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Note presented by Paul Maliavin.

Abstract We describe the tangent space of Riemannian path space as a space of tangent processes
localized on Brownian sheets; the bundle of adapted frames above a Riemannian path space
and its structural equation are given. The stochastic calculus of variations allows us to derive
Harnack–Bismut inequality for the Norris semigroup.To cite this article: A.-B. Cruzeiro,
P. Malliavin, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 817–820.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Calcul de variations stochastiques et l’inéqualité de Harnack
sur l’espace de chemins riemanniens

Résumé On décrit l’espace tangent à l’espace de chemins riemanniens comme un espace de
processus tangents localisé sur des fueuilles browniennes ; le fibré de repères adaptés
sur l’espace de chemins riemanniens et son équation de structure sont donnés. Le calcul
de variations stochastiques permet de dériver l’inégalité de Harnack–Bismut pour le
semigroupe de Norris.Pour citer cet article : A.-B. Cruzeiro, P. Malliavin, C. R. Acad.
Sci. Paris, Ser. I 335 (2002) 817–820.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

1. Structural equations

Given ad-dimensional compact RiemannianM we fix a pointm0 ∈M and we denotePm0(M) the path
space that is the space of continuous mapsp : [0,1] �→M suchp(0) = m0 [12,14]. In [1–3] it has been
emphasized that the differential geometry on the path space has to be compatible with the underlyig Itô
filtration N∗; in particular the natural unitary group associated to the change of frame is the subgroup of
all unitary transformations of the Cameron–Martin space which commute with the orthogonal projections
defined by the conditional expectationsEN∗ . This group can be realized asPe(SO(d)), the path group over
the d-dimensional orthogonal group; in [4] the orthonormal frame bundleO(Pm0(M)) has been defined
so that its structural group isPe(SO(d)); the Levi-Civita parallel transport onM transport gives a canonic
sectionσ : Pm0(M) �→O(PM0(M)).

As a substitute of the Levi-Civita connection for which the adaptness criterium to the Itô filtration
fails, theMarkovian connection has been introduced in [3]. This connnection induces onO(Pm0(M)) a
parallelism given by two differential formsπ = (π̇, π̈) whereπ̈ takes its values inP0(so(d)); a novelty of
the present Note is to consider that the range ofπ̇ is a space P of localized tangent processes. In [3] the
tangent processes on the whole path space have been defined as the family ofR

d valued semi-martingales
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dζ α = aαβ dxβ+ cα dτ such thataαβ +aβα = 0; as this notion of tangent process involves the concept of semi-
martingale, it is a global notion on the whole spacePm0(M). A differential formπ is said to take its values
in the space of tangent processes if and only if〈Z, π̇ 〉 is a tangent process for every adapted vector fieldZ

defined onO(Pm0(M)): constant vector fields in the parallelism are adapted vector fields and generate the
space of all adapted vector fields. To obtain a Harnack inequality one needs to localize this global notion of
tangent process: we shall proceed by parametrizingPp0(Pm0(M)) by a Brownian sheet on which we shall
use the global notion of tangent process.

A key fact established in [3,4,9] is the structural equations of the parallelism. In order to shorten this Note
we shall assume all around that the Ricci curvature ofM vanishes; when this hypothesis is not fulfilled the
situation can be mastered by a suitable modification of the formalism, replacing the usual gradient on
Pm0(M) by thedamped gradient introduced in [10] (see [1]).

THEOREM. – Assume that the Ricci tensor of M vanishes; denote by Z∗ constant vector fields on
O(Pm0(M)); then(〈Z1∧Z2,dπ̇〉

)
σ(p)
= (

π̈(Z2)π̇(Z1)− π̈(Z1)π̇(Z2)
)
σ(p)
+ T

(
π̇(Z1), π̇(Z2)

);
here T is the torsion defined by the following Itô stochastic integral:(

T (z1, z2)
)
τ
:=

∫ τ

0
�(z1, z2)dx,

where � is the Riemann curvature tensor of M and where x denotes the antideveloppement of p ∈ Pm0(M);
the functor T is a bilinear map of P ×P �→ P . In the same way introduce the functor C which associates
to ζ, ζ ′ ∈P the endomorphism of P defined by

C(ζ, ζ ′) : η �→
∫ ∗

0
�(ζ, ζ ′)dη;

then C is the curvature of the parallelism in the sense that the following structural equation holds true:(〈Z1∧Z2,dπ̈〉
)
σ(p)
− [

π̈(Z1), π̈(Z2)
]
σ(p)
= C.

Remark. – The torsion can be obtained by saturating one index of the curvature by the stochastic
differential along the path dx : T = C(dx); this type of contraction is a key building stone in the theory
of iterated path integrals.

2. Harnack inequality

Denoteµ the Wiener measure onPm0(M); then the Cameron–Martin type gradient onPm0(M) defines
a Dirichlet form; the corresponding process has been constructed in [7]; under our hypothesis of vanishing
Ricci this process coincides with the process defined in [13] and therefore is compatible with the Itô
filtration. Its infinitesimal generatorL, using [11], has been written in [4] onO(Pm0(M)) using the
covariant derivative associated to the parallelism∇̂ as

2L=
∑
α

∫ 1

0

(∇̂2
τ,α dτ − ∇̂τ,α dxα(τ )

)
.

We denote by�t(p0,dp) the heat kernel associated to the semi-group exp(tL) which is defined in [7]
for p0 outside a set of null capacity; the strong machinery of [13] makes possible to define it for allp0;
in this work we have for objective to prove inequalities which can be reached through uniform estimates
of finite dimensional approximations in the spirit of [5] and in this context we shall not emphasize the
problem of the domain of definition of�t(∗,dp). For Harnack–Bismut type derivative formulas see [8]
and references therein.

The Cameron–Martin space of the Wiener space of theRd valued brownian motion is the Hilbert
space H1(Rd) of Rd valued pathsz such thatż ∈ L2; we denoteT 1

p0
(Pm0(M)) its image by parallel

transport alongp0 of H1(Tm0(M)). For any vectorz ∈ T 1
p0
(Pm0(M)) we define the logarithmic derivative

∂z log�t(p0,p) in the spirit of [6] by the following identity holding true for every bounded test functionφ:
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lim
ε→0

1

ε

∫ (
�t(p0+ εz,dp)−�t(p0,dp)

)
φ(p)=

∫
�t(p0,dp)∂z log�t(p0,p)φ(p).

HARNACK THEOREM. – Let M be a d-dimensional Riemmanian manifold with vanishing Ricci
curvature and with curvature tensor as well as its first three covariant derivatives bounded; then for all
r ∈]1,∞[ there exists a constant Cr depending only on the previous bounds such that for all vector field Z
such that the Cameron–Martin norm ‖Zp‖T 1

p0
(Pm0(M)) � 1, ∀p we have∫

Pm0(M)⊗Pm0(M)

∣∣∂Z log�t(p0,p)
∣∣rµ(dp0)⊗µ(dp)� Cr exp(−rt).

This theorem will be approached by the stochastic calculus of variations which consists in looking at the
propagation ofz along the time evolution of the stochastic flow associated toL; the structural equations
imply that a vectorz ∈ T 1

p0
(Pm0(M)) propagates as alocal tangent processes along the time evolution: one

novelty of this Note is to consider tangent processes on an auxiliary probability space which allows us to
fix the starting pointp0 without loosing their properties.

3. Stochastic calculus of variations along the Brownian sheet

We denotew∗(t, τ ) theRd valued Brownian sheet defined fort > 0, τ ∈ [0,1] such thatw(0,∗) =
w(∗,0) = 0. We denoteyt theRd -valued Brownian curve defined asyt (τ ) = w(t, τ ). We consider for
initial σ field the data of a starting path together with a vector in the Cameron–Martin tangent space at this
starting point; then we denoteNt,τ theσ field obtained by adding at the initialσ field the information given
by the knowledge ofxα(t ′, τ ′) for t ′ < t , τ ′ < τ . We denoteI t ′t , t < t ′, the innovationNt ′,1 −Nt,1. We
define a vector field

Zt(p)=Epyt (t)=p(ζ1(t)
)
.

Considering a trajectorypt of the process associated toL starting fromp0, we denotext its antidevelop-
ment. Then we shall use the parametrization

dtxt = dyt − xt dt, x0 �= 0, y0= 0. (1)

THEOREM. – Denote ζ(t, τ ) a variation of the Brownian sheet; denote ζ1 the corresponding variation
of pt looked upon the parallelism then we have:

dtζ = dtζ1+ ζ1 dt − ρ odtxt + T (ζ1, o dtxt ), dtρ = C(ζ1, o dtxt ). (2)

The stochastic contraction involvingρ appearing(2) takes the shape(
C(ζ1, dtx) dtxt

)
τ
=

∫ τ

0
RicciM

(
ζ1(s)

)
ds

the right-hand side can be interpreted as defining RicciPm0(M); this interpretation is coherent with the
interpretation given [3], p. 165, formula (9.7.1). In our setting where RicciM = 0 this contraction disappears.

We can choose the variationsζ , ζ1 as we like as soon that (2) is fullfiled; we make the following choice
determining firstζ1 and subsequentlyζ :

dtζ1(t)=−ζ1(t)dt − T
(
ζ1(t), o dtxt

)
, ζ1(0)= z ∈ T 1(Pm0(M)

)
, (3)

dtζ(t)=−ρ dtxt , dtρ = C(ζ1, o dtxt ), ζ(0)= 0, ρ(0)= 0. (4)

Using the change of variable (1) Eqs. (3), (4) can be transfered on the Brownian sheet; we call alocal
tangent process a map which for eacht defines a semi-martingale on the Brownian spacew(t,∗) with the
antisymmetry of its martingale part; thenζ1 is a local tangent process. We denoteµt the Wiener measure
onP0(R

d) defined byw(t,∗). We fix a finite mass Borelian measureθ onR+ and we consider the finite
mass measure defined onP0(R

d) by νθ =
∫∞

0 µtθ(dt); then

THEOREM. – The infinitesimal transformation associated to ζ(∗) preserves the measures νθ .
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4. Integration by parts procedure

A key step in the proof of Harnack–Bismut formula in finite dimensions is to realize an integration by
parts by using a Girsanov formula. In our setting Girsanov formula is not available; worst, the coefficient
of this “tentative Girsanov formula” will not be a function in a Cameron–Martin space relatively to the
variableτ but a tangent process. Trotter–Kato formula will supply for us the missing Girsanov formula; the
annoying contribution of tangent processes will then disappear. We consider the OU process associated toL
and its lift to the frame bundle, associated toL̃, a crucial object constructed in [5]; we denote fort1 < t2 the
corresponding stochastic flowUw

t2←t1
, Ũw

t2←t1
. The measuresµt being mutually singular, we shall realize

the semi-group associated toL on space time introducing fors < t a mapPs←t : L2
µt
�→ L2

µs
defined by

Ps←t = EFs ((Uw
t←s)

∗f ). We denote byPt the space of tangent process on the Wiener spacew(t,∗) and
we define a flow(Qt←s(ζs))y =Ew(t,∗)=y(η(t)), wheret > s, and whereη satisfies Eq. (3) with the initial
valueη(s)= ζ . We have the intertwinning formula

〈ζs, dPs←t f 〉 = Ps←t

(〈Qt←sζs, df 〉
)
.

Then we have the formula of integration by parts

tE〈ζ0, dP0←t f 〉p0 =E
((∫ t

0
δs(Qs←0ζ0)ds

)
f

(
Uw
t←0(p0)

))
, (5)

whereδs denotes the divergence relatively to the infinitesimal measure generated byFs+ε −Fs .
From a differential geometer point of view our strategy can be summarized as follows: the pionneering

work of Norris [13] has shown the fittness of Brownian sheet stochastic calculus for the study of path space;
Norris used a delicate two parametersM-valued Stratonovitch stochastic calculus; lifting the situation to
frame bundle only a mildedRd valued two parameters stochastic calculus is needed here; frame bundle
technology needs firstly a computable knowledge of frame bundle structural equations recently obtained in
[4,9] and secondly the realization of the lift of the OU process to frame bundle: this realization depends
upon finite dimensional approximation realized in [5].
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