C. R. Acad. Sci. Paris, Ser. | 335 (2002) 859-861

Combinatoire/Combinatorics

Graph-theoretical methods in general function theory

Amine El Sahili 2°

@ Lebanese university |, El hadas, Beyrout, Lebanon

b El sahili Amine, BP 93, Tyr-Lebanon, Lebanon

Received 15 April 2002; accepted after revision 8 October 2002
Note presented by Michel Duflo.

Abstract Consider twomaps f and g fromaset E intoaset F suchthat f(x) # g(x) forevery x in E.
What isthe maximal cardinal of asubset A of E such that theimages of therestriction of f
and g to A are digoint? Mekler, Pelletier and Taylor have shown that it is card(E) when
the set E is infinite; in the finite case, we have proved that it is greater than or equal to
card(E) /4. In this paper, using graph theoretical technics, we find these results as a direct
application of alemma of Erdds. Moreover, we show that if £ = F =R, then there exists
acountable partition {E,},>1 of R suchthat f(E,) N g(En) = ¢, for every n > 1. To cite
thisarticle: A. El Sahili, C. R. Acad. Sci. Paris, Ser. | 335 (2002) 859-861.
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Théorie des graphes dans la théorie generale des fonctions

Résumé On considere deux applications f et g d'un ensemble E dans un ensemble F telles que
f(x) # g(x) pour tout x dans E. Quel est le cardinal maximal d’un sous-ensemble A de E
tel quelesimagesdesrestrictionsde f et g a A soient digointes? Danslecasou E est infini,
la réponse est card(E), comme I'ont montré Mekler, Pelletier et Taylor ; dans le cas fini,
nous avons prouve que le cardinal en question est plus grand ou égale acard(E) /4. Dans cet
article, en utilisant les outils de lathéorie des graphes, nous retrouvons ces resultats comme
application directe d’' un lemme d’ Erdds. Nous démontronsde plusquesi E = F =R, dors
il existe une partition denombrable (E,},>1 de R telleque f(E,) N g(En) = ¢, pour tout
n > 1. Pour citer cet article: A. El Sahili, C. R. Acad. Sci. Paris, Ser. | 335 (2002) 859—
861.
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1. Introduction

Multigraphs and multidigraphs considered here are obtained from graphs and digraphs by permitting
multiple edges but no loops. When G is a multigraph, we denote by ¢(G) the cardinal of the set of edges
of G. If H is asubmultigraph of G, G — H denotes the multigraph obtained from G by deleting the
edges of H. A subset A of V(G) is said to be independent if the submultigraph induced by A has no
edges. We denote by G (D) the underlying multigraph of a multidigraph D. The chromatic number of a
multidigraph D, denoted by x (D), is the chromatic number of its underlying multigraph.

Consider two maps f and g from aset E into aset F, which satisfy the following property: for every
dementx in E, f(x) # g(x).

E-mail addresses: sahili @jonas.univ-lyonl.fr; aminsahi @inco.com.Ib (A. El Sahili).

O 2002 Académie des sciences/Editions scientifiques et médicales Elsevier SAS. Tous droits réservés
$1631-073X(02)02585-2/FLA 859



A. El Sahili/ C. R. Acad. Sci. Paris, Ser. | 335 (2002) 859-861

Pelletier, Mekler and Taylor announcein [4] the following theorem:

THEOREM 1 (Pelletier, Mekler and Taylor). —Let f and g be two mapsfroma set E into a set F, such
that f(x) # g(x) for every x in E. If E isinfinite, then there exists a subset A of E having the same
cardinality as E suchthat f(A)Ng(A) =¢.

In [1] we gave asimple proof of the above theorem and we proved in the finite case the following result:

THEOREM 2.—Let f and g betwo mapsfroma set E into a set F, such that f(x) # g(x) for every x
in E. If E contains at least 4m elements, then there exists a subset A of E with at least m elements such
that 7 (A) N g(A) = ¢.

Using graph-theoretical technics, we find the above results as an application of a lemma of Erdés [2],
and we prove the following result:

THEOREM 3.-—Let f and g be two maps from R into R such that f(x) # g(x) for every x in R. Then
there exists a countable partition { E,, },>1 of R suchthat f(E,) N g(E,) = ¢, for everyn > 1.

2. Functions and multidigraphs

Let f and g betwo mapsfromaset E into aset F which satisfy: f(x) # g(x) forevery x in E.

We define two multidigraphs D and H asfollows:

V(D)= F,andfor al a,b e V(D), we draw « edges from a to b, where x = card(g~1(a) N f~1(b)).
D containsno loops since f(x) # g(x) forevery x in E.

V(H)=E,and (x,y) € E(H) if f(x)=g().

We remark that we may associate, in a bijective way, to each edge from a to b in D avertex x of E
suchthat g(x) =a and f(x) =b. Then (x, y) isanedgein H if h(x) =¢(y). (Thehad of x isthetail of y
viewed asedgesin D.)

Itiseasy to seethat an independent set in H isasubset A of E suchthat f(A) N g(A) = ¢.

LEMMA 1 ([2]).— Any finite multigraph G contains a bipartite submultigraph B = B(X, Y) such that
e(B) > e(G)/2.

We extend this lemmato infinite multigraphs as follows:

LEMMA 2.—Any multigraph G contains a bipartite submultigraph B = B(X, Y) such that e¢(B) >
e(G — B).

Proof. — Enumerate V(G) by an ordinal o and set V(G) = {vg, 8 < «}. The proof is by transfinite
induction on «. If « = 0, there is nothing to prove. Suppose that the lemma holds for al multigraphs G
such that vV (G) can be enumerated by an ordinal 8 < «. We consider two cases.

(1) o isasuccessor ordinal. Set o = y 4 1. Since thelemmaholds for the subgraph G, of G induced by
{vg, B <y} thereexistsa B, = B, (X,,Y,) suchthat e(B,) > e(G, — B,) and V(G,) =X, UY,. Set

Ry ={e:eisanedgeof G incident with v, and avertexin X, },
Ty ={e:eisanedgeof G incident with v, and avertexinY, }.

If |Ro| > Ty ], weset X, =X, and ¥, =Y, U{v,}, otherwisewe set Y, =Y, and X, = X, U {vs}. We
have e(By) > ¢(G — By).

(2) « isalimit ordinal. By case 1, we may suppose that if 8 <y <o, wehave Xg C X, and Yg C 7).
Put Xo =gy Xp and Yo =g, Yp. Thene(By) > e(G — By). O

Proof of Theorem 1. —Let D and H be defined as above on F and E. We apply Lemma 2 to G(D).
It thus contains a bipartite submultigraph B = B(X, Y) such that e(B) > e(D — B). Since |[E| = e(D) =
e(B) +e(D — B) and E isinfinite, we have e(B) = | E|. We partition E (B) into those edgeswhose tailslie
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in X and those whosetailsliein Y. One of these two subsets of E(B) has the same cardindlity as E. This
subset correspondsto an independent set in H having the same cardinalityas E. O

Proof of Theorem 2. — Asin the above proof, we havee(B) > e(D — B),s0e(B) + e(D — B) = E(D) =
|E| > 4m, and e(B) > 2m. We partition E(B) into those edges whose tails liein X and those whose tails
liein Y. One of thesetwo subsets of E(B) hasat least m edges. This subset correspondsto an independent
setin H having at least m elements. O

3. Application to real functions

Let f and g be two maps from R into R such that f(x) # g(x) for every x in R. We construct the
digraphs D and H asin the above section. First we note that any vertex x of H can be viewed as a couple
(g(x), f(x)) (two distinct verticesof H may have the same representation!). Since card(R) = 2%, then the
elements of R can be replaced by the subsets of N, and so the vertices of H by couples of distinct subsets
of N. Thusif v= (A, B) andv' = (A’, B’) aretwo verticesof H (A, B, A’ and B’ are subsets of N), (v, v")
isanedgeof H if B=A’.

Proof of Theorem 3. —We shall provethat x (H) < Ro, by considering the vertices of H as couples of
distinct subsets of N. For every n > 1, we define the following two sets:

F,={(A,B)e V(H); inf(A— B) =n},
F,={(A,B)e V(H); inf(B—A)=n}.

These sets are independent in H. In fact, let v = (A, B) and v/ = (A’, B") be two vertices in F,,. If
(v,v’) isan edge of H then B = A’, but (A, B) € F, means that inf(A — B) =n and so n ¢ B which
contradicts the fact that (B, B’) = (A, B’) € F,. Similarly we show that F,, is an independent set. In
the other hand, let v = (A, B) be any vertex of H. Since A # B, then AAB # ¢ S0 (A — B) # ¢ or
(B — A) # ¢. Inthefirst case, v € F; wheres =inf(A — B), intheother case v € F/ wherer =inf(B — A).
Thus V(H) = U,>1(F, U Fy) and x (H) <Xo. O

This fact directly proved on real functions can be obtained as a particular case of a result of Erdds and
Hajnal on shift graphs.

If D= (V, E) isadigraph, the shift-graph associated to D is by definition the digraph sh(D) = (V’, E')
suchthat V' = E and E' = {((i, j), (j, k) : (i, j), (j, k) € E}. If D is complete and if V(D) is infinite
of cardinal «, the chromatic number x (sh(D)) is calculated by Erdos and Hajnal [3] to be log,(x) (the
smallest A such that x < 2*). Let D be the complete digraph defined on R. It is clear that the digraph H
defined above is a subdigraph of sh(D), then x (H) < x (sh(D)) = logy(|R|) = Ro.
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