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Abstract

In this Note we compute the generators of the ring of invariants for quiver factorization problems, generalizing results of Le
Bruyn and Procesi. In particular, we find a necessary and sufficient combinatorial criterion for the projectivity of the associated
invariant quotients. Further, we show that the non-projective quotients admit open immersions into projective varieties, which
still arise from suitable quiver factorization problenTs. cite this article: M. Halic, M.S. Stupariu, C. R. Acad. Sci. Paris,

Ser. | 340 (2005).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Anneaux d’invariants des représentations de carquois. Dans cette Note nous calculons les générateurs des anneaux d’in-
variants pour certains problémes de factorisation associés aux représentations de carquois, généralisant un résultat démon
par Le Bruyn et Procesi. En particulier, nous déduisons un critére combinatoire nécéssaire et suffisant pour la projectivité du
quotient. En plus, nous démontrons que les quotients non-projectifs peuvent étre immergés de maniére ouverte dans variete
projectives qui proviennent elles mémes de problémes de factorisation de carquois apgropriéiser cet article: M. Halic,

M.S. Stupariu, C. R. Acad. Sci. Paris, Ser. | 340 (2005).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version francaise abr égée

Considérons un carquo@ = (Qo, 01, h, t), un sous-ensemble de somm&ts Qg (qu’on appellemarqués
et une représentation= (V, ¥) de 0, ou V = {V,},¢0, €St une famille d’espaces vectoriels de dimension finie,
sur un corps algébriquement clbgle caractéristique nulle. Nous étudions 'action naturelle du groupe réstreint
Ggs := qus GI(V,) sur I'espace de représentati. Dans le Theoreme 1.1, nous calculons les générateurs de
lanneau des invariants[ W, 1°s : notamment nous démontrons que ceh@au est engendré par les traces des
cycles marqués et par les fonctions de coordonnées des trajectoires orientées, dont la source et le but ne sont p

E-mail addresseshalic@math.unizh.ch (M. Hig), stupariu@math.unizbh (M.-S. Stupariu).

1631-073X/$ — see front matterl 2004 Académie des sciences. PublishedElsevier SAS. All rights reserved.
doi:10.1016/j.crma.2004.12.012



136 M. Halic, M.S. Stupariu / C. R. Acad. Sci. Paris, Ser. | 340 (2005) 135-140

marqués. Ceci généralise un résultat d0 a Le Bruyn et Procesi qui traite le cas ou tous les sommets sont marqué
Comme application, nous trouvons un critére corabiire nécessaire et suffisant, impliqughet S seulement,
qui assure la projectivité des quotients invaridits/(Gs, x), ol x est un caractere d&g.

Une question naturelle qui se pose est celle de la complétion des quotients non-préjeftiss, x). Nous
introduisons un procédé combinatiore qu’on appédargissementpar lequel on ajoute des sommets et des aréts
a un carquois. Ce procédé détruit les cycles marqués et les trajectoires orienfgedot la source et le but ne
sont pas marqueés. Le résultat principal dans cettection est formulé dans le Théoreme 1.3, qui dit que pour
chaque carquoig® avec des sommets marque®n trouve un élargisseme®, S) ayant la propriété suivante :
pour chaque charactepe de G et pour chaque représentatiorde Q, il y a un characteregy de Gy et une
représentation de Q, tel queW://(G3, x) est projective et contierW, /(Gs, x) comme ouvert de Zariski. Ceci
traduit dans le langage de la géométrie invariante et géiséle résultat de [3], qui porte sur la théorie du contréle
des systémes linéaires.

1. Introduction

A quiverQ is a quartetQo, Q1, h, t) consisting of the set®o and Q1 of vertices, respectively arrows, and the
mapsh, t: Q1 — Qo, which associate to every arranthe head respectively theail of a. Throughout this note
we will consider only finite quivers, i.e. we will assume that the g&fsand Q1 are finite. Ifas, ..., a, are arrows
such thati(a;) = t(a;4+1) foranyi =1,...,n — 1, they give rise to theriented patha, - - - a1. If, moreover, one
hash(a,) = t(a1), this oriented path will be called@ycle A vertexgq is called asource(respectively ainK if all
the arrows meeting are starting fromy (respectively directed tg). Any quiver without cycles has at least one
source and one sink.

Let furtherk be an algebraically closed field of characteristic Orefaresentation = (V, ) of a quiverQ
(over the fieldk) is given by a family of finite dimensionakvector spacesV, ), <o, and a family of linear maps
(Ya)aeoq, With g 1 Vi(a) = Vi) for any arrowa.

Let nowr = (V, ¥) be a fixed representation of a quiv@rof dimension vectow. There is a natural action of

the group[ [, o, GI(V) on therepresentation spac®, := P, o, HOM(V:(a), Vi(a)), given by

(84)g ¥ Pa)a = (8ha) © Pa © & ())a-

In many concrete situations one is interested only irettt@n of a smaller symmetry group (see for instance [4,
Section 1.5] for a symplectic approach to the problem). Consequently, for a subset of vertiges we define the
groupGs := ]_[qes Gl(vy) C HqEQo GI(V,), and consider its induced action on the sptte we denote byp, s
the corresponding representation. This data defirgps\eer factorization problemassociated to the combinatorial
data(Q, S). In the special case wheh= Qy, it will be called astandard quiver factorization problerRor S C Qo
as above, we will call the vertices ;i marked and those irQg \ S unmarked

The structure of the ring of invariank§W, 1° 2 in the case when all the verticase marked is described by Le
Bruyn and Procesi in [1, Theorem 1]; namely this ringgenerated by traces of oriented cycles in the qu@er
Our aim is to generalize this result for quivers with both marked and unmarked vertices.

Theorem 1.1. Let Q be a quiver with marked verticeésC Qg, and letr be a representation of with represen-
tation spaceW,. Then the ring of invariants[ W, ]°s is generated by traces of marked cycles and by coordinate
functions of oriented paths with unmarked source and sink.

For a charactey of the groupG s, the associated invariant quotient

W, //(Gs. x) = Proi( D kIW,157)

n>=0

will be called aQFP-quotientSinceW, //(Gs, x) is projective over Spe&[W,1¢5), we deduce that
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Corollary 1.2. The following statements are equivalent

() W,/ (Gs, x) is a projective variety, for every charactgrof Gs;
(i) k[W,195 =k;
(iii) Q contains no marked cycles and no oriethipaths with unmarked source and sink.

We introduce a combinatorial construction, that we ealargementwhich enables us to construct completions
of QFP-quotients which are still QFP-quotients.

Theorem 1.3. For a quiver(Q, S) with marked vertices, there is an enlargemédt S) with the property that for
any charactery € X*(Gy) and any representationof Q, there exist a charactef € X*(Gz) and a representa-
tion 7 of Q such thatW; /(Gs, x) is projective and contain®, /(Gs, x) as a Zariski open subset.

2. Computation of thering of invariants

For proving Theorem 1.1, we modify the initial quivemdiits representation, without changing the ring of
invariants, such that after the modification the result of [1] can be applied. This will be done in two steps: first we
‘cut’ the initial quiver into several pieces, at the unmarked vertices, where the symmetry group does not act, and
secondly we ‘collapse’ the unmarked vertices of eacthefconnected sub-quivers which have been obtained at
the first step.

Cutting procedure. Letm € Qo \ S be an unmarked vertex which is neither a source nor a sink. The cting
of Q atm is constructed as follows: the set of verticeg§ := (Qo \ {m}) U {m’, m"}. The set of arrowg®?' is
obtained fromQ1 in the following way:

any loop ain gives rise to an arrow from' to m”;

any incoming arrow imz (not a loop) yields an arrow having the same origin, but pointed'tp
any outgoing arrow from (not a loop) yields an arrow having the same head, but starting/#rgm
all other arrows remain unchanged.

We keep the sef C Qf untouched; this makes sense, since we chose be unmarked. The representatioof
Q induces in a natural fashion a representatibrof Q™: the vector spaces correspondingitbandm” are both
equal toV,,, whereas the other remain unchanged.

Clearly, the representation spad&s and W,» coincide asG s-modulesand therefore the rings of invariants
coincide too. The main remark is that after a finite number of cuttings, we obtain a (possibly disconnected) quiver
with the property that all its unmarked vertices are either sources or sinks. Consequently, it is enough to prove the
main result for quivers which fulfill this property.

Collapsing procedure. Assume now thatQ, S) is a connected quiver with marked vertices, such that all its
unmarked vertices are either sources or sinks, and consider a representdti®@n\We construct a new quiv@ ,
depending on both the pai@, S) and the dimension vector of whose set of vertices is given @0 = SU{m},

that is we replace all the unmarked vertices@fwith a single vertexn. The arrows ofQ are obtained in the
following way:

— the arrows between marked vertices remain unchanged;

— any arrow inQ with an unmarked taiy for which dim(V,)) = d is replaced with/ arrows with tailm and with
the same head,;

— any arrow inQ with an unmarked heagl for which dim(V,)) = d is replaced with? arrows with headr and
with the same tail.
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The effect of replacing an unmarked verigx Qo of dimensiond and an arrow meeting this vertex with the
vertexim of dimension one together with (incoming or outgoing) arrows is that of choosing a basigjn

We consider the representatidof Q for which the vector space associatedids equal toVi; := k, whereas
the other ones coincide with those corresponding.t®he representation spacéé and W; areisomorphicas
Gs-modules so that the rings of invariantg W, 19s andk[W;]¢s are still isomorphic. The main remark is that
the action of the one-parameter subgrougk* — Gs, A(r) == (11 Idy,)4es coincides with the natural GVz)-
action on the spac#;. SinceGs x Gl(Vi) = G5,, we conclude that ang s-invariant function on; is also

G p,-invariant, that is the rings[W;1¢s andk[W;]GQo coincide. Now we apply the result of [1], and deduce that

the generators of the latter one are traces of cycles. But a cy@ésireither a cycle inQ throughmarkedvertices

or a cycle through, which corresponds to an oriented pathdnwvhose source and sink are unmarked. Since the
dimension ofm equals one, a cycle through has only one trace, which corresponds to a coordinate function of
the associated path if.

3. Completionsof the QFP-quotients

Enlargement procedure.Let m € Qg be a vertex. Thenlargemen@’" of Q atm is constructed as follows: the
vertices of 0™ coincide with the vertices of the quive?™, described at the cutting procedure, while the set of
arrows is defined a@’' := Q7' U {b}, whereb is an arrow frommn’ to m”. The set of marked vertices is obtained
as follows:

— if m is unmarked, we pu§” := S U {m"};
— if m is marked, we pus™ := (S \ {m}) U {m’,m"}.

A representation of Q induces the representatiéfi of 0™ for which the vector spaces correspondingto
andm” are both equal td/,,, while the other remain unchanged. Theomponent of the corresponding family
Y™ of linear maps is the identity of E#f,,), and the rest are the natural ones.

An enlargement Q, S) of (Q, ) is obtained applying a finite number of times the procedure above. Our dis-
cussion shows that a representatiasf Q naturally induces a representationf Q.

Remark 1. The effect of the enlargement procedure is that of destroying the marked cycles and the oriented paths
with unmarked source and sink, without introducing new ones. Indeed, after enlapgaign, all the cycles
throughm disappear. On the other handsif is an unmarked vertex, by enlargin® at m, the oriented paths
ending inm yield oriented paths i with one unmarked vertex less.

Now we are going to compare the representation spaces wie perform an enlargement at one vertex. First,
we observe that the representation space correspondindgicomposes as

W, = @ Hom(V; 4y, Vi) @ @Hom(vm, Vi) ® @Hom(v,(a), Vin) ® @ End(Vin)
agét—l(m)Uh—l(m) aet—l(m)\h—l(m) aeh—l(m)\t—l(m) ach=Y(m)nt=1(m)
=Wlo W oW+rew.

Regardless whether € Q¢ is marked or not, the underlying vector space of the representation spe@@ fer
Win = EndV,,) ® W,., and the symmetry group G5, = GI(V,,) x Gs. What distinguishes between the unmarked
and the marked cases is the representatign — GIl(Wz«). Namely, define

O 1GI(Vn) — GIW,), 0 (w) = @’ w™, yw™, yw?),
forw = (w% w—, wt, w®) e W,, and
19 if m is unmarked

8 . G GNm, 8 = . .
S$T S &) { (gm,g) if mis marked
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Some straightforward computations show:

— In GI(W,), the following commutation relations hold:

{ Om(¥)Pr,s(8) = pr,s(©)m (y) if m is unmarked
O (gmY &) 0r,5(8) = r.5(8)Om (y)  if m is marked

— The representatiopyn gm : Ggn — GlI(W;m) is given by

1)

(v, Om () pr.s(g)w) if m is unmarked
(vugy. Om(yguYprs(g)w) if mis marked

forall w := (u, w) € EndV,,) ® W, = Winm.
— Under the natural identification Gt,,) = GI(V,,) x {1} C G5,
— if m is unmarkedGz. = Gl(V,) x 8(Gs);
— if m is marked Gz, = Gl(Vy,,) % 8(Gs), whered(Gs) acts on IV,,) by conjugation.
— The inclusiony : W, = {1} x W, — W;= is equivariant with respect to thgs-action onW, and thes(Gs)-
action onWin .

,0;/11,5111 (]/7 g)(ll, 'LU) = {

With these preparations we can state the main result of this section.

Proposition 3.1. Let (Q, S) be a quiver with marked vertices; € Qo a vertex, and- a representation o).
Consider the enlargemenQ’" S’") of Q at m, and the representatiof” of Q’" Then, for each charactey <
X*(Gs), one finds a charactef € X*(G3.) which fulfills the following conditions

(i) (WG, x)) = 12(W,) N WER (G5, X);

Fm

(i) the natural morphisn¥, /(Gs, x) — Win //(G5., X™) is an open immersion.

Proof. The idea is to construct invariant functions 8fi» out of invariant functions orw,.. For a regular func-
tion f e k[W,.], we definep; € k[GI(V,,) x W,] = k[Wpn](det,) by the formulags(y, w) := f(@n(y~ Hw),
where det (v, w) := det(y). It follows that for a suitably large positive integat (depending ory’), the function
fn = (det,)N g is regular onW;», and satisfies the equalitfy (v, w) = det¥ (y) - f(Ou(y "Hw), V(y, w) €
GI(V,)) x W,. In particular, fy (1, w) = f(w), for all w € W,. Assume now that we start with a function
fe k[W,]gf, thatis f (p.s(g)w) = x‘(g) - f(w), forall g € Gs andw € W,. Using the relations (1), one checks

that fy satisfies the equalityy (opn 3 (v, &) (u, ) = %, (v 8) fv (u, w) for all (u, w) € Win, where

xt(g)-det¥ (y) if m is unmarked

Xen (Vs 8) = { x‘(g)-det¥(yg, 1) if mis marked

This means thafy € k[W;m]gS“" )
N

Consider now an integér> 0 such that there is finite set of functionq f;} jes C k[W,]ff with the property

thatUJEJ{fJ # 0} = WXGs, x). We choose the intege¥ large enough, that all thf] N'S are regular or;m .
Since the inclusiom is equivariant, it follows thaty (W%(Gs, x)) C 12(W;) N W32 (G5m, X, v )- The other inclu-
sion is obvious, and this proves the first part of the proposition.

For the second part, we observe that in both the unmarked and the marked cases, thg: QG 5.) -
11(WXGs, x)) = Gl(V,y) x 82, with 2 :=9,,(Gl(V,,)) - WG, x), is a Gza-invariant open subset ¥,
which is acted on freely by @V,,). Notice that for unmarked:, §2 actually coincides wittW3S(Gs, x). The
morphism G(V,,) x 2 — 2, (u, w) — ¥, Hw is Gl(V,,)-invariant, so it descends to the quoti€di(V,,) x
£2)/Gl(V,,) — £2. One immediately sees that this application is an isomorphism. Moreover, the composition
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W3S(Gs, x) Z11(WX(Gs, x)) — Gl(Vy,) x §2 — 2 is the natural inclusioW(Gs, x) C £2, which is an open
immersion. The second statement follows immediately from the properties of the categorical quatient.

Moreover, one can prove that the main result of [5] stillds for actions of reductive groups on linear spaces, so
that only finitely many open subsetsWwf» can be realized as the semi-stable locus corresponding to a character of
G3n. Consequently, there is a constaht, > 0 having the property that for all integefsV > 0, with N /£ > C,. ,
the semi-stable lodVS:3 (G 3., X, ) coincide.

We claim that the proposition and the remark above yniieorem 1.3. Indeed, after a finite number of steps
one obtains an enlargeme(r@, S) without marked cycles, and any oriented path has at most one unmarked vertex.
Hence, by corollary 1.2, any associated QFP-quotientdgeptive. We observe that different choices of enlarge-
ments typically lead to different, birational, comptats of the initial QFP-quotient. Moreover, the number of
completions obtained in this way is finite, up to isomorphism.

Example 1. Helmke compactifies in [3] the space of regular, colible linear systemsybgeneralized, control-
lable linear systems. These spaces can be interpreteBRsjQotients associated to the following quivers, where
the marked vertices are represented by bullets:

\_’/

The corresponding characters aggg) := det(g) and ¥ (g1, g2, g3) := det " (g1)det¥ (o) det” (g3), with
N, M > 0 suitably large.

Example 2. Donaldson shows in [2] that the framed @Winstantons or$* can be understood in terms of monads
onCP?. Their moduli space can be identified with the QFP-quotient of the q@meﬁ@ i ¢° corresponding

to the trivial character. Applying the enlargement procedure directly, one is led to a quiver which has no interpreta-
tion in terms of monads. We remedy this by noticing that there is an equivariant morphism from the representation
space ofQ to that of O, and that the representatispace of its enlargeme@tadmits a natural monad-theoretical
interpretation.

2
1 Q
a1 :=byya; =bZayy, o: e é . li/o
. 2 1 . S~y S — .
a2 = byya; = —bzaxy. b2 bl by b b 1 o0

It would be interesting to relate this compactification with that of Maruyama, which uses semi-stable, torsion-free
sheaves.
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