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Abstract

This Note mainly presents ghresults from “Malliavin calclus and the randomly forced Navier—Stokes equation” by J.C.
Mattingly and E. Pardoux. It also contains a result from “Ergodicity of the degenerate stochastic 2D Navier—Stokes equation”
by M. Hairer and J.C. Mattingly. We study the Navier—Stokes equation on the two-dimensional torus when forced by a finite
dimensional Gaussian white noise. We give conditions under which the law of the solution at amystilheprojected on a
finite dimensional subspace, has a smooth density with respeebtesgue measure. In particular, our results hold for specific
choices of four dimensional Gaussian white noise. Under aaditiassumptions, we show that the preceding density is every-
where strictly positive. This Note’s results are a critical component in the ergodic results discussed in a futurdadiide.
thisarticle: M. Hairer et al., C. R. Acad. Sci. Paris, Ser. | 339 (2004).
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Résumé

Calcul de Malliavin pour les équations de Navier—Stokes 2D stochastiques, hautement dégénérées. Cette Note pré-
sente essentiellement les résultats deithkr “Malliavin calculus andhe randomly forced Navier—Stokes equation”, de J.C.
Mattingly et E. Pardoux. Elle contient aussi un résultat de I'article “Ergodicity of the degenerate stochastic 2D Navier—Stokes
equation”, de M. Hairer et J.C. Mattingly. Nous étudions I'équation de Navier—Stokes sur le tore bidimensionel, excitée par un
bruit blanc gaussien de dimeas finie. Nous donnons des conditions sous lesgsiéi¢oi de la projection sur tout sous-espace
de dimension finie de la solution a un instant O arbitraire a une densité réguliere par rapport a la mesure de Lebesgue. Nos
résultats sont en particulier vrais dans certains cas de bruit blanc gaussien de dimension quatre. Sous des hypothéses supp
mentaires, nous montrons que la densité dont il est question ci-dessus est strictement positive partout. Les résultats de cet
Note fournissent une part cruciale des arguts utilisés dans le second article citélessus, pour démontrer I'ergodicité de la
solution.Pour citer cet article: M. Hairer et al., C. R. Acad. Sci. Paris, Ser. | 339 (2004).
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1. Introduction

This note reports on recent progress made in [11,7] onttly of the two dimensiordavier—Stokes equation
driven by an additive stochastic forcing. Recall that Hevier—Stokes equation degmzs the time evolution of an
incompressible fluid. In vorticity form, it is given by

{ 3 (¢, x) + B(w, w)(t,x) =vAw(t, x) + (1, x),
w(0, x) = wo(x),

1)

wherex = (x1, x2) € T?, the two-dimensional toruf0, 2] x [0, 2], v > 0 is the viscosity constan?a—"t" is a
white-in-time stochastic forcing to be specified below, &, w)(x) = Ziz:l(ICw)i(x)g—g(x), whereK is the
Biot—Savart integral operator which will be defined next. First, we define a convenient basis in which we will
perform all explicit calculations. Settirff. = {(j1, j2) € Z2: jo > 0YU{(j1, jo) € Z% j1> 0, jo=0},Z2 = 72

andz3 = 72 U Z2, we define a real Fourier basis for functionshwith zero spatial mean b (x) = sin(k - x)

if ke Zi and cosk - x) if k € Z2 . Write w(t, x) = Zkezg a (t)e (x) for the expansion of the solution in this basis.

With this notation, in the two-dimensional periodic settifgw) = ZkeZ(ZJ %ake_k, wherek® = (—kp, k1).
See for example [10] for more details on the deterministic vorticity formulation in a periodic domain. We use
the vorticity formulation for simplicity, but all of our results can easily be translated into statements about the
velocity formulation of the problem. We solve (1) on the spaée= {f = ZkeZ(ZJ ager: Y. lax|? < oo}. For f =

Y ezz akex, we define the normgf |12 =" |ax|? and|| £ 12 = Y_ [k|?|a|?.
The emphasis of this note will be on forcing which directly excites only a few degrees of freedom. Such forcing

is both of primary modeling interest and is technically the most difficult. Specifically we consider forcing of the
form

Wt x)= Yy oxWi(t)ex(x). (2

keZ,

Here Z, is a finite subset OZS, o > 0, and{W;: k € Z,} is a collection of mutually independent standard scalar
Brownian Motions on a probability space, F, P).

This note mainly describes the results contained mttMgly and Pardoux [11]tlgives conditions ensuring
that any projection of the timetransition probability of the solution of (1) onto a finite dimensional subspace has
a C* density with respect to Lebesgue measure. The result is based on the Malliavin calculus. Under additional
conditions, this density is shown to be everywhereitpes The techniques developed are quite general and we
expect they can be applied to many nonlinear, stochastic partial differential equations with additive noise. These
results provide a first step towards a truly infinite-dimensional version of Hormander’s celebrated ‘sum of squares’
theorem [9] in the setting of dissipative stochastic partial differential equations.

In a second paper, Hairer and Mattingly [7] give necessad sufficient conditions for the main results and
estimates of [11] to hold. These results are also deschibeal They then proceed to use these tools to build a theory
which, when applied to (1), proves that it has a uniguwaiiant measure under extremely general and essentially
sharp assumptions. These results are described in the note [8]. To the best of the authors knowledge, that pap:
is the first to prove ergodicity of a nonlinear stochagtértial differential equation (SPDE) under assumptions
comparable to those assumed when studying finite dimensional stochastic differential equations. The results in thi
note on Malliavin calculus and the spreading of thed@mness are critical to proving the ergodic result.

2. The geometry of the forcing and cascade of randomness

The geometry of the forcing is encoded in the structur&pofrom (2). As observed in [4], its structure gives
information about how the randomness is spread throughout phase space by the nonlinearitZdiefine the
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symmetric, and hence translationabationary part of the forcing sét,, given byZy = Z, N (—Z,). Then define
the collectionZ, ={¢+ j € zg: j€ 2o, teZ,_awith et j£0, |j|# €]} and lastly,Ze = 521 2.

Z captures the directions to which the randomness has spread. This can be understood in the following way.
Denote byod, the partial derivative in the directiof, of the phase space and define (on a formal level) the first
order differential operatot’ = Zkez%(B(w, w)x — v|k|?)dx. Then the generator of the Markov process associated

to (1) is formally given byL = X + 33",z ox02. Note thatB(w, w)r =Y, ; cx.j.ewew;, Wherecy j¢ # O if

and only ifk € {j £¢,—j ¢} andet - j #0, |j| # |£]. Therefore, all differential operators of the typewith

k € Z5 can be obtained as an iterated Lie bracket of finite length involdingnd 9, with £ € Z,. Since we
want to ensure that all of the unstable directions are stochastically agitated, we seek conditiongayhe%.
Such conditions would then ensure that, on a formal |g¢hel assumptions of Hormander’s theorem are met. The
following essentially sharp characterization of this situation is given in [7].

Proposition 2.1. One hasZ, = Zg if and only if both

(i) Integer linear combinations of elements®j generatéZS.
(i) There exist at least two elementsdp with unequal Euclidean norm.

This characterization isharp in the sense that ., = —Z, and one of the above two conditions fails, then
there exists a non-trivial subspacelot which is left invariant under the dynamics of (1). Also notice that if
Z0=1{(0,1), (0, -1), (1, 1), (—1, —1)} then Proposition 2.1 implies th&t,, = ZS. Hence forcing four well chosen
modes is sufficient to have the randomness move through the entire system. Of course one can also force a sme
number of modes centered elsewhere than at the origin and obtain the same effect. The next section and the secoil
note discuss the implications &f,, = Z2.

3. Malliavin calculusand densities
We defineSy, = Spatiex: k € Z5 U Z,). One of the main results of [11] is the following:

Theorem 3.1. For anyt > 0 and any finite dimensional subspagef S, the law of the orthogonal projection
ITw(t,-) of w(z,-) onto S is absolutely continuous with respect to the Lebesgue measuseamd has aC*®
density.

In [5], Eckmann and Hairer used Malliavin calculus to prove a version of Hérmander's ‘sum of squares’ the-
orem for a particular SPDE and deduce ergodicity. Hmveall of the techniques of that paper required that the
forcing excite all but a finite number of directions and that the forcing be spatially rough as in [6,3]. The proof of
Theorem 3.1 builds on ideas introduced into Malliavin calculus by Ocone in [12]. The central idea is an alternative
representation of the Malliavin matrix of (1) using the time reversed adjoint of the linearization of (1). Ocone used
this representation when the SPDE was linear in the initial data and the forcing. When the noise is additive, [11]
extends that idea to the nonlinear case.

Let J; ;£ be the solution of linearization of (1) at timevith initial condition at times, s <t. Let J_;f,f;‘ denote
the solution to thé.2-adjoint of the linearizion at time, s < ¢, with terminal conditior¢ at timer. Since the
equation is time reversed, the adjoint is well posed. With this notation, the so-called ‘Malliavin covariance matrix’
M, can be represented by

t t
M0y = 3 [ oPlsendr?ds= 3 [ oflew if0)%ds 3)

kGZ* 0 kEZ* 0
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where¢ € L2. The second of these representations is the uses in [11]. Because of the time reversal, the
representation is not adaptexithe filtration generated by and new estimates concemgianticipating stochastic
processes are required to obtain the needed estimates. Essentially one needs to show that the Malliavin matrix i
non-degenerate on the subspacand that the moments of the reciprocal of the norm of the Malliavin matrix on
this subspace are finite. This is accomplished througHdhowing estimate which also gives information about

the separation of the randomness on large and small scales.

Theorem 3.2. Let IT be the orthogonal projection dt2 onto a finite dimensional subspace $f,. For any
t>0,7n>0 p>1 M=>0andK € (0,1) there exist two constants = c(v, n, p, | Z«|,t, K, M, IT) and
eo=¢€o(v, K, |Z|,t, M, IT) such that for alle € (0, ¢g],

P(__int (Mg, ) <€) <cexp(n|w©®])e?

$eS(M,K,IT)
whereS(M, K, IT) = {¢ € Soo: ¢l =1, [¢llL < M, |[[T$]| > K}.

With additional assumptions on the controllability of (Dnditions are also given ensuring the strict positivity
of the density. This extends results of Ben Arous andhidéa [2] and Aida, Kusuoka and Stroock [1] to this setting.
We refer the reader to [11] for the exact conditions and the details.

How these results can be used to prove ergodicity is described in [8].
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