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Abstract

Microarrays are a popular technology to study genes that are differentially expressed between two conditions. In t
we propose an iterative procedure to determine the biggest subset of non-differentially expressed genes. We prove
Markov relationship that allows practical computations. We obtain explicit expressions for FDR and the level of the p
test at each step.To cite this article: A. Bar-Hen, S. Robin, C. R. Acad. Sci. Paris, Ser. I 337 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Procédure itérative pour l’analyse différentielle d’expression de gènes. Les biopuces constituent une technologie t
utilisée pour étudier si des gènes s’expriment différemment entre deux conditions. Dans cette Note nous proposons un
itérative pour rechercher le plus grand sous-ensemble de gènes non-différentiellement exprimés. Nous prouvons une
type chaîne de Markov d’ordre deux qui simplifie fortement les calculs. Nous obtenons de manière explicite le FDR a
notre procédure ainsi que le niveau du test à chaque étape.Pour citer cet article : A. Bar-Hen, S. Robin, C. R. Acad. Sci. Paris,
Ser. I 337 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Aim

Microarrays are part of a new class of biotechnologies that allow the monitoring of the expression l
thousands of genes simultaneously. It is a powerful methodology for identifying differentially expressed
However, when thousands of genes in a microarray data set are evaluated simultaneously by fold cha
significance tests, the probability of detecting false positives rises sharply. Basically, various procedures h
proposed in the literature to test the null hypothesis

H0(i)= {genei is not differentially expressed}.
For example, in the case of balanced analysis of variance, if we denoteXir the differential expression of genei
during ther-th replicate, we haveH0(i)= {∀r, E(Xir = 0)}.

E-mail addresses:avner@bar-hen.net (A. Bar-Hen), robin@inapg.inra.fr (S. Robin).
1631-073X/$ – see front matter 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights
reserved.
doi:10.1016/S1631-073X(03)00365-0
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In this “one-by-one gene” approach, multiple testing problems immediately arise and lead to many false
genes. Several solutions have been proposed in the statistical literature to control the global type I error
for example [2] or, more recently, the false discovery rate (FDR, see [1] or [3]).

In this paper, we aim to determine the largest set of genes having the same differential expression
biological point of view, it is known that, in many experiments, most of the genes are non-differentially expr
The set detected by our procedure will hence be considered as the set of non-differentially expressed gen

2. Iterative procedure

We consider a statisticT of the formT = ∑n
i=1Zi where i denotes the gene and whereZi ’s are positive

individual scores, taking low values for nondifferentially expressed genes and high values for others. This
statistic is encountered in many statistical methods such as analysis of variance, or Kruskall–Wallis test.

For example in ANOVA,Zi ∝ (Xi• − X••)2 and statisticT is proportional to the sum of squares associa
with the gene effect.

Let Z[1] < Z[2] < · · ·< Z[n] denote the order statistics associated with(Z1,Z2, . . . ,Zn), assuming that no tie
exists. Conversely, letik denote the index of the gene having thek-th scoreZ: Zik =Z[k].

We propose the following procedure:

Step 0: We test

Hn
0 =

n⋂

i=1

H0(i)

using the complete statisticTn = ∑n
i=1Zi . If Tn is greater than a threshold (associated with so

predefined risk),Hn
0 is rejected and we conclude that there exists at least one differentially expr

gene.
Step 1: Assuming thatHn

0 is rejected, we testHn−1
0 = {there exists a subset ofn− 1 non-differentially expresse

genes}. Hn−1
0 can be tested with the minimum of then statistics defined onn− 1 genes:

Tn−1 = min
i
(Tn −Zi)= Tn − max

i
(Zi)=

n−1∑

i=1

Z[i].

Tn−1 is obtained by removing the gene that most contributes toTn.
An alternative procedure can be directly based on the order statisticsZ[i]. The idea is the same and w
will not be developed it in this note.

Step k: Assuming thatHn−k+1
0 is rejected, we follow the same principle as in Step 1: to testHn−k

0 = {there exists
a subset ofn− k non-differentially expressed genes}, we use the statistic

Tn−k =
n−k∑

i=1

Z[i] = Tn−k+1 −Z[n−k+1]. (1)

Hn−k
0 is rejected ifTn−k is greater than a threshold.

The general idea behind this procedure is to remove at each step the gene that most contributes to the
It is directly given by the order statistics. The aim is to only keep the non-differentially expressed genes
statistic and to accept the null hypothesis at the final step.

To derive the statistical properties of the procedure, we need the joint distribution of statisticsTn, Tn−1, . . . , T1.
To make the dependency between successive steps tractable, we conserve the values of the scoresZi all along the
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procedure. This leads to a recurrence formula for the statistics:Tk−1 = Tk − Z[k]. The price for this trick is the
non-standard form of the null distributions of theTk ’s.

For example, in the ANOVA context, the grand meanX•• is not recomputed at each step and, underHn−k
0 , Zi =

(Xi• −X••)2 has a truncated non-central chi-square distribution. RecomputingX•• would lead to more classica
distributions but to intractable dependency betweenTk ’s.

3. Statistical properties of the test statistics

Notations. In the following, we denotefX (resp. FX) the probability density function (resp. cumulati
distribution function, cdf) of the random variable (rv)X. We use the special notationφ (resp.Φ) for the rvZ
andφn (resp.Φn) for the sum ofn iid rv’s with densityφ. For example, underHn

0 we have Pr{Tn � b} = Φn(b).
The distributionφ is assumed to be known.

Joint distribution. As shown in previous section, we are interested in the statisticsTk , which are sums of orde
statistics{Z[i]}. To control the overall risk associated with the test procedure, we need to derive the joint distr
of (Tn, Tn−1, . . . , T1).

Proposition 3.1. LetZ1, . . . ,Zn ben independent positive rv’s with common cdfΦ and densityφ. The joint density
of (Tn, . . . , T1), whereTk denote the sum defined in Eq.(1), is

fTn...T1(tn, . . . , t1)= n!
n∏

k=1

φ(tk − tk−1)I{∀k: tk − tk−1 > tk−1 − tk−2},

whereI{A} = 1 if A is true and0 otherwise, and with the conventiont0 = 0.

Proof. The joint density of(Tn, . . . , T1) can be directly expressed in terms of order statisticsZ[i]. To get the result
we use the reciprocal transformation of Eq. (1):zk = tk − tk−1, for 1� k � n. The Jacobian of this transform
equal to one. We getφ(zk)= φ(tk − tk−1). Conditionz1 < · · ·< zn becomestk − tk−1 > tk−1 − tk−2 for all k. ✷
3.1. Conditional distributions

Since we propose an iterative procedure, we will also need the conditional distribution of the statistics g
results of the preceding steps.

Proposition 3.2. UnderHk
0,

fZ[k] |Z[n],...,Z[k+1] = fZ[k] |Z[k+1] .

Proof. UnderHk
0, we have

{Zk, . . . ,Z1} ∼ φ(z) iid, and {Zn, . . . ,Zk+1} ∼ψ(zn, . . . , zk+1).

The joint distribution is

fZn,...,Z1(zn, . . . , z1)=ψ(zn, . . . , zk+1)

n∏

j=k+1

I{zj � z[k]}
k−1∏

i=1

φ(zi)I{z[i+1] � z[i]}.

The first product ofI{·} terms comes from the previous steps of the iterative procedure. We have

fZ[k+1],Z[k](zk+1, zk)= fmin{Zn,...,Zk+1}(zk+1)fmax{Zk,...,Z1}(zk)I{z[k+1] � z[k]}
and the result is direct.✷
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Proposition 3.3. We have

fTk |Tn...Tk+1 = fTk |Tk+2,Tk+1

Proof. The proof follows the same principle as the proof of Proposition 3.2. The second order is a conse
that, according to Eq. (1),Zk ’s are the increment ofTk ’s. ✷

These two propositions have a strong flavour of Markov process of order 1 and 2 but the recurrence rela
not hold since the null hypothesis is varying along the steps.

Thep-valuePk = Pr{Tk � tk|tk+2, tk+1} can be calculated according to Proposition 3.3. It can be noted tha
calculation does not rely on any assumption (such as independence or distributional hypothesis) about diffe
expressed genes.

Proposition 3.4. When testingHk
0 with statisticTk and conditional to the preceding steps, the rejection r

providing a Type I error rateα is Tk > ck whereck satisfies

1− α =G∗
k(ck;Z[k+1]),

whereG∗
k(·;Z[k+1]) denotes thek times convolution ofφ∗(x;Z[k+1])= φ(x)/Φ(Z[k+1])I{x � Z[k+1]}, that is of

distributionφ truncated atZ[k+1].

Proof. Under Hk
0, Z[k+1] contains all the relevant information contained in the preceding steps. The re

obtained by remarking that, underHk
0 and givenZ[k+1], (Z[1], . . . ,Z[k]) have the same distribution as the ord

statistics of an iid sample (Z∗
1, . . . ,Z

∗
k ) with densityφ truncated atZ[k+1]. ✷

Proposition 3.4 allows us to control the type I error at a desired valueα at each step, conditional to the preced
steps (thanks to the Markovian properties 3.2 and 3.3).

We now consider the false discovery rate (FDR) introduced by [1]. DenotingR the number of rejected nu
hypothesis andV the number of nondifferentially expressed genes among theseR. The FDR isE(V /R). In our
iterative procedure, we defineVk as the number of false discoveries up to stepk. Thus, at stepk, we haveR = k

andFDR(k)= E(Vk)/k that can be calculated thanks to the following proposition.

Proposition 3.5. The expected number of false discoveries up to stepk is E(Vk)= ∑n
i=k Pi .

Proof. We clearly have Pr(Vn = 1) = Pn. Moreover, underHk
0, the rejection ofHk

0 leads to one more fals
discovery with probabilityPk . So we have

Pr(Vk = j)= Pk Pr(Vk−1 = j − 1)+ (1− Pk)Pr(Vk−1 = j).

The result is given by convolution of binomial laws with different probabilities.✷
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