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Abstract

We study finite extension groups of lattices in Lie groups which have finitely many connected components. We show that
every non-cocompact Fuchsian group (these are the non-cocompact latR&g 1 R)) has an extension group of finite index
which is not isomorphic to a lattice in a Lie group with finitely many connected components. On the other hand we prove that
these are, in an appropriate sense, the only lattices in Lie groups which have extension groups of this kind. We also show tha
an extension group of finite index of a lattice in a Lie group with finitely many connected components has only finitely many
conjugacy classes of finite subgroupe.citethisarticle: F. Grunewald, V. Platonov, C. R. Acad. Sci. Paris, Ser. | 338 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Nouvelles propriétés des réseaux dans les groupes de L{@n étudie les extensions finies de réseaux dans les groupes
de Lie n'ayant qu'un nombre fini de composantes connexes. Nous démontrons que tout groupe fuchsien (ce sont les réseau
non-cocompacts damSL(2, R)) possede une extension finie qui n’est isomorphe a aucun réseau dans un groupe de Lie ayant
un nombre fini de composantes connexes. D’autre part, nous démontrons que ces groupes sont les seuls, parmi les réseaux d:
les groupes de Lie, pour lesquels il existe de telles extensions finies. Nous montrons aussi qu’une extension finie d’un réseal
dans un groupe de Lie ayant un nombre fini de composantes connexes n'a qu’'un nombre fini de classes de conjugaison d
sous-groupes finiRour citer cet article: F. Grunewald, V. Platonov, C. R. Acad. Sci. Paris, Ser. | 338 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version francaise abrégée

Soit G un groupe de Lie réel n'ayant qu’'un nombre fini de composantes connex&éskkiu dans; est un
sous-groupe discrdt < G tel que I'espace homogég/I" posséde une mesuéeinvariante finie. Un réseall
de G s’appellecocompacsi G/I" est compact. Un groupe abstrait est ditréseauws’il est isomorphe a un réseau
dans un groupe de Lie ayant un nombre fini de composantes connexes. Nous donnons une description de tous |
réseaux (dans les groupes de Lie ayant un nombre fini de composantes connexes) qui ont la propriété suivante
chaque extension finie est encore un réseau.
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Notre premier théoreme s’occupe du ¢as- PSL(2, R).

Théoréeme 0.1SoitI” un réseau danBSL(2, R). On a:

(i) SiI" est cocompact et est une extension finie d& alors A est un réseau.
(ii) SiI" n'estpas cocompact, alos posséde une extension finie qui n’est pas un réseau.

La construction des extensions qui servent & démontrer le Théoréme 0.1(ii) se trouve dans la Section 2.
Notre deuxiéme résultat affirme que ces phénomenes sont uniquement liés au groupeSlg2iR).

Théoreme 0.2.Soit I un réseau dans un groupe de Lie réel ayant un nombre fini de composantes connexes. On
suppose que la composante connexe de l'idetifté’a aucun facteur simple isomorphePSL(2, R) tel que la
projection del” N G° dans ce facteur soit discréte mais non cocompactel &t une extension finie de, alors

A est un réseau.

Nous démontrons aussi que tout groupe qui est extension finie d’'un réseau n’a qu’'un nombre fini de classes d
conjugaison de sous-groupes finis. Ce résultat se déduit de I'existence de domaines fondamentaux pour un rése:
ayant des propriétés de finitude convenables. &aih groupe fini opérant sur un groupe; alors le premier
ensemble de cohomologi#l(g, I") est défini par Borel et Serre dans [1]. Nous obtenons le théoréme de finitude
suivant :

Théoréme 0.3Soit/” un réseau et soij un groupe fini opérant suf’. Alors H(g, I') est fini.

Ce résultat a été démontré par Borel et Serre dans [1] lorgguest ung-groupe arithmétique, et plus
généralement pour un groupe arithmétique dans [5].

1. Introduction

Let G be areal Lie group with finitely many connected componentattice in G is a discrete subgroup < G
so that the homogeneous spaegl” carries a finiteG-invariant measure. A latticE in G is calledcocompactf
G/ I is compact. An abstract group is said to Hatticeif it is isomorphic to a lattice in a real Lie group which has
finitely many connected components. The main aim of this work is concerned with the structure of finite extension
groups of lattices. We call a group a finite extensiorof a groupl” if A contains an isomorphic copy @f of
finite index. The following surprising result shows that not every finite extension of a lattice is again a lattice.

Theorem 1.1.LetI" be a lattice inPSL(2, R). Then the following hold

(i) If I" is cocompact andt is a finite extension aof then A is a lattice.
(ii) If I" is not cocompact thef' has a finite extension which is not a lattice.

Part (i) of Theorem 1.1 is proved in [5]. The proof uses Kerkhoff’s positive solution of the Nielsen realisation
problem, see [7]. This method can be used to describe more specifically the Lie group in which a given finite
extension of a cocompact lattice PSL(2, R) can be realised as a lattice, see Section 2. The finite extensions
which we use to prove part (ii) of Theorem 1.1 can be found in Section 2.

By the following theorem the lattices mentioned in part (ii) of Theorem 1.1 are in an appropriate sense the only
lattices which have finite extensions which are not lattices.
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Theorem 1.2.Let I" be alattice in a real Lie grous which has finitely many connected components. Assume that
the connected component of the idenGty does not have a simple factor isomorphid@8L(2, R) such that the
projection of " N G(R)° into this factor is discrete but not cocompactAfis a finite extension group df, then

A is alattice.

We have the following generalization of Theorem 1.1(i):

Corollary 1.3. Let I" be a cocompact lattice in a real Lie grogp which has finitely many connected components.
Then every finite extension &f is a lattice.

A group A is called polycyclic by finite if it contains a polycyclic subgroup of finite index. It is well known that
every polycyclic by finite group contains a subgroup of finite index which is a lattice in a simply connected Lie
group (see [10], Chapter 3). This result together with Theorem 1.2 leads to:

Theorem 1.4.Every polycyclic by finite group is a lattice in a finite extension of a simply connected solvable Lie
group.

One of the basic finiteness properties satisfied by lattices is that they have only finitely many conjugacy classes
of finite subgroups. To prove this result one first considers the case in whisha lattice in a semi-simple Lie
groupG. ThenI acts discontinuously on the the symmetric sp&cef G. The finiteness property is implied by
the existence of a suitable fundamental domain for the actiafi oh X. The general case follows by a simple
reduction argument. Next we ask about the generalization of this finiteness result to grauipish are finite
extensions of lattices’. There is no direct way to deduce the finiteness property\ftnom that of I" since there
is a finitely generated subgroup of SL(4, Z) which contains infinitely many conjugacy classes of elements of
order 4 (see [5]). This groug even contains a torsion-free subgroup of finite index. We prove as one of our main
results:

Theorem 1.5.Let A be a group which contains a lattice of finite index. Themas only finitely many conjugacy
classes of finite subgroups.

If gis a finite group acting by group automorphisms on a grbughen the first cohnomology séfl(g, I') is
defined by Borel and Serre in [1]. Our Theorem 1.5 implies:

Theorem 1.6.Let I' be a lattice andg a finite group acting on” by group automorphisms. Thef'(g, I') is
finite.

Problems like the above were already studied in the following formally similar but different situation. Let
G < GL(n,C) be a linear algebraic grou@ defined over) and " < G an arithmetic subgroup. The paper [5]
contains a criterion similar to Theorem 1.2 for a finite extension gevgp I” to be an arithmetic group. This paper
also gives examples in which is not an arithmetic group. The paper [6] is devoted to the study of the solvable
case. Note here that in contrast to our Theorem 1.4 there are interesting polycyclic groups which are not arithmetic
groups. Theorem 1.5 was proved by Borel and Serre in [1] for split extengiong whereg is a finite group and
I’ is ag-arithmetic group. Its generalization to any finite extension group of an arithmetic group is contained in [5].
Also Theorem 1.6 was proved by Borel and Serre in [1] fgraithmetic group™ and generalized in [5].

2. Proof of Theorem 1.1

This section mainly contains the constructions which are necessary to prove part (ii) of Theorem 1.1.
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As already mentioned part (i) is proved in [5]. We start off with a finite extengiarf a cocompact latticé”
in PSL(2, R). Assuming thatl" is torsion-free and normal it we find that the centraliseto(I") of " in A is
a finite normal subgroup ofi. Moreover the finite subgroup /(I" - Z(I") of the outer automorphism group of
I' has a fixed point acting on the Teichmdiller spacé& dfy Kerkhoff’s result. This then implies that /Z 5 (I") is
isomorphic to a cocompact discrete subgroup8L(2, R). In general we can prove that there is a finite extension
H of PSL(2, R) so thatA is isomorphic to a cocompact lattice k.

Let nowI” be a lattice ilrPSL(2, R) which is not cocompact iPSL(2, R). It is well known thatl” is the free
product of¢ € N U {0} infinite cyclic groups ana € N U {0} finite cyclic groups that is

F:(hl,...,hg,el,...,en|eT1=~-~=e,'f”=1>%Z*~~~*Z*le*~-*cmn 1)

see [4]. HereC,, stands for the finite cyclic group of order. The condition that the group defined in (1) is
isomorphic to a (non-cocompact) latticeRsL(2, R) is:

n
1
-1 1-— ) 2
+ Z( mi) >0 (2)
i=1

Also it is well-known that a lattice ifPSL(2, R) is not cocompact if and only if it contains a free subgroup of finite
index.

For each of the groups listed in (1) we shall construct an extension group which we prove not to be a lattice. In
these proofs we shall use the following result as a first reduction step.

Proposition 2.1.Let A be a finite extension of a latticE in PSL(2, R). Assume thati is a lattice in the real Lie
group G. ThenG can be expressed & = H - K whereH, K are closed normal subgroups of with H N K
being a finite subgroup of the center@fand whereH is a finite extension d?SL(2, R) and K is compact. IfA
has no nontrivial finite normal subgroups thenis isomorphic to a lattice ilPGL (2, R).

The first statement of Proposition 2.1 follows from results of Prasad [9] (see [5], Section 2 for more details). If
A has no nontrivial finite normal subgroups we can choose the compact subigrimupe trivial andA is a lattice
in the finite extensior of PSL(2, R). Consider then the homomorphism

@ H— Aut(H°) =PGL(2,R),  ®(h)(g):=hgh™* (heH, ge H°).

The kernel of® is a finite normal subgroup df . This shows tha® (A) is a lattice inPGL (2, R) isomorphic toA.
In constructing the finite extension groups we make the following case distinction:

1. ¢=2 n=0.
Herel" = (h1, h2) is a free group on 2 generators. Consider the following three automorphisis of
o1(h1) :=hit,  oa(h2):=hy", o3(h1):=ha, o3(h2):=h1 (3)

with the convention that; acts identically on the generators not mentioned. Aebe the subgroup of the
automorphism group af generated by1, o2, o3 and putA :=I" x A. The group4 is isomorphic to the dihedral
group of order 8, henca containsl” as a subgroup of index 8. The groydgs not a lattice. To see this notice first
that A has no nontrivial finite normal subgroups. We infer from the Proposition 2.1 tiatdfa lattice then it is a
lattice iNPGL (2, R). We identify A with its image inPGL (2, R) and putA® := A NPSL(2, R). By the aboveA®

is a noncocompact lattice RSL(2, R) and has a decomposition (1). It follows from Kurosh’s theorem that every
Abelian subgroup ofA° is cyclic. HenceA® is of index 2 inA. We also find thaiA® N A is cyclic of order 4 and
hence is generated lago1. This also impliesrao1 = (0301)2 is in A° butoy is not in A°. Notice thatopo is an
involution centralized by1. A simple computation shows that the centralizePiBL (2, R) of every involution
from PSL(2, R) is contained irPSL(2, R). This finishes the proof that is not a lattice.
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From a presentation of it is easy to see that there is a unique subgroup of index2 which is isomorphic
to a lattice inPSL(2, R). This subgroup is isomorphic 0, x C4.

2. £22,£+n=>3.

In this case the latticé™ needs generators;, 4> and at least one more generatorequal tohs or e1) in the
product decomposition (1). Let be the subgroup of the automorphism groug ofenerated by1, o2, o3 given
in (3) (with the convention that; acts identically on the generators not mentioned) anddput I" < A. ThenA
containsI” as a subgroup of index 8 antlis not a lattice. To see this notice again tiahas no nontrivial finite
normal subgroups. We infer from the Proposition 2.1 that i a lattice then it is a lattice iIRGL (2, R). Let B
be the Zariski closure of the subgrolip= (h2, f)in PGL(2, R). SinceT is not solvableB containsPSL(2, R).
The element; centralizes and henceB which is a contradiction.

3. (=1

In this case we have > 1. We consider first the cage= 1. Let I'; be the kernel of the obvious homomorphism
I' - C,,, itis the subgroup (freely) generated by

A -1 A mp—1 1-m
h1, ha:=eihie;™, ..., hyy =€) “hie] . 4)

The symmetric groupS,,, embedds in an obvious way into the automorphism groupgofoy permuting

the generators (4). Further we can emlﬁijﬂl as a groupAg of automorphism group ofy by letting ¢ =

(e1,...,&my) (e, =x1) actass(h;) ;== hf We letA be the subgroup of the automorphism grougoigenerated

by Ag andS,,,. The groupA is isomorphic to the permutational wreath proddet: S,,, and has order2m1!.

PutA =TIy x A, thenI is obviously isomorphic to a subgroup of inde%2n; — 1)! in A. The groupA is not

a lattice. Form1 = 2 this group is isomorphic to the group, also calledin the case¢ = 0, n = 0 above and we

already know thati is not a lattice. Fom > 3 we note thatA has no nontrivial finite normal subgroups and hence

would embed as a lattice inRGL (2, R). But all finite subgroups of this group are either cyclic or dihedral groups.
If n > 1 we use analogously to the case 2, £ +n > 3 a similar construction to find an extension grotpf

I which is not a lattice.

4. ¢=0.

We first treat the case= 2. In this casen ormy is bigger than 2. Ifny = 2, mp = 3 we letI1 be the kernel of the
obvious homorphisni” — C,. This group is isomorphic t€3 x C3z which has (similar to the cage= 2, n =0)
the dihedral grou4 of order 8 in its automorphism group. We pat:= I't x D4. The groupA containsI” as
a subgroup of index 4. By an argument analogous to that in thefcas® n = 0 the groupA is not a lattice. If
m1 =2, mp =4 we noted in the case= 2, n = 0 that there is an extension group of index 2 which is not a lattice.
If my =3, mp=3o0rmy=3, mp=4 we letl1 be the kernel of the obvious homorphisi— C,,, and find
an appropriate permutational wreath prodadn the automorphism group dfy (see¢ = 1). The split extension
A:=T1 % A contains a copy of” as a subgroup of finite index and is not a lattice. In all other cases we reorder
my, mp SO thatmp > m1 and letl”; be the kernel of the obvious homorphigim— C,,,. This group is isomorphic
to the free product ofz, copies ofC,,,. Hencel; contains the symmetric grouf,, in its automorphism group.
The groupA := I'1 xS, containsl™ as a subgroup of indexi, — 1)!. By arguments used beforeis not a lattice.
All casesn > 3 can be treated similarly to the last case. kgtsatisfym, > m; fori =1, ...,n and letl1 be the
kernel of the obvious homorphisiii — C,,,. This group is isomorphic to a free product of finite cyclic groups
and contains an appropriate permutation gréup its automorphism group. The group:= I'1 x S contains a
copy of I as a subgroup of finite index. By our usual argumehis not a lattice.

Let I" be a lattice inPSL(2, R) which is not cocompact. Lekz(I") be the minimal index of an extension
group A of I which is not a lattice. The question whethe(¢I") = 2 (in all cases) leads, for smdllandn in the
decomposition (1), to very interesting problems about the existence of lattie&Li2, R).
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3. Proof of Theorem 1.2

The strategy of the proof of Theorem 1.2 is the same as for the proof of Theorem 1.2 in [5]. In the arguments
Q-defined algebraic maps have to be replaced by analytic maps and arithmetic groups have to be replaced b
lattices. The results then translate more or less word for word. We give a brief sketch.

Let I be a lattice in the Lie grougr and A a finite extension of". We may assume thdt is a normal
subgroup ofA. If the maps fromi” — I" which are induced by conjugation with elements francan be obtained
by restriction of analytic maps frorGd to G then A can be proved to be a lattice in a finite extension of the Lie
groupG (see [5], Section 2). 17 is semisimple and™ is an irreducible lattice irG this follows from standard
rigidity results. If I" is not irreducible Lemma 2.7 and Corollary 2.8 from [5] are easily adapted. For Lie géoups
which have a nontrivial solvable radical the rigidity results of Section 3 of [5] can be translated almost word for
word from the algebraic-arithmetic to the analytic-lattice world.

4. Conjugacy classes of finite subgroups
For the proof of Theorem 1.5 a special case has to be treated beforehand.

Proposition4.1.LetI" = I'y x - -- x I, be adirect product of finitely many groups which are latticeB8L(2, R).
Then every finite extension groupof I has only finitely many conjugacy classes of finite subgroups.

If k=1 andifl is not cocompact ifPSL(2, R) then A is a finite extension of a finitely generated free group.
We then use the fact that such a group is the fundamental group of a finite graph of groups (see [3]) together with
the fixed point theorem for finite groups acting on trees (see [2k .41 and if I'} is cocompact irPSL(2, R)
then Theorem 1.1 implies our result. Direct products are treated by an induction technique using the fixed point
theorem for finite groups acting on CAT)-spaces (see [2], Section 1).

A statement similar to Proposition 4.1 but for finite extensions of free groups of infinite rank does not hold. The
minimal counterexample (that &\ : Fxo] = 2) is given in [8].

Sketch of the proof of Theorem 1.5.By factoring out the (connected) solvable radical®fwe reduce to a

case wherG is semisimple. The above Proposition 4.1 allows us to reduce our proof to the case of a semisimple
Lie group without factors isomorphic BSL(2, R). We then use Theorem 1.2 and the existence of fundamental
domains with Siegel’s property for a lattice in a semisimple Lie group.

References

[1] A. Borel, J.-P. Serre, Théorémes de finitude en cohomologie galoisienne, Comment. Math. Helv. 39 (1964) 111-164;
A. Borel, Collected Papers, vol. Il, Springer-Verlag, 1983, pp. 362—-415.

[2] M.R. Bridson, Geodesics and curvature in metric simplicial complexes, in: E. Ghys, A. Haefliger, A. Verjovsky (Eds.), Group Theory
From a Geometric Viewpoint, World Scientific, 1991, pp. 373-463.

[3] W. Dicks, M.J. Dunwoody, Groups Acting on Graphs, Cambridge University Press, 1989.

[4] L. Greenberg, Finiteness theorems for Fuchsian and Kleinian groups, in: E.W. Harvey (Ed.), Discrete Groups and Automorphic Functions,
Academic Press, 1977, pp. 199-255.

[5] F. Grunewald, V. Platonov, Rigidity results for groups with radical, cohomology of finite groups and arithmeticity problems, Duke
Math. J. 100 (1999) 321-358.

[6] F. Grunewald, V. Platonov, Solvable arithmetic groups and arithmeticity problems, Int. J. Math. 10 (1999) 327-366.

[7] S.P. Kerckhoff, The Nielsen realization problem, Ann. Math. 117 (1983) 235-265.

[8] V. Platonov, The theory of algebraic linear groups and periodic groups, Amer. Math. Soc. Transl. 69 (1968) 61-110.

[9] G. Prasad, Discrete subgroups isomorphic to lattices in Lie groups, Amer. J. Math. 98 (1976) 853—-863.

[10] M.S. Raghunathan, Discrete Subgroups of Lie Groups, in: Ergeb. Math. Grenzgeb., vol. 68, Springer-Verlag, 1972.



