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Abstract

We establish new estimates for the Laplacian, the div—curl system, and more general Hodge systems in arbitrary dimension
with an application to minimizers of the Ginzburg—Landau enefgyitethisarticle: J. Bourgain, H. Brezis, C. R. Acad. Sci.
Paris, Ser. | 338 (2004).
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Résumé
Nouvelles estimées pour le Laplacien, le systéme div—rot et autres systeémes de Hodge. On établit de nouvelles estimées

pour le Laplacien, le systeme div—rot et autres systemes de Hodge en dimension quelconque. On présente une application at

minimiseurs de I'énergie de Ginzburg—Land®our citer cet article: J. Bourgain, H. Brezis, C. R. Acad. Sci. Paris, Ser. |
338 (2004).

0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version francaise abr égée

On démontre que I'équation rat = g, olig est un champ vectorigle L3(R3, R3), & divergence nulle, posséde
une solutiony dansL® avecVY dansL2. On en déduit, en particulier, I'inégalité
<cllflla

(/)
VI —=xf
|x] 3/2

pour toutf € L1(R3, R3), avec divf = 0.
Ces résultats se généralisent au cadre de Hodge pour les formes différentielles en dimension arbitraire. Ol

indique une application a des questions de régularité optimale pour les minimiseurs de I'énergie de Ginzburg—
Landau.
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The starting point for this work is the following estimate from [5, Proposition 4].

Theorem 1. Let I" be a closed rectifiable curve iR with unit tangent vector and letY € W13(R3, R3). Then
It
r

The proof in [5] relies on a Littlewood—Paley decomposition and another proof was given recently by Van
Schaftingen [8] which uses only the Morrey—Sobolev imbedding.

SCIMIVY 3. )

Remark 1. The same proof as in [5] or [8] yields a similar inequality for any fractional Sobolev #BfmM, with
sp =3 and

Y Y(»)I?
iy = [[OZYOF g

lx — y[®
in place of| VY| 3.

Here is a simple estimate for the div—curl system of the type studied in this Note. Consifethia system

curlZ = f,
{din =0 @)

for a given divergence-free vector fiefd It is standard that this system has a solution, namely
Z=(—A)"tcurly.
The standard Calderon—Zygmund theory implies that
IVZIl, <Cpllfllp, 1<p<oo. (3)
Consequently (via the Sobolev imbedding) we have fer g < 3,
1Z1lpx < Cpll fllp, l<p<oo (4)
with L =1_1

3
We now turn to the casg = 1. One may easily see that (3) fails fere= 1. Surprisingly, (4) survives fop = 1.

Theorem 2. We have

1ZlI3/2 < Cll fll1. (5)

Theorem 2 implies Theorem 1. Indeed, consider the vector-field
f=IT1" Hrt,

whereH i is the 1-dimensional Hausdorff measureionClearly divf = 0. Solve (2) for thisf’; the corresponding
Z satisfies

1Zll32<C

(here we have ignored the fact thais not anL® function, but is a measure). Next, write

|F|_1/Yt:/YcurIZ
r R3
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and thus

Tl

< 1Z113/2ll curlY||3,

/ vi
r
which yields (1).
One may also derive Theorem 2 from Theorem 1 using Smirnov’s theorem [7] which asserts that every
feLi=|{feLldvf=0}

may be written as a weak limit (in the sense of measures) of combinations of the form

> —1Ht
o ”
VTN

with o; > 0Vi and) " o; < | fl1-
From this fact and Theorem 1 we obtain

[ s

forevery f e L.
By Hahn—Banach, this means that for evérg W13, curlY = curlY’ (in the distributional sense) for sonié
controlled inL* (by || VY |3). Theorem 2 follows by duality and a Hodge decomposition.

S CIfILlIVY s

Remark 2. It should be pointed out that the analogue of Theorem 2nfee 2 fails. Indeed takeZ =
(—x2/|x|2, x1/]x|?) for which curlZ = 27 8¢, divZ = 0, while Z is notL?.

There is another approach to Theorem 2 via an explicit (but nonlinear) constructive way of ob¥4ining

Theorem 3. Giveng € L3(R3, R3) there existy e C°n W13 N L satisfying
curly =g (6)
and
Ylloo + VY3 < Cliglls. (7)
Here and throughout the rest of this Nat&-? denotes the completion Gi5° with respect to the normiv £ .

Theorem 3 resembles (and in fact implies) a result we established in [3] for the divergence equation. In the same
way as in [3] one can show that there is no bounded opei'atmz — L satisfying curll’ =Id.

Remark 3. Theorem 3 is stronger than Theorem 2. By duality it is equivalent to a refined version of the theorem
where (5) is replaced by

1Zll3/2 < CIl fllp1qw-1372- (%)
Another assertion (equivalent to Theorem 2) is
Corollary 1. We have, for every € LE(R3 R3),

(i)

<Clf (8)
3/2
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Thus, consequently, for everye L(R3, R3),

1
— % f

< Cl flle 9)
|x]

3

Remark 4. A ‘natural’ inequality stronger than (8), involving second-order derivatives,

2 1
V(m*”)

is nottrue.

<Clfll (8)
1

Remark 5. There are inequalities similar to (8) and (9) in 2-d: for evéryg L%(IR{Z, R?),

[#(eogi )

Remark 6. A stronger form of Corollary 1 asserts that, for everg (L1 + W—13/2), (8) and (9) hold with| £ |1
being replaced by f || ;1. w-13/2.

<Clfll1 and
2

1
|09—*fH <Clfla.
|x] %

Corollary 2. Every f € L3(R3, R®) admits a decomposition
f =curlY 4+ gradP
withy e wh3nL>® pewts

The preceding has a generalization to Hodge-type systems in arbitrary dimension. Dértbie space of
¢-forms onR” (0 < ¢ < n). There is the following extension of Theorem 3
Theorem 4. For every0 < ¢ < n — 1, we have that

dwhm(AY) =d(Wh" 0 L=)(AY).

Hered denotes the exterior differential operator; see [6] for the notations. Notice thatfdr, the statement
obviously fails (gradf for f € Wl” is not necessarily equal to grador someg € L®). Also in n = 3, the
div-theorem from [3] corresponds to the cdse 2, and Theorem 3 above to= 1.

There is, in particular, the following corollary of Theorem 4 to Hodge-decompositions generalizing Corollary 2.
(We state the result here on a domadn say a cube for simplicity.)

Corollary 3. Letn > 3. Then
L"(ATM) = dWy" (A°M) @ d* (WL N L) (A2M).

This fact is an important ingredient in the proof of

Theorem 5. Assume > 3 and fix a boundary conditiope HY2(dM, S1). Letu, be a minimizer of the Ginzburg—
Landau energy

1 1
E:(u) = 5/|Vu|2+ 22 | (ul® = 1)°
M M
in the classiu € HY(M, C); u = g ondM}. Then

luellwinm-—n <C ase— 0.
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For n = 3, this has been established in [1,2] following an earlier argument from [5]. Corollary 3 permits us
to generalize the argument in [1,2] to general dimengion3. Forn = 2, Corollary 3 (and its consequence for
Ginzburg—Landau) fails.

A word about proofs. The key analytical ingredient to obtaining Theorem 4 is the following:

Theorem 6. For all § > 0, there is a constan€; such that iff € WH(@R"™), || fllL. <1and we fix one of the
variablesi =1, ..., n, there existg € (W1 N L) (R") satisfying

) lglln + llgllo < Cs,
(i) max;4 10;(f —g)la <8.

Notice that one may not take the full gradient in (ii), since that clearly would imply fhat. .

The argument is constructive and starts with a Littlewood—Paley decomposition.

Using Theorem 6, one may extend Theorem 2 concerning (2) to rather general first order elliptic systems
(see [4]).

Acknowledgements

The first author (J.B.) is partially supported by NSF Grant 9801013. The second author (H.B.) is partially
supported by an EC Grant through the RTN Program “Fronts-Singularities”, HPRN-CT-2002-00274. He is also a
member of the Institut Universitaire de France.

References

[1] F. Bethuel, G. Orlandi, D. Smets, On an open problem for Jacobians raised by Bourgain, Brezis and Mironescu, C. R. Acad. Sci. Paris, Ser.
1 337 (6) (2003) 381-385.

[2] F. Bethuel, G. Orlandi, D. Smets, Approximation with vorticity bounds for the Ginzburg—Landau functional, Comm. Contemp. Math., in
press.

[3] J. Bourgain, H. Brezis, On the equation div= f and application to control of phases, J. Amer. Math. Soc. 16 (2003) 393—426. Announced
in C. R. Acad. Sci. Paris, Ser. | 334 (2002) 973-976.

[4] J. Bourgain, H. Brezis, in preparation.

[5] J. Bourgain, H. Brezis, P. Mironescuﬂl/z-maps into the circle: minimal connections, lifting and the Ginzburg—Landau equation, Publ.
Math. IHES, in press.

[6] T. lwaniec, Integrability Theory of the Jacobians, Lecture Notes, Universitat Bonn, 1995.

[7] S.K. Smirnov, Decomposition of solenoidal vector charges into elementary solenoids and the structure of normal one-dimensional currents,
Algebra i Analiz 5 (1993) 206—238 (in Russian); English translation: St. Petersburg Math. J. 5 (1994) 841-867.

[8] J. Van Schaftingen, A simple proof of an inequality of Bourgain, Brezis and Mironescu, C. R. Acad. Sci. Paris, Ser. | 338 (1) (2004) 23-26.



