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Abstract Using the same method we provide negative answers to the following questions: is it
possible to find real equations for complex polynomials in two variables up to topol ogical
equival ence (L ee Rudolph)? Can two topol ogically equivalent polynomials be connected by
a continuous family of topologically equivalent polynomials? To citethisarticle: A. Bodin,
C. R. Acad. Sci. Paris, Ser. | 335 (2002) 1039-1042.

O 2002 Académie des sciences/Editions scientifiques et médicales Elsevier SAS

Non réalité et non connectivité des polynémes complexes

Résumé Pour les polyndmes de deux variables complexes, nous construisons des contre-exemples
aux questions suivantes : aéquival ence topol ogique prés, peut-on toujourstrouver une équa-
tion réelle a un polyndme complexe (Lee Rudolph) ? Deux polynémes topol ogiquement
équivalents peuvent-ils étre reliés par une famille de polyndmes topol ogiquement éguiva-
lents? Pour citer cet article: A. Bodin, C. R. Acad. Sci. Paris, Ser. | 335 (2002) 1039—
1042.
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1. Introduction

Two polynomials f, g € C[x, y] are topologically equivalent, and we will denote f ~ g, if there exist
homeomorphisms® : C2 — C2and ¥ : C — C suchthat go ® = Wo f. They arealgebraically equivalent,
and we will denote f ~ g, if we have ® € AutC2 and W = id.

It is always possible to find real equations for germs of plane curves up to topological equivalence.
In fact the proof is as follows: the topological type of a germ of plane curve (C, 0) is determined by
the characteristic pairs of the Puiseux expansions of the irreducible branches and by the intersection
multiplicities between these branches. Then we can choose the coefficients of the Puiseux expansionsin R
(evenin Z). Now it is possible (see [ 7], appendix to Chapter 1) to find a polynomial f € R[x, y] (evenin
Z[x, y]) such that thegerm (f = 0, 0) is equivalent to the germ (C, 0).

This property has been widely used by N. A’Campo and others (see [1] for example) in the theory of
divides. Lee Rudol ph asked the question whether it istrue for polynomials[10]. We give a negative answer:

THEOREM A. — Up to topological equivalenceit is not always possibleto find real equationsfor complex
polynomials.

2. We now deal with another problem. In [5] we proved that a family of polynomials with some
constant numerical data are all topologicaly equivalent. More precisely for a polynomia let m =
(e, #Bat, A, #80, #13) bethe multi-integer respectively composed of the affine Milnor number, the number
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of affine critical values, the Milnor number at infinity, the number of critical values at infinity, the number
of critical values (with B = B4 U Bs). Then we have a global version of the L& Ramanujam p.-constant
theorem:

THEOREM ([5]). — Let (f;):e0,1 be afamily of complex polynomialsin two variables whose coefficients
are polynomialsin . Suppose that the multi-integer m(¢) and the degree deg f; do not depend on ¢ € [0, 1].
Then the polynomials fp and f1 aretopologically equivalent.

It is true that two topologically equivalent polynomias have the same multi-integers m. A natural
question is. can two topologicaly equivalent polynomials be connected by a continuous family of
topologically equivaent polynomials?

THEOREM B. — There exist two topologically equivalent polynomials fp, f1 that cannot be connected
by a family of equivalent polynomials. That means that for each continuous family ( f;):c[o,1] there exists a
7 €]0, 1] such that f; isnot topologically equivalent to fp.

It can be noticed that the answer is positive for algebraic equivalence. Two algebraically equivalent
polynomials can be connected by algebraically equivalent polynomiassince Aut C2 is connected by Jung's
theorem.

Such kinds of problems have been studied by V. Kharlamov and V. Kulikov in [9] for cuspidal projective
curves. They give two complex conjugate projective curves that are not isotopic. The example with lowest
degree has degree 825. In [2], Artal, Carmonaand Cogolludo give examples of projective curves C, C’ of
degree 6 that have conjugate equationsin Q(+/2) but the pairs (P2, C) and (P2, C’) are not homeomorphic
by an orientation-preserving homeomorphism.

3. Themethod used in this note is based on the relationship between topol ogical and al gebraic equivalence:
we set a family (f;)sec of polynomials such that (f; = 0) is a line arrangement in C2. One of the line
depends on a parameter s € C. There are enough lines in order that each polynomial is algebraically
essentialy unique. Moreover every polynomial topologicaly equivalent to f is algebraic equivaent to
a fy, where s’ may be different from s.

For generic parameters the polynomials are topologically equivalent all together and the function f; isa
Morsefunctionon C?\ £,71(0). We choose our counter-exampleswith non-generic parameters, for such an
example f; isnot aMorse function on C2\ fk‘l(O). Thefact that non-generic parametersare finite enables
usto provethe requested properties.

4. Non-reality
Let
Js@e, y) =xy(x = y)(y = D(x —sy).
Let k, k betherootsof s2 — s + 1.
THEOREM A. — There does not exist a polynomial g with real coefficients such that ¢ ~ f.

Let C=1{0,1,k k}. Thenfor s € C\ C, f, verifies u = 14, #Bxt = 3 and B, = . By the connectivity
of C\ C and the global version of the u-constant theorem, two polynomials f; and f/, with s, s’ ¢ C, are
topologically equivalent.

The polynomials f; and f; verify pu = 14, but #84¢ = 2. Then such a polynomial is not topologically
equivalent to agenericone f;, s ¢ C. Infact for s ¢ C there are two non-zero critical fiberswith one double
point for each one. For s = k or s = k, there is only one non-zero critical fiber with an ordinary cusp.

LEMMA 1. - Lets, s’ € C. The polynomials f; and f;, are algebraically equivalentif and only if s = s’
ors=1-—ys".
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In particular the polynomials f; and f; are algebraically equivalent.

Proof. — Let ussupposethat f; and f, are agebraically equivalent. Then we can supposethat there exists
® € AutC? such that f, = f; o ®. Such a ® must send the lines (x = 0), (y = 0) to two lines, then ® is
linear: ®(x, y) = (ax + by, cx +dy). A caculusprovesthat ®(x, y) = (x, y) or &(x,y) = (y — x, y) that
istosays=s"ors=1—s". O

LEMMA 2.— Fixs € C andlet f be a polynomial suchthat f ~ f;. Thereexists s’ suchthat f ~ f.
Then Lemma 1 implies that there are only two choicesfor s’, but s” can be different from s.

Proof. — Thecurve fs—l(O) containsthe simply connected curvexy (x — y) (x —sy), thenthe curve £ ~1(0)
contains also a simply connected curve (with 4 components), by the generalization of Zaidenberg—Lin
theorem (see [4]) this simply connected curveis algebraically equivalent to xy(x — y)(x — s’y). Then the
polynomial f isalgebraically equivalentto xy(x — y)(x —s’y) P(x, y). Thecurve C defined by (P =0) is
homeomorphicto C and admits a polynomial parameterization («(z), B(¢)) with «, 8 € C[¢]. Since C does
not intersect the axe (y = 0), B is aconstant polynomial; since C intersects the axe (x = 0) at one point «
ismonomial. An equation of P isnow P(x, y) = y" — A. By theirreducibility of C and up to an homothety
weget P(x,y) =y — 1. Thatistosay f isalgebraicaly equivalentto f;;. O

5. Let g € Clx, yl, if g(x,y) = > a; jx'y/ then we denote by g the polynomial defined by g(x,y) =
S~ a; jx'yl. Then g = g if and only if all the coefficients of g are real.

We prove Theorem A. Let suppose that there exists a polynomial g such that g = g and g ~ fi. There
existss € C suchthat g ~ f;. Since f; hasonly two critical values, g and f; havetwo critical values. Then
s=kors=k (s=0ors=1 gives apolynomia with non-isolated singularities). As f; ~ fi we can
choose s = k. As a consequence we have ® € AutC? such that g = f o ®.

Letdbed=(p,q). Theng=pqg(p —q)(g — 1) (p — kqg). As g = g we have:

{p’qvp_q’q_17p_kq}={13’q_’ﬁ_qvq_1’ﬁ_kq_}°
Moreover by the configuration of the lineswe havethatg —1=g — 1. So g = g. Henceg € R[x, y]. So
{p.p—q.p—kq}={p.p—q,p—kq}.
Let supposethat p# p. Thenp=p—q or p=p — kq. So p — p equals —g or —kg. But p — p has
coefficients in iR, which is not the case of ¢ € R[x, y] nor of kq. Then p = p. We have proved that
® = (p, q) hasrea coefficients. From g = f o ® we get g = fx o ®. S0 g = f; o ®. On the one hand
fi =go® Landontheother hand f; = g o ®~1. S0 fi = f;, then k = k whichisfalse. It endsthe proof.

We could have end in the following way: ® = (p,q) is in AutC? with rea coefficients, then @,
considered asarea map, isin AutR? (see[3, Theorem 2.1] for example). Then fy = g o ® L with g, d~1
with real coefficients, then f; hasreal coefficients which provides the contradiction.

6. Non-connectivity
Let

fs@, ) =xy(—Dx+y—D(x —sy).
Let C be theroots of
s(s — 1) (s 4 1) (2565 4 7365 + 82552 + 7365 -+ 256) (2565 + 4485 + 78952 + 4485 + 256).

Thenfors e C\ C, f, verifiesu = 14, #Bxt = 4 and Bo, = @. For s, s’ ¢ C, fs and f; are topologically
equivalent. The roots of 256s* + 44853 + 78952 + 448s + 256 are of the form {k, k,1/k, 1/k}. The
polynomias f; and f; verify u = 14, but #84 = 3. Then such apolynomial is not topologically equivalent
toagenericone f, s ¢ C.
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THEOREM B. — The polynomials f; and f; are topologically equivalent and it is not possible to find a
continuous family (g;);¢[0,1) Suchthat go = fi, g1 = f; and g; ~ fi for all t € [0, 1].

The polynomials f; and f; aretopologically equivalent since we have the formula f; (x, y) = fi(x, y).
Thetwo following lemmas are similar to Lemmas 1 and 2.

LEMMA 3.-—The polynomials f; and f,, are algebraically equivalent if and only if s = s’ or s = 1/s’.
LEMMA 4. - Fixs andlet f bea polynomial suchthat f ~ f;. Thenthere exists s’ such that f ~ fi.

7. We now prove Theorem B. Let us suppose that such afamily (g,) doesexist. Then by Lemma4 for each
t € [0, 1] there exists s (¢) € C such that g, isalgebraically equivalent to f;,) (in fact there are two choices
for s(r)). We can suppose that there exists ®, € AutC? such that S5ty =81 o Dy

We now provethat themap ¢ — @, can be chosen continuous, that isto say the coefficients of the defining
polynomials are continuous functions of ¢. We write g, = A, B;G; such that Ag(x, y) = x, Bo(x,y) =1y
andthe mapst +— A;, t — B, are continuous. So the automorphism &, Lis defined by

O (x, y) = (A(x, ), Bi(x, ).
By theinverseloca theorem with parameter 7, we have that r — @, isacontinuousfunction. Then the map
t — fs( isacontinuous function, as the composition of two continuous functions. As s(¢) is a coefficient
of the polynomial f;), themap ¢ — s(¢) isacontinuous function.

Asaconclusion we haveamap 7 — s(¢) which is continuous and such that s(0) = k and s(1) = k. Itim-
pliesthat thereexists T € 10, 1] suchthat s(z) ¢ C. Onthe onehand g, isagebraically, hence topologically,
equivalent to f(ry; on the other hand g, is topologically equivalent to f; (by hypothesis). As s(t) ¢ C,
fs and f; are not topologically equivalent (because #34+ are different), it provides a contradiction.

8. | would like to thank Lee Rudolph for the question which initiated this work. The calculus have been
done with the help of SINGULAR, [8], and especially with author’slibrary cri t i ¢ describedin [6]. This
research has been done at the Centre de Recerca Matematica of Barcelona and was supported by a Marie
Curie Individua Fellowship of the European Community (HPM F-CT-2001-01246).
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