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Abstract

We show here the convergence of the linear finite element approximate solutions of a diffusion equation to a weak solution,
with weak regularity assumptions on the dafa.cite this article: T. Gallouét, R. Herbin, C. R. Acad. Sci. Paris, Ser. | 338
(2004).
0 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Convergence de la méthode éléments finR1 pour une équation de diffusion avec second membre mesur®n prouve
la convergence des solutions approchées, par la méthode des élémerts, fitiise équation de diffusion avec second membre
mesure, vers la solution faible de cette équatRour citer cet article: T. Gallouét, R. Herbin, C. R. Acad. Sci. Paris, Ser. |
338 (2004).
0 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

The scope of this work is the discretization by the linear finite element method of diffusion problems on
triangular meshes. L&® be a polygonal open subset®f ; the problem under study can be expressed:

—Au=pu ing,
{ u=0 onos2 @)
with the following hypotheses on the data:
we M), 2)

whereM (£22) = (C(£2))' is the dual space af (£2), which may also be identified to the set of bounded measures
on £2. In the sequel, we shall consider the usual infinity nornCgse), and we shall denote by- || 4 () its dual
norm onM (£2).
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We consider a finite element triangular mesi of 2 (see, e.g., [2]), satisfying, for some positiye the
following Delaunay and nondegeneracy conditions:

(i) For any interior edge oMM, the sum of the angles facing that edge is less or equaHa; .
(ii) Forany edge lying on the boundary, the facing angle is less or eqédaHa.
(iii) For any angleg of any triangleT of the meshM, 6 > ¢.

LetV be the set of interior vertices @1, and letpx denote the usual piecewise linear finite element basis function
associated with vertek . The usual finite element discretization of (1) with this basis can be written:

> / Vi (x) - Vér (x)uy dr = / ¢ () du(x), VK €V, (3)
2

LEVQ

which leads to a linear system & equations with theN unknownsu,,L € V, with N = cardV). The
approximate solution is therefomg =)y .y uk k.

2. Convergence of the scheme

The idea presented here is to compare the finite element scheme on such a mesh with the centered finite volum
scheme on the associate Voronoi mesh and to use the results of [5] (or [3], where a more general case is considere
to show the convergence of the scheme.

Indeed, lety denotes the set of vertices of the mesh on the whole domain, including the boundary; using the
factthat) , ;s Vo = 0, the scheme (3) may be written as

> tkin(ug —ug)dr =/¢K<x>du(x), VK eV,
2

LeV _
ug =0 ifKeV\V,

with TK|L = _fg Vog(x) - Vor(x) dx, for K ;ﬁ L.

We then construct a dual mesh, denofEdby considering the control volumes defined by the orthogonal
bisectors of the edges of the primal triangular maghIn fact, for anyK e V, the interior of the control volume
of 7 associated t& is the set of points whose distanceKois less than its distance to any other vertexdfor
a more detailed description of this so-called Delaunay—Voronoi discretization and its use for covolume methods,
we refer to [6] and references therein). The control volumes are also chosen such that they constitute a partitior
of £ (this assumption is important to deal with measures that have some mass on the boundary of some contro
volumes). The control volume associated wkthwill also be denoted bX. Let us then write the “classical” cell
centered finite volume scheme with this mesh (see [5] or [3]):

Z txiL(ug —up)dx =pu(K), VKeV,
LeV (5)
ug =0, KeV\V.

We emphasize that the coefficients|, are identical to that of the finite element scheme (5) (which is equivalent

to (3)), see, e.g., [4], so that the schemes (3) and (5) are the same except for their right-hand sides. Kideed, if

are two distinct vertices of some triangleof M, then— fT Vg (x)Vor(x)dx = %cotar(@KvL), wherebk 1. is

the angle ofl" facing the edge with vertice& and L. Hence— ]Q Vo (x)Vor(x)dx =mg /d(K, L), where

mg 1 denotes the distance between the points intersecting the orthogonal bisectors in each of the triangles with
verticesk andL, andd (K, L) denotes the distance betwekrandL.

(4)
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Thanks to the construction of this dual mesh, condition (9) of [5] holds. (More precisely, using the notations
of [5], dk » = %dg for any interior edge . If K is a control volume neighbouring the boundary, and i§ an edge
of K on the boundary, thetilx » =ds =0.)

Consider a family of meshes uniformly satisfying condition (2) for some positiieheorem 1 of [5] holds for
the dual meshes, and therefore, one gets the convergence of the piecewise constant (on the dual cells, that is on tl
elements ofl") approximate solution defined by (5), towards the unique weak solution of (1), which is defined by:

ue (] Wo@). / Vu(x) - Vo(x) dx = / v du(x), Yoe | Wyl @). ©)
1<p<2 o Q q>2
Hence, we shall also obtain the convergence of the solution to (3), that is the finite element approximation of (1),
towards the solution of (6). Indeed, the slight difference between (3) and (5) is only due to the right-hand side.

Theorem 2.1.Let £2 be an open polygonal subset®f and i € M(£2). Let¢ > 0; for an admissible triangular
finite element mesM of 2 satisfying(2), letuprq = ) xcpuxdx be the finite element approximation (@),
((up) ey is therefore the solution t@) or (5)). Thenu x4 tends tou in LP(£2), for all p € [1, +o00[, and weakly
in wlr () forall p €[1,2[, as the mesh size tendsGowherey is the solution td6).

Proof. The proof of convergence follows that of [5]. We first prove a discrete estimate on the approximate solution

(Lemma 1 of [5]), using the test functi@r(s) = fé %"”9, where 0< 0 < 1. Asin [5], we multiply the first equation
of scheme (5) by (ug) and sum oveK € V. Noting that
+00
Z /¢K(X) du)e(uk) < Colllipe), With Cg = / T3P < +oosinced < 1,
KeV g 0

we see that inequality (11) of [5] is satisfied, and hence we obtain the estimates in the digbreteorm and
in the L”* norm (10) of [5] on the approximate solutian- = > kepuk 1k (Where k denotes the characteristic
function of K).

In order to prove that », converges to the unique solution of (6), a first possibility is to use the convergence
of u7. In this case we use property (8) given below for the convergence of the right-hand side and the fact that
uT — u g convergeto 0inL?(£2) for all p € [1, +oo[ (however this procedure does not yield the convergence of
upg in WhP(£2) weak). A more direct proof is possible, which we now give.

Thanks to the uniform Delaunay condition (2), one remarks that there exists3gmely depending og such
thatm(T) < Cimyd,; if o is an edge of', not lying on the boundaryi; is the length of the edge andm, is
the distance between the intersection points of the orthogonal bisectors of triingteks if o is common tol
and S). Furthermore, thanks to the non-degeneracy assumption (iii) in (&), if and M denote the vertices of

the trianglel € M, there exists", depending only om such that{Vu | < C max(litil et leptd)

Then, thewl-? discrete estimate oms leads to aW&”’ estimate one 4. Taking a sequence of meshes with size
tending to 0, then the corresponding approximate solutiopstend to some u ifW1-? weak. Lety € C*(82).
One multiplies (5) by (K) and sums ovek to obtain

/VMM(X)VWM(X)O'XZ > W(K)/W(X)du(X)Z/WM(X)dM(X), (1)
Q

2 K eVertices

whereyr 4 is the finite element interpolate gf on M. SinceVir4 tends tovy uniformly on 2 andvy, tends
to ¢ uniformly on §2 as the mesh size tends to 0, one has:

/VuM(x)VwM(x)dx tends to /Vu(x)vw(x)dx as the mesh size tends tp O
2 2
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and

/WM(x)du(x) tends to /Wdu(x) as the mesh size tends tp O (8)
2 2

Passing to the limit in (7), one obtains thats the solution of (6). This allows us to assert that if the considered
meshes satisfy condition (2) 1, tends to the unique solution of (6) as the mesh size tends to 0. This concludes the
proof of the theorem.

3. Conclusion

We proved here the convergence of the piecewise linear finite element scheme for the discretization of a diffusion
equation with measure data in two space dimensions.

The above analysis readily extends to the case of the operadawkV wherek € C(£2). However, a first
important generalization would be to consider any admissible finite element mesh, using the non-degeneracy
assumption of the finite element scheme > Ch (see [2]) without the Delaunay condition (2). In this case we
shall not haverg . > 0 in the finite element scheme (5) (and the discrete maximum principle will not hold; see [2,
Section 2]). Indeed, in [5], we use the non-negativity of the transmission coeffieigmts

Note also that the extension to the three-dimensional case is not straightforward, since there is no easy conditiol
to ensure the equivalence of the finite element and finite volume schemes in the three-dimensional case.

Another generalization would be to deal with general diffusion operatork ®iv, wherek is a 2x 2 tensor
satisfying the usual continuity and coercivity conditions on the associate bilinear form. For a general diffusion
operator, it is not possible to interpret the finite element scheme as a finite volume scheme with a two point finite
difference approximation of the fluxes on the edges of the mesh. This last property is used in the convergence proo
of the finite volume scheme in [5].

For these generalizations, a direct finite element proof is probably the best way to prove convergence. However,
a difficulty arises with the fact that if oy € Vo = Spafi¢y, ..., ¢n}, WhereV,, is the finite element space, then
the truncationdu o¢ (WhereTy(s) = min{maxs, —k}, k}) do not in general belong td,, (see [1] for the use of
truncations). Work in this direction is in progress.
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