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Abstract

We establish new estimates for the Laplacian, the div–curl system, and more general Hodge systems in arbitrary d
with an application to minimizers of the Ginzburg–Landau energy.To cite this article: J. Bourgain, H. Brezis, C. R. Acad. Sci.
Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Nouvelles estimées pour le Laplacien, le système div–rot et autres systèmes de Hodge. On établit de nouvelles estimée
pour le Laplacien, le système div–rot et autres systèmes de Hodge en dimension quelconque. On présente une app
minimiseurs de l’énergie de Ginzburg–Landau.Pour citer cet article : J. Bourgain, H. Brezis, C. R. Acad. Sci. Paris, Ser. I
338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version française abrégée

On démontre que l’équation rotY = g, oùg est un champ vectorielg ∈ L3(R3,R3), à divergence nulle, possèd
une solutionY dansL∞ avec∇Y dansL3. On en déduit, en particulier, l’inégalité∥∥∥∥∇

(
1

|x| ∗ f

)∥∥∥∥
3/2

� c‖f ‖1

pour toutf ∈ L1(R3,R3), avec divf = 0.
Ces résultats se généralisent au cadre de Hodge pour les formes différentielles en dimension arbit

indique une application à des questions de régularité optimale pour les minimiseurs de l’énergie de Gi
Landau.
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The starting point for this work is the following estimate from [5, Proposition 4].

Theorem 1. LetΓ be a closed rectifiable curve inR3 with unit tangent vectort and letY ∈ W1,3(R3,R3). Then∣∣∣∣
∫
Γ

Y t

∣∣∣∣ � C|Γ |‖∇Y‖3. (1)

The proof in [5] relies on a Littlewood–Paley decomposition and another proof was given recently b
Schaftingen [8] which uses only the Morrey–Sobolev imbedding.

Remark 1. The same proof as in [5] or [8] yields a similar inequality for any fractional Sobolev normWs,p, with
sp = 3 and

|Y |pWs,p =
� |Y (x)− Y (y)|p

|x − y|6 , p > 3,

in place of‖∇Y‖3.

Here is a simple estimate for the div–curl system of the type studied in this Note. Consider inR3 the system{
curlZ = f,

divZ = 0
(2)

for a given divergence-free vector fieldf . It is standard that this system has a solution, namely

Z = (−�)−1 curlf.

The standard Calderon–Zygmund theory implies that

‖∇Z‖p �Cp‖f ‖p, 1<p <∞. (3)

Consequently (via the Sobolev imbedding) we have for 1<p < 3,

‖Z‖p∗ �Cp‖f ‖p, 1<p <∞ (4)

with 1
p∗ = 1

p
− 1

3.
We now turn to the casep = 1. One may easily see that (3) fails forp = 1. Surprisingly, (4) survives forp = 1.

Theorem 2. We have

‖Z‖3/2 � C‖f ‖1. (5)

Theorem 2 implies Theorem 1. Indeed, consider the vector-field

f = |Γ |−1HΓ t,

whereHΓ is the 1-dimensional Hausdorff measure onΓ . Clearly divf = 0. Solve (2) for thisf ; the corresponding
Z satisfies

‖Z‖3/2 � C

(here we have ignored the fact thatf is not anL1 function, but is a measure). Next, write

|Γ |−1
∫
Γ

Y t =
∫

3

Y curlZ
R
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and thus

|Γ |−1
∣∣∣∣
∫
Γ

Y t

∣∣∣∣ � ‖Z‖3/2‖curlY‖3,

which yields (1).
One may also derive Theorem 2 from Theorem 1 using Smirnov’s theorem [7] which asserts that every

f ∈L1
# = {

f ∈L1;divf = 0
}

may be written as a weak limit (in the sense of measures) of combinations of the form
∑

αi
1

|Γi |HΓi ti

with αi � 0 ∀i and
∑

αi � ‖f ‖1.
From this fact and Theorem 1 we obtain∣∣∣∣

∫
Yf

∣∣∣∣ � C‖f ‖1‖∇Y‖3

for everyf ∈L1
#.

By Hahn–Banach, this means that for everyY ∈W1,3, curlY = curlY ′ (in the distributional sense) for someY ′
controlled inL∞ (by ‖∇Y‖3). Theorem 2 follows by duality and a Hodge decomposition.

Remark 2. It should be pointed out that the analogue of Theorem 2 forn = 2 fails. Indeed takeZ =
(−x2/|x|2, x1/|x|2) for which curlZ = 2πδ0, divZ = 0, whileZ is notL2.

There is another approach to Theorem 2 via an explicit (but nonlinear) constructive way of obtainingY ′.

Theorem 3. Giveng ∈ L3
#(R

3,R3) there existsY ∈ C0 ∩W1,3 ∩L∞ satisfying

curlY = g (6)

and

‖Y‖∞ + ‖∇Y‖3 � C‖g‖3. (7)

Here and throughout the rest of this NoteW1,p denotes the completion ofC∞
0 with respect to the norm‖∇f ‖p .

Theorem 3 resembles (and in fact implies) a result we established in [3] for the divergence equation. In t
way as in [3] one can show that there is no bounded operatorT :L3

# →L∞ satisfying curlT = Id.

Remark 3. Theorem 3 is stronger than Theorem 2. By duality it is equivalent to a refined version of the th
where (5) is replaced by

‖Z‖3/2 � C‖f ‖L1+W−1,3/2. (5′)

Another assertion (equivalent to Theorem 2) is

Corollary 1. We have, for everyf ∈L1
#(R

3,R3),∥∥∥∥∇
(

1

|x| ∗ f

)∥∥∥∥
3/2

�C‖f ‖1. (8)
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Thus, consequently, for everyf ∈L1
#(R

3,R3),∥∥∥∥ 1

|x| ∗ f

∥∥∥∥
3
� C‖f ‖1. (9)

Remark 4. A ‘natural’ inequality stronger than (8), involving second-order derivatives,∥∥∥∥∇2
(

1

|x| ∗ f

)∥∥∥∥
1
� C‖f ‖1 (8′)

is not true.

Remark 5. There are inequalities similar to (8) and (9) in 2-d: for everyf ∈ L1
#(R

2,R2),∥∥∥∥∇
(

log
1

|x| ∗ f

)∥∥∥∥
2
� C‖f ‖1 and

∥∥∥∥log
1

|x| ∗ f

∥∥∥∥∞
� C‖f ‖1.

Remark 6. A stronger form of Corollary 1 asserts that, for everyf ∈ (L1 +W−1,3/2)#, (8) and (9) hold with‖f ‖1
being replaced by‖f ‖L1+W−1,3/2.

Corollary 2. Everyf ∈L3(R3,R3) admits a decomposition

f = curlY + gradP

with Y ∈ W1,3 ∩L∞,P ∈ W1,3.

The preceding has a generalization to Hodge-type systems in arbitrary dimension. DenoteΛ� the space o
�-forms onRn (0 � �� n). There is the following extension of Theorem 3

Theorem 4. For every0< �� n− 1, we have that

dW1,n(Λ�
) = d

(
W1,n ∩L∞)(

Λ�
)
.

Hered denotes the exterior differential operator; see [6] for the notations. Notice that for� = 0, the statemen
obviously fails(gradf for f ∈ W1,n is not necessarily equal to gradg for someg ∈ L∞). Also in n = 3, the
div-theorem from [3] corresponds to the case�= 2, and Theorem 3 above to� = 1.

There is, in particular, the following corollary of Theorem 4 to Hodge-decompositions generalizing Corol
(We state the result here on a domainM, say a cube for simplicity.)

Corollary 3. Letn � 3. Then

Ln
(
Λ1M

) = dW1,n
0

(
Λ0M

) ⊕ d∗(W1,n ∩L∞)(
Λ2M

)
.

This fact is an important ingredient in the proof of

Theorem 5. Assumen � 3 and fix a boundary conditiong ∈H 1/2(∂M,S1). Letuε be a minimizer of the Ginzburg
Landau energy

Eε(u)= 1

2

∫
M

|∇u|2 + 1

4ε2

∫
M

(|u|2 − 1
)2

in the class{u ∈H 1(M,C);u= g on ∂M}. Then

‖uε‖W1,n/(n−1) � C asε → 0.
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For n = 3, this has been established in [1,2] following an earlier argument from [5]. Corollary 3 perm
to generalize the argument in [1,2] to general dimensionn > 3. Forn = 2, Corollary 3 (and its consequence f
Ginzburg–Landau) fails.

A word about proofs. The key analytical ingredient to obtaining Theorem 4 is the following:

Theorem 6. For all δ
>→0, there is a constantCδ such that iff ∈ W1,n(Rn), ‖f ‖1,n � 1 and we fix one of the

variablesi = 1, . . . , n, there existsg ∈ (W1,n ∩L∞)(Rn) satisfying

(i) ‖g‖1,n + ‖g‖∞ �Cδ ,
(ii) maxj �=i ‖∂j (f − g)‖n < δ.

Notice that one may not take the full gradient in (ii), since that clearly would imply thatf ∈L∞.
The argument is constructive and starts with a Littlewood–Paley decomposition.
Using Theorem 6, one may extend Theorem 2 concerning (2) to rather general first order elliptic s

(see [4]).
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