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Abstract

This work establishes and exploits a connection between the invariant measure of stochastic partial differential equations
(SPDEs) and the law of bridge processes. Namely, it is shown that the invariant measpte of , + f (1) + v/2¢ n(x, 1),
wheren(x, t) is a space—time white-noise, is identical to the law of the bridge process associatee-ia(@ ) dx + /¢ dW (x),
provided thatz and f are related bya” (u) + 24’ (u)a(u) = —2f (u), u € R. Some consequences of this connection are inves-
tigated, including the existence and properties of the invariant measure for the SPDE on thesliReTo cite this article:
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Résumé

Mesuresinvariantes d’ équations aux dérivées partielles stochastiques et diffusions conditionées. On montre et exploite
une connection entre la mesure invariante d’équations aux dérivées partielles stochastiques et les lois de processus pont
En l'occurence, on montre que la mesure invariantede uy, + f(u) + V2e (x, 1), olin(x, 1) est un bruit blanc spatio-
temporel, est la méme que la loi du processus pont assodié-=a @(U)dx + /¢ dW(x), pourvu quea et f soient reliés
commeea” (u) + 2a’ (w)a(u) = —2f (u), u € R. Quelques conséquences de cette connection sont étudiées, comme I'existence
et les propriétés d’'une mesure invariante de I'équations aux dérivées partielle stochastique suriali§npur citer cet
article: M.G. Reznikoff, E. Vanden-Eijnden, C. R. Acad. Sci. Paris, Ser. | 340 (2005).
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1. Introduction and main results

Consider the stochastic partial differential equation
ut=uxx+f(u)+\/§n(x,t), xe[-L,L], t>0, 1)
wheren is a space—time white noise, i.e. a Gaussian field with mean zero and covdiareer)n(y, s)) =
8(x — y)8(t — s) (formally). Suppose that
(A) f(u)=—F'(u)with F e C*°®R), F >0, andF — oo as|u| — oo.

Then (1) can be interpreted by transformation into an integral equation using the solution of the linear part [1,3,4]

and the invariant measure of (1) exists and is unique [1,3]. Since (1) iSteadient flow onffL(%u§ + F(u))dx,
plus perturbations, formally this invariant measure is

L
exp(—i:L / (%ui + F(u)) dx) Du. 2)

(2) can be interpreted [3] using the invariant measure of
v = Ve + V26 (x, 1) 3)
as a reference measure, with density
L
1
exp(—— / F(v) dx). (4)
&
-L

We propose a different method. The invariant measure of (3) coincides with the law of the Brownian bridge
on[—L, L] scaled by,/e. Building on this observation, we show that one can absorb the density (4) by choosing
a more natural bridge process. More precisely, we have:

Theorem 1.1 (The invariant measure and the bridge measlajler assumptiofA), the invariant measure dfl)
subjecttou(—L,t) =u_, u(L,t) = uy isidenticalto the law of the bridge process defined by

dU = a(U) dx + /e dW (5)
conditioned orJ (—L) = u_, U(L) = u, provided thatz satisfies
ea’(u) +2a'(w)a(u) = —-2f(u), ueck. (6)

The conditioningU(—L) =u_, U(L) = u, defines a bridge process, and it can be realized by means of the
h-transform [5], which amounts to replaciagu) in (5) by

a(u) = a(u) +€d, log(py _ (u4)),

where p¥(u’) is the transition probability density function of the unconditioned process. The law of the bridge
process is the law of the SDE with drifit The proof of Theorem 1.1 follows by application of the Girsanov
formula to bridge processes.

Theorem 1.1 is easy to use in reverse. Giveitis straightforward to calculatg using (6) and check whether it
satisfies assumption (A). The SPDE (1) thus offers an explicit way to sample bridge processes associated with (5)
which may be interesting in some cases. Also interesting but less obvious is the question of finding the drift
given f, since it allows analysis of the invariant measure of the SPDE (1) by studying the bridge process associated
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with the SDE (5). There are many solutions of (6) corresponding to different choices of boundary conditions which
are only defined locally (they blow-up at finitg. These are unacceptable in Theorem 1.1. There are also many
global solutions: € C2(R) which lead to identical bridge processes after conditioning. There is, however, a unique
solution which distinguishes itself:

Theorem 1.2. Under assumptiofA), there exists a unique, global solutiape C2(R) of (6) which satisfies

/exp(g/a,,(v) dv) du < 0. (7

R 0

Since (7) is necessary and sulfficient for the SDE to have a unique equilibrium probability density, Theorem 1.2
asserts that, is the unique solution of (6) for which the SDE (5) has an equilibrium probability density. The
theorem is proved by noting that (6) can be transformed into the Schrédinger equation

1 u
2w —2Fw)w = 2w, for w(u) = exp(— / a(v) dv) (8)
&
0
andx = ea’(0) + a?(0). By assumption (A), the only strictly positivé2-solution of this Schrédinger equation is
its ground state [6]. By the definition af in (8), (7) is the expression that the ground state belond<(®).
From the existence and uniqueness of the equilibrium probability density of (5)awitla,, it follows that

the equilibrium process{U (x)}.cr, associated with (5) for = a, is well-defined, and its law is unique. By
equivalence with the invariant measure of (1), this leads to:

Coroallary 1.3. The law of the equilibrium proces$lU (x)}.cr, associated with(5) for a = a, is an invariant
measure of

ut=uxx+f(u)+\/§n(x,t), x eR. (9)

2. Applications and generalizations

1. The density (4) suggests thatzas> 0, the invariant measure is supported on functions which are concentrated
around the minimag;, of F. Theorem 1.1 confirms this picture, at least wiieis fixed. Consider for instance the
situation whenf = u — u3, corresponding t& = (1 — «%)2. In this case,

sgn(u) (1 — u?)
V2

The limit is simply the patching together the two outer (or naive) solutiosaof a? = 2F (obtained by integrat-
ing (6) once). From (10) and standard results from the Wentzell-Freidlin theory of large deviations for SDEs [2],
it follows that if L is kept fixed ag — 0, the solutions of (1) concentrate on the minimizers of the action

J

a,(u) — sgnu)y/ F(u) = ass — 0. (10)

_sgnA-U?) [
V2

subject toU(—L) =u_, U(L) =uy. If u_ =uy =1 (resp.—1), the minimizer of (11) is indeed@ (x) =1
(resp.—1).

U/

dr, (11)
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On the other hand, it. — oo ase — 0 on a sequence such thdbg L — C > +/2/3, another regime emerges.
The functions on which the invariant measure is supported are no longer concentrated near a single mifimum of
and transitions between minima become almost certain. These transitions correspond to hopping¥2¢8 the
high barrier in the cusped potential:= sgn(u)(u3/3 — u)/+/2 associated witla (i.e. « = —A’). In particular,
the functions within the support of the invariant measure of (1) tend to piecewise constant functions taking the
values%1, and the lengths of the successive domains are i.i.d. Poisson variables with mean

0= (Vem 273/% 1 o(/6)) /% @), (12)

2. One expects that Theorem 1.1 is valid for a class of SPDE wider than (1), obtained by changing either the
boundary conditions or the metric over which the gradient flow is constructed, provided that the conditioning of
the solutions of (5) is changed accordingly. For instance, suppose that one considers (1) with periodic boundary
conditions or{—L, L]. Then the invariant measure of the SPDE is identical to the law of (8 oanditioned on
the subset of solutions which aré periodic.

Similarly, if instead of (1), one considers ttt&~-gradient flow on/”, (2«2 + F(u)) dx plus perturbations,

ur = =32 (uxx + f@) + V28 9 (x, 1), (13)
then formally the invariant measure is again (2) with the additional constraint that
JE u(x, nde =cst (14)

Correspondingly, one expects the invariant measure of (13) to be identical to the law of (5) conditioned on the

solutions of the SDE satisfyinﬁL U (x) dx = csttogether with the boundary conditions.
3. The results can be generalized to situations in whitha vector-valued fieldy: [—L, L] x [0, c0) — R”,
satisfying

Uy =ty — Vi F () + /26 1(x, 1), (15)

wheren is a vector-valued space-time white-noise @nds some smooth potential bounded from below and
growing at infinity. Then the invariant measure of (15) is identical to the law of the bridge process associated with

dU =a(U)dx + /e dW (x), (16)
provided that: = e Vw/w, wherew is the ground state of the Schrédinger equation
e?Aw — 2F (w)w = Aw. (17)
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