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Abstract

We present some results on a fully nonlinear version of the Yamabe problem and a Harnack type inequality for general
conformally invariant fully nonlinear second order elliptic equatidfwscite thisarticle: A. Li, Y.Y. Li, C. R. Acad. Sci. Paris,
Ser. | 336 (2003).
O 2003 Académie des sciences/Editions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé
On étudie une version complétement nonlinéaire du probléme de Yamabe. On etablit aussi une inégalité du type Harnack pou
des équations elliptiques de second ordre, complétement nonlinéaires, avec invariance conforme. Les démonstrations détaillé

de ces résultats sont présentées ailldRosr citer cet article: A. Li, Y.Y. Li, C. R. Acad. Sci. Paris, Ser. | 336 (2003).
0 2003 Académie des sciences/Editions scientifiques et médicales Elsevier SAS. Tous droits réservés.

Version francaise abr égée

Etant donnée une variété riemanniering ¢) de dimensiom > 3, on considére le tenseur de Weyl-Schouten
Ay = -L5(Ric, —mg), ou Rig, et R, sont la courbure de Ricci et la courbure scalaire associge®a dénote
parA(A,) les valeurs propres de¢, par rapport &. Soit I” ¢ R” un cone ouvert convexe dont le sommet est a
I'origine, symétrique par rapport %, tel que{fA e R" | A; >0,1<i<n}CI' C{reR"| Y '_1Ai > 0}. Soit
f e C®(I'yn Cc%TI") une fonction concave et symétrique par rappoxt éelle quef =0 surdrl’, f;, > 0 surl”
pour chaque X i < n et limy_« f(sA) = co pour toutr € I". Nous avons obtenu les résultats suivants
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Théoréme 1 [9]. Soitn > 3. On suppose quéf, I') vérifie les propriétés ci-dessus. Etant donnée une variété
riemannienne réguliére sans bo(d, g) de dimensiom et localement conformément plate telle dué ) € I’

sur M, il existe une fonction réguliére définie surM telle queg = u® "=? ¢ vérifie f(L(Az)) =1, M(Ap) €T,

sur M. De plus, si(M, g) n'est pas conformément difffomorphe a la sphere euclidienne de dimension
alors il existe un entier positifz et une constant€ (qui dépend seulement dé7, g), (f, I') et m) tels que
llullcmm,g) + ||u‘1||cm(M7g) < C pour toute solutiomn: du probleme.

Théoréme 2 [9]. Soitn > 3. On suppose qu& C S™*" vérifie (13) et (14) et queF € C1(U) vérifie (12), (15)
et (16). Pour'chaqueR > 0, on dénote pamBsy la boule de rayor8R dansR”. Siu € C?(B3g) est une solution
positive de Eq(17), alorsu vérifie (18) pour une certaine constant&(n) qui peut étre calculée explicitément.

We present some results in [9], a continuation of our earlier works [7,8](Metg) be ann-dimensional,
compact, smooth Riemannian manifold without boundary; 3, consider the Weyl-Schouten tenséy =

n—fz(Ricg —%g), where Ri¢ andR, denote respectively the Ricci tensor and the scalar curvature associated
with g. We user(A,) to denote the eigenvalues af,. Let § = u*/ "2 g, then (see, e.g., [17]),

Ag=—20n—2)" " VZu+2n(n — 2)"2u"*Veu ® Vou — 2(n — 2)"2u"?|VyulZg + Aq. 1)
Let
I' C R" be an open convex cone with vertex at the origin (2)
reR" M >01<i<n}cT C{reR" |1+ +iy >0}, 3)
I' is symmetric in the,;, 4)
fec®ryn c%T) be concave and symmetric in thg (5)
f=0 onoarl; fr, >0 onl, V1<i<n, (6)
[lim f(si)=oco. Viel. (7)

Theorem 1 [9]. For n > 3, let (f, I') satisfy(2)«7) and let(M, g) be ann-dimensional smooth compact locally
conformally flat Riemannian manifold without boundary satisfying

MAg eI, onM. 8)
Then there exists some smooth positive funation M such thatg = u% =24 satisfies
f(MAp)=1, A(Ag el onM. )

Moreover, if (M, g) is not conformally diffeomorphic to the standaresphere, all solutions of the above satisfy,
for any positive integem:, and some constaidt depending only oM, g), (f, I') andm,

leellemar,gy + 4™ [ mpr gy < C- (10)
Remark 1. TheC? andC? apriori estimates above do not require the concavity of

For 1<k <n, let ox(A) = X 1¢; <. iy <n Miy -+ - Mig, denote thek-th symmetric function, and lefy =

{LeR" | o1(A) > 0,...,0r(A) > 0}. Then (see [2]Xf, ) = (akl/k, I;) satisfies the hypothesis in Theorem 1.
For (f, I') = (o1, I'1), hypothesis (8) is equivalent 8, > 0 on M, and Theorem 1 in this case is the Yamabe
problem for locally conformally flat manifolds with positive Yamabe invariants, and the resultis due to Schoen[12,
13]. The Yamabe conjecture was proved through the work of Yamabe, Trudinger, Aubin and Schoen. For

(f, "= (okl/k, I;) with k = 2 andn = 4, the result was proved without the locally conformally flatness hypothesis
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of the manifold by Chang, Gursky and Yang [3]. Rgt I") = (okl/k, I) with k =n > 3, some existence result

was established by Viaclovsky [16] for a class of manifolds which are not necessarily locally conformally flat.
For (f,I') = (okl/k, I, n>3, 1<k <n, Theorem 1 was established in [7,8]; while the existence part in the
casek # 5 was independently obtained by Guan and Wang in [5]. Subsequently, Guan, Viaclovsky and Wang [4]
proved the algebraic fact thatA,) e I'; for k > 5 implies the positivity of the Ricci tensor, and therefore both the
existence and compactness results in this case follow from known results. More recently, Gursky and Viaclovsky
[6] have obtained existence results fgi I') = (akl/k, I'y), n =3, 4, on general Riemannian manifolds.

A Liouville type theorem for( f, I') = (okl/k, I;) was established in [8]. The crucial ingredient in our proof of

the Liouville type theorem is a Harnack type inequality fgr I") = (akl/k, I';) established in the same paper. In

[9], we have established the Harnack type inequality for general conformally invariant fully nonlinear second order
elliptic equations. In the following$”*" denotes the set af x n real symmetric matricesy’,*" ¢ S"*” denotes

the set of positive definite matrices(i) denotes the set af x n real orthogonal matrices, ardddenotes tha x n

identity matrix. It was show in [8] thal (-, u, Vu, V2u) is conformally invariant ofR” (see [8] for the definition)

if and only if H (-, u, Vu, V2u) = F(A%), where

A% = —2(n — 2) Ly~ tD/=D g2y, 4 2p(n — 2)"% =2/ Dy, @ Vu

—2(n —2)2u~ =2 vy, (11)
F(0™'MO)=FM), VM eS™", YO € On). (12)
LetU c S"*" be an open set satisfying
o~ 'vo=U, VO eOm), (13)
UN{M +tN |0<t <oo}isconvexyM € S"*", N € S1". (14)
Let F e C1(U) satisfy (12) and
(832 (M)) >0, VMeU, (15)
1/2
F(M) #1, VMeUﬂ{MES"X”|||M|| = (ZMS) <5}. (16)

iJ
For F(M) := o/ *(L(M)), and Uy := (M € 8" | (M) € I3}, it is well known that(F, U) = (F, Uy)
satisfies (13), (14), (12) and (16).
Theorem 2[9]. Forn > 3, let U ¢ S"*" satisfy(13)and (14), and letF e C1(U) satisfy(12), (15)and (16). For
R > 0, let Bz be a ball inR” of radiusR, and letu € C?(Bsg) be a positive solution of
F(A")=1, A"eU, in Bs. 17)

Then, for some constagt(n) depending only on,

(SBl.Lpu)( inf u) < C(n)s@ /221, (18)

Remark 2. In Theorem 2, there is no concavity assumptionfoand the constand (n) can be given explicitly.

Remark 3. The Harnack type inequality (18) fa#, U) = (F1, U1) was obtained by Schoen in [14] based on
a Liouville type theorem of Caffarelli, Gidas and Spruck in [1]. Li and Zhang gave in [11] a different proof of
Schoen’s Harnack type inequality without using the Liouville type theorem(Fot/) = (Fy, Uy), 1 < k < n,
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the Harnack type inequality was established in our earlier work [8]. There are two new ingredients in our proof
of Theorem 2. One is that we have developed, along the line of [8],¢fand C! estimates which allow us to
extend the Harnack type inequality in [8] to this generality, and the other is that we have given a direct proof which
makes it possible to give an explicit const@hin (18). Arguments in [14,11] and [8] were indirect and therefore

no explicit value ofC was available, even in the cagg, U) = (F1, U1).

We first present our proof of Theorem 1, more details can be found in [9]. As explained in [9], we may further
assume without loss of generality thatis homogeneous of degree 1. By (6) and (7), there exists a uhigu@
such thatf (be) = 1, wheree = (1, ..., 1). By (6), there exists som&a > 0 such that

f) <1, Viel, |\ <d1. (19)
Fix some constar, such that

O<do<min f(A(A . 20

<82 < min £ (M4(2))) (20)

Let (M, £) denote the universal cover @#, g), with i : M—>Ma covering map and = i*g. By a theorem of
Schoen and Yau in [15], there exists an injective conformal immergion, g) — (8", go), wheregg denotes
the standard metric off'. Moreover£2 := @ (M) is eitherS" or an open and dense subsetbtf Fix a compact
subsetE of M such thai (E) = M. To prove Theorem 1, we will establish (10) first. lue¢ C°°(M) be a positive
solution of (9) withg = u®"=2g. We denoteF (A,) := f (A(Ay)).

Stepl. For some constaiit depending only oriM, g), b, §1 andész, we have

C7l<u<C, |Veu|<C onM. (21)

Two casesCasel. 2 =S"; Case2. 2 #§".

In Case 1@ 1)*g = n“/(" 2go on'S*, wheren is a positive smooth function of’. Let i = u o i. Since
F(Azym-2g) =1 on M, we have F (A jop-1),4/0-24,) = 1, on §". By Corollary 1.1 in [8], (i o &~ Ly =
alJ,|= 2/(om) for some positive constaatand some conformal diffeomorphisaof . Sincep*go = |J,|%" go,
we havef(a“‘/(”‘z) (n—1e) = f(a ¥ "D (Ag)) =1, i.e.,(n — 1)a=¥ =2 = p. Estimate (10) follows easily.

In Case 2,(@ 1*z = n¥ =gy on 2 where, by [15],7 is a positive smooth function i satisfying
lim._ 30 n(z) = co. Recall thats2 is an open and dense subsefS8f Let u(x) = maxy, u for somex € M, and
leti(x) = x for somex € E. By composing with a rotation d&¥”, we may assume without loss of generality that
@ (x) = §, the south pole of”. Let P :S" — R" be the stereographic projection, anddete the positive function
on the open subsét(£2) of R” determined by P~1)* (n% =2 gg) = v*"~2 g5, wheregfa; denotes the Euclidean
metric onR”. Then for some: > 0, depending only oriM, g), we haveBg, := {x € R" | |x| < 9¢} C P(£2),
and dist,,, (P(®(E)), 0P (82)) > 9e. Letit = (i o @~ 1o P71y on P(2), we have, by (1),f(A(Aﬁ)) =1 and
A(A") e I'. By the property ofj, we know that lim_ 5, yep)it(y) = oo forall y € 9 P(£2) and, if the north pole
of S* does not belong t@, limycp (), |y|_>oo(|y|”—212 (y)) = co. By a moving sphere argument as in [9], we have,
for everyx e R” satisfying disf;,, (x, P(®(E))) < 2¢, that

)\n—Z A<)»2(y _ x)
u
ly —x["=27°\ |y —x|?

tx () = )Sﬁ(y), VO<A<d4e, [y—x|=4, yeP(£2). (22)

Lemma1[9]. Leta > 0 be a constant and lekg, € R" be the ball of radiu8a and centered at the origim, > 3.
Assume that € C1(Bg,) is a non-negative function satisfying

ux 2 (y) <u(y), VxeBa, yeBgs, O<Ai<2a, A<|y—x|,
whereu, ;. (y) := (A/|y])"~2u(x + A2(y — x)/ly — x[?). Then|Vu(x)| < ((n — 2)/(2a))u(x), ¥|x| <a.

By (22) and the above calculus lemma, we hgwdogii) (y)| < C(e), Y disty, (v, P(P(E))) <e.
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Thus, for some constaigt depending only oiM, g), |V, logu| < C on M, and

supt < Cinfa. (23)
Be Be

Let 8 > 0 be the constant such théty) := (2 — |y|?) has the property that > & on B,, and, for some
3 € B, i(y) = £(3). It follows that Vi (3) = VE(3), (D%i(§)) > (D%(5)), andA? () < A% (3). By (23) and the
definition of¢, we have 1 (|3/¢)? > C~1,andC~1sup, it < Be? < Cinfp, i, whereC depends only oM, g).
Consequentlyd? () < A% (3) < CB~4 =D This, together with the fact that(A%(y)) € I" C I'1, implies that
IM(A%(3))] < CB~4 "2 Since f (L(A%(F))) = 1, we have, by (19), that < C5{* /%, whereC depends only
on (M, g). Again by (23), we have maxu = ii(¥) < Cii(0) < Ci(5) = CE(5) < CB < €82 "/* Letx € M be
a maximum point of:, it was shown in [8] thatf (u(¥) =¥ "~2 (A, (x))) < 1. This, together with (20), implies
maxy u = u(x) > 8&"_2)/4. Using the upper bound d#, logu| on M, we have, for some positive constafit
depending only oM, g), thatu > C~*maxy u > C~153"~?/* on M. Step 1 is established.

Step2. For some constaiit depending only oriM, g), b, §1 andéy, |V§u| <ConM.

C? estimates fo(f, I') = (okl/k, I';) were obtained by Viaclovsky [16]. The arguments can be adapted in our
situation. Indeed, this is equivalent to setting= 1 in the definition ofG (x) in the proof of Theorem 1.6 in [8],
so thatG (x) is defined onM, and Step 2 follows from the computation there (witks 1) together with Step 1.
Since f is concave inl", and since we have establish€fl, C1 and C? estimates of andu 1, estimate (10)
follows from the interior estimates of Evans and Krylov together with the Schauder estimates.

For the existence part of Theorem 1, we only need to treat the cag@fhaj is not conformally diffeomorphic
to a standard sphere. The following homotopy was introduced in [8]: farsG< 1, let f;(A) = f(A + (1 —
o1(M)e) be defined o} := {x e R" | 1A+ (1—t)o1(1)e € I'}. We consider, for & t < 1, and forg = u%/ =2 ¢,

fi(M(Ap) =1, XAz el; onM. (24)

For0<t <1, (f;, I;) satisfies (2)—(6) and (7). Moreover estimate (10) holds for solutions of (24), unifarmin
With this the argument in [8] (using the degree theory for second order fully nonlinear elliptic operators in [10])
yields a solution: of (9) in C*%. By standard elliptic theories, e C>°(M). Theorem 1 is established.

Next we present our proof of Theorem 2. By scaling, it is easy to see that we only need to prove the theorem
for R =8 = 1, which we assume below. Letx) = maxg, u. As in the proof of Theorem 1.8 in [8],we can find
X € By/a(x) such that

1
u(@ =22 supu and y:=u@?" o > Eu()?)z/("_z), (25)
By (%)
whereo = (1—[X —X[)/2< 1/2. If y < 2"™8n*, then(sup,, u)(infp,u) <u(¥)? < (2y)"~2/2< C(n), done. So
we assume > 28,4 Let I' := u (%)% =2 > 2y, and considew(y) := u(X) " Lu + u(®)%@My), |y| < TI.
By superharmonicity oft,

minw = infw > u(X) "t minu, 1=w(0) > 2@/ 2 supw. (26)
3Br Br B2 B,
We know F(A") = 1 on Br. Fix r = 2% < y. For |x| < r, considerw, ;(y) := (|yix\)n_2w(x +
20y_ o . .
A‘y(ixl’;)), y € Br. By the conformal invariance of the equation, we h&@*“**) =1 on B \ B, (x). Asin [8],

there exists G< A, < r such thatw, ,(y) S w(y), VO< A <Ay, y € Br\ B,.(x), andw, , (y) < w(y), VO< i <
Ax, y € dBr. By the moving sphere argument in [8], we only need to treat two cases:

Casel. For somdx| < r and some. € (O, r), wy , touchesw ondBr.

Case2. For all|x| <r, all A € (O, r), we havew, ) (y) < w(y),V|y —x| > A, y € Br.
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In Case 1, leh € (0, r) be the smallest number for whiaby, , touchesw ond Br. By (26), we have, for some
Iyol = I, u(X) "I miny g, u < Miny g, w = wy 5 (yo). Using (26),w, 1 (vo) < 2*=2/2(r/(I" — r))"~2. Therefore,

n—2
o("_z)/zu()f) minu < 2(”_2)/20(n_2)/2u()f)2 r — 2B/29(n=2); (1=2)/2,n—2 <C). (27)
9B (I/2)n=2

We deduce from (25) and (27) th@up,, u)(infz,u) < 8'~2r""2 < C(n).

In Case 2, we have, by Lemma 1 and (26), thab(y)| < 2(n — 2)r 1w(y) < (n — 2)2"/%r71, V|y| <r. Lete
be the number such thaty) := %(r — |y|?) satisfiesw > & on B s and for soméy| < /7, w(y) = £(3). Since
1=w(0) >£(0)=1-—¢and&(y) > 0, we have (X ¢ < 1. By the estimates gV w| and the mean value theorem,
lw(y) — 1 < (n — 22"/2r=1/2 forall |y| < /7. S02 <1— (n — 222y Y2 < w(§) = £(3) < 1— e, and there-
fore 0< e < (n — 2)2"/%r=Y2_Clearly, Vw () = VE(3), |VEG)| < % D?w(y) > D?%(3) = —-2(1—e)r 1. It

follows thatA™ (3) < A% () < %Zz"/(”‘%‘l]. SinceF (A¥(y)) = 1, we have, by (16)%22"/(”‘2%‘1
> 1, violating the choice of. Thus we have shown that Case 2 can never occur. Theorem 2 is established.

The results in this Note have been presented by the second author at his 45-minute invited talk at ICM 2002 in
August 2002 in Beijing. The results have also been presented by the second author in a colloquium talk at North-
western University on September 27, 2002, in the Geometric Analysis seminar at Princeton University on October
18, 2002, in a mini-course in late October 2002 at Universita di Milano. On December 2 2002, the second author
was informed by P. Guan that he, in collaboration with C.S. Lin and G. Wang, has obtained some related results.

Note added in proof

We have recently established general Liouville type theorems for conformally invariant fully nonlinear equations
(arXiv: math.AP/0301239, arXiv: math.AP/0301254, [9]).
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