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Abstract

This Note is devoted to obtaining an approximation result for BV-functions by meangjodsi-polyhedrakequence of
BV-functions. This approximation could have interesting applications in some problems of the Calculus of VafTatiotes.
thisarticle: M. Amar, V. De Cicco, C. R. Acad. Sci. Paris, Ser. | 340 (2005).
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Résumé

Un nouveau résultat d’approximation pour fonctions BV. On démontre un théoréme de approximation pour une fonction
qui appartient & I'espace BV avec une suite quasi-polyédriques de fonctions BV. Cette approximation peut étre trés utile pour
guelques problémes du Calcul des VariatidPmur citer cet article: M. Amar, V. De Cicco, C. R. Acad. Sci. Paris, Ser. | 340
(2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

In this Note, we prove an approximation result for BV-functions. In this direction, the first classical result is
due to Anzellotti-Giaquinta, who proved that BV-functions can be approximated by means of smooth functions
which are essentially obtained by mollification, so that their main interest lies @ffthegularity.

In the framework of the Calculus of Variations, this type of approximation has been usefully applied in various
problems concerning relaxation afitdconvergence, wherg:.} plays the role of the ‘recovery sequence’. How-
ever, in some recent problems it seems more useful to have an approximation of BV-functions which takes into
account not so much th&>*-regularity of the approximating sequence, as the geometric properties of its disconti-
nuity set. This idea has been firstly developed by Dibos and Séré, in the context of the approximation of minimizers
for the Mumford—Shah functional (see [5]). They proved an approximation resuBbvffunctions by means of
functions, still belonging t&BYV, with their jump set contained in a finite union of smooth hypersurfaces, included
in hyperplanes.
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Following the outlines of Dibos and Séré, Cortesani and Toader in [4] (see also [3]) proved that those functions,
which have a polyhedral jump set and are of cld$soutside, are dense BBW N L, in an appropriate sense
connected with the Mumford—Shah functional.

In view of similar possible applications, we propose a new approximation result for general BV-functions,
which therefore could also be of Cantor type. This implies that the approximating functions are slightly more
general than those proposed by Cortesani and Toader. More preciselyy giYiN L° we construct a sequence
of BV-functions, strictly converging ta, such that their set of approximate discontinuity points is “almost” a
polyhedron, in the sense that th&" —1-measure of the non-polyhedral part is small. This result is obtained by
refining a classical theorem, due to Federer, of approximation of a courtébté-rectifiable set by means of
smooth compact manifolds which are arbitrarily close to a polyhedron, apart from a set ofgfnaimeasure.

We think that this type of approximation could be useful to study problems of relaxation-aevergence for
functionals defined on the whoRV. On the other hand, this approach, being very intrinsic, should also permit to
simplify the study of similar problems c8BV.

2. Preliminaries

In the following, we assume that > 2 be a fixed integer an® be an open bounded setR" .
Letu e Llloc(.Q); we say that: has arapproximate limitat x € £2, if there exists a unique valugx) € R such
that

lim ][ |u(y)—ft(x)‘dx=0, Q)
r—=0"J B.(x)
wheref; ., stands form J5,(x) @nd B, (x) denotes the ball ilR" centered inv with radiusr. Let S, be

the set of points where the previous property does not hold, the so-egledximate discontinuity sellote that
S, isaBorel setand: 2 \ S, — R is a Borel function. Clearly, ik is a Lebesgue point of, then (1) holds with
ii(x) replaced by« (x). Moreover, we recall thaf” -almost every: € £2 is a Lebesgue point of.

Let us recall a useful property for the composition of BV-functions with Lipschitz functions.

Theorem 2.1(see Theorem 3.16 in [2]).et £2, 2’ be open subsets &" and¢ : 2’ — 2 be a bijective Lipschitz
function, whose inverse is Lipschitz, too. ket BV (£2) andv =u o ¢. Thenv € BV (£2’) and

Tyt Ul ®) < 1Dvi(B) < [Lip@H]" ! 1Dul(¢(B))

for every Borel subsek of £2'.

3. Main results

In the first theorem, we improve a fine property of countatsfeé—1-rectifiable sets stated in Theorem 4.2.19 of
[6] (see also Theorem 3.2 in [1]). This result is the crucial tool in order to obtain the quasi-polyhedral approximation
of BV-functions, which will be stated in Theorem 3.3.

Theorem 3.1.Let Bg be a ball inRY andS c By be a countablé+" —1-rectifiable set. Then for every> 0 there
exists a diffeomorphisi. : RV — RV satisfying the following properties

(i) ¢.:Bgr — Bg and, outsideBg, ¢. = Id (whereld denotes the identity functidd(x) = x);
(i) Lip (ge), Lip(¢;H) <1+;
(i) there exists a compact s&t. C Bg, such thatK, is a polyhedron composed by a finite number of cubes in
(N — 1) dimensions an" ~1(S A ¢, (K,)) < &.
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Moreover for any family{¢,.} satisfying(i) and (ii) we have

(iv) ase — 0T, ¢, — Id, uniformly onR”";
(v) ase — 0T, |J(¢>;1)| and|J (¢.)| tend tol uniformly ons2, WhereJ(¢>g1) and J(¢.) denote the determinants
of the Jacobian matrices gf. ! and ¢., respectively.

Proof. The existence of the diffeomorphispp with the properties (i)—(iii) is proved in Theorem 4.2.19 of [6] (see
also Theorem 3.2 in [1]). Assume now tHat } is a family satisfying (i) and (ii); we will show that it satisfies also
(iv) and (v). By (i), it follows (1 + &) "Y|x — y| < [ (x) — ¢ ()| < (1 + &)lx — y| and |¢e (x)| < 2R + 3yol,
wherex € Bg andyg € RV \ Bg; the same holds foqb;l. Hence, the sequencésg.}, {¢;1} are equibounded
and equicontinuous, then there exigt ¥o:RY — R" such that, up to a subsequenge — ¢o andqb;l — Yo
uniformly on Bg (and so on the whole GtV since¢. = ¢, 1 = Id outsideBg). It is easy to see thalo(Vo(x)) =
Yo(¢o(x)) = x, so thatyro = ¢, 1. Moreover,|¢o(x) — do(y)| = |x — yl, which implies thai (and hencepy*,
too) is a linear isometric map. Indeed, assume firstly #iad0) = O; then we havego(x)| = |x|, which implies
also that(x, y) = (¢o(x), ¢o(y)), where(-, -) denotes the usual scalar productliff; hence, if{e;};=1.. n iS an
orthonormal basis iR", then {¢o(e;)}i=1....n iS an orthonormal basis iR", too. Givenx = Y a;e;, we can
write ¢o(x) = Y Bigo(e;), wherew; = (x, ;) = (po(x), po(e;)) = Bi. This proves thaty is a linear isometric
map, which coincides with the identity outsidi, hencegpy = Id. If ¢o(0) = xg # 0, it is enough to replaceg
with ¢o(-) = ¢o(-) — xo. Hence, the whole sequenég.}, and not only a subsequence, tends to Id. In order to
prove (v), we note that, by (ii) and recalling that for every invertible matrjxhe detA—1) = 1/ det(A), it follows
ﬁ <|J(Pe)| < A+ )N andﬁ < |J (@ D] < (L+ )", which concludes the proof.o

In order to state our main result (Theorem 3.3), we need the following definition.

Definition 3.2.Givenu € BV (£2) N L*°(£2), we say that a sequenge.} C BV (£2) N L*°(£2) is aquasi-polyhedral
approximation of, if the following properties hold:

the sequencéu,} is equibounded i (£2);

ues — u strongly inL(£2), ase — 0;

|Dug|(82) — |Dul|(£2), ase — 0;

there exists a sequence of polyhefka} C 2 such thatHN‘l(Sug A K;)— 0,ase — 0;
HNL(S,,) — HVNL(S,), ase — 0.

Theorem 3.3.Let 2 = Br. For everyu € BV (£2) N L*>(£2), there exists a quasi-polyhedral approximation }
of u. More precisely, for every > 0, settingu, := u o ¢, (Where¢, is given in Theoren3.1), it follows that
u, € BV(2)NL>®(2) and

(i) lluelloo = lulloo and flucllay < (1+ &)V [|ullgy;
(i) ue — u strongly inL1(£2), ase — 0;
(i) |Dug|(2) — |Dul(£2), ase — 0;
(iv) there exists a polyhedrok, c 2 and a constant¢ > 0 such thatHNfl(Sug A K,) <cg;
V) @A+ VHNS,) SHNT(SL) < A4+ )N TTHNTY(S,).

Proof. For everys > 0, defineu, := u o ¢, whereg, :RY — RY is the diffeomorphism given in Theorem 3.1,
with S := S, which is a countablé{"~1-rectifiable subset of2. Clearly, by definition,|lu;|loo = [|#]lco. BY
Theorem 2.1 the function, belongs to BV{2) N L°°(£2) and, for every O< ¢ < 1, an easy calculations yields
lluellBv < ¢, Wherec is a positive constant independentsofHence, there existigg € BV (£2) such that, up to a
subsequence, — ug strongly inL1(£2) andDu, — Dug weakly* in the sense of measures. Firstly, we will show
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thatug = u, which implies also that the whole sequence, not only a subsequence, convergestty c 2, with
LN (N) =0, be such that for every € £2 \ N, up to another subsequenag(x) — ug(x) and

. 1 . 1
wo=lim [ wody and weo=tm > [ unay, @
By (x) By (x)

wherewy denotes the Lebesgue measure of the unit bain Recalling Theorem 3.1, we have thaltpg1| and
|Jp.| tend to 1, ag — O, uniformly on$2. Moreover, for every > 0 and every € 2 \ N, we have

1 1
e () —u(x)| < Jue(x) — —— fug(wdy +|—x / u(y)[|1¢51(y)|—1]dy‘
wWNTr wNTr
By (x) ¢e (B (x))
1 1
+‘ N[ / u(y)dy — / u(y)dy} +‘ N /u(y)dy—u(X).
WNT wWwNTFr

@e (B (x)) B (x) B (x)

Passing to the limsup as— 01 and taking into account thét, } tends taug strongly inL1(£2) and pointwise in
2\ N, we obtain

lim sup|ues (v) — ()| < uo<x>—f wo(y) dy‘+ Wl im supc™ (g (8, ))) [supl [ 76 0] ~ 1]
e—0t B, (x) WNT™" o0t Q
llloo N 1 / _
N Ilgsogpﬁ (¢g(Br(x))ABr(x))+‘WN u(y)dy — u(x)
By (x)

1 1

= [uo(x) — — /uo(y)dy'+' N /u(y)dy—u(X),
WwNT1 wWNTF

B, (x) By (x)

for everyr > 0. Now, lettingr — 0™ and taking into account (2), it follows:, (x) — u(x)| — 0, whens — 0.
This implies thatu. (x) — u(x) for a.e.x € £2 and since we have also that(x) — ug(x) for everyx € 2 \ N,
it follows thatu = ug almost everywhere and that the whole sequdnggtends tox in L1(£2). Now, taking into
account the lower semicontinuity of the total variation, (i) and (ii) of Theorem 3.1, and Theorem 2.1, we have also
that|Du.|(£2) — |Dul|(£2), whene — 0. Hence, (iii) is proven.

Finally, by (iii) of Theorem 3.1, there exists a polyhedip c £2 such that/V (S, A ¢.(K.)) < ¢ . Hence,
taking into account thaf,, = ¢g1(Su), the properties of Hausdorff measures (see Proposition 2.49 in [2]), and (ii)
of Theorem 3.1, it followsHN=1(S,, A K:) = HN "2 2(Sy A ¢e(Ke))) < L+ &)V THVTL(S, A ¢e(Ke)) <
(1+ &)V, In a similar way we obtain (v), which concludes the proof:
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