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Abstract

In this Note we compute the generators of the ring of invariants for quiver factorization problems, generalizing resu
Bruyn and Procesi. In particular, we find a necessary and sufficient combinatorial criterion for the projectivity of the as
invariant quotients. Further, we show that the non-projective quotients admit open immersions into projective varietie
still arise from suitable quiver factorization problems.To cite this article: M. Halic, M.S. Stupariu, C. R. Acad. Sci. Paris,
Ser. I 340 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Anneaux d’invariants des représentations de carquois. Dans cette Note nous calculons les générateurs des anneau
variants pour certains problèmes de factorisation associés aux représentations de carquois, généralisant un résulta
par Le Bruyn et Procesi. En particulier, nous déduisons un critère combinatoire nécéssaire et suffisant pour la proje
quotient. En plus, nous démontrons que les quotients non-projectifs peuvent être immergés de manière ouverte da
projectives qui proviennent elles mêmes de problèmes de factorisation de carquois appropriés.Pour citer cet article : M. Halic,
M.S. Stupariu, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version française abrégée

Considérons un carquoisQ = (Q0,Q1, h, t), un sous-ensemble de sommetsS ⊆ Q0 (qu’on appellemarqués)
et une représentationr = (V ,ψ) deQ, oùV = {Vq}q∈Q0 est une famille d’espaces vectoriels de dimension fi
sur un corps algébriquement closk de caractéristique nulle. Nous étudions l’action naturelle du groupe rés
GS := ∏

q∈S Gl(Vq) sur l’espace de représentationWr . Dans le Théorème 1.1, nous calculons les générateu

l’anneau des invariantsk[Wr ]GS : notamment nous démontrons que cet anneau est engendré par les traces
cycles marqués et par les fonctions de coordonnées des trajectoires orientées, dont la source et le but n

E-mail addresses:halic@math.unizh.ch (M. Halic), stupariu@math.unizh.ch (M.-S. Stupariu).
1631-073X/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2004.12.012
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marqués. Ceci généralise un résultat dû à Le Bruyn et Procesi qui traite le cas où tous les sommets sont
Comme application, nous trouvons un critère combinatoire nécessaire et suffisant, impliquantQ et S seulement
qui assure la projectivité des quotients invariantsWr//(GS,χ), oùχ est un caractère deGS .

Une question naturelle qui se pose est celle de la complétion des quotients non-projectifsWr//(GS,χ). Nous
introduisons un procédé combinatiore qu’on appelled’élargissement, par lequel on ajoute des sommets et des a
à un carquois. Ce procédé détruit les cycles marqués et les trajectoires orientées deQ, dont la source et le but n
sont pas marqués. Le résultat principal dans cette direction est formulé dans le Théorème 1.3, qui dit que p
chaque carquoisQ avec des sommets marquésS on trouve un élargissement(Q̃, S̃) ayant la propriété suivante
pour chaque charactèreχ de GS et pour chaque représentationr de Q, il y a un charactèrẽχ de GS̃ et une
représentatioñr deQ̃, tel queWr̃//(GS̃, χ̃) est projective et contientWr//(GS,χ) comme ouvert de Zariski. Cec
traduit dans le langage de la géométrie invariante et généralise le résultat de [3], qui porte sur la théorie du contr
des systèmes linéaires.

1. Introduction

A quiverQ is a quartet(Q0,Q1, h, t) consisting of the setsQ0 andQ1 of vertices, respectively arrows, and t
mapsh, t :Q1 → Q0, which associate to every arrowa thehead, respectively thetail of a. Throughout this note
we will consider only finite quivers, i.e. we will assume that the setsQ0 andQ1 are finite. Ifa1, . . . , an are arrows
such thath(ai) = t (ai+1) for any i = 1, . . . , n − 1, they give rise to theoriented pathan · · ·a1. If, moreover, one
hash(an) = t (a1), this oriented path will be called acycle. A vertexq is called asource(respectively asink) if all
the arrows meetingq are starting fromq (respectively directed toq). Any quiver without cycles has at least o
source and one sink.

Let furtherk be an algebraically closed field of characteristic 0. Arepresentationr = (V ,ψ) of a quiverQ
(over the fieldk) is given by a family of finite dimensionalk-vector spaces(Vq)q∈Q0 and a family of linear map
(ψa)a∈Q1, with ψa :Vt(a) → Vh(a) for any arrowa.

Let nowr = (V ,ψ) be a fixed representation of a quiverQ of dimension vectorα. There is a natural action o
the group

∏
q∈Q0

Gl(Vq) on therepresentation spaceWr := ⊕
a∈Q1

Hom(Vt(a),Vh(a)), given by

(gq)q × (ϕa)a := (gh(a) ◦ ϕa ◦ g−1
t (a))a.

In many concrete situations one is interested only in theaction of a smaller symmetry group (see for instance
Section 1.5] for a symplectic approach to the problem). Consequently, for a subset of verticesS ⊂ Q0, we define the
groupGS := ∏

q∈S Gl(Vq) ⊂ ∏
q∈Q0

Gl(Vq), and consider its induced action on the spaceWr ; we denote byρr,S

the corresponding representation. This data defines aquiver factorization problemassociated to the combinatori
data(Q,S). In the special case whenS = Q0, it will be called astandard quiver factorization problem. ForS ⊂ Q0
as above, we will call the vertices inS marked, and those inQ0 \ S unmarked.

The structure of the ring of invariantsk[Wr ]GQ0 in the case when all the verticesare marked is described by L
Bruyn and Procesi in [1, Theorem 1]; namely this ring isgenerated by traces of oriented cycles in the quiverQ.
Our aim is to generalize this result for quivers with both marked and unmarked vertices.

Theorem 1.1. Let Q be a quiver with marked verticesS ⊂ Q0, and letr be a representation ofQ with represen-
tation spaceWr . Then the ring of invariantsk[Wr ]GS is generated by traces of marked cycles and by coordi
functions of oriented paths with unmarked source and sink.

For a characterχ of the groupGS , the associated invariant quotient

Wr//(GS,χ) = Proj
(⊕

n�0

k[Wr ]GS

χn

)

will be called aQFP-quotient. SinceWr//(GS,χ) is projective over Spec(k[Wr ]GS), we deduce that
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Corollary 1.2. The following statements are equivalent:

(i) Wr//(GS,χ) is a projective variety, for every characterχ of GS ;
(ii) k[Wr ]GS = k;
(iii) Q contains no marked cycles and no oriented paths with unmarked source and sink.

We introduce a combinatorial construction, that we callenlargement, which enables us to construct completio
of QFP-quotients which are still QFP-quotients.

Theorem 1.3. For a quiver(Q,S) with marked vertices, there is an enlargement(Q̃, S̃) with the property that for
any characterχ ∈ X ∗(GS) and any representationr of Q, there exist a character̃χ ∈ X ∗(GS̃) and a representa
tion r̃ of Q̃ such thatWr̃//(GS̃, χ̃) is projective and containsWr//(GS,χ) as a Zariski open subset.

2. Computation of the ring of invariants

For proving Theorem 1.1, we modify the initial quiver and its representation, without changing the ring
invariants, such that after the modification the result of [1] can be applied. This will be done in two steps: fi
‘cut’ the initial quiver into several pieces, at the unmarked vertices, where the symmetry group does not
secondly we ‘collapse’ the unmarked vertices of each ofthe connected sub-quivers which have been obtaine
the first step.

Cutting procedure. Let m ∈ Q0 \ S be an unmarked vertex which is neither a source nor a sink. The cuttinQm

of Q at m is constructed as follows: the set of vertices isQm
0 := (Q0 \ {m}) ∪ {m′,m′′}. The set of arrowsQm

1 is
obtained fromQ1 in the following way:

– any loop atm gives rise to an arrow fromm′ to m′′;
– any incoming arrow inm (not a loop) yields an arrow having the same origin, but pointed tom′′;
– any outgoing arrow fromm (not a loop) yields an arrow having the same head, but starting fromm′;
– all other arrows remain unchanged.

We keep the setS ⊂ Qm
0 untouched; this makes sense, since we chosem to be unmarked. The representationr of

Q induces in a natural fashion a representationrm of Qm: the vector spaces corresponding tom′ andm′′ are both
equal toVm, whereas the other remain unchanged.

Clearly, the representation spacesWr andWrm coincide asGS-modules, and therefore the rings of invarian
coincide too. The main remark is that after a finite number of cuttings, we obtain a (possibly disconnected
with the property that all its unmarked vertices are either sources or sinks. Consequently, it is enough to p
main result for quivers which fulfill this property.

Collapsing procedure. Assume now that(Q,S) is a connected quiver with marked vertices, such that al
unmarked vertices are either sources or sinks, and consider a representationr of Q. We construct a new quiver̂Q,
depending on both the pair(Q,S) and the dimension vector ofr, whose set of vertices is given bŷQ0 := S ∪ {m̂},
that is we replace all the unmarked vertices ofQ with a single vertex̂m. The arrows ofQ̂ are obtained in the
following way:

– the arrows between marked vertices remain unchanged;
– any arrow inQ with an unmarked tailq for which dim(Vq) = d is replaced withd arrows with tailm̂ and with

the same head;
– any arrow inQ with an unmarked headq for which dim(Vq) = d is replaced withd arrows with head̂m and

with the same tail.
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The effect of replacing an unmarked vertexq ∈ Q0 of dimensiond and an arrow meeting this vertex with th
vertexm̂ of dimension one together withd (incoming or outgoing) arrows is that of choosing a basis inVq .

We consider the representationr̂ of Q̂ for which the vector space associated tom̂ is equal toVm̂ := k, whereas
the other ones coincide with those corresponding tor. The representation spacesWr andWr̂ are isomorphicas
GS -modules, so that the rings of invariantsk[Wr ]GS andk[Wr̂ ]GS are still isomorphic. The main remark is th
the action of the one-parameter subgroupλ : k× → GS, λ(t) := (t−1 IdVq )q∈S coincides with the natural Gl(Vm̂)-
action on the spaceWr̂ . SinceGS × Gl(Vm̂) = GQ̂0

, we conclude that anyGS-invariant function onWr̂ is also

GQ̂0
-invariant, that is the ringsk[Wr̂ ]GS andk[Wr̂ ]GQ̂0 coincide. Now we apply the result of [1], and deduce t

the generators of the latter one are traces of cycles. But a cycle inQ̂ is either a cycle inQ throughmarkedvertices
or a cycle througĥm, which corresponds to an oriented path inQ whose source and sink are unmarked. Since
dimension ofm̂ equals one, a cycle througĥm has only one trace, which corresponds to a coordinate functio
the associated path inQ.

3. Completions of the QFP-quotients

Enlargement procedure.Let m ∈ Q0 be a vertex. Theenlargement̃Qm of Q at m is constructed as follows: th
vertices ofQ̃m coincide with the vertices of the quiverQm, described at the cutting procedure, while the se
arrows is defined as̃Qm

1 := Qm
1 ∪ {b}, whereb is an arrow fromm′ to m′′. The set of marked vertices is obtain

as follows:

– if m is unmarked, we put̃Sm := S ∪ {m′′};
– if m is marked, we put̃Sm := (S \ {m}) ∪ {m′,m′′}.

A representationr of Q induces the representationr̃m of Q̃m for which the vector spaces corresponding tom′
andm′′ are both equal toVm, while the other remain unchanged. Theb-component of the corresponding fam
ψ̃m of linear maps is the identity of End(Vm), and the rest are the natural ones.

An enlargement(Q̃, S̃) of (Q,S) is obtained applying a finite number of times the procedure above. Ou
cussion shows that a representationr of Q naturally induces a representationr̃ of Q̃.

Remark 1. The effect of the enlargement procedure is that of destroying the marked cycles and the oriente
with unmarked source and sink, without introducing new ones. Indeed, after enlargingQ at m, all the cycles
throughm disappear. On the other hand, ifm is an unmarked vertex, by enlargingQ at m, the oriented path
ending inm yield oriented paths iñQm with one unmarked vertex less.

Now we are going to compare the representation spaces when we perform an enlargement at one vertex. F
we observe that the representation space corresponding tor decomposes as

Wr =
⊕

a /∈t−1(m)∪h−1(m)

Hom
(
Vt(a),Vh(a)

) ⊕
⊕

a∈t−1(m)\h−1(m)

Hom
(
Vm,Vh(a)

) ⊕
⊕

a∈h−1(m)\t−1(m)

Hom
(
Vt(a),Vm

) ⊕
⊕

a∈h−1(m)∩t−1(m)

End(Vm)

=: W0
r ⊕ W−

r ⊕ W+
r ⊕ W�

r .

Regardless whetherm ∈ Q0 is marked or not, the underlying vector space of the representation space forQ̃m is
Wr̃m = End(Vm)⊕Wr , and the symmetry group isGS̃m = Gl(Vm)×GS . What distinguishes between the unmark
and the marked cases is the representationGS̃m → Gl(Wr̃m). Namely, define

ϑm : Gl(Vm) −→ Gl(Wr), ϑm(γ )(w) := (w0,w−, γw+, γw�),

for w = (w0,w−,w+,w�) ∈ Wr , and

δ : GS −→ GS̃m, δ(g) :=
{

(1, g) if m is unmarked,

(g , g) if m is marked.
m



M. Halic, M.S. Stupariu / C. R. Acad. Sci. Paris, Ser. I 340 (2005) 135–140 139

-

n
ks

osition
Some straightforward computations show:

– In Gl(Wr ), the following commutation relations hold:{
ϑm(γ )ρr,S(g) = ρr,S(g)ϑm(γ ) if m is unmarked,
ϑm(gmγg−1

m )ρr,S(g) = ρr,S(g)ϑm(γ ) if m is marked.
(1)

– The representationρr̃m,S̃m :GS̃m → Gl(Wr̃m) is given by

ρr̃m,S̃m(γ, g)(u,w) =
{(

γ u,ϑm(γ )ρr,S(g)w
)

if m is unmarked,(
γ ug−1

m ,ϑm(γg−1
m )ρr,S(g)w

)
if m is marked,

for all w̃ := (u,w) ∈ End(Vm) ⊕ Wr = Wr̃m .
– Under the natural identification Gl(Vm) ∼= Gl(Vm) × {1} ⊂ GS̃m ,

– if m is unmarked,GS̃m = Gl(Vm) × δ(GS);
– if m is marked,GS̃m = Gl(Vm) � δ(GS), whereδ(GS) acts on Gl(Vm) by conjugation.

– The inclusionı1 : Wr
∼= {1} × Wr ↪→ Wr̃m is equivariant with respect to theGS-action onWr and theδ(GS)-

action onWr̃m .

With these preparations we can state the main result of this section.

Proposition 3.1. Let (Q,S) be a quiver with marked vertices,m ∈ Q0 a vertex, andr a representation ofQ.
Consider the enlargement(Q̃m, S̃m) of Q at m, and the representatioñrm of Q̃m. Then, for each characterχ ∈
X ∗(GS), one finds a character̃χ ∈X ∗(GS̃m) which fulfills the following conditions:

(i) ı1(W
ss
r (GS,χ)) = ı1(Wr) ∩ W ss

r̃m(GS̃m, χ̃);
(ii) the natural morphismWr//(GS,χ) → Wr̃m//(GS̃m, χ̃m) is an open immersion.

Proof. The idea is to construct invariant functions onWr̃m out of invariant functions onWr . For a regular func
tion f ∈ k[Wr ], we defineϕf ∈ k[Gl(Vm) × Wr ] = k[Wr̃m](detm) by the formulaϕf (γ,w) := f (ϑm(γ −1)w),
where detm(γ,w) := det(γ ). It follows that for a suitably large positive integerN (depending onf ), the function
f̃N := (detm)Nϕf is regular onWr̃m , and satisfies the equalitỹfN (γ,w) = detN(γ ) · f (ϑm(γ −1)w), ∀(γ,w) ∈
Gl(Vm) × Wr . In particular, f̃N (1,w) = f (w), for all w ∈ Wr . Assume now that we start with a functio
f ∈ k[Wr ]GS

χ� , that isf (ρr,S(g)w) = χ�(g) · f (w), for all g ∈ GS andw ∈ Wr . Using the relations (1), one chec

that f̃N satisfies the equalitỹfN (ρr̃m,S̃m(γ, g)(u,w)) = χ̃
�,N

(γ, g)f̃N (u,w) for all (u,w) ∈ Wr̃m , where

χ̃
�,N

(γ, g) :=
{

χ�(g) · detN(γ ) if m is unmarked,
χ�(g) · detN(γg−1

m ) if m is marked.

This means that̃fN ∈ k[Wr̃m]GS̃m

χ̃
�,N

.

Consider now an integer� > 0 such that there is afinite set of functions{fj }j∈J ⊂ k[Wr ]GS

χ� with the property

that
⋃

j∈J {fj 
= 0} = W ss
r (GS,χ). We choose the integerN large enough, that all thẽfj,N ’s are regular onWr̃m .

Since the inclusionı1 is equivariant, it follows thatı1(W ss
r (GS,χ)) ⊂ ı1(Wr) ∩ W ss

r̃m(GS̃m, χ̃
�,N

). The other inclu-
sion is obvious, and this proves the first part of the proposition.

For the second part, we observe that in both the unmarked and the marked cases, the orbitρr̃m,S̃m(GS̃m) ·
ı1(W

ss
r (GS,χ)) = Gl(Vm) × Ω, with Ω := ϑm(Gl(Vm)) · W ss

r (GS,χ), is a GS̃m-invariant open subset ofWr̃m ,
which is acted on freely by Gl(Vm). Notice that for unmarkedm, Ω actually coincides withW ss

r (GS,χ). The
morphism Gl(Vm) × Ω → Ω, (u,w) �→ ϑm(u−1)w is Gl(Vm)-invariant, so it descends to the quotient(Gl(Vm) ×
Ω)/Gl(Vm) → Ω . One immediately sees that this application is an isomorphism. Moreover, the comp
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The
W ss
r (GS,χ) ∼= ı1(W

ss
r (GS,χ)) → Gl(Vm) × Ω → Ω is the natural inclusionW ss

r (GS,χ) ⊂ Ω , which is an open
immersion. The second statement follows immediately from the properties of the categorical quotient.�

Moreover, one can prove that the main result of [5] stillholds for actions of reductive groups on linear spaces
that only finitely many open subsets ofWr̃m can be realized as the semi-stable locus corresponding to a chara
GS̃m . Consequently, there is a constantCr,χ > 0 having the property that for all integers�,N > 0, withN/� > Cr,χ ,
the semi-stable lociW ss

r̃m(GS̃m, χ̃
�,N

) coincide.
We claim that the proposition and the remark above imply Theorem 1.3. Indeed, after a finite number of st

one obtains an enlargement(Q̃, S̃) without marked cycles, and any oriented path has at most one unmarked v
Hence, by corollary 1.2, any associated QFP-quotient is projective. We observe that different choices of enlar
ments typically lead to different, birational, completions of the initial QFP-quotient. Moreover, the number
completions obtained in this way is finite, up to isomorphism.

Example 1. Helmke compactifies in [3] the space of regular, controllable linear systems by generalized, control
lable linear systems. These spaces can be interpreted as QFP-quotients associated to the following quivers, wh
the marked vertices are represented by bullets:

Q: Q̃:

The corresponding characters areχ(g) := det(g) and χ̃(g1, g2, g3) := det1−N(g1)detN(g2)detM(g3), with
N,M > 0 suitably large.

Example 2. Donaldson shows in [2] that the framed SU(�)-instantons onS4 can be understood in terms of mona

onCP
2. Their moduli space can be identified with the QFP-quotient of the quiverQ0: corresponding

to the trivial character. Applying the enlargement procedure directly, one is led to a quiver which has no inte
tion in terms of monads. We remedy this by noticing that there is an equivariant morphism from the repres
space ofQ to that ofQ0, and that the representation space of its enlargement̃Q admits a natural monad-theoretic
interpretation.

α1 := bxya
1
z = b2

zaxy,

α2 := bxya
2
z = −b1

zaxy.
Q: Q̃:

It would be interesting to relate this compactification with that of Maruyama, which uses semi-stable, torsi
sheaves.
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