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Abstract We describe the tangent space of Riemannian path space as a space of tangent processes
localized on Brownian sheets; the bundle of adapted frames above a Riemannian path space
and its structural equation are given. The stochastic calculus of variations allows us to derive
Harnack—Bismut inequality for the Norris semigrodjo. cite this article: A.-B. Cruzeiro,

P. Malliavin, C. R. Acad. Sci. Paris, Ser. | 335 (2002) 817-820.
O 2002 Académie des sciences/Editions scientifiques et médicales Elsevier SAS

Calcul devariations stochastiques et I'inéqualité de Harnack
sur I’espace de cheminsriemanniens

Résumé On décrit I'espace tangent a l'espace de chemins riemanniens comme un espace de
processus tangents localisé sur des fueuilles browniennes; le fibré de reperes adaptés
sur I'espace de chemins riemanniens et son équation de structure sont donnés. Le calcul
de variations stochastiques permet de dériver l'inégalité de Harnack—Bismut pour le
semigroupe de NorrifRour citer cet article: A.-B. Cruzeiro, P. Malliavin, C. R. Acad.

Sci. Paris, Ser. | 335 (2002) 817-820.
O 2002 Académie des sciences/Editions scientifiques et médicales Elsevier SAS

1. Structural equations

Given ad-dimensional compact Riemanniaf we fix a pointng € M and we denote,,,(M) the path
space that is the space of continuous map$0, 1] — M such p(0) = mg [12,14]. In [1-3] it has been
emphasized that the differential geometry on the path space has to be compatible with the underlyig 1t6
filtration NV in particular the natural unitary group associated to the change of frame is the subgroup of
all unitary transformations of the Cameron—Martin space which commute with the orthogonal projections
defined by the conditional expectatioﬁéf*. This group can be realized &(SO(d)), the path group over
the d-dimensional orthogonal group; in [4] the orthonormal frame bur@i&,,,(M)) has been defined
so that its structural group iB.(SO(d)); the Levi-Civita parallel transport oM transport gives a canonic
sectiono : Py (M) = O (Puy(M)).

As a substitute of the Levi-Civita connection for which the adaptness criterium to the It6 filtration
fails, the Markovian connection has been introduced in [3]. This connnection inducesoq®,,,(M)) a
parallelism given by two differential forms = (7, 77) wheresr takes its values ifPy(so(d)); a novelty of
the present Note is to consider that the rangé & a space P of localized tangent processes. In [3] the
tangent processes on the whole path space have been defined as the fafiilsabfed semi-martingales
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dc* = ag dx? + ¢ dr such thatzg +a§ = 0; as this notion of tangent process involves the concept of semi-
martingale, it is a global notion on the whole spag (M). A differential formz is said to take its values

in the space of tangent processes if and onlyZif:7) is a tangent process for every adapted vector feld
defined onO (P,,(M)): constant vector fields in the parallelism are adapted vector fields and generate the
space of all adapted vector fields. To obtain a Harnack inequality one needs to localize this global notion of
tangent process: we shall proceed by parametriZiggP,,,(M)) by a Brownian sheet on which we shall

use the global notion of tangent process.

A key fact established in [3,4,9] is the structural equations of the parallelism. In order to shorten this Note
we shall assume all around that the Ricci curvatur@ofanishes; when this hypothesis is not fulfilled the
situation can be mastered by a suitable modification of the formalism, replacing the usual gradient on
Ppy (M) by thedamped gradient introduced in [10] (see [1]).

THEOREM. —Assume that the Ricci tensor of M vanishes; denote by Z, constant vector fields on
O (Ppy(M)); then
((Z1A Za,diD)) ) = (7 (227 (ZD) = 7 (ZD7(22)) 5, + T (7 (Z0), 7 (Z2));
here 7 isthe torsion defined by the following It stochastic integral:

(T(Zl, zz))r = /0 Q(z1, z2) dx,

where € isthe Riemann curvature tensor of M and where x denotesthe antideveloppementof p € P, (M);
the functor 7 isa bilinear map of P x P — P. In the same way introduce the functor C which associates
to ¢, ¢’ € P the endomorphismof P defined by

%
C. ¢ /O (¢, ¢" dn;
then C isthe curvature of the parallelismin the sense that the following structural equation holds true:

((Z1A Z2.d)),, ) — [ (20, %(Z2)] ) =C.

Remark. — The torsion can be obtained by saturating one index of the curvature by the stochastic
differential along the path.xd: 7 = C(dx); this type of contraction is a key building stone in the theory
of iterated path integrals.

2. Harnack inequality

Denoteu the Wiener measure oR,,,(M); then the Cameron—Martin type gradient B, (M) defines
a Dirichlet form; the corresponding process has been constructed in [7]; under our hypothesis of vanishing
Ricci this process coincides with the process defined in [13] and therefore is compatible with the 1t6
filtration. Its infinitesimal generatof, using [11], has been written in [4] 0®(P,,,(M)) using the
covariant derivative associated to the parallel%ms

1
2L = Z/ (§r2a dr — §f,a dx“(r)).
« Y0

We denote byl (pg, dp) the heat kernel associated to the semi-groupzXpwhich is defined in [7]
for po outside a set of null capacity; the strong machinery of [13] makes possible to define it fg; all
in this work we have for objective to prove inequalities which can be reached through uniform estimates
of finite dimensional approximations in the spirit of [5] and in this context we shall not emphasize the
problem of the domain of definition dfl, (%, dp). For Harnack—Bismut type derivative formulas see [8]
and references therein.

The Cameron—Martin space of the Wiener space of Rievalued brownian motion is the Hilbert

space H(R?) of RY valued pathg such that:; € L% we denoteT . (P, (M)) its image by parallel

transport alongg of Hl(Tmo(M)). For any vectot € Tplo(PmO (M)) we define the logarithmic derivative
9, logTl;(po, p) in the spirit of [6] by the following identity holding true for every bounded test funciion
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1
2!lfpog/(l'lz(poJrsz,dp)—l'Iz(po, dp))tb(p):/l'lz(m dp)d. logIl;(po. p) ¢ (p).

HARNACK THEOREM.—Let M be a d-dimensional Riemmanian manifold with vanishing Ricci
curvature and with curvature tensor as well as its first three covariant derivatives bounded; then for all
r €11, oo[ there exists a constant C, depending only on the previous bounds such that for all vector field Z
such that the Cameron—Martin norm ||Zp||TplO(Pmo(M)) <1, Vp wehave

/ 19210gT1, (po, )| 11(dpo) @ p1(dp) < C; exp(—r).
P (M)® Py (M)

This theorem will be approached by the stochastic calculus of variations which consists in looking at the
propagation of, along the time evolution of the stochastic flow associated;tthe structural equations
imply that a vectot, € T,}O(Pmo(M)) propagates aslacal tangent processes along the time evolution: one
novelty of this Note is to consider tangent processes on an auxiliary probability space which allows us to
fix the starting poinfpg without loosing their properties.

3. Stochastic calculus of variationsalong the Brownian sheet

We denotew*(z, t) the R? valued Brownian sheet defined for> 0, t € [0, 1] such thatw(0, x) =
w(x,0) = 0. We denotey, the R?-valued Brownian curve defined as(t) = w(t, t). We consider for
initial o field the data of a starting path together with a vector in the Cameron—Martin tangent space at this
starting point; then we denaté; ; theo field obtained by adding at the initialfield the information given
by the knowledge ofk* (¢, /) for ¢’ <t, v’/ < . We denoteZ,’/, t < t', the innovationV,: 1 — NV 1. We
define a vector field

Zi(p) = EP =P (01(0)).
Considering a trajectory; of the process associated fostarting frompg, we denotex, its antidevelop-
ment. Then we shall use the parametrization
dix; =dy, —x,;dt, x0#0, yo=0. 1)
THEOREM. —Denote ¢ (¢, t) a variation of the Brownian sheet; denote ¢1 the corresponding variation
of p,; looked upon the parallelism then we have:
di§ =dis1+ 610t — podixy + T (51, 0dixy), dip=C(¢1,0drx;). (2

The stochastic contraction involvingappearing2) takes the shape
(€ dimydivs), = | Rieci (ca(s) s

the right-hand side can be interpreted as defining Rie€l’; this interpretation is coherent with the
interpretation given [3], p. 165, formula (9.7.1). In our setting where FiceiO this contraction disappears.

We can choose the variations¢1 as we like as soon that (2) is fullfiled; we make the following choice
determining first1 and subsequently:

ditr(t) = —q1 () dt = T (¢2(t), 0dx;) . £1(0) =z € T (Pug(M)), (3)
dit(t)=—pdix;, dip=C((1,0dx), ¢(0)=0, p(0)=0. 4)

Using the change of variable (1) Egs. (3), (4) can be transfered on the Brownian sheet; wéocalll a
tangent process a map which for each defines a semi-martingale on the Brownian space ) with the
antisymmetry of its martingale part; thenis a local tangent process. We dengtethe Wiener measure
on Po(R%) defined byw(z, %). We fix a finite mass Borelian measuten Rt and we consider the finite
mass measure defined ®3(RY) by vy = [5~ 11,0(dr); then

THEOREM. — Theinfinitesimal transformation associated to ¢ (x) preserves the measures vg.
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4. Integration by partsprocedure

A key step in the proof of Harnack—Bismut formula in finite dimensions is to realize an integration by
parts by using a Girsanov formula. In our setting Girsanov formula is not available; worst, the coefficient
of this “tentative Girsanov formula” will not be a function in a Cameron—Martin space relatively to the
variabler but a tangent process. Trotter—Kato formula will supply for us the missing Girsanov formula; the
annoying contribution of tangent processes will then disappear. We consider the OU process assatiated to
and its lift to the frame bundle, associatedXoa crucial object constructed in [5]; we denote fpk 7, the
corresponding stochastic flow;;_, , U, . The measureg, being mutually singular, we shall realize
the semi-group associated foon space time introducing for< ¢t a mapPs; : L,ZL, > Lﬁs defined by
P, = Efv((U;’j_S)*f). We denote byP, the space of tangent process on the Wiener spdcex) and
we define a flow(Q; (&) y = E¥" =Y (5(r)), wherer > s, and where satisfies Eq. (3) with the initial
valuen(s) = ¢. We have the intertwinning formula

(Css dPs<—tf> = Py ((Ql<—5€ss df))
Then we have the formula of integration by parts

tE(¢0,dPocy f)po =E ((/o 85(Qs<020) dS) f(U,“f_o(Po))>, (5)

whered; denotes the divergence relatively to the infinitesimal measure generafgd by F;.

From a differential geometer point of view our strategy can be summarized as follows: the pionneering
work of Norris [13] has shown the fitthess of Brownian sheet stochastic calculus for the study of path space;
Norris used a delicate two paramet@fsvalued Stratonovitch stochastic calculus; lifting the situation to
frame bundle only a milde®? valued two parameters stochastic calculus is needed here; frame bundle
technology needs firstly a computable knowledge of frame bundle structural equations recently obtained in
[4,9] and secondly the realization of the lift of the OU process to frame bundle: this realization depends
upon finite dimensional approximation realized in [5].
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