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Abstract

We show here the convergence of the linear finite element approximate solutions of a diffusion equation to a weak
with weak regularity assumptions on the data.To cite this article: T. Gallouët, R. Herbin, C. R. Acad. Sci. Paris, Ser. I 338
(2004).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Convergence de la méthode éléments finisP1 pour une équation de diffusion avec second membre mesure.On prouve
la convergence des solutions approchées, par la méthode des éléments finisP1, d’une équation de diffusion avec second mem
mesure, vers la solution faible de cette équation.Pour citer cet article : T. Gallouët, R. Herbin, C. R. Acad. Sci. Paris, Ser. I
338 (2004).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

The scope of this work is the discretization by the linear finite element method of diffusion proble
triangular meshes. LetΩ be a polygonal open subset ofR

2 ; the problem under study can be expressed:{−�u= µ inΩ,
u= 0 on∂Ω

(1)

with the following hypotheses on the data:

µ ∈M(Ω), (2)

whereM(Ω)= (C(�Ω))′ is the dual space ofC(�Ω), which may also be identified to the set of bounded meas
on �Ω . In the sequel, we shall consider the usual infinity norm onC(�Ω), and we shall denote by‖ · ‖M(Ω) its dual
norm onM(Ω).
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We consider a finite element triangular meshM of Ω (see, e.g., [2]), satisfying, for some positiveζ , the
following Delaunay and nondegeneracy conditions:

(i) For any interior edge ofM, the sum of the angles facing that edge is less or equal toπ − ζ .
(ii) For any edge lying on the boundary, the facing angle is less or equal toπ

2 − ζ.
(iii) For any angleθ of any triangleT of the meshM, θ � ζ .

LetV be the set of interior vertices ofM, and letφK denote the usual piecewise linear finite element basis func
associated with vertexK. The usual finite element discretization of (1) with this basis can be written:

∑
L∈V

∫

Ω

∇φK(x) · ∇φL(x)uL dx =
∫

Ω

φK(x)dµ(x), ∀K ∈ V, (3)

which leads to a linear system ofN equations with theN unknownsuL,L ∈ V , with N = card(V). The
approximate solution is thereforeuM = ∑

K∈V uKφK .

2. Convergence of the scheme

The idea presented here is to compare the finite element scheme on such a mesh with the centered fini
scheme on the associate Voronoï mesh and to use the results of [5] (or [3], where a more general case is co
to show the convergence of the scheme.

Indeed, let�V denotes the set of vertices of the mesh on the whole domain, including the boundary; us
fact that

∑
L∈�V ∇φL = 0, the scheme (3) may be written as

∑
L∈�V

τK |L(uK − uL)dx =
∫

Ω

φK(x)dµ(x), ∀K ∈ V,
(4)

uK = 0 if K ∈ �V \ V,
with τK |L = − ∫

Ω ∇φK(x) · ∇φL(x)dx, forK �= L.
We then construct a dual mesh, denotedT , by considering the control volumes defined by the orthogo

bisectors of the edges of the primal triangular meshM. In fact, for anyK ∈ �V , the interior of the control volum
of T associated toK is the set of points whose distance toK is less than its distance to any other vertex of�V (for
a more detailed description of this so-called Delaunay–Voronoï discretization and its use for covolume m
we refer to [6] and references therein). The control volumes are also chosen such that they constitute a
of Ω (this assumption is important to deal with measures that have some mass on the boundary of som
volumes). The control volume associated withK will also be denoted byK. Let us then write the “classical” ce
centered finite volume scheme with this mesh (see [5] or [3]):

∑
L∈�V

τK |L(uK − uL)dx = µ(K), ∀K ∈ V,

uK = 0, K ∈ �V \ V .
(5)

We emphasize that the coefficientsτK |L are identical to that of the finite element scheme (5) (which is equiva
to (3)), see, e.g., [4], so that the schemes (3) and (5) are the same except for their right-hand sides. IndeeK,L

are two distinct vertices of some triangleT of M, then− ∫
T

∇φK(x)∇φL(x)dx = 1
2 cotan(θK,L), whereθK,L is

the angle ofT facing the edge with verticesK andL. Hence− ∫
Ω

∇φK(x)∇φL(x)dx = mK,L/d(K,L), where
mK,L denotes the distance between the points intersecting the orthogonal bisectors in each of the triang
verticesK andL, andd(K,L) denotes the distance betweenK andL.
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Thanks to the construction of this dual mesh, condition (9) of [5] holds. (More precisely, using the no
of [5], dK,σ = 1

2dσ for any interior edgeσ . If K is a control volume neighbouring the boundary, and ifσ is an edge
of K on the boundary, thendK,σ = dσ = 0.)

Consider a family of meshes uniformly satisfying condition (2) for some positiveζ . Theorem 1 of [5] holds for
the dual meshes, and therefore, one gets the convergence of the piecewise constant (on the dual cells, th
elements ofT ) approximate solution defined by (5), towards the unique weak solution of (1), which is defin

u ∈
⋂

1�p<2

W
1,p
0 (Ω),

∫

Ω

∇u(x) · ∇v(x)dx =
∫

Ω

v(x)dµ(x), ∀v ∈
⋃
q>2

W
1,q
0 (Ω). (6)

Hence, we shall also obtain the convergence of the solution to (3), that is the finite element approximatio
towards the solution of (6). Indeed, the slight difference between (3) and (5) is only due to the right-hand s

Theorem 2.1.LetΩ be an open polygonal subset ofR
2 andµ ∈M(Ω). Let ζ > 0; for an admissible triangular

finite element meshM of Ω satisfying(2), let uM = ∑
K∈V uKφK be the finite element approximation of(1),

((uL)L∈V is therefore the solution to(3) or (5)). ThenuM tends tou in Lp(Ω), for all p ∈ [1,+∞[ , and weakly
in W1,p(Ω) for all p ∈ [1,2[ , as the mesh size tends to0, whereu is the solution to(6).

Proof. The proof of convergence follows that of [5]. We first prove a discrete estimate on the approximate s
(Lemma 1 of [5]), using the test functionϕ(s)= ∫ s

0
dt

1+|t |θ , where 0< θ < 1. As in [5], we multiply the first equation
of scheme (5) byϕ(uK) and sum overK ∈ V . Noting that

∑
K∈V

∫

Ω

φK(x)dµ(x)ϕ(uK)� Cθ‖µ‖M(Ω), with Cθ =
+∞∫

0

dt

1+ |t|θ <+∞ sinceθ < 1,

we see that inequality (11) of [5] is satisfied, and hence we obtain the estimates in the discreteW1,p norm and
in theLp

∗
norm (10) of [5] on the approximate solutionuT = ∑

K∈�V uK1K (where 1K denotes the characterist
function ofK).

In order to prove thatuM converges to the unique solution of (6), a first possibility is to use the converg
of uT . In this case we use property (8) given below for the convergence of the right-hand side and the f
uT − uM converge to 0 inLp(Ω) for all p ∈ [1,+∞[ (however this procedure does not yield the convergenc
uM in W1,p(Ω) weak). A more direct proof is possible, which we now give.

Thanks to the uniform Delaunay condition (2), one remarks that there exists someC1, only depending onζ such
thatm(T ) � C1mσdσ if σ is an edge ofT , not lying on the boundary (dσ is the length of the edgeσ andmσ is
the distance between the intersection points of the orthogonal bisectors of trianglesT andS if σ is common toT
andS). Furthermore, thanks to the non-degeneracy assumption (iii) in (2), ifK, L andM denote the vertices o
the triangleT ∈ M, there existsC2 depending only onζ such that:|∇uM| � C2 max( |uK−uL|

d(K,L)
,

|uK−uM |
d(K,M)

,
|uL−uM |
d(L,M)

).

Then, theW1,p discrete estimate onuT leads to aW1,p
0 estimate onuM. Taking a sequence of meshes with s

tending to 0, then the corresponding approximate solutionsuM tend to some u inW1,p weak. Letψ ∈ C∞
c (Ω).

One multiplies (5) byψ(K) and sums overK to obtain∫

Ω

∇uM(x)∇ψM(x)dx =
∑

K∈Vertices

ψ(K)

∫

Ω

φK(x)dµ(x)=
∫
ψM(x)dµ(x), (7)

whereψM is the finite element interpolate ofψ onM. Since∇ψM tends to∇ψ uniformly onΩ andψM tends
to ψ uniformly onΩ as the mesh size tends to 0, one has:∫

∇uM(x)∇ψM(x)dx tends to
∫

∇u(x)∇ψ(x)dx as the mesh size tends to 0,
Ω Ω
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and ∫

Ω

ψM(x)dµ(x) tends to
∫

Ω

ψ dµ(x) as the mesh size tends to 0; (8)

Passing to the limit in (7), one obtains thatu is the solution of (6). This allows us to assert that if the conside
meshes satisfy condition (2),uM tends to the unique solution of (6) as the mesh size tends to 0. This conclud
proof of the theorem.

3. Conclusion

We proved here the convergenceof the piecewise linear finite element scheme for the discretization of a
equation with measure data in two space dimensions.

The above analysis readily extends to the case of the operator−divk∇ wherek ∈ C(�Ω). However, a first
important generalization would be to consider any admissible finite element mesh, using the non-deg
assumption of the finite element schemeρK � Ch (see [2]) without the Delaunay condition (2). In this case
shall not haveτK |L � 0 in the finite element scheme (5) (and the discrete maximum principle will not hold; s
Section 2]). Indeed, in [5], we use the non-negativity of the transmission coefficientsτK |L.

Note also that the extension to the three-dimensional case is not straightforward, since there is no easy
to ensure the equivalence of the finite element and finite volume schemes in the three-dimensional case.

Another generalization would be to deal with general diffusion operators divK∇u, whereK is a 2× 2 tensor
satisfying the usual continuity and coercivity conditions on the associate bilinear form. For a general d
operator, it is not possible to interpret the finite element scheme as a finite volume scheme with a two po
difference approximation of the fluxes on the edges of the mesh. This last property is used in the convergen
of the finite volume scheme in [5].

For these generalizations, a direct finite element proof is probably the best way to prove convergence. H
a difficulty arises with the fact that ifuM ∈ VM = span{φ1, . . . , φN }, whereVM is the finite element space, the
the truncationsTkuM (whereTk(s)= min{max{s,−k}, k}) do not in general belong toVM (see [1] for the use o
truncations). Work in this direction is in progress.
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