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Note presented by Michel Duflo.

Abstract Consider two maps f and g from a setE into a set F such that f (x) �= g(x) for every x inE.
What is the maximal cardinal of a subset A of E such that the images of the restriction of f
and g to A are disjoint? Mekler, Pelletier and Taylor have shown that it is card(E) when
the set E is infinite; in the finite case, we have proved that it is greater than or equal to
card(E)/4. In this paper, using graph theoretical technics, we find these results as a direct
application of a lemma of Erdös. Moreover, we show that if E = F = R, then there exists
a countable partition {En}n�1 of R such that f (En)∩ g(En)= φ, for every n� 1. To cite
this article: A. El Sahili, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 859–861.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Théorie des graphes dans la théorie generale des fonctions

Résumé On considère deux applications f et g d’un ensemble E dans un ensemble F telles que
f (x) �= g(x) pour tout x dans E. Quel est le cardinal maximal d’un sous-ensemble A de E
tel que les images des restrictions de f et g àA soient disjointes ? Dans le cas oùE est infini,
la réponse est card(E), comme l’ont montré Mekler, Pelletier et Taylor ; dans le cas fini,
nous avons prouvé que le cardinal en question est plus grand ou égale à card(E)/4. Dans cet
article, en utilisant les outils de la théorie des graphes, nous retrouvons ces resultats comme
application directe d’un lemme d’Erdös. Nous démontrons de plus que si E = F = R, alors
il existe une partition dénombrable {En}n�1 de R telle que f (En)∩ g(En)= φ, pour tout
n � 1. Pour citer cet article : A. El Sahili, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 859–
861.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Multigraphs and multidigraphs considered here are obtained from graphs and digraphs by permitting
multiple edges but no loops. When G is a multigraph, we denote by e(G) the cardinal of the set of edges
of G. If H is a submultigraph of G, G − H denotes the multigraph obtained from G by deleting the
edges of H . A subset A of V (G) is said to be independent if the submultigraph induced by A has no
edges. We denote by G(D) the underlying multigraph of a multidigraph D. The chromatic number of a
multidigraph D, denoted by χ(D), is the chromatic number of its underlying multigraph.

Consider two maps f and g from a set E into a set F , which satisfy the following property: for every
element x in E, f (x) �= g(x).
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Pelletier, Mekler and Taylor announce in [4] the following theorem:

THEOREM 1 (Pelletier, Mekler and Taylor). – Let f and g be two maps from a set E into a set F , such
that f (x) �= g(x) for every x in E. If E is infinite, then there exists a subset A of E having the same
cardinality as E such that f (A)∩ g(A)= φ.

In [1] we gave a simple proof of the above theorem and we proved in the finite case the following result:

THEOREM 2. – Let f and g be two maps from a set E into a set F , such that f (x) �= g(x) for every x
in E. If E contains at least 4m elements, then there exists a subset A of E with at least m elements such
that f (A)∩ g(A)= φ.

Using graph-theoretical technics, we find the above results as an application of a lemma of Erdös [2],
and we prove the following result:

THEOREM 3. – Let f and g be two maps from R into R such that f (x) �= g(x) for every x in R. Then
there exists a countable partition {En}n�1 of R such that f (En)∩ g(En)= φ, for every n� 1.

2. Functions and multidigraphs

Let f and g be two maps from a set E into a set F which satisfy: f (x) �= g(x) for every x in E.
We define two multidigraphs D and H as follows:
V (D) = F , and for all a, b ∈ V (D), we draw κ edges from a to b, where κ = card(g−1(a) ∩ f−1(b)).

D contains no loops since f (x) �= g(x) for every x in E.
V (H)=E, and (x, y) ∈E(H) if f (x)= g(y).
We remark that we may associate, in a bijective way, to each edge from a to b in D a vertex x of E

such that g(x)= a and f (x)= b. Then (x, y) is an edge in H if h(x)= t (y). (The had of x is the tail of y
viewed as edges in D.)

It is easy to see that an independent set in H is a subset A of E such that f (A)∩ g(A)= φ.

LEMMA 1 ([2]). – Any finite multigraph G contains a bipartite submultigraph B = B(X,Y ) such that
e(B)� e(G)/2.

We extend this lemma to infinite multigraphs as follows:

LEMMA 2. – Any multigraph G contains a bipartite submultigraph B = B(X,Y ) such that e(B) �
e(G−B).

Proof. – Enumerate V (G) by an ordinal α and set V (G) = {vβ,β < α}. The proof is by transfinite
induction on α. If α = 0, there is nothing to prove. Suppose that the lemma holds for all multigraphs G
such that V (G) can be enumerated by an ordinal β < α. We consider two cases:

(1) α is a successor ordinal. Set α = γ + 1. Since the lemma holds for the subgraph Gγ of G induced by
{vβ, β < γ }, there exists a Bγ = Bγ (Xγ ,Yγ ) such that e(Bγ )� e(Gγ −Bγ ) and V (Gγ )=Xγ ∪ Yγ . Set

Rα = {e : e is an edge of G incident with vα and a vertex in Xγ },
Tα = {e : e is an edge of G incident with vα and a vertex in Yγ }.

If |Rα| � |Tα|, we set Xα = Xγ and Yα = Yγ ∪ {vα}, otherwise we set Yα = Yγ and Xα = Xγ ∪ {vα}. We
have e(Bα)� e(G−Bα).

(2) α is a limit ordinal. By case 1, we may suppose that if β < γ < α, we have Xβ ⊆Xγ and Yβ ⊆ Yγ .
Put Xα = ⋃

β<α Xβ and Yα = ⋃
β<α Yβ . Then e(Bα)� e(G−Bα). ✷

Proof of Theorem 1. – Let D and H be defined as above on F and E. We apply Lemma 2 to G(D).
It thus contains a bipartite submultigraph B = B(X,Y ) such that e(B) � e(D − B). Since |E| = e(D) =
e(B)+ e(D−B) and E is infinite, we have e(B)= |E|. We partition E(B) into those edges whose tails lie
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in X and those whose tails lie in Y . One of these two subsets of E(B) has the same cardinality as E. This
subset corresponds to an independent set in H having the same cardinality as E. ✷

Proof of Theorem 2. – As in the above proof, we have e(B)� e(D−B), so e(B)+ e(D−B)=E(D)=
|E| � 4m, and e(B)� 2m. We partition E(B) into those edges whose tails lie in X and those whose tails
lie in Y . One of these two subsets of E(B) has at least m edges. This subset corresponds to an independent
set in H having at least m elements. ✷
3. Application to real functions

Let f and g be two maps from R into R such that f (x) �= g(x) for every x in R. We construct the
digraphs D and H as in the above section. First we note that any vertex x of H can be viewed as a couple
(g(x), f (x)) (two distinct vertices of H may have the same representation!). Since card(R)= 2ℵ0 , then the
elements of R can be replaced by the subsets of N, and so the vertices of H by couples of distinct subsets
of N. Thus if v = (A,B) and v′ = (A′,B ′) are two vertices of H (A,B,A′ and B ′ are subsets of N), (v, v′)
is an edge of H if B =A′.

Proof of Theorem 3. – We shall prove that χ(H) � ℵ0, by considering the vertices of H as couples of
distinct subsets of N. For every n� 1, we define the following two sets:

Fn = {
(A,B) ∈ V (H); inf(A−B)= n

}
,

F ′
n = {

(A,B) ∈ V (H); inf(B −A)= n
}
.

These sets are independent in H . In fact, let v = (A,B) and v′ = (A′,B ′) be two vertices in Fn. If
(v, v′) is an edge of H then B = A′, but (A,B) ∈ Fn means that inf(A − B) = n and so n /∈ B which
contradicts the fact that (B,B ′) = (A′,B ′) ∈ Fn. Similarly we show that F ′

n is an independent set. In
the other hand, let v = (A,B) be any vertex of H . Since A �= B , then A�B �= φ so (A − B) �= φ or
(B−A) �= φ. In the first case, v ∈ Fs where s = inf(A−B), in the other case v ∈ F ′

t where t = inf(B−A).
Thus V (H)= ⋃

n�1(Fn ∪ F ′
n) and χ(H)� ℵ0. ✷

This fact directly proved on real functions can be obtained as a particular case of a result of Erdös and
Hajnal on shift graphs.

If D = (V ,E) is a digraph, the shift-graph associated to D is by definition the digraph sh(D)= (V ′,E′)
such that V ′ = E and E′ = {((i, j), (j, k)) : (i, j), (j, k) ∈ E}. If D is complete and if V (D) is infinite
of cardinal κ , the chromatic number χ(sh(D)) is calculated by Erdös and Hajnal [3] to be log2(κ) (the
smallest λ such that κ � 2λ). Let D be the complete digraph defined on R. It is clear that the digraph H

defined above is a subdigraph of sh(D), then χ(H)� χ(sh(D))= log2(|R|)= ℵ0.
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