Available online at www.sciencedirect.com e, COMPIES RENDS
£ SN

C £, %

SCIENCE DIRECT?® 1‘_16 \:

! A
‘ ~*ads2 MATHEMATIQUE
ELSEVIER C. R. Acad. Sci. Paris, Ser. | 336 (2003) 779-784 I IGUE

Numerical Analysis

Numerical solution of the two-dimensional elliptic
Monge—Ampere equation with Dirichlet boundary conditions:
an augmented Lagrangian approach

Edward J. Dean, Roland Glowinski

Department of Mathematics, University of Houston, Houston, TX 77204-3008, USA
Received 7 January 2003; accepted 14 January 2003
Presented by Philippe G. Ciarlet

Abstract

The main goal of this Note is to discuss a method for the numerical solution of the two-dimensional elliptic Monge—Ampére
equation with Dirichlet boundary conditions (the E-MAD problem). This method relies on the reformulation of E-MAD as
a problem of Calculus of Variation involving the biharmonic operator (or closely related operators), and then to a saddle-
point formulation for a well-chosen augmented Lagrangian functional, leading to iterative methods such as Uzawa—Douglas—
Rachford. The above methodology applies to problems other than E-MAD (such as the Pucci equation). The results of numerical
experiments are presented. They concern the solution of E-MAD on the unit Sudyex (0, 1); the first test problem has a
known smooth closed form solution which is easily computed with optimal order of convergence. The second test problem has
also a known closed form solution; the fact that this solution haS—It?’(e’Z)-reguIarity, but not thesz(ﬁ) one, does not prevent
optimal order of convergence. Finally, the third test problem having no smooth solution is more costly to solve and leads to
discrete solutions showing negative curvature near the corfecste thisarticle: E.J. Dean, R. Glowinski, C. R. Acad. Sci.
Paris, Ser. | 336 (2003).
O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.
Résumé

Une méthode de lagrangien augmenté pour la résolution numérique du probléme de Monge-Ampére dlliptique en
dimension deux avec conditions de Dirichlet. L'objet essentiel de cette Note est I'étude d’'une méthode pour la résolution
numérique du probléme de Dirichlet pour I'équation de Monge—Ampére elliptique en dimension deux (le probléme E-MAD).
Cette méthode repose sur une reformulation de E-MAD comme un probléme de Calcul des Variations impliquant I'opérateur bi-
harmonique (ou des opérateurs voisins), puis sur une formulation de type point-selle pour un Lagrangien augmenté bien choisi
ce qui conduit naturellement & des algorithmes du type Uzawa—Douglas—Rachford. La méthodologie ci-dessus s’applique a de
problémes autres que E-MAD (I'équation de Pucci, par exemple). Les résultats d'essais numériques sont egalement presenté
lls concernent la résolution du probleme E-MAD sur le carré u¢dtd) x (0,1). Le premier probléme test a une solution
réguliere (analytique, en fait) connue exactement; on la retrouve facilement, avec une erreur d’approximation d’ordre optimal.
La solution du second probleme test est aussi connue exactement; le fait qu’'elle S(H%ta’m}s sans étre dan§2(§)
n'empéche pas d'obtenir une erreur d’approximation d’ordre optimal. Finalement, le troisieme probléme test n'ayant pas de
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solution réguliere est plus difficile a résoudre ; les solutions approchées obtenues montrent que la courbure devient negative a
voisinage des coin®our citer cet article: E.J. Dean, R. Glowinski, C. R. Acad. Sci. Paris, Ser. | 336 (2003).
O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Introduction

Let £2 be a bounded domain & (4 > 2); the Monge—Ampére equation
detD?y = f in £2, (1)

with D2y = (821p/8x,»8xj)1<i,j<d, has always been a source of interest for differential geometers (see, e.g., [1]);

it has more recently attracted the interest ofrtbalinear partial differential equationsommunity, basic references
being, e.g., [3,2]. The main goal of this Note is to address the numerical solution wédhdimensional elliptic

(i.e., f > 0 on £2) Monge—Ampére Dirichle(E-MAD) problem. The approach to be investigated relies on the
reformulation of E-MAD as a problem from th@alculus of Variationsnvolving the biharmonic operatot?

(or closely related operators). The first approach takes advantagesafidie-point formulatiorfor a well-
choseraugmented Lagrangian functiond&ading toUzawa—Douglas—Rachfoalgorithms, for example. A most
interesting feature of the augmented Lagrangian approach is that “it seems” to provide a kind of generalized
solution in H2($2) even if the E-MAD problem under consideration has no solution in that space.

2. Formulation of the Dirichlet problem for the elliptic M onge-Ampére equation in dimension 2

Let £2 be a bounded domain &?; we denote by the boundary of2. The E-MAD problem can be written as
follows:

{detDzw =f ing,

Ve on 1 (E-MAD)

whereD?y is the Hessian off and wheref andg are two given functions, withf > 0. Unlike the closely-related
Dirichlet problem for the Laplace operator, E-MAD may hawmaltiple solutionsand thesmoothnessef the data
does not imply the existence of a smooth solution. Concerning the last property, suppagettatl) x (0, 1)
and consider the particular E-MAD problem defined by
9%y 92 3%y |2 .
—1’2—1’2— v =1 in$, v=0 onr. (2)
dxy 0x5 0x10x2
Problem (2) cannot have smooth solutions since for those solutions the boundary copiditibron I implies

oY) a2
that %% and 55 vanish at the boundary. Actually, the above (negative) result is not a consequence of the
1 2

non-smoothness af, since the above non-existence result persists if one replaces the bbyehe ovoid-
shaped domain whosg*-boundary is defined by = U?:l I, with I = {x | x = {x1, x2}, x2=0, 0< x1 < 1},
F3={x|x={x1,x2), x2=1,0<x1 <1}, o= {x | x = {x1, x2}, x1 = 1+ e Vxl—22) 0y, <1},
Ia={x|x={x1,x2}, x1 = —e*V/x21=x2) 0 < x5 <1}.

3. A saddle-point formulation of problem E-MAD. Related augmented L agrangian iterative methods

The simplest Hilbert space where to solve problem E-MAD is cleBrys2). This leads us to introduce
Ve={plpe H*R2), p=gonT}; (3)
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if g € H3(I"), the (affine) spac#, is non-empty. Assuming that E-MAD has solutionsig, it makes sense to
consider the following problem froi@alculus of Variations

Vv eEg Jo(W)<Jo(p), Vec€E,, (4)
whereJo(p) = 3 [ 1A¢|2dx andE, = {¢ | ¢ € V,, detD?p = f}. Replacing|Ag|? by | D?¢|? in Jo(-), would
work as well (above D%¢p| = (Zlgi,j§2|8)‘c0,«2—8(pxj 2)1/2). Motivated by previous work omonlinear biharmonic
problemgsee, e.g., [7,6,4]) we introduce tagmmetric tensor-valued functiops= D2y, q = D?p and the related
(equivalent to (4)) minimization problem:

J'O(W, p) < jO((Dv q)v V{% q} €&, {W’ p} €&, (5)

where jo(¢. q) = (1/2) [ |Ap?dx and &, = {{p.q} | ¢ € Vg, g € Q, = D?p, detq = f}, andQ = {q | q =
(gij)1<i,j<2: 912 = q21, qij € L2(2)}. Let r be apositiveparameter; we associate to (5) the followisapldle-
point problem

{Er(lﬂ, Py ) < Lr(Y,p; M) < Le(p, i D), V{{e.q}.n}e (Ve x Qf) x 0, ©6)
{{wv p}v)"} € (Vg X Qf) X Q’
whereQr={q|qge Q, detq= f} and
1
Lr«p,q;m:5/|Aq)|2dx+g/|02¢—q|2dx+/u:(qu)—q)dx, (7)
2 2 2

with S: T =31, i<osijtij if S=(sij) andT = (#;;). Suppose that problem (6) has a soluti¢w, p}, A}, then

{v, p} is also a solution of (5). To compute the saddle-points ofahgmented Lagrangiafunctional £, we
advocate (among other algorithms and because of its simplicity) the following Uzawa—Douglas—Rachford iterative
method:

{v~11% isgiveninV, x Q; (8)
then, forn > 0, {"~1, A"} being known inV, x Q, solve

Loy ps A <L (" haid), Vae Q. p'e 0y, 9

Lr(y",p"A") <L (9. p":A"), VoeV,, y"eV,, (10)

It follows from (7) that: (i) Problem (9) can be solved pointwise; to obtalinfrom ¥"~1 andA” we have to
minimize, pointwise o2, a three-variable polynomial of the following tyge= {z;}? | — 5(z2 + 23 + 2z3) —
b, (x) - z over the set defined kyiz> — z% = f(x). The above problem isgeneralized eigenvalue problesmhich
is solved by a variant of thBlewton’s method(ii) Problem (10) is equivalent to well-posed linear variational
problemwhich reads as follows (witho = H?(£2) N H3(£2)):

/AwAgoderr/DZw :D%pdx =L,(¢), YeeVo, ¥"€V,, (12)
2 2

with L, € V. Problem (12) can be solved by a conjugate gradient algorithm operafifadin fact in Vo) equipped

with the scalar produdtv, w} — ]Q AvAw dx. Each iteration requires the solution of two Poisson problems with
Dirichlet boundary conditions. For the space approximation of problem (6) we have usbadé finite element
discretizationclosely related to the one employed in [7,6,4] for the numerical simulation of two-dimensional
Bingham visco-plastic flowsing thestream functiorformulation and — like here — augmented Lagrangian based
iterative methods; with this approach,q, v, p are approximated by continuous piecewise linear approximations
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associated to a finite element triangulation$@f The condition degj = f is imposed on the vertices of this
triangulation.

Remark 3.1. Concerning thenitialization of algorithm (8)—(11), we tooR® = 0 and v~ as the solution of
Ay =fY2in2,yt=gonr.

Remark 3.2. If the continuous problem E-MAD has no smooth solution (like it is the case for problem (2)), we can
expect the discrete analogue&fto be empty; in that case (this is true for linear saddle point problems, as shown
in [7,5]) we expect the sequenfd, },, >0 to diverge (arithmetically), whil¢y;', p;} will converge (geometrically)

to a solution ofminimal normin the set{{¢;, dr} | r € Von, On € Q s, | D2p), — Onll 2 is minimal}, i.e., if & »

is empty, algorithm (8)—(11) solve the discrete E-MAD problem least squares sens€his suggests to look for
least squares based methods for the solution of E-MAD; we are presently investigating such an approach.

Remark 3.3. Thenumerical solutiorof theMonge—Ampére equatiohas been addressed in [5]; the methods in [5]
are “highly” geometricalin contrast to thevariational one discussed in this Note which can be applied to a large
variety of PDE problems fromifferential Geometry.

4. Numerical experiments

The method discussed in Section 3 has been applied to the solution of three E-MAD test problems with
£ = (0, 1)2. Thefirst test problentan be expresed as follows:

detD?y = (1+ p?) ¢ in2, ¢=g onrl, (13)

with p? = xf —i—xzz, andg given byg(x) = /2 on {x|0<x1<1 x2=0} gx) = e3/2 on {x|]x1=0, 0<
xp <1}, g(x) =€+ D/20n{x |0 < x1 <1, x2=1} andg(x) = e+D/2 on{x | x1 =1, 0 < x» < 1}. The exact
solution of (13) is given by (x1, x2) = e°°/2, We have discretized problem (13) relying on a mixed variational
formulation, like the one discussed in [7,6,4], and used uniform triangulatiow3, afllowing us to solve the
various elliptic problems encountered at each iteration of (8)—(11) by fast Poisson and Helmholtz solvers taking
advantage of decomposition properties of biharmonic problems such as (12). Using as initial guess the approximatt
solutions of —A¢ = e02/2\/1+ p2in 2, ¢ = g on I', quite accurate approximations of the exact solution are
obtained (employing = 1 in (8)—(11)). After 100 iterations|y; — v[;2q) is 2.6 x 107>, 6.7 x 10~ and
1.8 x 1076 for h = 1/32, 1/64, and ¥128, respectively (herg; is the computed approximate solution); the
L?(£2)-approximation error is clearly @2). Similar (good) performances are obtained whieandg correspond
to smooth functiong known in advance. The computed approximate solution obtained by (8)—(11) witly 128
has been visualized on Fig. 1.

The second test probleris-in some sense-more interesting, since it corresponds to a situation where E-MAD
has a solution in72(£2) which does not belong t62(52). To be more precise, consider the particular E-MAD
problem defined by:

detD?y = 1 2, Y=g onl (14)

Jo
with p as above ang given by g(x) = (2«/5/3)xf/2 on{x|0<x1 <1, x2=0} gx) = (2\/5/3)@/2 on
{x|x1=0,0<x2<1},g(x)= (2«/2/3)(1-{-)6]2_)3/4 on{x|0<x1 <1, x2=1},andg(x) = (2\/2/3)(1—}—»‘2,)3/4

on{x | x1=1, 0<xy<1}. With these datay defined byy (x1, x2) = (2+/2/3)p%? is an exact solution of
problem (14). We can easily show that the above funcfidrelongs toW2?(2) if p < 4, but it does not have the
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Test Problem 1

1000 ==

Fig. 2. Test problem 2: Graph of the right-hand side.
Fig. 1. Test problem 1: Graph of the computed solution.
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Fig. 3. Test problem 2: Graph of the computed solution. Fig. 4. Test problem 3: Graph of the computed solution.

C?(£2)-regularity. When, after space discretization, we apply algorithm (8)—(11) to the solution of problem (14), we
still observe @r?) for the L2(§2)-approximation error. On Figs. 2 and 3 we have visualized, respectively, the graph
of the right-hand side of Monge—Ampére equation in (14) and the graph of the computed solution corresponding
to h = 1/64. The third test problem, namely (2), i.e.,

detD?y =1 ing2, v =0 onr, (15)

is by far the most intriguing. Indeed, despite the fact that problem (15) has no solutiR(i), algorithm
(8)—(11) produces a sequenigg"}, converging (geometrically) to a limit;, while the sequencg\”}, diverges
(arithmetically). The graph of;, obtained withz = 1/64 has been shown on Fig. 4, while the intersections of
this graph with the planes; = 1/2 andx; = x2 have been shown on Figs. 5 and 6, respectivelyhferl/32,

1/64, and /128 A close inspection shows that the curvature of the graph becomes negative close to the corners,
in violation of the Monge—Ampére equation; actually, it is also violated along the boundary, which is what we
expected, since (with obvious notation)pZvs — pj ll;2(q) = 1.8 x 1072 if 1 =1/32,33 x 1072 if h =1/64,
4.2x1072if h =1/128, while| D2y — pj [l 12, = 2.7 x 1074 if h=1/32,41x 10°*if h =1/64,49x 10~

if h=1/128,and| D2y —p; [l 120, =44 % 1075if h=1/32,29x 10°if h =1/64,51x 1075if h =1/128,
where2; = (1/8,7/8)2 and 22, = (1/4, 3/4)2. Actually, sincey;, does not vary very much with, we suspect

that, according to Remark 3.2, what we have here is a (good) approximation of one of these fundtipwho$e
Hessian is at a minimdl2-distance (global or local) from the s@ty introduced in Section 3.
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Fig. 5. Test problem 3: Graph of the solution restricted to the Fig. 6. Test problem 3: Graph of the solution restricted to the
planex; =1/2. planex; = x».

Remark 4.1. Following a suggestion of L. Caffarelli, we are presently investigating the solution oégjutarized
Monge—Ampére equation

eAy +detD’>y=f in2, Y=g onr,

by a variant of algorithm (8)—(11); the corresponding results will be reported elsewhere.

Acknowledgements

The authors want to thank Professors David Bao, Luis Caffarelli and Luc Tartar for, respectively, introducing
us to Differential Geometry, Monge—Ampére and fully nonlinear elliptic equations, and (a very long time ago) to
the weak continuity properties of Jacobian determinants. The invaluable help of P. Muscarello in the preparation of
this article is greatly appreciated, as are the comments of Y. Brennier.

References

[1] T. Aubin, Nonlinear Analysis on Manifolds, Springer-Verlag, Berlin, 1982.

[2] L.A. Caffarelli, The Monge—Ampére equation and optimal transportation: an elementary review, Lecture at ICM 2002, Beijing, August
20-28, 2002.

[3] L.A. Caffarelli, X. Cabre, Fully Nonlinear Elliptic Equations, American Mathematical Society, Providence, RI, 1995.

[4] M. Fortin, R. Glowinski, Augmented Lagrangians, North-Holland, Amsterdam, 1983.

[5] R. Glowinski, P. Le Tallec, Augmented Lagrangians and Operator Splitting Methods in Nonlinear Mechanics, SIAM, Philadelphia, 1989.

[6] R. Glowinski, J.-L. Lions, R. Tremolieres, Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam, 1981.

[7] V.I. Oliker, L.D. Prussner, On the numerical solution of the equatigfcyy — z,zcy = f and its discretization, I, Numer. Math. 54 (1988)
271-293.



