et seulement sf (x) = g(y) ou g(x) = f(y). Chvétal et Ebenegger ont prouvé que le
probléme de reconnaissance des graphes fonctionnels est NP-complet. En utilisant le théoréme de compacité, nous prouvon
gue siG est un graphe infini tel que tout sous-graphe fini@est fonctionnel, alor& est fonctionnel. Nous donnons une
preuve élémentaire de ce fait dans le cas dénombrable. Dans le cas fini, nous prouvons gueuffmamment grand, tout
graphe sans cycle d’'ordre plus petit quet contenant au plus:3- 7 sommets est un graphe fonctionnel. Il sera montré a l'aide
d’'un exemple queB— 7 est la meilleure borne possibkour citer cet article: A. El Sahili, C. R. Acad. Sci. Paris, Ser. | 341
(2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

The graphs and digraphs considered here may be infinite. They have no loops or multiple edges. A digraph may
have directed cycles of length two. When= (x, y) is an edge ofD thenx is said to be the tail ofi, andy is
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the head of:. We writer(a) = x andh(a) = y. Multigraphs and multidigraphs are obtained when multiple edges
are allowed. We refer to [5] and [6] for a good knowledge of compactness theorem and basic definitions in Model
Theory. If H is a subgraph of connected gragh G — H denotes the graph obtained fratnhby deleting first the
edges ofH and then the isolated vertices. By D) we denote the underlying graph of a digraphthat is the
graph obtained by ignoring the orientation of the edgeR.igA cycle of length two corresponds to a unique edge.)

Let D be a multidigraphThe line digraphl (D) of D is the digraph whose vertex set is the edge sé ofthere
(e, f)isanedgeinL(D) if h(e) =1t(f). Based on [3] we may easily remark that functional graphs are exactly the
underlying graphs of line digraphs defined simply in terms of functions. In fact, tatdg be two mappings from
V(G) into a setF which satisfyxy € E(G) & f(x) = g(y) or g(x) = f(y) for everyx andy in V(G).

On V(G) we define a multidigraptD by puttinge edges fromu to b wherea = |g~1(a) N f~1(b)| for all
a,b e V(G), and a digrapt such that(x, y) € E(H) if f(x) =g(y).

We associate to each ed@e ») in D a unique vertex in V(H) such thaig(x) =a and f(x) = b. Then(x, y)
is an edge i if h(x) =1(y) (as edges iD). ThusH = L(D). It may be easily remarked thét= G(H).

Beineke in [1] characterizes line digraphs as follows:

Theorem 1.1.A digraph A is a line digraph if and only if whenever, b andc are any three edges iH such that
h(a) = h(b) andz(b) =t(c), there exists an edgein H such that (d) = t(a) andh(d) = h(c).

Chvatal and Ebenegger [2] prove that recognizing underlying graphs of line digraphs is an NP-complete prob-
lem.

By simply remarking that the construction of Chvatal and Ebenegger leads to a square free graph, we noted in
[4] that Chvatal and Ebenegger’s proof implies even more, namely that recognizing underlying graphs of a line
digraphs of digraph in which each vertex has in-degree or out-degree at most one is an NP-complete problem.

Let G be an infinite graph such that any finite subgrapld;aé a functional graph. It is normal to ask whether
G is a functional graph or not. We treat this problem in the next section.

2. Infinite functional graphs
A direct application of the compactness theorem of model theory yields the following theorem:

Theorem 2.1.Let G be an infinite graph such that any finite subgraphtbfs a functional graph. Thei is a
functional graph.

This theorem can also be established using ultrafilter’s axiom, but without using the axiom of choice required by
the compactness theorem. In the infinite countable case, we may establish an elementary proof based on induction
This proof gives a little bit more. In fact the theorem may be improved by replacing subgraphs by only induced
subgraphs. It may be shown by examples that a subgraph of a functional graph may be a non functional graph,
while the induced subgraph of a functional graph is always a functional graph.

3. Finite functional graphs

As a consequence of Beineke theorem, a functional graph cannot contain the complet& gespsubgraph.
Hencek, is a simple example of finite non functional graph such that any proper subgraph (distinct from the graph
itself) is functional. Other examples without complete subgraph can be constructed. More precisely, we define for
all n > 5 a non functional grapl of girth » such that any proper subgraph is a functional graph. We start by the
following trivial fact.
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Proposition 3.1.A graphG containing at most one cycle is a functional graph.

Definition 3.2. A graphG with A(G) < 3 is called small if it is defined by three paths having the same ends and
no other intersection, some vertices of the paths are joined to vertices of degree 1 in such a way that two vertices
on the same path having degree two are adjacent.

If G is a graph, we denote b§, the subgraph oz induced by the vertices of degree two and @y the
subgraph induced by those of degree at least threevéxof G is a vertex whose neighbors are all of degree at
most two. IfA C V(G), we denote by, (A) the set of the vertices having distance at most 2 from some vertices
in A. The following lemma is a simple remark on line digraphs:

Lemma 3.3.Let G be a functional graph of girth at leat, and letL be a line digraph such that = G(L).
If S is a connected component 6f;3 containing exactly one cycle thefj (v) =dg (v) =1 for all v € S or
df (v)y=df@)=1forallves.

Proposition 3.4.Let G be a small graph of girth at least and having exactly two vertices of degree two. If these
vertices belong to the same path, th@ns not a functional graph and — v is functional for all vertex in G.

Corollary 3.5. Let G be a graph obtained from a small graggh; by adding to it a set of verticggpossibly empty
of degree exactly one joined to vertices of odd degre@;inif G, contains at least 3 vertices of degree two, then
G is a functional graph. We call it good small graph

Inspired by the above proposition, we asked about a lower bound of the orders of non functional graphs of
girth n. We are led to prove the following result:

Theorem 3.6.If n > 30, then any graplhG of girth » such thatw(G) < 3n — 7 is a functional graph. This bound is
the best possible.

Definition 3.7. A chord of a cycleC is a path intersecting only at its ends. Ari-chord ofC is a chord of length
at mostl. s chords of a cycle are said to be free if they may only intersect at their ends. Two free chords are said to
be parallel wherC may be the outer face of the planar graph formed’itpgether with these two chords.

To prove Theorem 3.6, we need some lemmas:

Lemma 3.8.Let G be a bipartite planar graph with no cut-vertex. Suppose tat X U Y whereX andY are
two stables such that (G3) € X. Then|Y| — | X| = f — 2, wheref is the number of faces af.

Corollary 3.9. Let G be a planar graph withf faces and no cut-vertex. L& be a multigraph obtained by adding
to G a stable sef of s new vertices such that each vertexsas joined to exactly one vertex 6fby a double edge.
If V(M)=XUY whereX andY are two stables such that(M3) C X, then|Y| — |X|= f(M) — 2. (f(M) is
the number of faces a@f.)

Lemma 3.10.Let G be a planar graph of girte. Thenv(G) > % — f + 2, wheref is the number of faces @f.

Lemma 3.11.Let G be a graph of girthn > 30 such thatv(G) < 3n — 7 and suppose that has no cycles
with 4-chord. If G, is a planar subgraph ot; with 4 faces and no cut-vertex, the induced subgraph6& dfy
V(G3)NV(G,) andV(G2) N V(G),) are denoted by” and 7" respectively. Then eithdf’ contains a connected
component with at least three vertices Brcontains a connected componehisuch that|V2(C) — V(G,)| < 2
andC contains no vertex such thatdg , (v) > 3.
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Remark 1. Using the same arguments, we may get the same sequences @yemas less than 4 faces but at least
2n — 5 vertices.

Lemma 3.12.Let G be a graph of girthn > 30 such thatv(G) < 3n — 7 and suppose that has no cycles with
4-chord. Then one of the following statements holds

1. G has at most one cycle.

2. G is a good small graph.

3. G contains a2-vertex.

4. There is a subtre@ of G containing a single pair of non adjacent vertices®f which are joined to vertices
inG—T.

Now we study the grapty when 4-chords exist. We first remark the following:

Lemma 3.13.Let G be a graph of girthn such thatv(G) < 3n — 7. ThenG has neither cycle witt2 parallel
2-chord nor a cycle containing 8-chord with a vertex joined to a vertex of the cycle distinct from the ends of the
chord.

Corollary 3.14. Let G be a graph of girthn such thatv(G) < 3n — 7. ThenG has no cycles with free 2-chords.

Lemma 3.15.Let G be a graph of girthn > 30 such thatv(G) < 3n — 7. If G contains a cycleC with at least
3n — 24 vertices, therG contains a2-vertex.

Lemma 3.16.Let G be a graph of girtm > 30such thatv(G) < 3n — 7. Then one of the statements of Len8ri2
holds.

Proof of Theorem 3.6. It is sufficient to show thaG may have an orientation satisfying Beineke theorem. It is
obvious if G contains exactly one cycle or @ is a good small graph. Iz contains a 2-vertex, we argue by
induction by remarking that any orientation 6f— v respecting Beineke theorem can be extended .tBy the
above lemma we have only to study the case wiigntains a tred” with exactly two vertices andy joined
to two verticesx’ andy’ in G — T respectively, such that and y are non adjacent and belong &. Let P
be the path in" of endsx andy. Sincex andy are non adjacent, theR contains a vertexv distinct fromx
andy. By inductionG — T may have an orientatioh respecting Beineke theorem. If the edges andyy’” are
oriented in different ways with respect i suppose thatx’, x) € E(L) and(y, y’) € E(L), then we complete by
orienting directlyP from x to y. The remaining edges are oriented away from it. In the other case, suppose that
(x',x) € E(L) and(y’, y) € E(L), we orient directly the pathsw and yw from x to w and fromy to w. The
other remaining edges df are oriented toward®. The digraph obtained in both cases is a line digraphG $&
functional graph.

To show that the established bound is the best possible, consider the small graph of Proposition 3.4. Using the
calculation of Lemma 3.10, we may easily verify thdG) > 3n — 6. The equality is established if the lengths of
the three paths are equalgdor n even. This achieves the proof of Theorem 3.6
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