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Abstract

This Note mainly presents the results from “Malliavin calculus and the randomly forced Navier–Stokes equation” by
Mattingly and E. Pardoux. It also contains a result from “Ergodicity of the degenerate stochastic 2D Navier–Stokes e
by M. Hairer and J.C. Mattingly. We study the Navier–Stokes equation on the two-dimensional torus when forced by
dimensional Gaussian white noise. We give conditions under which the law of the solution at any timet > 0, projected on a
finite dimensional subspace, has a smooth density with respect toLebesgue measure. In particular, our results hold for spe
choices of four dimensional Gaussian white noise. Under additional assumptions, we show that the preceding density is ev
where strictly positive. This Note’s results are a critical component in the ergodic results discussed in a future articleTo cite
this article: M. Hairer et al., C. R. Acad. Sci. Paris, Ser. I 339 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Calcul de Malliavin pour les équations de Navier–Stokes 2D stochastiques, hautement dégénérées. Cette Note pré-
sente essentiellement les résultats de l’article “Malliavin calculus andthe randomly forced Navier–Stokes equation”, de J
Mattingly et E. Pardoux. Elle contient aussi un résultat de l’article “Ergodicity of the degenerate stochastic 2D Navier
equation”, de M. Hairer et J.C. Mattingly. Nous étudions l’équation de Navier–Stokes sur le tore bidimensionel, excité
bruit blanc gaussien de dimension finie. Nous donnons des conditions sous lesquelles la loi de la projection sur tout sous-espa
de dimension finie de la solution à un instantt > 0 arbitraire a une densité régulière par rapport à la mesure de Lebesgu
résultats sont en particulier vrais dans certains cas de bruit blanc gaussien de dimension quatre. Sous des hypothè
mentaires, nous montrons que la densité dont il est question ci-dessus est strictement positive partout. Les résulta
Note fournissent une part cruciale des arguments utilisés dans le second article cité ci-dessus, pour démontrer l’ergodicité de
solution.Pour citer cet article : M. Hairer et al., C. R. Acad. Sci. Paris, Ser. I 339 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

This note reports on recent progress made in [11,7] on the study of the two dimensional Navier–Stokes equatio
driven by an additive stochastic forcing. Recall that theNavier–Stokes equation describes the time evolution of a
incompressible fluid. In vorticity form, it is given by{

∂w
∂t

(t, x) + B(w,w)(t, x) = ν�w(t, x) + ∂W
∂t

(t, x),

w(0, x) = w0(x),
(1)

wherex = (x1, x2) ∈ T
2, the two-dimensional torus[0,2π] × [0,2π], ν > 0 is the viscosity constant,∂W

∂t
is a

white-in-time stochastic forcing to be specified below, andB(w, w̃)(x) = ∑2
i=1(Kw)i(x) ∂w̃

∂xi
(x), whereK is the

Biot–Savart integral operator which will be defined next. First, we define a convenient basis in which w
perform all explicit calculations. SettingZ2+ = {(j1, j2) ∈ Z

2: j2 > 0}∪{(j1, j2) ∈ Z
2: j1 > 0, j2 = 0}, Z

2− = −Z
2+

andZ
2
0 = Z

2+ ∪ Z
2−, we define a real Fourier basis for functions onT

2 with zero spatial mean byek(x) = sin(k · x)

if k ∈ Z
2+ and cos(k ·x) if k ∈ Z

2−. Writew(t, x) = ∑
k∈Z

2
0
αk(t)ek(x) for the expansion of the solution in this bas

With this notation, in the two-dimensional periodic setting,K(w) = ∑
k∈Z

2
0

k⊥
|k|2 αke−k , wherek⊥ = (−k2, k1).

See for example [10] for more details on the deterministic vorticity formulation in a periodic domain. W
the vorticity formulation for simplicity, but all of our results can easily be translated into statements abo
velocity formulation of the problem. We solve (1) on the spaceL

2 = {f = ∑
k∈Z

2
0
akek:

∑ |ak|2 < ∞}. For f =∑
k∈Z

2
0
akek , we define the norms‖f ‖2 = ∑ |ak|2 and‖f ‖2

1 = ∑ |k|2|ak|2.
The emphasis of this note will be on forcing which directly excites only a few degrees of freedom. Such

is both of primary modeling interest and is technically the most difficult. Specifically we consider forcing
form

W(t, x) =
∑
k∈Z∗

σkWk(t)ek(x). (2)

HereZ∗ is a finite subset ofZ2
0, σk > 0, and{Wk : k ∈ Z∗} is a collection of mutually independent standard sc

Brownian Motions on a probability space(�,F ,P).
This note mainly describes the results contained in Mattingly and Pardoux [11]. It gives conditions ensurin

that any projection of the timet transition probability of the solution of (1) onto a finite dimensional subspace
a C∞ density with respect to Lebesgue measure. The result is based on the Malliavin calculus. Under ad
conditions, this density is shown to be everywhere positive. The techniques developed are quite general and
expect they can be applied to many nonlinear, stochastic partial differential equations with additive noise
results provide a first step towards a truly infinite-dimensional version of Hörmander’s celebrated ‘sum of s
theorem [9] in the setting of dissipative stochastic partial differential equations.

In a second paper, Hairer and Mattingly [7] give necessary and sufficient conditions for the main results a
estimates of [11] to hold. These results are also describedhere. They then proceed to use these tools to build a th
which, when applied to (1), proves that it has a unique invariant measure under extremely general and essen
sharp assumptions. These results are described in the note [8]. To the best of the authors knowledge, t
is the first to prove ergodicity of a nonlinear stochasticpartial differential equation (SPDE) under assumpti
comparable to those assumed when studying finite dimensional stochastic differential equations. The resu
note on Malliavin calculus and the spreading of the randomness are critical to proving the ergodic result.

2. The geometry of the forcing and cascade of randomness

The geometry of the forcing is encoded in the structure ofZ∗ from (2). As observed in [4], its structure give
information about how the randomness is spread throughout phase space by the nonlinearity. DefineZ0 to be the
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symmetric, and hence translationallystationary part of the forcing setZ∗, given byZ0 =Z∗ ∩ (−Z∗). Then define
the collectionZn = {� + j ∈ Z

2
0: j ∈ Z0, � ∈Zn−1 with �⊥ · j �= 0, |j | �= |�|} and lastly,Z∞ = ⋃∞

n=1Zn.
Z∞ captures the directions to which the randomness has spread. This can be understood in the follow

Denote by∂k the partial derivative in the directionek of the phase space and define (on a formal level) the
order differential operatorX = ∑

k∈Z
2
0
(B(w,w)k − ν|k|2)∂k . Then the generator of the Markov process associ

to (1) is formally given byL = X + 1
2

∑
k∈Z∗ σk∂

2
k . Note thatB(w,w)k = ∑

�,j ck,j,�w�wj , whereck,j,� �= 0 if

and only ifk ∈ {j ± �,−j ± �} and�⊥ · j �= 0, |j | �= |�|. Therefore, all differential operators of the type∂k with
k ∈ Z∞ can be obtained as an iterated Lie bracket of finite length involvingX and ∂� with � ∈ Z∗. Since we
want to ensure that all of the unstable directions are stochastically agitated, we seek conditions whereZ∞ = Z

2
0.

Such conditions would then ensure that, on a formal level, the assumptions of Hörmander’s theorem are met.
following essentially sharp characterization of this situation is given in [7].

Proposition 2.1. One hasZ∞ = Z
2
0 if and only if both:

(i) Integer linear combinations of elements ofZ0 generateZ2
0.

(ii) There exist at least two elements inZ0 with unequal Euclidean norm.

This characterization is sharp in the sense that ifZ∗ = −Z∗ and one of the above two conditions fails, th
there exists a non-trivial subspace ofL

2 which is left invariant under the dynamics of (1). Also notice tha
Z0 = {(0,1), (0,−1), (1,1), (−1,−1)} then Proposition 2.1 implies thatZ∞ = Z

2
0. Hence forcing four well chose

modes is sufficient to have the randomness move through the entire system. Of course one can also forc
number of modes centered elsewhere than at the origin and obtain the same effect. The next section and t
note discuss the implications ofZ∞ = Z

2
0.

3. Malliavin calculus and densities

We defineS∞ = Span(ek: k ∈Z∞ ∪Z∗). One of the main results of [11] is the following:

Theorem 3.1. For any t > 0 and any finite dimensional subspaceS of S∞, the law of the orthogonal projectio
Πw(t, ·) of w(t, ·) onto S is absolutely continuous with respect to the Lebesgue measure onS and has aC∞
density.

In [5], Eckmann and Hairer used Malliavin calculus to prove a version of Hörmander’s ‘sum of square
orem for a particular SPDE and deduce ergodicity. However, all of the techniques of that paper required that
forcing excite all but a finite number of directions and that the forcing be spatially rough as in [6,3]. The p
Theorem 3.1 builds on ideas introduced into Malliavin calculus by Ocone in [12]. The central idea is an alte
representation of the Malliavin matrix of (1) using the time reversed adjoint of the linearization of (1). Ocon
this representation when the SPDE was linear in the initial data and the forcing. When the noise is addit
extends that idea to the nonlinear case.

Let Js,tξ be the solution of linearization of (1) at timet with initial conditionξ at times, s � t . Let J̄ ∗
s,t ξ denote

the solution to theL2-adjoint of the linearizion at times, s � t , with terminal conditionξ at time t . Since the
equation is time reversed, the adjoint is well posed. With this notation, the so-called ‘Malliavin covariance
Mt can be represented by

〈Mtφ,φ〉 =
∑
k∈Z∗

t∫
σ 2

k 〈Js,t ek, φ〉2 ds =
∑
k∈Z∗

t∫
σ 2

k 〈ek, J̄
∗
s,tφ〉2 ds (3)
0 0
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whereφ ∈ L
2. The second of these representations is the oneused in [11]. Because of the time reversal,

representation is not adapted to the filtration generated byW and new estimates concerning anticipating stochasti
processes are required to obtain the needed estimates. Essentially one needs to show that the Malliavin
non-degenerate on the subspaceS and that the moments of the reciprocal of the norm of the Malliavin matri
this subspace are finite. This is accomplished through the following estimate which also gives information abo
the separation of the randomness on large and small scales.

Theorem 3.2. Let Π be the orthogonal projection ofL2 onto a finite dimensional subspace ofS∞. For any
t > 0, η > 0, p � 1, M > 0 and K ∈ (0,1) there exist two constantsc = c(ν, η,p, |Z∗|, t,K,M,Π) and
ε0 = ε0(ν,K, |Z∗|, t,M,Π) such that for allε ∈ (0, ε0],

P

(
inf

φ∈S(M,K,Π)
〈Mt φ,φ〉 < ε

)
� c exp

(
η
∥∥w(0)

∥∥2)
εp

whereS(M,K,Π) = {φ ∈ S∞: ‖φ‖ = 1, ‖φ‖1 � M, ‖Πφ‖ � K}.

With additional assumptions on the controllability of (1) conditions are also given ensuring the strict positiv
of the density. This extends results of Ben Arous and Léandre [2] and Aida, Kusuoka and Stroock [1] to this setti
We refer the reader to [11] for the exact conditions and the details.

How these results can be used to prove ergodicity is described in [8].
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