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Abstract

Microarrays are a popular technology to study genes that are differentially expressed between two conditions. In this Note,
we propose an iterative procedure to determine the biggest subset of non-differentially expressed genes. We prove a pseud
Markov relationship that allows practical computations. We obtain explicit expressions for FDR and the level of the proposed
test at each stefio cite thisarticle: A. Bar-Hen, S. Robin, C. R. Acad. Sci. Paris, Ser. | 337 (2003).

O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.
Résumé

Procédure itérative pour I'analyse différentielle d’expression de genes. Les biopuces constituent une technologie trés
utilisée pour étudier si des genes s’expriment difféeremment entre deux conditions. Dans cette Note nous proposons une méthoc
itérative pour rechercher le plus grand sous-ensemble de génes non-différentiellement exprimés. Nous prouvons une relation d
type chaine de Markov d'ordre deux qui simplifie fortement les calculs. Nous obtenons de maniere explicite le FDR associé a
notre procédure ainsi que le niveau du test a chaque @apeciter cet article: A. Bar-Hen, S. Robin, C. R. Acad. Sci. Paris,

Ser. | 337 (2003).
O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Aim

Microarrays are part of a new class of biotechnologies that allow the monitoring of the expression level of
thousands of genes simultaneously. It is a powerful methodology for identifying differentially expressed genes.
However, when thousands of genes in a microarray data set are evaluated simultaneously by fold changes an
significance tests, the probability of detecting false positives rises sharply. Basically, various procedures have beel
proposed in the literature to test the null hypothesis

Ho(i) = {genei is not differentially expressed

For example, in the case of balanced analysis of variance, if we déhpthe differential expression of gerie
during ther-th replicate, we havelg(i) = {Vr, E(X;, = 0)}.
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In this “one-by-one gene” approach, multiple testing problems immediately arise and lead to many false positive
genes. Several solutions have been proposed in the statistical literature to control the global type | error rate (se
for example [2] or, more recently, the false discovery rate (FDR, see [1] or [3]).

In this paper, we aim to determine the largest set of genes having the same differential expression. From a
biological point of view, it is known that, in many experiments, most of the genes are non-differentially expressed.
The set detected by our procedure will hence be considered as the set of non-differentially expressed genes.

2. Iterative procedure

We consider a statisti@ of the formT = )_"_; Z; wherei denotes the gene and wheZg's are positive
individual scores, taking low values for nondifferentially expressed genes and high values for others. This kind of
statistic is encountered in many statistical methods such as analysis of variance, or Kruskall-Wallis test.

For example in ANOVA,Z; « (Xis — Xo.)? and statisticT” is proportional to the sum of squares associated
with the gene effect.

Let Ziy) < Zp) < - -+ < Zp,) denote the order statistics associated Wih, Z», ..., Z,), assuming that no tie
exists. Conversely, l€} denote the index of the gene having théh scoreZ: Z;, = Z.

We propose the following procedure:

Step 0: We test

6= Ho(
i=1

using the complete statisti€, = Y "_; Z;. If T, is greater than a threshold (associated with some
predefined risk)Hg is rejected and we conclude that there exists at least one differentially expressed
gene.

Step 1: Assuming thaHj is rejected, we tesﬁlg‘l = {there exists a subset af— 1 non-differentially expressed

genes. Hg‘l can be tested with the minimum of thestatistics defined on — 1 genes:

n—1
Tyi_1=minT, — Z) =T, —maxZ) = > Zj.
' ! i=1
T,—1 is obtained by removing the gene that most contributé to
An alternative procedure can be directly based on the order statticsT he idea is the same and we
will not be developed it in this note.
Step k: Assuming thaHg‘kJrl is rejected, we follow the same principle as in Step 1: toitl%ﬂt" = {there exists
a subset ofi — k non-differentially expressed gerjews/e use the statistic
n—k
Tk = Z Zii) = Th—k+1 — Zin—k+1]- (1)
i=1

Hg‘k is rejected if7,,_ is greater than a threshold.

The general idea behind this procedure is to remove at each step the gene that most contributes to the statisti
It is directly given by the order statistics. The aim is to only keep the non-differentially expressed genes in the
statistic and to accept the null hypothesis at the final step.

To derive the statistical properties of the procedure, we need the joint distribution of st&fjstis 1, ..., T1.
To make the dependency between successive steps tractable, we conserve the values of theadcalasg the
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procedure. This leads to a recurrence formula for the statifics: = Tx — Z;. The price for this trick is the
non-standard form of the null distributions of tigs.
For example, in the ANOVA context, the grand me®gy; is not recomputed at each step and, unﬂ@‘rk, Z;=

(Xie — Xee)? has a truncated non-central chi-square distribution. Recompitjpgvould lead to more classical
distributions but to intractable dependency betw&gs.

3. Statistical propertiesof thetest statistics

Notations. In the following, we denotefx (resp. Fx) the probability density function (resp. cumulative
distribution function, cdf) of the random variable (r%). We use the special notatigh (resp.®) for the rv Z
andg, (resp.®,) for the sum ofx iid rv's with density¢. For example, undetj we have P{T,, < b} = &, (b).
The distributiong is assumed to be known.

Joint distribution. As shown in previous section, we are interested in the statigtica/hich are sums of order
statistics{ Zj;;}. To control the overall risk associated with the test procedure, we need to derive the joint distribution
of (Tn, Tyy—1, ..., T1).

Proposition 3.1. LetZ1, ..., Z, bern independent positive rv's with common ddfind densityp. The joint density
of (T, ..., T1), whereT; denote the sum defined in €@), is

n
frymy(ns i) =n! [ [ ¢ — - DTVK: e — i1 > i1 — 2},
k=1

wherel{A} = 1if A is true andO otherwise, and with the conventiai= 0.

Proof. The jointdensity of 7, ..., T1) can be directly expressed in terms of order statisfigs To get the result,
we use the reciprocal transformation of Eq. @)= tx — tx—1, for 1 < k < n. The Jacobian of this transform is
equal to one. We gefi(zx) = ¢ (tx — tx—1). Conditionzy < --- < z, becomesy — 1 > tr—1 —fr—2 forallk. O

3.1. Conditional distributions

Since we propose an iterative procedure, we will also need the conditional distribution of the statistics given the
results of the preceding steps.

Proposition 3.2. UnderHX,
J2001 2 Zpey = F 200 1 2y

Proof. UnderH§, we have
{Zk,....Z1} ~¢(2)iid, and {Z,,..., Zks1} ~ ¥ (zn, ..., 2k+1)-
The joint distribution is

n k-1
frpzsGus s 2) =V @no vz [ Mej =z} [ [ @GOz = 2ia)-
j=k+1 i=1

The first product ofl{-} terms comes from the previous steps of the iterative procedure. We have

I 711200 (k415 26) = fmin(Z,,.... Zi 1) (@k+1) fmax z., .., 20) @O Hz 411 2 210}

and the result is direct. O
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Proposition 3.3. We have
ka [T Ty = ka [Tk+2, T2

Proof. The proof follows the same principle as the proof of Proposition 3.2. The second order is a consequence
that, according to Eq. (1¥%’s are the increment df,’s. O

These two propositions have a strong flavour of Markov process of order 1 and 2 but the recurrence relations dc
not hold since the null hypothesis is varying along the steps.

The p-value Py = Pi{T; > t;|tx+2, tx+1} can be calculated according to Proposition 3.3. It can be noted that this
calculation does not rely on any assumption (such as independence or distributional hypothesis) about differentially
expressed genes.

Proposition 3.4. When testing—|’5 with statistic 7; and conditional to the preceding steps, the rejection rule
providing a Type | error ratex is Ty, > cx Wherecy, satisfies

1—o=Gj(ck; Zi+1)),

whereGj (-; Zjx+1)) denotes thé times convolution od* (x; Zjx11)) = ¢ (x)/ P (Zp+1pl{x < Zpy1y), that is of
distribution¢ truncated atZ41;.

Proof. UnderH’(‘), Zk+1 contains all the relevant information contained in the preceding steps. The result is

obtained by remarking that, undel§ and givenZ1), (Z(1y, ..., Zi) have the same distribution as the order
statistics of an iid sampleZg, .. ., Z7) with densityg truncated a+1;. O

Proposition 3.4 allows us to control the type | error at a desired vahteeach step, conditional to the preceding
steps (thanks to the Markovian properties 3.2 and 3.3).

We now consider the false discovery rate (FDR) introduced by [1]. Denditige number of rejected null
hypothesis and’ the number of nondifferentially expressed genes among tRe3de FDR isE(V/R). In our
iterative procedure, we defirig as the number of false discoveries up to stefphus, at stef, we haveR =k
andFDR(k) = E(Vy)/k that can be calculated thanks to the following proposition.

Proposition 3.5. The expected number of false discoveries up to/stefie(Vy) = >/, Pi.
Proof. We clearly have RV, = 1) = P,. Moreover, undelH’é, the rejection ofH’5 leads to one more false
discovery with probabilityP;,. So we have

Pr(Vi=j)=PPr(Vi_1=j -1+ Q- P)Pr(Vi_1=j).

The result is given by convolution of binomial laws with different probabilities
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