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Abstract

A mathematical model for the computation of chemical equilibrium of atmospheric inorganic aerosols is propos
equilibrium is given by the minimum of the Gibbs free energy for a system involving an aqueous phase, a gas phase
salts. A primal-dual method solving theKarush–Kuhn–Tuckerconditions is detailed. An active set/Newton method permits
computation of the minimum and track solid salts at the equilibrium.To cite this article: N.R. Amundson et al., C. R. Acad.
Sci. Paris, Ser. I 340 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Un problème d’optimisation lié à la modélisation d’aérosols inorganiques. Nous proposons un modèle pour l’étude
l’équilibre chimique d’un aérosol inorganique dilué dans l’air. L’état d’équilibre est caracterisé par le minimum d’éne
Gibbs pour un système chimique faisant intervenir une phase liquide, une phase gazeuse et plusieurs phases so
présentons une méthode pour la résolution des conditions deKarush–Kuhn–Tucker. Nous utilisons un algorithme de typeactive
set, couplé avec une méthode de Newton pour déterminer le minimum d’énergie ainsi que les phases solides appa
l’équilibre. Pour citer cet article : N.R. Amundson et al., C. R. Acad. Sci. Paris, Ser. I 340 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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Over the last two decades, a series of thermodynamic modules, see for instance [1,5], has been dev
predict the phase transition of atmospheric inorganic aerosols. However, these modules either rely on a p
incomplete knowledge of the presence of solid phases or are computationally intensive, implying that th
fail to accurately predict the existing solid phases at the equilibrium or are useless for three dimensional ai
models. In this Note, a numerical method for the minimization of the Gibbs free energy in the framework o
liquid and solid–liquid equilibrium reactions [6] is presented. The Karush–Kuhn–Tucker (KKT) points are ob
with a primal–dual algorithm, where a Newton iteration is applied to the reduced KKT system of equations
projected on an ‘active’ set of solid phases to find the next primal–dual approximation of the solution. The
set strategy permits to add/delete constraints to/from a working set of active constraints until the equilibriu
solid phases is obtained.

The chemical equilibrium problem for a closed inorganic aerosol system at constant temperature and
and for a specified feed vectorb is the solution of the minimization problem

minimize G(nl ,ns ,ng) = nT
l µl + nT

gµg + nT
s µs ,

subject to nl > 0, ng > 0, ns � 0,

Alnl + Agng + Asns = b,

(1)

wherenα ∈ R
mα , µα ∈ R

mα andAα ∈ R
mc×mα are the concentration vector, the chemical potential vector an

component-based formula matrix for species setα, for α = l, g, s respectively. The subscriptsl, g, s denote the
liquid, gas and solid phases, respectively. Heremc denotes the number of independent components in the sy
andmα denotes the number of species in species setα.

In (1), the chemical potential vectorµl , is defined as the gradient of the Gibbs free energy of the aqu
phaseGl :Rml+ → R+, so that,∀nl > 0, µl = ∇Gl(nl). The Gibbs free energyGl is assumed to be at least twi
continuously differentiable in the interior ofRml+ . The first-order homogeneity ofGl is the basis for the relatio
Gl(nl ) = nT

l µl , and theGibbs–Duhem relations∇2Gl(nl)nl = 0. The chemical potentialsµs are constant. The
Hessian matrices for the liquid and gas species are respectivelyHl = ∇2Gl(nl ) andHg = diag(1/ng). The aqueous
and gas phases are assumed to be present at the equilibrium. The difficulty in solving (1) is to identify t
phases existing at the equilibrium.

Taking into account the Gibbs–Duhem relations, the solution of (1) is characterized by the Karush–Kuhn–
(KKT) system of the first order necessary optimality conditions:

µl + AT
l λ = 0,

µg + AT
gλ = 0,

ns � 0, µs + AT
s λ � 0, nT

s (µs + AT
s λ) = 0,

Alnl + Agng + Asns = b.

(2)

A primal–dual solution of the KKT system (2), generally non unique, is called a KKT point. One nee
perform phase stability analysis to determine whether a postulated KKT point is thermodynamically stab
respect to any perturbation innl , ng andns . Let (n†

l ,n†
g,n†

s ,λ
†) denotes a stable KKT point of (2) and let�I †

s :=
{i ∈ {1, . . . , ns}: n†

s,i > 0} denotes the corresponding active set of solid phases, which is the set of the solid

actually formed in the system at equilibrium. The cardinal of�I †
s is denoted by�ms . Let Ās be the matrix compose

by the columns ofAs that are in�I †
s andĀ = [Al ,Ag, Ās]. The matrixĀ is assumed to be of full row rank. Th

stability analysis is then based on thesecond order sufficient condition, which states that,

pTHp is positive definite for all nonzero vectorp such thatĀp = 0, (3)

whereH = ∇2
nl ,ng,ns

G(n†
l ,n†

g ,n†
s ) is the Hessian matrix of the Gibbs free energy of the system.

Recall that the inertia of a symmetric matrix is an ordered triple(i+, i−, io), wherei+ is the number of positive
eigenvalues,i− the number of negative eigenvalues, andi0 the number of zero eigenvalues. Relationship (3
equivalent to requiring the so-called KKT matrixK = (

H ĀT)
, to have a certain inertia.
Ā 0
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Lemma 1. If the matrixĀ is of full rank, the condition(3) is equivalent to

inertia(ZT
Ā

HZĀ) = (ml + mg + �ms,0,0), (4)

whereZĀ is a null-space matrix for̄A.

Based on an inertia result of Gould [3], the inertia ofK is given by inertia(K) = inertia(ZT
Ā

HZĀ)+ (mc,mc,0).
Hence (3) implies thatK is invertible.

In the active set algorithm, a sequence of guesses of the active set of solid phases�I †
s is constructed. This

sequence of the so-called working sets, denoted by�Is , is defined in thedualsense by�Is := {j ∈ {1, . . . ,ms}: (µs +
AT

s λ)j = 0}. The dual variableλ, together with the primal variable(nl ,ng,ns) consists of a sequence of iterat
that converges to the optimal primal–dual solution(n†

l ,n†
g ,n†

s ,λ†), as the set�Is , starting from an approximatio

of �I †
s , is expected to converge to�I †

s [4].
Along the process of applying the active-set strategy, the KKT system (2) is first projected onto the

working set�Is to form a reduced KKT system. The concentration vectorns is decomposed intons = (n̄s , n̂s)

wheren̂s = 0 andn̄s > 0. Let Ās be the matrix composed by the columns ofAs with indices in�Is and Âs the
matrix composed by the columns ofAs which are not inĀs . Similarly, defineµ̄s andµ̂s as the vector composed b
the components ofµs with indices that are in�Is and that are not in�Is respectively. LetZĀs

be a null-space matri

of Ās , Azl = ZĀs
Al andAzg = ZĀs

As . Let us also defineη by λ = λ∗ + ZĀs
η, whereλ∗ is a particular solution

satisfyingµ̄s + Āsλ
∗ = 0 andµ̂s + Âsλ

∗ � 0. The system (2) projected on�Is consists of the equality constraint

µl + AT
zlη = 0, µg + AT

zgη = 0, Azlnl + Azgng = ZĀs
b, (5)

together with inequalities constraints

µ̂s + ÂT
s λ � 0. (6)

Let us ignore for the moment the fact thatn̄s must remain non-negative and apply oneNewton iterationto the
reduced system (5) to find the nextprimal–dualapproximation(nl ,ng,η) of the solution. The resulting Newto
system for the displacementspl , pg , andpη is Hl 0 AT

zl

0 Hg AT
zg

Azl Azg 0

( pl

pg

pη

)
=

( bl

bg

bη

)
, (7)

wherebl = −(µl +AT
zlη), bg = −(µg +AT

zgη) andbη = ZĀs
b−Azlnl −Azgng . The displacement inλ is obtained

as a displacement in the null-space, defined bypλ = ZĀs
pη. The displacementpλ is restricted to a certain lengt

so that the nextλ+ stays feasible with respect to (6). Finally, the next working set�I+
s is obtained by adding

constraints that are encountered by the newλ+, i.e. �I+
s = �Is ∪ �Ia

s , with �Ia
s = {j /∈ �Is : (µ̂s + ÂT

s λ+)j = 0}.
Constraints are added in the working set until the sequence of(nl ,ng,λ) converges to a solution of the reduc
KKT system (5). The concentrationsn̄s in the working set�Is are then computed based on the last equality of
via n̄s = (ĀT

s )−1(b − Alnl − Agng) where(ĀT
s )−1 is the left pseudo-inverse of̄AT

s . The non-negativeness ofn̄s

is enforced byremoving a saturated saltfrom the working set�Is when its concentration becomes negative, t
is �I+

s = �Is\�Id
s , with �Id

s = {j ∈ �Is : ns,j < 0}. If �Id
s �= ∅, a new loop of Newton iterations is restarted; otherw

the algorithm stops at a stable KKT point and the active set of solid phases�I †
s at the equilibrium is obtained. I

is assumed that̄As remains of full rank by addition or deletion of constraints in the working set, see also [2]
solvability of the linear system (7) and the condition (3) are ensured by the following lemma.

Lemma 2. The condition(3) is equivalent to

ZT(H + S )Z > 0, (8)
l l l l
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Fig. 1. Modeling of a sulfate aerosol. Left: reconstruction of the phase diagram at 25◦C with tracking of the presence of solid phases. Rig
evolution of the particle mass in function of therelative humidityRH for three different feed vectorsb.

whereSl = AT
zlQgR−T

g HgR−1
g QT

gAzl andZl = (Q̃l ,QlR
−T
l Qg) with (Qg Q̃g), Rg and (Ql Q̃l), Rl being the QR

factorization ofAzg andAT
zl respectively. Under condition(8), the system(7) is solvable.

To ensure that the primal–dual algorithm converges to aminimum or stable equilibrium, the condition (3) is
enforced via (8), by replacingHl with a modified matrix̃Hl so thatZT

l (H̃l + Sl)Zl > 0.
To illustrate the efficiency of the algorithm, a numerical example of atmospheric sulfate aerosol (NH4)2SO4–

H2SO4–H2O is considered here. An aqueous phase is present and three solid phases may appear at eq
Fig. 1 shows, on the left side, the reconstructed sulfate aerosol phase diagram, and, on the right side, the
of the particle mass in function of therelative humidityRH for three different feed vectorsb. It illustrates that the
method allows us to track phase changes very accurately.
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