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Abstract

We present an example of a smooth invertible contraction in an infinite-dimensional Hilbert space that is not locC1-
linearizable near its fixed point.To cite this article: H.M. Rodrigues, J. Solà-Morales, C. R. Acad. Sci. Paris, Ser. I 340
(2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Une contraction inversible qui n’est pas C1-linéarisable. Nous présentons un exemple de contraction inversible et régu
dans un espace de Hilbert de dimension infinie qui n’est pas localementC1-linéarisable autour de son point fixe.Pour citer cet
article : H.M. Rodrigues, J. Solà-Morales, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction and main result

An invertible contraction both in finite or infinite dimensions can always be linearized in the classC0, by the
well known Hartman–Grobman theorem, as it was proved in Pugh [7]. However, it seems that it was not
until now if this was also true for the linearization in the classC1 (see Abbaci [2]) in the case of infinite dimension
Banach spaces. All the existing results on this case, that to our knowledge are those of Mora and Solà-Mo
Tan [11], and the three independent recent works ElBialy [3], Abbaci [1,2] and Rodrigues and Solà-Mora
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require extra hypotheses for an invertible contraction in infinite dimensions to beC1-linearizable. (We take thi
opportunity to apologize for having written our work [9] without knowledge of the existence of [3] and [1].
example, in the paper [9] we proved the following theorem:

Theorem 1.1 (A linearization theorem for contractions). Let X be a Banach space with the property that th
exists a functionρ such that

ρ ∈ C1,1(X,R), with ρ(z) = 1, when|z| � 1/2 andρ(z) = 0, when|z| � 1. (1)

Suppose thatL,L−1 ∈ L(X). We assume that there exist real numbersν−
i , ν+

i , i = 1, . . . , n, such that0 < ν−
n <

ν+
n < ν−

n−1 < ν+
n−1 < · · · < ν−

1 < ν+
1 < 1,

ν+
1 ν+

i < ν−
i , i = 1, . . . , n (nonresonance condition) (2)

and |σ(L)| ⊂ (ν−
n , ν+

n ) ∪ (ν−
n−1, ν

+
n−1) ∪ · · · ∪ (ν−

1 , ν+
1 ).

Let F = F(z) be aC1,1-function in a neighborhood of the origin with values inX, such thatF = 0, DF = 0,
at z = 0.

Then, for the mapT : z �→ z′, z′ = Lz + F(z), there exists aC1-mapR : z �→ u, u = z + ψ(z), satisfyingψ = 0,
Dψ = 0, at z = 0, such thatRT R−1 :u �→ u′ has the formu′ = Lu in a sufficiently small neighborhood of th
origin.

In the present Note we exhibit an example of a smooth invertible contraction that is notC1-linearizable. Our
Banach spaceX will be the usual Hilbert space�2 of the square summable sequences, that obviously satisfie
condition (1). The linear operatorL is an invertible contraction and the nonlinearityF(z) will be a polynomial of
degree 2. Also the set|σ(L)| will consist of a single interval, and will not satisfy the nonresonance condition

To our knowledge, this example appears to be the first one of this kind. It shows that the infinite-dimensio
is not like the finite-dimensional one, where all smooth invertible contractions can be linearized with a linea
of classC1 (see Hartman [5], or Chicone and Swanson [4]). Our example closes this question. As a conse
to linearize a smooth invertible contraction in the classC1 in the infinite dimensional case, one can not avoid
extra hypothesis, perhaps like the nonresonance condition (2).

Our interest in the linearization problems started years ago, in the works Mora and Solà-Morales [6] a
drigues and Ruas Filho [8]. Recently, we have been working inC1-linearization in infinite dimensions, in the work
Rodrigues and Solà-Morales [9], for the case of invertible contractions, and Rodrigues and Solà-Morales [1
a case of a saddle point is studied. In both cases, applications to abstract wave equations have been pres
present Note is a continuation of these previous works.

The main idea of our example appears in the following proposition. As the reader can appreciate, if on
δ > |a2 − a| and one makes the dimensionn to grow unboundedly then the invariant manifold will grow witho
bound.

Proposition 1.2. Let 0 < a < 1 and ε, δ ∈ R be positive numbers. Consider the map(x, ξ1, . . . , ξn) �→
(x′, ξ ′

1, . . . , ξ
′
n) in R

n+1 defined by:

x′ = ax, ξ ′
k = aξk + δξk+1, for k = 1,2, . . . , n − 1, and ξ ′

n = aξn + εx2. (3)

If ξi = φi(x), i = 1, . . . , n, defines a local invariant curve for the above map, differentiable atx = 0, such that
φi(0) = 0, φ′

i (0) = 0, thenφi(x) = δn−iεx2/(a2 − a)n−i+1, and in particular|φ1(x)| � δn−1εx2/|a2 − a|n.

Let us introduce some notation. Let us writeyn := (yn,1, . . . , yn,n) for a generic vector ofRn, and define the
linear mapJn :Rn → R

n by Jnyn := (yn,2, . . . , yn,n,0). Let In be the identity inRn. We will consider the linea
mapL := aI + δJ for some given scalarsa, δ.
n n n
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Let us also writez := (x,y2,y3, . . . ,yn, . . .) for a generic vector of�2, and defineL :�2 → �2 by Lz :=
(ax,L2y2,L3y3, . . . ,Lnyn, . . .). Define also the quadratic mapsfn :R → R

n by fn(x) = (0,0, . . . , x2) and finally
F :�2 → �2 by F(z) := (0, ε2f2(x), ε3f3(x), . . . , εnfn(x), . . .) for a given sequence(εn).

The following is our main result:

Theorem 1.3. Let ε > 0 andεn := ε/n. Under the hypothesis,

0< a < 1, a − a2 < δ < min{1− a, a} (4)

the operatorL is a contraction on�2, satisfies|σ(L)| = [a − δ, a + δ], and the polynomial map of degree2 defined
in �2 by

z′ = Lz + F(z),

is notC1-linearizable in any neighborhood ofz = 0.

Remark 1. Observe that (4) implies that(a + δ)2 > a − δ, so the nonresonance condition (2) is not satisfied.

Remark 2. To prove the Theorem we will callT := L + F and we will suppose that a local invertible mapR

exists such thatR andR−1 are of classC1 with RT R−1 = L, and then we will arrive to a contradiction. Howev
following carefully the proof one can see that to arrive to a contradiction we do not need even to requireR and
R−1 to be of classC1, but merelyR andR−1 to be differentiable atz = 0.

2. Proof of Theorem 1.3

Lemma 2.1. If 0< a < 1 andr ∈ R, then the functional equation,

φ(ax) = aφ(x) + rx2 (5)

has a unique local solutionφ differentiable atx = 0, with φ(0) = 0 and φ′(0) = 0. This solution is given by
φ(x) = rx2/(a2 − a).

Proof. Sincerx2/(a2 − a) is a particular solution, the other solutions would be of the formφ(x) = rx2/(a2 − a)+
φ1(x), whereφ1 satisfies the homogeneous equation:

φ1(ax) = aφ1(x).

Let x0 �= 0. Thenφ1(a
nx0) = anφ1(x0). Sinceφ1(0) = 0 andanx0 → 0 asn → ∞ we have

φ′
1(0) = lim

n→∞
φ1(a

nx0) − φ1(0)

anx0
= φ1(x0)

x0
.

Soφ1(x0) = 0, sinceφ′
1(0) = 0. �

Proof of Proposition 1.2. We consider the functional equations satisfied by theφi . Starting withi = n and using
the previous lemma one obtainsξn = φn(x) = εx2/(a2 − a). Substituting this expression in then − 1 equation
ξ ′
n = aξn−1 + δξn, using again the lemma one obtains:

ξn−1 = φn−1(x) = εδ

(a2 − a)2
x2.

Proceeding recursively one finally obtains:ξ = φ (x) = εδn−1x2/(a2 − a)n. �
1 1
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Proof of the Theorem 1.3. Let us callT := L + F , and suppose that a local linearization mapR exists such tha
RT R−1 = L. If both R andR−1 are differentiable at zero then fromRT R−1 = L one obtains thatDR(0)L =
LDR(0) and soDR(0)−1RT (DR(0)−1R)−1 = L. So we can suppose thatDR(0) = I .

Now, the linear subspace{(x,0)} ⊂ �2 is invariant byL, soR−1{(x,0)} is invariant byT . This invariant curve
can be expressed as{x,Φ(x)} ⊂ �2 in a neighborhood of zero, withΦ(0) = 0, DΦ(0) = 0.

Let y = (y2,y3, . . . ,yn, . . .), with yn being as before a vector withn components, and let us also writeΦ(x) =
(φ2(x),φ3(x), . . .). It is clear thatyn = φn(x) will be an invariant manifold for then + 1-dimensional system (3
with ε = εn. Then, because of the proposition, we have

∥
∥Φ(x)

∥
∥ � εnδ

n−1

|a2 − a|n x2

and we obtain a contradiction by lettingn → ∞ if δ > |a2 − a|, as it was taken in (4).
Observe also that‖Ln‖ = ‖aIn + δJn‖ � a‖In‖ + δ‖Jn‖ = a + δ.
Since this bound is independent ofn we get that‖L‖ � a + δ, and because of (4), L is a contraction.
Next, one can show that the spectrum ofL is the whole disk|z − a| � δ of the complex plane. We do not giv

all the details, but we merely say that this can be easily deduced from the following estimates:
Let c ∈ C andIn, Jn defined as above. If|c| > 1, then‖(cIn + Jn)

−1‖ � 1/(|c| − 1), and if 0< |c| < 1, then
‖(cIn + Jn)

−1‖ � 1/|c|n, for all n � 2. These estimates follow easily from the explicit formula

(cIn + Jn)
−1 = 1

c
In − 1

c2
Jn + 1

c3
J 2

n + · · · + (−1)n−1

cn
J n−1

n .

Remark 3. In order to obtain the slightly better result described in Remark 2, the previous proof requires a
modification: one has to prove that the setR−1{(x,0)} is can be expressed as{x,Φ(x)}. To do that one can write
it as{(x + φ1(x)),Φ(x)} and then prove thatφ1 ≡ 0, by using Lemma 2.1 withr = 0.
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