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Abstract

The main goal of this Note is to discuss a method for the numerical solution of the two-dimensional elliptic Monge–A
equation with Dirichlet boundary conditions (the E-MAD problem). This method relies on the reformulation of E-MA
a problem of Calculus of Variation involving the biharmonic operator (or closely related operators), and then to a
point formulation for a well-chosen augmented Lagrangian functional, leading to iterative methods such as Uzawa–D
Rachford. The above methodology applies to problems other than E-MAD (such as the Pucci equation). The results of n
experiments are presented. They concern the solution of E-MAD on the unit square(0,1)× (0,1); the first test problem has
known smooth closed form solution which is easily computed with optimal order of convergence. The second test pro
also a known closed form solution; the fact that this solution has theH2(Ω)-regularity, but not theC2(�Ω) one, does not preven
optimal order of convergence. Finally, the third test problem having no smooth solution is more costly to solve and
discrete solutions showing negative curvature near the corners.To cite this article: E.J. Dean, R. Glowinski, C. R. Acad. Sci.
Paris, Ser. I 336 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Une méthode de lagrangien augmenté pour la résolution numérique du problème de Monge–Ampère elliptique en
dimension deux avec conditions de Dirichlet. L’objet essentiel de cette Note est l’étude d’une méthode pour la résol
numérique du problème de Dirichlet pour l’équation de Monge–Ampère elliptique en dimension deux (le problème E
Cette méthode repose sur une reformulation de E-MAD comme un problème de Calcul des Variations impliquant l’opé
harmonique (ou des opérateurs voisins), puis sur une formulation de type point-selle pour un Lagrangien augmenté b
ce qui conduit naturellement à des algorithmes du type Uzawa–Douglas–Rachford. La méthodologie ci-dessus s’appl
problèmes autres que E-MAD (l’équation de Pucci, par exemple). Les résultats d’essais numériques sont egalement
Ils concernent la résolution du problème E-MAD sur le carré unité(0,1) × (0,1). Le premier problème test a une soluti
régulière (analytique, en fait) connue exactement ; on la retrouve facilement, avec une erreur d’approximation d’ordre
La solution du second probleme test est aussi connue exactement ; le fait qu’elle soit dansH2(Ω) sans être dansC2(�Ω)

n’empêche pas d’obtenir une erreur d’approximation d’ordre optimal. Finalement, le troisième problème test n’ayan
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reserved.
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solution régulière est plus difficile à résoudre ; les solutions approchées obtenues montrent que la courbure devient n
voisinage des coins.Pour citer cet article : E.J. Dean, R. Glowinski, C. R. Acad. Sci. Paris, Ser. I 336 (2003).
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1. Introduction

LetΩ be a bounded domain ofR
d (d � 2); theMonge–Ampère equation

detD2ψ = f in Ω, (1)

with D2ψ = (∂2ψ/∂xi∂xj )1�i,j�d , has always been a source of interest for differential geometers (see, e.g
it has more recently attracted the interest of thenonlinear partial differential equationscommunity, basic reference
being, e.g., [3,2]. The main goal of this Note is to address the numerical solution of thetwo-dimensional elliptic
(i.e., f > 0 onΩ) Monge–Ampère Dirichlet(E-MAD) problem. The approach to be investigated relies on
reformulation of E-MAD as a problem from theCalculus of Variationsinvolving the biharmonic operator�2

(or closely related operators). The first approach takes advantage of asaddle-point formulationfor a well-
chosenaugmented Lagrangian functional,leading toUzawa–Douglas–Rachfordalgorithms, for example. A mos
interesting feature of the augmented Lagrangian approach is that “it seems” to provide a kind of gen
solution inH 2(Ω) even if the E-MAD problem under consideration has no solution in that space.

2. Formulation of the Dirichlet problem for the elliptic Monge–Ampère equation in dimension 2

LetΩ be a bounded domain ofR
2; we denote byΓ the boundary ofΩ . The E-MAD problem can be written a

follows:{
detD2ψ = f in Ω,

ψ = g onΓ,
(E-MAD)

whereD2ψ is the Hessian ofψ and wheref andg are two given functions, withf > 0. Unlike the closely-relate
Dirichlet problem for the Laplace operator, E-MAD may havemultiple solutions,and thesmoothnessof the data
does not imply the existence of a smooth solution. Concerning the last property, suppose thatΩ = (0,1)× (0,1)
and consider the particular E-MAD problem defined by

∂2ψ

∂x2
1

∂2ψ

∂x2
2

−
∣∣∣∣ ∂2ψ

∂x1∂x2

∣∣∣∣
2

= 1 inΩ, ψ = 0 onΓ. (2)

Problem (2) cannot have smooth solutions since for those solutions the boundary conditionψ = 0 onΓ implies

that ∂
2ψ

∂x2
1

∂2ψ

∂x2
2

and ∂2ψ
∂x1∂x2

vanish at the boundary. Actually, the above (negative) result is not a consequence

non-smoothness ofΓ, since the above non-existence result persists if one replaces the aboveΩ by the ovoid-
shaped domain whoseC∞-boundary is defined byΓ = ⋃4

i=1Γi , with Γ1 = {x | x = {x1, x2}, x2 = 0, 0� x1 � 1},
Γ3 = {x | x = {x1, x2}, x2 = 1, 0 � x1 � 1}, Γ2 = {x | x = {x1, x2}, x1 = 1 + e4−1/x2(1−x2), 0 < x2 < 1},
Γ4 = {x | x = {x1, x2}, x1 = −e4−1/x2(1−x2), 0< x2 < 1}.

3. A saddle-point formulation of problem E-MAD. Related augmented Lagrangian iterative methods

The simplest Hilbert space where to solve problem E-MAD is clearlyH 2(Ω). This leads us to introduce

Vg = {
ϕ | ϕ ∈H 2(Ω), ϕ = g onΓ

}; (3)
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if g ∈H 3/2(Γ ), the (affine) spaceVg is non-empty. Assuming that E-MAD has solutions inVg , it makes sense t
consider the following problem fromCalculus of Variations:

ψ ∈Eg; J0(ψ)� J0(ϕ), ∀ϕ ∈Eg, (4)

whereJ0(ϕ) = 1
2

∫
Ω |�ϕ|2 dx andEg = {ϕ | ϕ ∈ Vg , detD2ϕ = f }. Replacing|�ϕ|2 by |D2ϕ|2 in J0(·), would

work as well (above|D2ϕ| = (∑
1�i,j�2

∣∣ ∂2ϕ
∂xi∂xj

∣∣2)1/2
). Motivated by previous work onnonlinear biharmonic

problems(see, e.g., [7,6,4]) we introduce thesymmetric tensor-valued functionsp =D2ψ , q =D2ϕ and the related
(equivalent to (4)) minimization problem:

j0(ψ,p)� j0(ϕ,q), ∀{ϕ,q} ∈ Eg, {ψ,p} ∈ Eg, (5)

wherej0(ϕ, q) = (1/2)
∫
Ω

|�ϕ|2 dx andEg = {{ϕ,q} | ϕ ∈ Vg , q ∈ Q, q = D2ϕ, detq = f }, andQ = {q | q =
(qij )1�i,j�2, q12 = q21, qij ∈ L2(Ω)}. Let r be apositiveparameter; we associate to (5) the followingsaddle-
point problem{

Lr (ψ,p;µ)� Lr (ψ,p;λ)� Lr (ϕ,q;λ), ∀{{ϕ,q},µ} ∈ (Vg ×Qf )×Q,{{ψ,p},λ} ∈ (Vg ×Qf )×Q,
(6)

whereQf = {q | q ∈Q, detq = f } and

Lr (ϕ,q;µ)= 1

2

∫
Ω

|�ϕ|2 dx + r

2

∫
Ω

∣∣D2ϕ − q
∣∣2 dx +

∫
Ω

µ : (D2ϕ − q
)
dx, (7)

with S : T = ∑
1�i,j�2 sij tij if S = (sij ) andT = (tij ). Suppose that problem (6) has a solution{{ψ,p},λ}, then

{ψ,p} is also a solution of (5). To compute the saddle-points of theaugmented LagrangianfunctionalLr we
advocate (among other algorithms and because of its simplicity) the following Uzawa–Douglas–Rachford
method:{

ψ−1,λ0} is given inVg ×Q; (8)

then, forn� 0, {ψn−1,λn} being known inVg ×Q, solve

Lr

(
ψn−1,pn;λn

)
� Lr

(
ψn−1,q;λn

)
, ∀q ∈Qf , pn ∈Qf , (9)

Lr

(
ψn,pn;λn

)
� Lr

(
ϕ,pn;λn

)
, ∀ϕ ∈ Vg, ψ

n ∈ Vg, (10)

λn+1 = λn + r
(
D2ψn − pn

)
. (11)

It follows from (7) that: (i) Problem (9) can be solved pointwise; to obtainpn from ψn−1 andλn we have to
minimize, pointwise onΩ , a three-variable polynomial of the following typez = {zi}3

i=1 → r
2(z

2
1 + z2

2 + 2z2
3)−

bn(x) · z over the set defined byz1z2 − z2
3 = f (x). The above problem is ageneralized eigenvalue problemwhich

is solved by a variant of theNewton’s method.(ii) Problem (10) is equivalent to awell-posed linear variationa
problemwhich reads as follows (withV0 =H 2(Ω)∩H 1

0 (Ω)):∫
Ω

�ψn�ϕ dx + r

∫
Ω

D2ψn :D2ϕ dx = Ln(ϕ), ∀ϕ ∈ V0, ψ
n ∈ Vg, (12)

with Ln ∈ V ′
0. Problem (12) can be solved by a conjugate gradient algorithm operating inVg (in fact inV0) equipped

with the scalar product{v,w} → ∫
Ω �v�w dx. Each iteration requires the solution of two Poisson problems

Dirichlet boundary conditions. For the space approximation of problem (6) we have used amixed finite elemen
discretizationclosely related to the one employed in [7,6,4] for the numerical simulation of two-dimens
Bingham visco-plastic flowusing thestream functionformulation and – like here – augmented Lagrangian ba
iterative methods; with this approach,ϕ, q, ψ , p are approximated by continuous piecewise linear approxima
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associated to a finite element triangulation ofΩ. The condition detq = f is imposed on the vertices of th
triangulation.

Remark 3.1. Concerning theinitialization of algorithm (8)–(11), we tookλ0 = 0 andψ−1 as the solution o
−�ψ−1 = f 1/2 in Ω , ψ−1 = g onΓ.

Remark 3.2. If the continuous problem E-MAD has no smooth solution (like it is the case for problem (2)), w
expect the discrete analogue ofEg to be empty; in that case (this is true for linear saddle point problems, as s
in [7,5]) we expect the sequence{λnh}n�0 to diverge (arithmetically), while{ψn

h ,pnh} will converge (geometrically
to a solution ofminimal normin the set{{ϕh,qh} | ϕh ∈ Vg,h, qh ∈Qf,h, ‖D2ϕh − qh‖L2 is minimal}, i.e., if Eg,h
is empty, algorithm (8)–(11) solve the discrete E-MAD problem in aleast squares sense.This suggests to look fo
least squares based methods for the solution of E-MAD; we are presently investigating such an approach

Remark 3.3. Thenumerical solutionof theMonge–Ampère equationshas been addressed in [5]; the methods in
are “highly” geometricalin contrast to thevariational one discussed in this Note which can be applied to a la
variety of PDE problems fromDifferential Geometry.

4. Numerical experiments

The method discussed in Section 3 has been applied to the solution of three E-MAD test problem
Ω = (0,1)2. Thefirst test problemcan be expresed as follows:

detD2ψ = (
1+ ρ2)eρ

2
in Ω, ϕ = g onΓ, (13)

with ρ2 = x2
1 + x2

2 andg given byg(x) = ex
2
1/2 on {x | 0< x1 < 1, x2 = 0}, g(x) = ex

2
2/2 on {x | x1 = 0, 0<

x2 < 1}, g(x)= e(1+x2
1)/2 on {x | 0< x1 < 1, x2 = 1} andg(x)= e(1+x2

2)/2 on {x | x1 = 1, 0< x2 < 1}. The exact
solution of (13) is given byψ(x1, x2) = eρ

2/2. We have discretized problem (13) relying on a mixed variatio
formulation, like the one discussed in [7,6,4], and used uniform triangulations ofΩ , allowing us to solve the
various elliptic problems encountered at each iteration of (8)–(11) by fast Poisson and Helmholtz solver
advantage of decomposition properties of biharmonic problems such as (12). Using as initial guess the app
solutions of−�ϕ = eρ

2/2
√

1+ ρ2 in Ω , ϕ = g on Γ, quite accurate approximations of the exact solution
obtained (employingr = 1 in (8)–(11)). After 100 iterations,‖ψc

h − ψ‖L2(Ω) is 2.6 × 10−5, 6.7 × 10−6 and
1.8 × 10−6 for h = 1/32, 1/64, and 1/128, respectively (hereψc

h is the computed approximate solution); t
L2(Ω)-approximation error is clearly O(h2). Similar (good) performances are obtained whenf andg correspond
to smooth functionsψ known in advance. The computed approximate solution obtained by (8)–(11) withh= 1/128
has been visualized on Fig. 1.

Thesecond test problemis-in some sense-more interesting, since it corresponds to a situation where E
has a solution inH 2(Ω) which does not belong toC2(�Ω). To be more precise, consider the particular E-MA
problem defined by:

detD2ψ = 1

ρ
in Ω, ψ = g onΓ (14)

with ρ as above andg given by g(x) = (2
√

2/3)x3/2
1 on {x | 0 < x1 < 1, x2 = 0}, g(x) = (2

√
2/3)x3/2

2 on
{x | x1 = 0, 0< x2 < 1}, g(x)= (2

√
2/3)(1+x2

1)
3/4 on{x | 0< x1 < 1, x2 = 1}, andg(x)= (2

√
2/3)(1+x2

2)
3/4

on {x | x1 = 1, 0 < x2 < 1}. With these data,ψ defined byψ(x1, x2) = (2
√

2/3)ρ3/2 is an exact solution o
problem (14). We can easily show that the above functionψ belongs toW2,p(Ω) if p < 4, but it does not have th
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Fig. 1. Test problem 1: Graph of the computed solution.
Fig. 2. Test problem 2: Graph of the right-hand side.

Fig. 3. Test problem 2: Graph of the computed solution. Fig. 4. Test problem 3: Graph of the computed solution.

C2(�Ω)-regularity. When, after space discretization, we apply algorithm (8)–(11) to the solution of problem (1
still observe O(h2) for theL2(Ω)-approximation error. On Figs. 2 and 3 we have visualized, respectively, the
of the right-hand side of Monge–Ampère equation in (14) and the graph of the computed solution corres
to h= 1/64. The third test problem, namely (2), i.e.,

detD2ψ = 1 inΩ, ψ = 0 onΓ, (15)

is by far the most intriguing. Indeed, despite the fact that problem (15) has no solution inH 2(Ω), algorithm
(8)–(11) produces a sequence{ψn}n converging (geometrically) to a limitψc

h, while the sequence{λn}n diverges
(arithmetically). The graph ofψc

h, obtained withh = 1/64 has been shown on Fig. 4, while the intersection
this graph with the planesx1 = 1/2 andx1 = x2 have been shown on Figs. 5 and 6, respectively, forh = 1/32,
1/64, and 1/128. A close inspection shows that the curvature of the graph becomes negative close to the
in violation of the Monge–Ampère equation; actually, it is also violated along the boundary, which is wh
expected, since (with obvious notation),‖D2

hψ
c
h − pch‖L2(Ω) = 1.8 × 10−2 if h = 1/32, 3.3 × 10−2 if h = 1/64,

4.2×10−2 if h= 1/128, while‖D2
hψ

c
h − pch‖L2(Ω1)

= 2.7×10−4 if h= 1/32, 4.1×10−4 if h= 1/64, 4.9×10−4

if h= 1/128, and‖D2
hψ

c
h −pch‖L2(Ω2)

= 4.4×10−5 if h= 1/32, 2.9×10−5 if h= 1/64, 5.1×10−5 if h= 1/128,
whereΩ1 = (1/8,7/8)2 andΩ2 = (1/4,3/4)2. Actually, sinceψc

h does not vary very much withh, we suspec
that, according to Remark 3.2, what we have here is a (good) approximation of one of these functions ofV0 whose
Hessian is at a minimalL2-distance (global or local) from the setQf introduced in Section 3.
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Fig. 5. Test problem 3: Graph of the solution restricted to the
planex1 = 1/2.

Fig. 6. Test problem 3: Graph of the solution restricted to the
planex1 = x2.

Remark 4.1. Following a suggestion of L. Caffarelli, we are presently investigating the solution of theregularized
Monge–Ampère equation

ε�ψ + detD2ψ = f in Ω, ψ = g onΓ,

by a variant of algorithm (8)–(11); the corresponding results will be reported elsewhere.
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