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Abstract

This work establishes and exploits a connection between the invariant measure of stochastic partial differential e
(SPDEs) and the law of bridge processes. Namely, it is shown that the invariant measure ofut = uxx + f (u) + √

2ε η(x, t),
whereη(x, t) is a space–time white-noise, is identical to the law of the bridge process associated to dU = a(U)dx +√

ε dW(x),
provided thata andf are related byεa′′(u) + 2a′(u)a(u) = −2f (u), u ∈ R. Some consequences of this connection are in
tigated, including the existence and properties of the invariant measure for the SPDE on the line,x ∈ R. To cite this article:
M.G. Reznikoff, E. Vanden-Eijnden, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Mesures invariantes d’équations aux dérivées partielles stochastiques et diffusions conditionées. On montre et exploite
une connection entre la mesure invariante d’équations aux dérivées partielles stochastiques et les lois de proces
En l’occurence, on montre que la mesure invariante deut = uxx + f (u) + √

2ε η(x, t), où η(x, t) est un bruit blanc spatio
temporel, est la même que la loi du processus pont associé à dU = a(U)dx + √

ε dW(x), pourvu quea et f soient reliés
commeεa′′(u) + 2a′(u)a(u) = −2f (u), u ∈ R. Quelques conséquences de cette connection sont étudiées, comme l’ex
et les propriétés d’une mesure invariante de l’équations aux dérivées partielle stochastique sur la ligne,x ∈ R. Pour citer cet
article : M.G. Reznikoff, E. Vanden-Eijnden, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction and main results

Consider the stochastic partial differential equation

ut = uxx + f (u) + √
2ε η(x, t), x ∈ [−L,L], t > 0, (1)

whereη is a space–time white noise, i.e. a Gaussian field with mean zero and covarianceE(η(x, t)η(y, s)) =
δ(x − y)δ(t − s) (formally). Suppose that

(A) f (u) = −F ′(u) with F ∈ C∞(R), F � 0, andF → ∞ as|u| → ∞.

Then (1) can be interpreted by transformation into an integral equation using the solution of the linear par
and the invariant measure of (1) exists and is unique [1,3]. Since (1) is theL2-gradient flow on

∫ L

−L
(1

2u2
x +F(u))dx,

plus perturbations, formally this invariant measure is

exp

(
−1

ε

L∫
−L

(
1

2
u2

x + F(u)

)
dx

)
Du. (2)

(2) can be interpreted [3] using the invariant measure of

vt = vxx + √
2ε η(x, t) (3)

as a reference measure, with density

exp

(
−1

ε

L∫
−L

F(v)dx

)
. (4)

We propose a different method. The invariant measure of (3) coincides with the law of the Brownian
on [−L,L] scaled by

√
ε. Building on this observation, we show that one can absorb the density (4) by cho

a more natural bridge process. More precisely, we have:

Theorem 1.1 (The invariant measure and the bridge measure). Under assumption(A), the invariant measure of(1)
subject tou(−L, t) = u−, u(L, t) = u+ is identicalto the law of the bridge process defined by

dU = a(U)dx + √
ε dW (5)

conditioned onU(−L) = u−, U(L) = u+, provided thata satisfies

εa′′(u) + 2a′(u)a(u) = −2f (u), u ∈ R. (6)

The conditioningU(−L) = u−, U(L) = u+ defines a bridge process, and it can be realized by means o
h-transform [5], which amounts to replacinga(u) in (5) by

ã(u) = a(u) + ε∂u log
(
pu

L−x(u+)
)
,

wherepu
x(u′) is the transition probability density function of the unconditioned process. The law of the b

process is the law of the SDE with drift̃a. The proof of Theorem 1.1 follows by application of the Girsan
formula to bridge processes.

Theorem 1.1 is easy to use in reverse. Givena, it is straightforward to calculatef using (6) and check whether
satisfies assumption (A). The SPDE (1) thus offers an explicit way to sample bridge processes associated
which may be interesting in some cases. Also interesting but less obvious is the question of finding thea

givenf , since it allows analysis of the invariant measure of the SPDE (1) by studying the bridge process as



M.G. Reznikoff, E. Vanden-Eijnden / C. R. Acad. Sci. Paris, Ser. I 340 (2005) 305–308 307

s which
many
nique

rem 1.2
The

is

y

trated
e

-
Es [2],
with the SDE (5). There are many solutions of (6) corresponding to different choices of boundary condition
are only defined locally (they blow-up at finiteu). These are unacceptable in Theorem 1.1. There are also
global solutionsa ∈ C2(R) which lead to identical bridge processes after conditioning. There is, however, a u
solution which distinguishes itself:

Theorem 1.2. Under assumption(A), there exists a unique, global solutiona� ∈ C2(R) of (6) which satisfies

∫
R

exp

(
2

ε

u∫
0

a�(v)dv

)
du < ∞. (7)

Since (7) is necessary and sufficient for the SDE to have a unique equilibrium probability density, Theo
asserts thata� is the unique solution of (6) for which the SDE (5) has an equilibrium probability density.
theorem is proved by noting that (6) can be transformed into the Schrödinger equation

ε2w′′ − 2F(u)w = λw, for w(u) := exp

(
1

ε

u∫
0

a(v)dv

)
(8)

andλ = εa′(0) + a2(0). By assumption (A), the only strictly positive,L2-solution of this Schrödinger equation
its ground state [6]. By the definition ofw in (8), (7) is the expression that the ground state belongs toL2(R).

From the existence and uniqueness of the equilibrium probability density of (5) witha = a�, it follows that
the equilibrium process,{U(x)}x∈R, associated with (5) fora = a� is well-defined, and its law is unique. B
equivalence with the invariant measure of (1), this leads to:

Corollary 1.3. The law of the equilibrium process,{U(x)}x∈R, associated with(5) for a = a� is an invariant
measure of

ut = uxx + f (u) + √
2ε η(x, t), x ∈ R. (9)

2. Applications and generalizations

1. The density (4) suggests that asε → 0, the invariant measure is supported on functions which are concen
around the minima,mi , of F . Theorem 1.1 confirms this picture, at least whenL is fixed. Consider for instance th
situation whenf = u − u3, corresponding toF = 1

4(1− u2)2. In this case,

a�(u) → sgn(u)
√

F(u) = sgn(u)(1− u2)√
2

asε → 0. (10)

The limit is simply the patching together the two outer (or naive) solutions ofεa′ + a2 = 2F (obtained by integrat
ing (6) once). From (10) and standard results from the Wentzell–Freidlin theory of large deviations for SD
it follows that if L is kept fixed asε → 0, the solutions of (1) concentrate on the minimizers of the action

L∫
−L

∣∣∣∣U ′ − sgn(U)(1− U2)√
2

∣∣∣∣
2

dx, (11)

subject toU(−L) = u−, U(L) = u+. If u− = u+ = 1 (resp.−1), the minimizer of (11) is indeedU(x) = 1
(resp.−1).
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On the other hand, ifL → ∞ asε → 0 on a sequence such thatε logL → C >
√

2/3, another regime emerge
The functions on which the invariant measure is supported are no longer concentrated near a single minimF ,
and transitions between minima become almost certain. These transitions correspond to hopping over t

√
2/3

high barrier in the cusped potentialA := sgn(u)(u3/3 − u)/
√

2 associated witha (i.e. a = −A′). In particular,
the functions within the support of the invariant measure of (1) tend to piecewise constant functions tak
values±1, and the lengths of the successive domains are i.i.d. Poisson variables with mean

� = (√
επ 2−3/4 + o(

√
ε)

)
e
√

2/(3ε). (12)

2. One expects that Theorem 1.1 is valid for a class of SPDE wider than (1), obtained by changing ei
boundary conditions or the metric over which the gradient flow is constructed, provided that the conditio
the solutions of (5) is changed accordingly. For instance, suppose that one considers (1) with periodic b
conditions on[−L,L]. Then the invariant measure of the SPDE is identical to the law of (5) onR conditioned on
the subset of solutions which are 2L-periodic.

Similarly, if instead of (1), one considers theH−1-gradient flow on
∫ L

−L
(1

2u2
x + F(u))dx plus perturbations,

ut = −∂2
xx

(
uxx + f (u)

) + √
2ε ∂xη(x, t), (13)

then formally the invariant measure is again (2) with the additional constraint that∫ L

−L
u(x, t)dx = cst. (14)

Correspondingly, one expects the invariant measure of (13) to be identical to the law of (5) conditioned
solutions of the SDE satisfying

∫ L

−L
U(x)dx = cst together with the boundary conditions.

3. The results can be generalized to situations in whichu is a vector-valued field,u : [−L,L] × [0,∞) → R
n,

satisfying

ut = uxx − ∇uF (u) + √
2ε η(x, t), (15)

whereη is a vector-valued space–time white-noise andF is some smooth potential bounded from below a
growing at infinity. Then the invariant measure of (15) is identical to the law of the bridge process associat

dU = a(U)dx + √
ε dW(x), (16)

provided thata = ε∇w/w, wherew is the ground state of the Schrödinger equation

ε2	w − 2F(u)w = λw. (17)
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