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Abstract

We show that the locally free sheafB1 ⊂ F∗(Ω1
X) of locally exact differentials on a smooth projective curve of genusg � 2

over an algebraically closed fieldk of characteristicp is a stable bundle. This answers a question of Raynaud.To cite this
article: K. Joshi, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Stabilité et des différentielles localement exactes sur une courbe. Soit X une courbe propre, lisse, connexe, de genrg,
définie sur un corpsk algébriquement clos de caractéristiquep > 0. SoitF :X → X le Frobenius absolu etB1 ⊂ F∗(Ω1

X), le
faisceau des formes différentielles localement exactes surX. C’est un fibré vectoriel surX de rangp − 1. Nous montrons qu’i
est stable pourg � 2. Pour citer cet article : K. Joshi, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Let k be an algebraically closed field of characteristicp > 0. LetX/k be a smooth, projective curve of gen
g � 2 overk. Let F :X → X be the absolute Frobenius morphism ofX. If V is a vector bundle we will write
µ(V ) = deg(V )/ rk(V ) for the slope ofV . We will say thatV is stable (resp. semi-stable) if for all subbund
W ⊂ V we haveµ(W) < µ(V ) (resp.µ(W) � µ(V )). We will write Ω1

X = KX for the canonical sheaf of the curv
Let B1 be the locally free sheaf of locally exact differential forms onX. This may also be defined by the exa

sequence of locally free sheaves

0→ OX → F∗(OX) → B1 → 0.

E-mail address:kirti@math.arizona.edu (K. Joshi).
1631-073X/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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As X is a curve, by definition,B1 is a sub-bundle ofF∗(Ω1
X) of rankp − 1. In [5] Raynaud showed thatB1 is a

semi-stable bundle of degree(p − 1)(g − 1) and slopeg − 1. Raynaud has asked ifB1 is in fact stable (see [6]). In
this Note we answer Raynaud’s question. We prove:

Theorem 1.1. Let k be an algebraically closed field of characteristicp > 0. LetX be a smooth, projective curv
overk of genusg and letB1 be the locally free sheaf of locally exact differentials onX. ThenB1 is a stable vector
bundle of slopeg − 1 and rankp − 1.

Observe that whenp = 2, B1 is a line bundle of degreeg − 1 and so the result is immediate in this ca
Our proof also gives a new proof of Raynaud’s theorem thatB1 is semi-stable. Theorem 1.1 will follow from th
corresponding assertion for curves of sufficiently large genus. More precisely:

Theorem 1.2. Let k be an algebraically closed field of characteristicp �= 2. LetX be a smooth, projective curv
overk of genusg and assume that the genusg > (1/2)(p − 1)(p − 2). ThenB1 is stable.

2. The proofs

We will first explain the reduction of Theorem 1.1 to the Theorem 1.2 (I owe this argument to A. Tamaga

Proof (Theorem 1.2⇒ Theorem 1.1). As the genusgX of X is at least two, we know that there exists a connec
finite étale covering ofX of arbitrarily large genus. Choose a finite étale coveringf : Y → X such that the genu
gY of Y is sufficiently large genus (more precisely withgY > (p − 1)(p − 2)/2). Observe that the formation ofB1
commutes with any finite étale base change, that is,B1,Y = f ∗(B1,X). Hence the stability ofB1,X follows from
that ofB1,Y and the latter assertion is the content of Theorem 1.2.�

The rest of this Note will be devoted to the proof of Theorem 1.2. The idea of the proof is to get an uppe
on the slope of the destabilizing subsheaf (if it exists!). We recall some facts which we need. The first two
are from [3] which is not yet published so we provide proofs.

Lemma 2.1. We havedeg(F∗(Ω1
X)) = (p + 1)(g − 1).

Proof. By Riemann–Roch theoremχ(Ω1
X) = χ(F∗(Ω1

X)). Which gives deg(F∗(Ω1
X)) + p(1 − g) = deg(Ω1

X) +
(1−g). Simplifying this gives deg(F∗(Ω1

X)) = 2(g−1)+p(g−1)+(1−g), which leads to the claimed result.�
Lemma 2.2. LetM ⊂ F∗(Ω1

X) be any line subbundle. Then

µ(M) � µ
(
F∗

(
Ω1

X

)) − (p − 1)(g − 1)

p
.

Proof. This was proved in [3]. By adjunction we get a map

F ∗(M) → Ω1
X.

Hence by degree considerations we see that

µ(M) �
deg(Ω1

X)

p
= µ

(
F∗

(
Ω1

X

)) − (p − 1)(g − 1)

p
,

where we use Lemma 2.1 for the last equality.�
We will also need to identify the dualB∗

1 of B1. This was done by Raynaud in [5].
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Lemma 2.3. The dualB∗
1 = B1 ⊗ K−1

X .

Now we recall a theorem of Mukai–Sakai (see [4, p. 251]). This will be used to give upper boun
destabilizing subbundles along with Lemma2.2. For more on this see Remark 2.

Theorem 2.4. Let X/K be a smooth, projective curve over an algebraically closed fieldK of arbitrary
characteristic. LetW be a vector bundle. Fix an integer1 � k � r = rk(W). Then there exists a subbundleU ⊂ W

of rankk such that

µ(W) � µ(U) + g(1− k/r).

Proof of Theorem 1.2. As remarked in the introduction, whenp = 2, B1 is a line bundle and so there is nothi
to prove in this case. In what follows we will assume thatp �= 2. Assume, if possible, thatB1 is not stable. Then
there exists someW ⊂ B1 which is locally free of rankr with µ(W) � µ(B1) = g − 1.

We first claim that we can assume with out loss of generality thatr � (p − 1)/2. Indeed, if not then the dual o
B1 surjects onW∗ the dual ofW and the kernel has rank� (p − 1)/2. Moreover writingW1 for the kernel we ge
an exact sequence

0→ W1 → B∗
1 = B1 ⊗ K−1

X → W∗ → 0

and writingW2 = W1 ⊗ KX , we get

0→ W2 → B1 → W∗ ⊗ KX → 0.

Now deg(W1)+deg(W∗) = deg(B∗
1) = (p −1)(1−g) and a simple calculation using−µ(W∗) = µ(W) � (g −1)

shows that deg(W1) � rk(W1)(1− g). So that we have

deg(W2) = deg(W1 ⊗ KX) � rk(W1)(1− g) + rk(W1)(2g − 2),

which simplifies to

deg(W2) � rk(W2)(g − 1)

or equivalentlyµ(W2) � (g − 1).
Thus we may assume without loss of generality that rk(W) � (p − 1)/2.
We apply Theorem 2.4 to the following situation. We takeW as above of slope� (g − 1) with rk(W) at most

(p − 1)/2 and we takek = 1 and letU to be the line bundle given by Theorem 2.4. Then we get

µ(W) � µ(U) + g
(
1− 1/ rk(W)

)
.

Now asU ⊂ W ⊂ B1 ⊂ F∗(Ω1
X), we know by Lemma 2.2 that

µ(U) � µ
(
F∗

(
Ω1

X

)) − (p − 1)(g − 1)/p.

Putting these two inequalities together and usingµ(W) � g − 1 we get

(g − 1) � µ(W) � µ
(
F∗

(
Ω1

X

)) − (p − 1)(g − 1)/p + g
(
1− 1/ rk(W)

)
. (1)

Writing r = rk(W) this simplifies to

(g − 1) � µ(W) � 2(g − 1)

p
+ g

(
1− 1

r

)
(2)

�
(

2

p
+ 1− 1

r

)
g − 2

p
(3)
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and so in particular we get

g − 1 �
(

2

p
+ 1− 1

r

)
g − 2

p
,

which easily simplifies to

g � r(p − 2)

p − 2r
,

and asr can be as large as(p − 1)/2, this says thatg � 1
2(p − 1)(p − 2). Now we have assumed th

g > 1
2(p − 1)(p − 2) so that our assumption thatW ⊂ B1 has slope� g − 1 leads to a contradiction. ThusB1

is stable. �
Remark 1. In fact, as was pointed out to us by A. Tamagawa, Theorem 1.2 can be slightly sharpened as
We claim that the following conditions are equivalent (i) the bundleB1 is stable; (ii) eitherp = 2 org > 1.

After Theorem 1.1, the assertion (ii)⇒ (i) is immediate. Now to prove that (i)⇒ (ii) observe that the cas
p = 2 is trivial so assume, if possible, thatg � 1. By Theorem 2.4 for line bundles applied toB1, we see thatB1
has a line subbundleM ↪→ B1 with

µ(M) � µ(B1) − g

(
1− 1

p − 1

)
.

Then the right-hand side is greater than(g − 1) − 1. Asµ(M) is an integer, this says thatµ(M) � (g − 1) and this
contradicts the stability ofB1.

Remark 2. The method of using coverings of large degree can also be used to improve the results of [2] (r
for small p) where we showed thatF∗(L) is stable for any line bundleL on X provided that the genus ofX is
sufficiently large.

Remark 3. The method of proof given above can also be used to show that the bundlesBn defined in [1] using
iterated Cartier operations are stable. These are bundles of rankpn − 1 and slopeg − 1.
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