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Abstract

A mathematical model for the computation of chemical equilibrium of atmospheric inorganic aerosols is proposed. The
equilibrium is given by the minimum of the Gibbs free energy for a system involving an aqueous phase, a gas phase and solid
salts. A primal-dual method solving ti&arush—Kuhn—Tuckezonditions is detailed. An active set/Newton method permits the
computation of the minimum and track solid salts at the equilibriliocite this article: N.R. Amundson et al., C. R. Acad.

Sci. Paris, Ser. | 340 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Un probléeme d’optimisation lié a la modélisation d’aérosols inorganiques. Nous proposons un modele pour I'étude de
I'équilibre chimique d’'un aérosol inorganique dilué dans I'air. L'état d’équilibre est caracterisé par le minimum d’'énergie de
Gibbs pour un systéme chimique faisant intervenir une phase liquide, une phase gazeuse et plusieurs phases solides. Nou
présentons une méthode pour la résolution des conditioadesh—Kuhn—TuckeNous utilisons un algorithme de typetive
set couplé avec une méthode de Newton pour déterminer le minimum d’énergie ainsi que les phases solides apparaissant ¢
I'équilibre. Pour citer cet article: N.R. Amundson et al., C. R. Acad. Sci. Paris, Ser. | 340 (2005).
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Over the last two decades, a series of thermodynamic modules, see for instance [1,5], has been developed tc
predict the phase transition of atmospheric inorganic aerosols. However, these modules either rely on a priori and
incomplete knowledge of the presence of solid phases or are computationally intensive, implying that they often
fail to accurately predict the existing solid phases at the equilibrium or are useless for three dimensional air quality
models. In this Note, a numerical method for the minimization of the Gibbs free energy in the framework of gas—
liquid and solid—liquid equilibrium reactions [6] is presented. The Karush—-Kuhn—Tucker (KKT) points are obtained
with a primal-dual algorithm, where a Newton iteration is applied to the reduced KKT system of equations that is
projected on an ‘active’ set of solid phases to find the next primal-dual approximation of the solution. The active
set strategy permits to add/delete constraints to/from a working set of active constraints until the equilibrium set of
solid phases is obtained.

The chemical equilibrium problem for a closed inorganic aerosol system at constant temperature and pressure
and for a specified feed vectbiis the solution of the minimization problem

minimize G (N, Ng, Ng) =N +Ngpy +nJ py,
subjectto n; >0, ng>0, ng>0, D)
Alnl +Agng +Axns = b7

wheren, € R™, u, € R andA, € R"<*"« gre the concentration vector, the chemical potential vector and the
component-based formula matrix for specieseefor o =1, g, s respectively. The subscriptsg, s denote the
liquid, gas and solid phases, respectively. Heredenotes the number of independent components in the system
andm, denotes the number of species in speciesset

In (1), the chemical potential vectqe;, is defined as the gradient of the Gibbs free energy of the aqueous
phaseG, :RT — R4, so thatvn; > 0, u; = VG;(n;). The Gibbs free energ§; is assumed to be at least twice
continuously differentiable in the interior (B{T. The first-order homogeneity @, is the basis for the relation
Gi(n) = an;L,, and theGibbs—Duhem relation¥2G;(n;)n; = 0. The chemical potentialg, are constant. The
Hessian matrices for the liquid and gas species are respedtyebhV2G;(n;) andH, = diag(1/n,). The aqueous
and gas phases are assumed to be present at the equilibrium. The difficulty in solving (1) is to identify the solid
phases existing at the equilibrium.

Taking into account the Gibbs—Duhem relations, the solution of (1) is characterized by the Karush—-Kuhn—Tucker
(KKT) system of the first order necessary optimality conditions:

n+ A?—X =0,

fg +AIL=0,

ng>0, pm,+AIA>0, nl(u,+ATA)=0,
A+ Agng +Agng =bh.

&)

A primal-dual solution of the KKT system (2), generally non unique, is called a KKT point. One needs to
perform phase stability analysis to determine whether a postulated KKT point is thermodynamically stable with
respect to any perturbation m, n, andny. Let (n[T, ng, n;r, A") denotes a stable KKT point of (2) and Ef =
{ie{d,...,ns}: n;[ > 0} denotes the corresponding active set of solid phases, which is the set of the solid species
actually formed in the system at equilibrium. The cardinéﬂ)ﬁs denoted byr,. Let A, be the matrix composed
by the columns of\, that are inZ, andA = [A,, A¢, A;l. The matrixA is assumed to be of full row rank. The
stability analysis is then based on texond order sufficient conditipwhich states that,

p'Hp is positive definite for all nonzero vectprsuch thatAp = 0, (©)

whereH = V%,ng,nx G(an, n;, n{) is the Hessian matrix of the Gibbs free energy of the system.
Recall that the inertia of a symmetric matrix is an ordered triplei_, i,), wherei is the number of positive
eigenvaluesi_ the number of negative eigenvalues, apdhe number of zero eigenvalues. Relationship (3) is

equivalent to requiring the so-called KKT matix= (2 AOT), to have a certain inertia.



N.R. Amundson et al. / C. R. Acad. Sci. Paris, Ser. | 340 (2005) 683686 685

Lemma 1. If the matrixA is of full rank, the conditior{3) is equivalent to
inertiaZ HZ ) = (m; + mg + s, 0,0), (4)

whereZ is a null-space matrix foA.

Based on an inertia result of Gould [3], the inertigkofs given by inertigK) = |nert|a(ZTHZA) + (me, me, 0).
Hence (3) implies tha is invertible.

In the active set algorithm, a sequence of guesses of the active set of solid Eﬁaisesonstructed. This
sequence of the so-called working sets, denotefi big defined in thelualsense byf, := {j € (1, ..., m,}: (u, +
AIX)j = 0}. The dual variable., together with the primal variabl@n,, ne, N,) consists of a sequence of iterates
that converges to the optimal primal—dual solut(uﬂ ng, ns ,AT), as the sef, starting from an approximation
of 7, , is expected to converge ' [4].

Along the process of applying the active-set strategy, the KKT system (2) is first projected onto the current
working setZ; to form a reduced KKT system. The concentration vectois decomposed into; = (ny, fiy)
wherefi; = 0 andf, > 0. LetA, be the matrix composed by the columnsAqf with indices inZ, andA, the
matrix composed by the columnsAf which are notinA;. Similarly, definejt, andji; as the vector composed by
the components qi, with indices that are iff; and that are not iff, respectively. LeZz, be a null-space matrix

of Ay, Ay = Zi ArandAg, =Z; Ay. Letus also defing by A = 1" + Zz 5, wherer™ is a particular solution
satisfyingji, + A;,A* =0 andjt, + A\* >0.The system (2) projected @n consists of the equality constraints

p+AIN =0 p,+ALn=0 Ayn+A,n,=Z; b, (5)
together with inequalities constraints
i, +ATA > 0. (6)

Let us ignore for the moment the fact thiat must remain non-negative and apply ddewton iterationto the
reduced system (5) to find the ngximal—dualapproximation(n;, ng, n) of the solution. The resulting Newton
system for the displacemergs, p,, andp,, is

T
Hio 0 AL\ /p, by

0 H, Al (pg>=(bg>, (7)
Az Azg 0 Pr b"

whereb; = —(u; +Aln), by = —(n, +Aln) andb, =Zz b— A n; — A n,. The displacement ik is obtained

as a displacement in the null-space, definegpy=Zz p,. The displacemert, is restricted to a certain length
so that the nex* stays feasible with respect to (6). Finally, the next workingZegtis obtained by adding
constraints that are encountered by the nely i.e. Tt = Z, UT¢, with T¢ = (j ¢ Z,: (ju, + ATAt); = 0}.
Constraints are added in the working set until the sequence; ofig, 1) converges to a solution of the reduced
KKT system (5). The concentratioims in the working sefZ; are then computed based on the last equality of (2)
via iy = (AN 71(b — Ain; — Agn,) where(AT)~1 is the left pseudo-inverse &/. The non-negativeness of

is enforced byremoving a saturated saftom the working sefZ; when its concentration becomes negative, that
isZ) =Z,\Z¢, with T¢ = {j e Z,: n,; < 0}. If Z¢ + ¢, a new loop of Newton iterations is restarted; otherwise,
the algorithm stops at a stable KKT point and the active set of solid plﬁ%as the equilibrium is obtained. It

is assumed thak, remains of full rank by addition or deletion of constraints in the working set, see also [2]. The
solvability of the linear system (7) and the condition (3) are ensured by the following lemma.

Lemma 2. The condition3) is equivalent to
Z[(H/+S)Z, >0, (8)
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Fig. 1. Modeling of a sulfate aerosol. Left: reconstruction of the phase diagranf &t &&h tracking of the presence of solid phases. Right:
evolution of the particle mass in function of treative humidityRH for three different feed vectots

whereS = AT, Q R, TH R 1QTA, andZ; = (Q. QR; Q) with (Qg Q). Rg and(Q; Q). R, being the QR
factorization ofA ;. andAIl respectively. Under conditiof8), the systen(7) is solvable.

To ensure that the primal-dual algorithm converges timmum or stable equilibriuprthe condition (3) is
enforced via (8), by replacing; with a modified matrixH; so thatZ,T(Hl +S)Z; > 0.

To illustrate the efficiency of the algorithm, a numerical example of atmospheric sulfate aeros) 80—
H>SOs—H,0 is considered here. An aqueous phase is present and three solid phases may appear at equilibrium
Fig. 1 shows, on the left side, the reconstructed sulfate aerosol phase diagram, and, on the right side, the evolutior
of the particle mass in function of threlative humidityRH for three different feed vectois It illustrates that the
method allows us to track phase changes very accurately.
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