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Abstract

We present an example of a smooth invertible contraction in an infinite-dimensional Hilbert space that is notiocally
linearizable near its fixed poinTo cite this article: H.M. Rodrigues, J. Sola-Morales, C. R. Acad. Sci. Paris, Ser. | 340
(2005).
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Résumé

Unecontraction inversiblequi n’ est pas C1-linéarisable. Nous présentons un exemple de contraction inversible et réguliére

dans un espace de Hilbert de dimension infinie qui n’est pas localehhdiméarisable autour de son point fixeour citer cet

article: H.M. Rodrigues, J. Sola-Morales, C. R. Acad. Sci. Paris, Ser. | 340 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction and main result

An invertible contraction both in finite or infinite dimensions can always be linearized in the@Jaby the
well known Hartman—Grobman theorem, as it was proved in Pugh [7]. However, it seems that it was not known
until now if this was also true for the linearization in the cldgsee Abbaci [2]) in the case of infinite dimensional
Banach spaces. All the existing results on this case, that to our knowledge are those of Mora and Sola-Morales [6],
Tan [11], and the three independent recent works EIBialy [3], Abbaci [1,2] and Rodrigues and Sola-Morales [9]
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require extra hypotheses for an invertible contraction in infinite dimensions @ 4ieearizable. (We take this
opportunity to apologize for having written our work [9] without knowledge of the existence of [3] and [1].) For
example, in the paper [9] we proved the following theorem:

Theorem 1.1 (A linearization theorem for contractiond)et X be a Banach space with the property that there
exists a functiom such that

peC(X,R), withp(z)=1, whenjz| <1/2andp(z) =0, when|z| > 1. @
Suppose thaL, L~! € £(X). We assume that there exist real numbers v, i =1,...,n, such thaD < v, <
v,F <U;_1<U:_1<~~ <vy <vl+ <1,

vivt <v”, i=1...,n (nonresonance conditijn )

andlo(L)| C (v, v U@, . vF U U, o).
Let F = F(z) be acl1-function in a neighborhood of the origin with valuesnh such thatF =0, DF =0,
atz=0.
Then, for the maf :z +— z/, 7/ = Lz + F(z), there exists &1-mapR:z +— u, u = z + ¥ (z), satisfyingy =0,
Dy =0, at z =0, such thatRT R~1:u — u’ has the formu’ = Lu in a sufficiently small neighborhood of the
origin.

In the present Note we exhibit an example of a smooth invertible contraction that @& ioearizable. Our
Banach spac& will be the usual Hilbert spacé& of the square summable sequences, that obviously satisfies the
condition (1). The linear operatdr is an invertible contraction and the nonlinearityz) will be a polynomial of
degree 2. Also the sét (L)| will consist of a single interval, and will not satisfy the nonresonance condition (2).

To our knowledge, this example appears to be the first one of this kind. It shows that the infinite-dimensional case
is not like the finite-dimensional one, where all smooth invertible contractions can be linearized with a linearization
of classC! (see Hartman [5], or Chicone and Swanson [4]). Our example closes this question. As a consequence,
to linearize a smooth invertible contraction in the cld$sn the infinite dimensional case, one can not avoid an
extra hypothesis, perhaps like the nonresonance condition (2).

Our interest in the linearization problems started years ago, in the works Mora and Sola-Morales [6] and Ro-
drigues and Ruas Filho [8]. Recently, we have been workirit}iinearization in infinite dimensions, in the works
Rodrigues and Sola-Morales [9], for the case of invertible contractions, and Rodrigues and Sola-Morales [10] where
a case of a saddle point is studied. In both cases, applications to abstract wave equations have been presented. Tl
present Note is a continuation of these previous works.

The main idea of our example appears in the following proposition. As the reader can appreciate, if one takes
8 > |a® — a| and one makes the dimensiario grow unboundedly then the invariant manifold will grow without
bound.

Proposition 1.2. Let 0 <a < 1 and ¢,§ € R be positive numbers. Consider the mép, &1,...,&,) —
(', &1, ..., &) in R"* defined by

X' =ax, & =a& +06&41, fork=12....n—1 and & =a&, +ex’ (3)
If & =¢i(x), i =1,...,n, defines a local invariant curve for the above map, differentiable at0, such that

$i(0) =0, ¢/(0) =0, theng; (x) = 8" "ex?/(a® — a)"~'1, and in particular|gy (x)| > 8" 1ex?/|a® — a|".

Let us introduce some notation. Let us wiite:= (y,.1, - - ., yn.n) fOr a generic vector oR”, and define the
linear mapJ, :R* — R" by J,¥n := (Yn.2, ..., Yn.n, 0). Let I,, be the identity inR”. We will consider the linear
mapL, :=al, + §J, for some given scalaks, §.



H.M. Rodrigues, J. Sola-Morales / C. R. Acad. Sci. Paris, Ser. | 340 (2005) 847-850 849

Let us also writez := (x,Y2,¥s,...,V¥s,...) for a generic vector of,, and defineL:¢> — ¢» by Lz :=
(ax, L2y, Laya, ..., Lyy,, ...). Define also the quadratic mafs R — R” by f,(x) = (0,0, ..., x2) and finally
F:ly— L2 by F(2) := (0, eof2(x), e3fa(x), ..., enf,(x),...) for a given sequence,,).

The following is our main result:

Theorem 1.3. Lete > 0 ande,, := ¢/n. Under the hypothesis,
O<a<1, a—a2<8<min{1—a,a} 4)

the operatorL is a contraction ort,, satisfiego (L)| = [a — §, a + 5], and the polynomial map of degr@elefined
in £2 by

7 =Lz+ F(2),

is notC-linearizable in any neighborhood ef= 0.
Remark 1. Observe that (4) implies that + §)2 > a — &, so the nonresonance condition (2) is not satisfied.

Remark 2. To prove the Theorem we will call := L + F and we will suppose that a local invertible m&p
exists such thaR andR 1 are of clasg’! with RTR~1 = L, and then we will arrive to a contradiction. However,
following carefully the proof one can see that to arrive to a contradiction we do not need even to rRguide
R~ 1 to be of clas€!, but merelyrR and R~ to be differentiable at = 0.

2. Proof of Theorem 1.3

Lemma2.l.If 0<a <1andr € R, then the functional equation,

¢ (ax) = a(x) +rx ®)
has a unique local solutiog differentiable atx = 0, with ¢(0) = 0 and ¢’(0) = 0. This solution is given by
¢ (x) =rx?/(a® - a).

Proof. Sincerx?/(a? — a) is a particular solution, the other solutions would be of the foi) = rx2/(a? — a) +
¢1(x), whereg; satisfies the homogeneous equation:

¢1(ax) =ap1(x).
Let xg # 0. Theng1(axg) = a” p1(x0). Sincegp1(0) = 0 anda"xg — 0 asn — oo we have
¢1(a"x0) — ¢1(0) _ ¢$1(x0)

axo X0

$1(0) = lim
n— o0
So0¢1(xg) =0, sincep;(0) =0. O
Proof of Proposition 1.2. We consider the functional equations satisfied bygheStarting withi = n and using

the previous lemma one obtais = ¢, (x) = £x?/(a® — a). Substituting this expression in the— 1 equation
& =a&y,_1+ 8&,, using again the lemma one obtains:

&d
bn1=¢p_1(x) = mxz.

Proceeding recursively one finally obtaigs:= ¢1(x) = £8" *x?/(a® —a)". O
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Proof of the Theorem 1.3. Let us callT := L + F, and suppose that a local linearization nfapxists such that
RTR1=L.If both R and R~ are differentiable at zero then froR7T R—1 = L one obtains thaDR(0)L =
LDR(0) and soDR(0)"1RT(DR(0)~1R)~1 = L. So we can suppose thatR (0) = I.

Now, the linear subspadgx, 0)} C ¢» is invariant byL, so R~ 1{(x, 0)} is invariant by7'. This invariant curve
can be expressed &s, @ (x)} C £2 in a neighborhood of zero, witth (0) =0, D& (0) = 0.

Lety =(y2,¥3,...,Ys,-..), With y, being as before a vector withcomponents, and let us also writgx) =
(p2(x), ¢p3(x),...). Itis clear thaty, = ¢, (x) will be an invariant manifold for the + 1-dimensional system (3),
with ¢ = ¢,,. Then, because of the proposition, we have

8,18n_l 5

HQ('X)“ 2 |a2 _ (l|n
and we obtain a contradiction by letting— oo if § > |a% — a|, as it was taken in (4).

Observe also thatL, || = |lal, + 8 J, || < allL,|| + 8| Jn]l = a + 6.

Since this bound is independent:ofve get that|L|| < a + §, and because of (4), L is a contraction.

Next, one can show that the spectrumlofs the whole diskz — a| < § of the complex plane. We do not give
all the details, but we merely say that this can be easily deduced from the following estimates:

Letc € C andl,, J, defined as above. |t| > 1, then||(cI, + J,) 1| < 1/(lc| — 1), and if O< |c| < 1, then
(eI, + J) 7 = 1/|c|", for all n > 2. These estimates follow easily from the explicit formula

=t

cl’l

41 1 1 ~
(cln + Jn) 1:;1,,—;jn+gjr12+...+ 71,

Remark 3. In order to obtain the slightly better result described in Remark 2, the previous proof requires a small
modification: one has to prove that the &etl{(x, 0)} is can be expressed &s, @ (x)}. To do that one can write
itas{(x + ¢1(x)), @(x)} and then prove that; = 0, by using Lemma 2.1 with= 0.
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