

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 340 (2005) 879-884

http://france.elsevier.com/direct/CRASS1/

Partial Differential Equations

On Pfaff systems with L^p coefficients in dimension two

Sorin Mardare

Laboratoire Jacques-Louis Lions, université Pierre et Marie Curie, 4, place Jussieu, 75005 Paris, France
Received 27 April 2005; accepted 4 May 2005

Available online 20 June 2005

Presented by Philippe G. Ciarlet

Abstract

We prove that the Cauchy problem associated with a Pfaff system with coefficients in L^p_{loc} , p > 2, in a connected and simply-connected open subset Ω of \mathbb{R}^2 has a unique solution provided that its coefficients satisfies a compatibility condition in the distributional sense. *To cite this article: S. Mardare, C. R. Acad. Sci. Paris, Ser. I 340 (2005)*. © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Sur les systèmes de Pfaff en dimension deux. On montre que le problème de Cauchy associé à un système de Pfaff avec des coefficients dans L^p_{loc} , p > 2, dans un ouvert connexe et simplement connexe Ω de \mathbb{R}^2 admet une solution unique pourvu que ses coefficients satisfassent une condition de compatibilité au sens des distributions. *Pour citer cet article : S. Mardare, C. R. Acad. Sci. Paris, Ser. I 340 (2005).*

© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version française abrégée

Les notations sont définies dans la version anglaise. Soit Ω un ouvert connexe et simplement connexe de \mathbb{R}^2 , soit x_0 un point de Ω , et soit Y^0 une matrice de $\mathbb{M}^{q \times \ell}$. Il est alors bien connu (voir, e.g., Thomas [7]) que le système de Pfaff

$$\partial_i Y = Y A_i$$
 dans Ω , $i = 1, 2$,
 $Y(x^0) = Y^0$.

E-mail address: sorin@ann.jussieu.fr (S. Mardare).

1631-073X/\$ – see front matter © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved. doi:10.1016/j.crma.2005.05.013

admet une solution unique $Y \in \mathcal{C}^2(\Omega; \mathbb{M}^{q \times \ell})$ si les coefficients A_i appartiennent à l'espace $\mathcal{C}^1(\Omega; \mathbb{M}^{\ell})$ et satisfont la condition de compatibilité

$$\partial_1 A_2 + A_1 A_2 = \partial_2 A_1 + A_2 A_1 \quad \text{dans } \Omega. \tag{1}$$

L'objet de cette Note est d'établir que ce résultat reste vrai sous les hypothèses affaiblies que les coefficients A_i appartiennent à l'espace $L^p_{loc}(\Omega; \mathbb{M}^\ell)$, p > 2, la condition de compatibilité ci-dessus étant alors satisfaite au sens des distributions (voir Théorème 3.2 dans la version anglaise). La preuve repose sur deux résultats principaux : un résultat de stabilité pour les systèmes de Pfaff à coefficients dans $L^p(\Omega)$ établi dans le Théorème 2.1 et un résultat d'approximation, sous la contrainte non linéaire (1), des champs de matrices A_i établi dans le Lemme 3.1 de la version anglaise.

La démonstration complète de ces résultats, esquissée dans la version anglaise, se trouve dans [5].

1. Preliminaries

The notations $\mathbb{M}^{q \times \ell}$, \mathbb{M}^{ℓ} , \mathbb{S}^{ℓ} and \mathbb{S}^{ℓ} respectively designate the set of all matrices with q rows and ℓ columns, the set of all square matrices of order ℓ , the set of all symmetric matrices of order ℓ , and the set of all positive definite symmetric matrices of order ℓ . For vectors $\mathbf{v} = (v_i)$ and matrices $A = (A_{ij})$, we define the norms

$$\|v\| = \sum_{i} |v_i|$$
 and $\|A\| := \sum_{i,j} |A_{ij}|$.

A generic point in \mathbb{R}^2 is denoted $x=(x_1,x_2)$ and partial derivatives of first and second order are denoted $\partial_i = \frac{\partial}{\partial x_i}$ and $\partial_{ij} = \frac{\partial^2}{\partial x_i \partial x_j}$. An open ball with radius R centered at $x \in \mathbb{R}^2$ is denoted $B_R(x)$, or B_R if its center is irrelevant in the subsequent analysis.

The space of distributions over an open set $\Omega \subset \mathbb{R}^2$ is denoted $\mathcal{D}'(\Omega)$. The usual Sobolev spaces being denoted $W^{m,p}(\Omega)$, we let

$$W^{m,p}_{\mathrm{loc}}(\Omega) := \big\{ f \in \mathcal{D}'(\Omega); \ f \in W^{m,p}(U) \text{ for all open set } U \Subset \Omega \big\},$$

where the notation $U \in \Omega$ means that the closure of U in \mathbb{R}^2 is a compact subset of Ω . The closure in $W^{1,p}(\Omega)$ of the space of all indefinitely derivable functions with compact support in Ω is denoted $W_0^{1,p}(\Omega)$. If p>2, the classes of functions in $W^{1,p}(\Omega)$ are identified with their continuous representatives, as in the Sobolev imbedding theorem (see, e.g., Adams [1]). For matrix-valued and vector-valued function spaces, we shall use the notations $W^{m,p}(\Omega; \mathbb{M}^{q \times \ell})$, $W^{m,p}(\Omega; \mathbb{R}^{\ell})$, etc.

The Lebesgue spaces $L^p(\Omega; \mathbb{R}^d)$ and $L^p(\Omega; \mathbb{M}^{q \times \ell})$ are equipped with the norms

$$\|v\|_{L^p(\Omega)} = \sum_i \|v_i\|_{L^p(\Omega)}$$
 and $\|A\|_{L^p(\Omega)} = \sum_{i,j} \|A_{ij}\|_{L^p(\Omega)}$,

and the Sobolev spaces $W^{1,p}(\Omega;\mathbb{M}^{q imes\ell})$ and $W^{2,p}(\Omega;\mathbb{M}^{q imes\ell})$ are equipped with the norms

$$\|Y\|_{W^{1,p}(\Omega)} = \|Y\|_{L^p(\Omega)} + \sum_i \|\partial_i Y\|_{L^p(\Omega)} \quad \text{and} \quad \|Y\|_{W^{2,p}(\Omega)} = \|Y\|_{W^{1,p}(\Omega)} + \sum_{i,j} \|\partial_{ij} Y\|_{L^p(\Omega)}.$$

The following theorem gathers the Morrey and Sobolev inequalities with explicit constants that will be used in the next sections:

Theorem 1.1. Let $B_R \subset \mathbb{R}^2$ be an open ball of radius R > 0 and let p > 2. Then there exists constants $C_1, C_2 > 0$ depending only on p such that

 $\begin{aligned} & \left| u(x) - u(y) \right| \leqslant C_1 R^{1 - 2/p} \| \nabla u \|_{L^p(B_R)} \quad \textit{for all } u \in W^{1,p}(B_R) \textit{ and all } x, y \in B_R \textit{ (Morrey's inequality)}, \\ & \| u \|_{L^{2p/(p-2)}(B_R)} \leqslant C_2 R^{1 - 2/p} \| \nabla u \|_{L^2(B_R)} \quad \textit{for all } u \in W_0^{1,2}(B_R) \textit{ (Sobolev inequality)}. \end{aligned}$

2. Stability of Pfaff systems

We establish here the following stability result for Pfaff systems with L_{loc}^p -coefficients defined over an open subset of \mathbb{R}^2 . However, the same analysis can be carried out in higher dimensions without difficulty.

Theorem 2.1. Let Ω be a connected open subset of \mathbb{R}^2 , let $x^0 \in \Omega$, let p > 2, let $A_i^n \in L^p(\Omega; \mathbb{M}^\ell)$ and $Y^n \in W^{1,p}_{loc}(\Omega; \mathbb{M}^{q \times \ell})$ be sequences of matrix fields that satisfy the Pfaff systems

$$\partial_i Y^n = Y^n A_i^n$$
 in $\mathcal{D}'(\Omega; \mathbb{M}^{q \times \ell})$, $n \in \mathbb{N}$,

and assume that there exists a constant M such that $\sum_i \|A_i^n\|_{L^p(\Omega)} + \|Y^n(x^0)\| \le M$ for all $n \in \mathbb{N}$. Then, for each open set $K \subseteq \Omega$, there exist a constant C > 0 such that

$$\|Y^n - Y^m\|_{W^{1,p}(K)} \le C\left(\sum_i \|A_i^n - A_i^m\|_{L^p(\Omega)} + \|Y^n(x^0) - Y^m(x^0)\|\right) \quad \text{for all } n, m \in \mathbb{N}.$$

Proof. Fix any open ball $B_R = B_R(x) \in \Omega$, where $x \in K$ and $2C_1MR^{1-2/p} < 1$ (C_1 is the constant appearing in Theorem 1.1). Using Morrey's inequality (see Theorem 1.1), viz

$$||Y^{n} - Y^{m}||_{L^{\infty}(B_{R})} \le ||(Y^{n} - Y^{m})(x)|| + C_{1}R^{1 - 2/p} \sum_{i} ||\partial_{i}(Y^{n} - Y^{m})||_{L^{p}(B_{R})}, \tag{2}$$

and the relation $\partial_i (Y^n - Y^m) = (Y^n - Y^m) A_i^n + Y^m (A_i^n - A_i^m)$, we obtain on the one hand that

$$\sum_{i} \|\partial_{i} (Y^{n} - Y^{m})\|_{L^{p}(B_{R})} \leq 2M \|(Y^{n} - Y^{m})(x)\| + 2\|Y^{m}\|_{L^{\infty}(B_{R})} \sum_{i} \|A_{i}^{n} - A_{i}^{m}\|_{L^{p}(B_{R})}.$$
(3)

Using again Morrey's inequality together with relations $\partial_i Y^m = Y^m A_i^m$ and $2C_1 M R^{1-2/p} < 1$, we deduce on the other hand that

$$||Y^m||_{L^{\infty}(B_R)} \le ||Y^m(x)|| + C_1 R^{1-2/p} \sum_i ||\partial_i Y^m||_{L^p(B_R)} \le 2||Y^m(x)||,$$

and, by joining the point x to x^0 by a broken line formed by N segments of length < R, that

$$||Y^m||_{L^{\infty}(B_R)} \le 2^N ||Y^m(x^0)|| \le 2^N M$$

where the number N depends only on x_0 , Ω and K. Using this inequality in inequality (3) gives

$$\sum_{i} \|\partial_{i} (Y^{n} - Y^{m})\|_{L^{p}(B_{R})} \leq 2M \|(Y^{n} - Y^{m})(x)\| + 2^{N+1}M \sum_{i} \|A_{i}^{n} - A_{i}^{m}\|_{L^{p}(B_{R})}.$$

$$\tag{4}$$

Then we infer from inequalities (2) and (4) that there exists a constant C > 0 such that

$$||Y^n - Y^m||_{W^{1,p}(B_R(x))} \le C \Big(||(Y^n - Y^m)(x)|| + \sum_i ||A_i^n - A_i^m||_{L^p(\Omega)} \Big).$$

Let now the open set $K \subseteq \Omega$ be covered with a finite number of balls of radius R. By joining the center x of any such ball to the given point x^0 with a broken line formed by N segments of length < R (the number N depends

only on x_0 , Ω and K), we show by a recursion argument that there exists another constant C independent of n, m such that

$$||Y^n - Y^m||_{W^{1,p}(B_R(x))} \le C \Big(||(Y^n - Y^m)(x^0)|| + \sum_i ||A_i^n - A_i^m||_{L^p(\Omega)} \Big).$$

Since this inequality is valid for any ball $B_R(x)$ in the chosen covering of K, summing all such inequalities gives the announced inequality. \Box

An immediate consequence of Theorem 2.1 is the following uniqueness result:

Corollary 2.2. Let Ω be an connected open subset of \mathbb{R}^2 , let p > 2, and let there be given matrix fields $A_i \in L^p_{loc}(\Omega; \mathbb{M}^\ell)$ and $Y, \widetilde{Y} \in W^{1,p}_{loc}(\Omega; \mathbb{M}^{q \times \ell})$ that satisfy the relations

$$\partial_i Y = Y A_i$$
 and $\partial_i \widetilde{Y} = \widetilde{Y} A_i$ in $\mathcal{D}'(\Omega; \mathbb{M}^{q \times \ell})$.

Assume that there exists a point $x^0 \in \Omega$ such that $Y(x^0) = \widetilde{Y}(x^0)$. Then $Y(x) = \widetilde{Y}(x)$ for all $x \in \Omega$.

3. Existence of the solution to Pfaff systems with L^p coefficients in dimension two

Let $\Omega \subset \mathbb{R}^2$ be a connected and simply-connected open set and let there be given a point $x^0 \in \Omega$ and a matrix $Y^0 \in \mathbb{M}^{q \times \ell}$. Then it is well-known (see, e.g., Thomas [7]), that the (Cauchy problem associated with the) Pfaff system

$$\partial_i Y = Y A_i \quad \text{in } \Omega, \ i \in \{1, 2\},$$

 $Y(x^0) = Y^0,$

has a unique solution if the coefficients A_i belong to the space $\mathcal{C}^1(\Omega; \mathbb{M}^{\ell})$ and satisfy the compatibility condition

$$\partial_1 A_2 + A_1 A_2 = \partial_2 A_1 + A_2 A_1$$
 in Ω .

This result has been subsequently improved by Hartman and Wintner [3] (under the assumption that $A_i \in \mathcal{C}^0(\Omega; \mathbb{M}^\ell)$) and by Mardare [4] (under the assumption that $A_i \in L^\infty_{loc}(\Omega; \mathbb{M}^\ell)$). Our objective is to establish an existence and uniqueness result under the assumption that $A_i \in L^p_{loc}(\Omega; \mathbb{M}^\ell)$, p > 2. The key ingredient in establishing this result is the following lemma.

Lemma 3.1. Let Ω be an open subset of \mathbb{R}^2 , let p > 2, and let matrix fields $A_i \in L^p(\Omega; \mathbb{M}^\ell)$ be given that satisfy the relations

$$\partial_1 A_2 + A_1 A_2 = \partial_2 A_1 + A_2 A_1 \quad \text{in } \mathcal{D}'(\Omega; \mathbb{M}^{\ell}). \tag{5}$$

Then, for each open ball $B_R \subset \Omega$ whose radius satisfies

$$R < \min(1, \left\{ C(p) \left(\|A_1\|_{L^p(\Omega)} + \|A_2\|_{L^p(\Omega)} \right) \right\}^{p/(2-p)}), \tag{6}$$

where C(p) is a constant depending only on p, there exist sequences of matrix fields $A_i^n \in C^{\infty}(\overline{B}_R; \mathbb{M}^{\ell})$, $n \in \mathbb{N}$, that satisfy the relations

$$\partial_1 A_2^n + A_1^n A_2^n = \partial_2 A_1^n + A_2^n A_1^n$$
 in B_R ,
 $A_i^n \to A_i$ in $L^p(B_R; \mathbb{M}^\ell)$ as $n \to \infty$.

Proof. The key of the proof is the following change of unknowns:

$$A_1 = \partial_1 U - \partial_2 V$$
 and $A_2 = \partial_2 U + \partial_1 V$ in B_R ,

where $U \in W^{1,p}(B_R, \mathbb{M}^\ell)$ and $V \in W^{2,p/2}_{\gamma_0}(B_R, \mathbb{M}^\ell) := W^{2,p/2}(B_R, \mathbb{M}^\ell) \cap W^{1,p}_0(B_R, \mathbb{M}^\ell)$. This system has a solution that can be computed as follows: First, define $V \in W^{2,p/2}_{\gamma_0}(B_R, \mathbb{M}^\ell)$ as the solution to the Poisson equation

$$\Delta V = A_2 A_1 - A_1 A_2$$
 in $\mathcal{D}'(B_R, \mathbb{M}^{\ell})$,

then define $U \in W^{1,p}(B_R, \mathbb{M}^{\ell})$ as a solution to the Poincaré system (assumption (5) is used here)

$$\partial_1 U = A_1 + \partial_2 V$$
 and $\partial_2 U = A_2 - \partial_1 V$.

Now, the approximating sequences for the fields A_i are defined in the following way: First, the field U is approximated with the smooth matrix fields $U^n \in \mathcal{C}^{\infty}(\overline{B}_R, \mathbb{M}^{\ell})$ defined by taking the convolution of (an extension to \mathbb{R}^2 of) U with a sequence of mollifiers, so that

$$U^n \to U$$
 in $W^{1,p}(B_R, \mathbb{M}^{\ell})$ as $n \to \infty$.

Then the field V_n , $n \in \mathbb{N}$, is defined as the solution to the system

$$\Delta V^{n} = (\partial_{2}U^{n} + \partial_{1}V^{n})(\partial_{1}U^{n} - \partial_{2}V^{n}) - (\partial_{1}U^{n} - \partial_{2}V^{n})(\partial_{2}U^{n} + \partial_{1}V^{n}) \quad \text{in } \mathcal{D}'(\Omega; \mathbb{M}^{\ell}),$$

$$V^{n} = 0 \quad \text{on the boundary of } B_{R}.$$

We prove that this nonlinear system has at least one solution of class C^{∞} in \overline{B}_R by using the implicit function theorem (see, e.g., Schwartz [6]) applied to the mapping

$$f: W^{1,p}(B_R; \mathbb{M}^{\ell}) \times W^{2,p/2}_{\gamma_0}(B_R, \mathbb{M}^{\ell}) \to L^{p/2}(B_R, \mathbb{M}^{\ell}),$$

defined by $f(X,Y) = \Delta Y - (\partial_2 X + \partial_1 Y)(\partial_1 X - \partial_2 Y) + (\partial_1 X - \partial_2 Y)(\partial_2 X + \partial_1 Y)$. To this end, we show that the mapping $\frac{\partial f}{\partial Y}(U,V)$ is an isomorphism from the space $W^{2,p/2}_{\gamma_0}(B_R,\mathbb{M}^\ell)$ to the space $L^{p/2}(B_R;\mathbb{M}^l)$ by using the Lax–Milgram lemma, Theorem 1.1, and assumption (6) on the size of the ball B_R . Consequently, there exist open subsets $O_1 \subset W^{1,p}(B_R;\mathbb{M}^\ell)$ and $O_2 \subset W^{2,p/2}_{\gamma_0}(B_R,\mathbb{M}^\ell)$ and a mapping $\varphi \in \mathcal{C}^1(O_1;O_2)$ such that $U \in O_1, V \in O_2$ and $\{(X,Y) \in O_1 \times O_2; f(X,Y) = 0\} = \{(X,\varphi(X)); X \in O_1\}$. In particular, for $X = U^n$ there exists $V^n := \varphi(U^n)$ such that $f(U^n,V^n)=0$. The regularity properties of second order elliptic partial differential equations (see, e.g., Gilbarg and Trudinger [2]) show that in fact $V^n \in \mathcal{C}^\infty(\overline{B}_R)$. Moreover, since φ is continuous and since $U^n \to U$ in $W^{1,p}(B_R;\mathbb{M}^\ell)$, it follows that $V^n \to V$ in $W^{2,p/2}(B_R;\mathbb{M}^\ell)$, hence in $W^{1,p}(B_R;\mathbb{M}^\ell)$ by the Sobolev imbedding theorem (see, e.g., Adams [1]).

Finally, we define the fields $A_1^n := \partial_1 U^n - \partial_2 V^n$ and $A_2^n := \partial_2 U^n + \partial_1 V^n$, and prove that they satisfy the required conditions of the lemma. \square

We are now in a position to prove the main result of this Note.

Theorem 3.2. Let Ω be a connected and simply connected open subset of \mathbb{R}^2 , let $x^0 \in \Omega$, let p > 2, let $Y^0 \in \mathbb{M}^{q \times \ell}$, and let matrix fields $A_i \in L^p_{loc}(\Omega; \mathbb{M}^{\ell})$ be given that satisfy the relations

$$\partial_1 A_2 + A_1 A_2 = \partial_2 A_1 + A_2 A_1$$
 in $\mathcal{D}'(\Omega; \mathbb{M}^{\ell})$.

Then the Pfaff system

$$\partial_i Y = Y A_i \quad \text{in } \mathcal{D}'(\Omega; \mathbb{M}^{q \times \ell}),$$

$$Y(x^0) = Y^0 \tag{7}$$

has one and only one solution $Y \in W^{1,p}_{loc}(\Omega; \mathbb{M}^{q \times \ell})$.

Proof. We first prove the following local existence result: For each open ball $B_r := B_r(x^0) \in \Omega$ whose radius satisfies relation (6) of the previous lemma, there exists a field $Y \in W^{1,p}(B_r; \mathbb{M}^{q \times \ell})$ that satisfies the Pfaff system

$$\partial_i Y = Y A_i \quad \text{in } \mathcal{D}'(B_r; \mathbb{M}^{q \times \ell}),$$

$$Y(x^0) = Y^0.$$
(8)

We find this solution as the limit of a sequence of solutions to some Pfaff systems with smooth coefficients. For, fix an open ball $B_R \in \Omega$ such that $B_r \in B_R$. Then Lemma 3.1 shows that there exist sequences of matrix fields $A_1^n, A_2^n \in \mathcal{C}^{\infty}(\overline{B}_R; \mathbb{M}^{\ell})$ that satisfy

$$\partial_1 A_2^n + A_1^n A_2^n = \partial_2 A_1^n + A_2^n A_1^n$$
 in B_R ,
 $A_1^n \to A_1$ and $A_2^n \to A_2$ in $L^p(B_R; \mathbb{M}^\ell)$ as $n \to \infty$.

Since the coefficients A_1^n and A_2^n are smooth, the classical result on Pfaff systems (see, e.g., Thomas [7]) shows that there exists a matrix field $Y^n \in \mathcal{C}^{\infty}(\overline{B}_R; \mathbb{M}^{q \times \ell})$ that satisfies

$$\partial_i Y^n = Y^n A_i^n \quad \text{in } B_R, \ i \in \{1, 2\},$$

$$Y^n(x^0) = Y^0.$$
(9)

By the stability result of Theorem 2.1, there exists a constant C > 0 such that

$$||Y^n - Y^m||_{W^{1,p}(B_r)} \le C \sum_i ||A_i^n - A_i^m||_{L^p(B_R)}$$
 for all $m, n \in \mathbb{N}$,

which means that (Y^n) is a Cauchy sequence in the space $W^{1,p}(B_r; \mathbb{M}^{q \times \ell})$. Since this space is complete, there exists a field $Y \in W^{1,p}(B_r; \mathbb{M}^{q \times \ell})$ such that $Y^n \to Y$ in $W^{1,p}(B_r; \mathbb{M}^{q \times \ell})$ as $n \to \infty$. In addition, the Sobolev imbedding $W^{1,p}(B_r; \mathbb{M}^{q \times \ell}) \subset \mathcal{C}^0(B_r; \mathbb{M}^{q \times \ell})$ shows that $Y^n(x^0) \to Y(x^0)$ in $\mathbb{M}^{q \times \ell}$ as $n \to \infty$. Then we deduce that the field Y satisfies the Pfaff system (8) by passing to the limit as $n \to \infty$ in the equations of system (9).

Now, we define a global solution to the Pfaff system (7) as in the proof of Theorem 3.1 of [4], by glueing together some sequences of local solutions along curves starting from the given point x^0 . We prove that this definition is unambiguous thanks to the uniqueness result of Corollary 2.2 and to the simply-connectedness of the set Ω .

That this solution is unique follows from Corollary 2.2.

Remark 1. The assumption that p > 2 of the theorem is optimal since in order to properly define $Y(x^0)$, the space $W^{1,p}(\Omega)$ (to which the components of the matrix field Y belong) should be imbedded in the space of continous functions.

References

- [1] R.A. Adams, Sobolev Spaces, Academic Press, 1975.
- [2] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983.
- [3] P. Hartman, A. Wintner, On the fundamental equations of differential geometry, Amer. J. Math. 72 (1950) 757–774.
- [4] S. Mardare, The fundamental theorem of surface theory with little regularity, J. Elasticity 73 (2003) 251-290.
- [5] S. Mardare, On Pfaff systems with L^p -coefficients and their applications in differential geometry, J. Math. Pures Appl., in press.
- [6] L. Schwartz, Analyse II : Calcul Différentiel et Equations Différentielles, Hermann, Paris, 1992.
- [7] T.Y. Thomas, Systems of total differential equations defined over simply connected domains, Ann. Math. 35 (1934) 730–734.