C. R. Acad. Sci. Paris, Ser. | 334 (2002) 539-544

Analyse mathématiqueMathematical Analysis

Singular sets of Sobolev functions

Darko Zubrini €

Department of Applied Mathematics, Faculty of Electrical Engineering, Unska 3, 10000 Zagreb, Croatia
Received 21 December 2001; accepted 4 February 2002

Note presented by Paul Malliavin.

Abstract We are interested in finding Sobolev functions with “large” singular sets. Gitgne N,
1< p < oo, kp < N, for any compact subset of R, such that its upper box dimension
is less thanV — kp, we construct a Sobolev functiane W-?(RM) which is singular
precisely oM. We introduce the notions of lower and upper singular dimensions of Sobolev
space, and show that both are equaVte kp. To cite this article: D. Zubrini, C. R. Acad.
Sci. Paris, Ser. | 334 (2002) 539-544.2002 Académie des sciences/Editions scientifiques
et médicales Elsevier SAS

Ensembles singuliers des fonctions de Sobolev

Résumé Nous sommes intéressés a trouver des fonctions de Sobolev dont I'ensemble des singularités
est «grand ». Etant donmé, k € N, 1 < p < o0, kp < N, pour chaque sous-ensemble
compact deR?, dont la «box-dimension» supérieure est plus petite Kue kp, nous
construisons une fonction de Sobolee W*-?(RY) qui est singuliére précisément stir
Nous introduisons les notions de dimensions singulieres inférieure et supérieure de I'espace
de Sobolev, et montrons que ses valeurs 80rt kp. Pour citer cet article : D. Zubrink,
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Version francaise abrégée

Soientu : RY — R une fonction mesurable et Sing'ensemble des singularités dg c’est-a-dire
xo € Singu si ils existante > 0, R > 0, C > 0, tels queu(x) > C|x — xo|™% p.p. surBg(xp). Nous
introduisons la notion deimension singuliére inférieurde I'espace de Sobolev W (RV), N,k € N,
par

s-dimW5? (RV) = sup{dimy (Singu) : u € W57 (RV) },
ou dimy est la dimension de Hausdorff. [dimension singuliére supérieuest définie par
sdimW-? (RV) = sup{dimy(e-Singu) : u € WrP (RV) 1,
ou e-Sing: est I'ensemble élargi des singularités edéfini par (4). Il est clair que e-Simgcontient

Singu et, par exemple, les singularités logarithmiques deissi. Le but de cet article est de prouver que si
1< p < o0, k entier positif ou nulkp < N, alors

s-dimW*? (RV) = sdimW-? (RY) = N — kp.
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En particulier, skp = N alors dimy(e-Singt) = 0 pour toutx € W7 (RV). Nous montrons aussi que pour
chaque sous-ensemblecompact d&R”, dont la « box-dimension » supérieure est plus petiteNjuekp,

on peut construire une fonctiane W7 (RV) qui est singuliére précisément sar Il est intéressant de
noter que s-dirh”(R"Y) = N, a condition que K p < oo. PourX = ﬂ1<p<oo L”@®RM) on a s-dimX =0,
tandis que simX = N.

1. Introduction

One of the earliest results related to the question of size of singular sets of Sobolev functions is stated in
Reshetnyak [21, Theorem 1.8] (relying on Fuglede [9, Theorem 2]):dfL? (RY), f > 0, andG, is the
Bessel potential kernel, then the set ofsaflor which (G, * f)(x) = 0o, has(«a, p)-Bessel capacity equal
to zero. This implies that the Hausdorff dimension of this set is at iNostap, which is an immediate
consequence of Reshetnyak [21, Corollary 2], or Adams and Hedberg [1, Theorem 5.1.13] (for the case
o = 1 see Heinonen, Kilpeldinen and Martio [13, Theorem 2.26], or Maly and Ziemer [18, Theorem 2.53]).
The aim of this paper is to show that the upper bownd ap for the Hausdorff dimension of singular
sets of Sobolev functions cannot be improved. Our Theorems 1 and 2 are of a similar nature as Fuglede
[9, Theorem 8], which characterizes subsgtef RV for which the systens*(E) of all k-dimensional
Lipschitz surfaces intersecting the set is exceptional of gsd@here, the “borderline” valu®y’ — kp (with
kp #+ N) appears analogous to our Theorem 1. As shown in Fuglede [9, Theorem 6], the Sys@nis
exceptional iff there existg € L? (RY), f > 0, such that the corresponding Riesz potential is infinit€on
without being identically infinite. Here we deal with Bessel potentials.

Singularities of Sobolev functions have been studied in a monograph by Jaffard and Meyer [14,
Chapter 1] using wavelet methods, but with weaker type of singularities than we consider here. We deal
with singularities in the classical sense. Our results complement those stated in [14, Theorem 2.1] and
methods of proof are different. Among numerous contributions related to singular sets of Sobolev functions
and quasilinear elliptic equations with singular solutions, we cite Deny [5], Deny and Lions [6], Fuglede [9,
10], Aronszajn and Smith [2], Serrin [22], Reshetnyak [21], Stein [23], Havin and Mazya [12], Bagby and
Ziemer [3], Meyers [19] Veron [24], Mou [20], Grillot [11], Kilpelainen [16], Korkut, Pé&gind Zubrint
[17], Zubrinic [26], and the references therein.

Letu : RV — R be a measurable function. We say thétas singularity at least of order> 0 atxg € RV
if there existR > 0 andC > 0 such thati(x) > C|x — xo| ™* for a.e.x € Br(xp), whereBg (xp) is an open
ball of radiusR centered ato. We say that: has singularity of ordex on a nonempty subseit of R, if
there existR > 0 andC > 0 such thai«(x) > Cd(x, A)~“ fora.e.x € Ag, whered(x, A) is the Euclidean
distance fromx to A andAy is R-neighbourhood ofi.

The set of all singular points of a given measurable functioR”Y — R, having order at least > 0,
will be denoted by Singu. We define thesingular set ot: by

Singu = | J Sing, u. (1)
a>0

Let X be an arbitrary Banach space (or just a nonempty set) of measurable functiBAs— R. We
definelower and upper singular dimensiaf X by

s-dimX = sup{dimy(Singu) : u € X }, )
s-dim X = sup{dimy(e-Singu) :u € X}, (3)
respectively, where e-Singis defined by
1
e-Singy = {xo eR" :lim sup—; / u(x)dx = +oo}. (4)
r—0 T B, (x0)
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We call it extended singular set af As we see, e-Sing is contained in the complement of the set of
Lebesgue points af. Note that e-Sing contains among others also iterated logarithmic singularitias of
Since Sing: € e-Sing«, we have s-dinX < sdimX < N. If s-dimX = s-dim X, the common value is
calledsingular dimensiorof X and denoted by s-ditki. In the sequel we shall need the notion of upper
box dimension of a subset of RY (also known as the upper Minkowski dimension), that we denote by
dimg A, see, e.g., Falconer [7]. Recall that ¢gim < dimg A. Here is the main result of this paper.

THEOREM 1.—
(@ If1<p<oo,keN,kp <N, andA is acompact subset &” such that
dimgA < N — kp, (5)
then there exists a Sobolev functioe W*?(RY) which is singular precisely od. Furthermore,
sdimWA? (RY) = N — kp. (6)

(b) If kp = N, thendimy(e-Singu) = 0 for any u € Wo?(RYN). In other words,s-dim W7 (RY) = 0,
which is(6) for kp = N.

(c) f 1< p < o0, thens-dimL?(R") = N, which is(6) for k = 0.

(d) For X =Ni¢poo L?”(RY) we haves-dimX = 0, whiles-dimX = N.

Of course, the same result is true for the corresponding Sobolev and Lebesgue spaces modelled on
arbitrary open domait® in RV

Example 1. — Antoine’s necklaced in R3 (for its definition see, e.g., [15]) is clearly compact and
3-rectifiable, so that its three dimensional Minkowski content exists and is finite, and equals to its Lebesgue
measure geeFederer [8, Theorem 3.2.39]). Using Theorem 1(a) we obtain that there exists a Sobolev
functionu € HY(R®) which is singular precisely oA c R3 € R6. We do not know ifV = 6 is the smallest
possible number with the above property.

2. Singular sets of Bessel potentials @f”-functions

_Leta >0, and letG, : RY — R be the Bessel kernel, which is defined by its Fourier transform:
Go(x) = 27)~N/2(1 4 |x|%~*/2. It is well known thatG, (x) > 0 for all x € RV, see, e.g., Ziemer [25].

We shall need the following asymptotic properties of the Bessel kernel, which follow immediately from
[25, p. 65]. Assuming that & « < N, then for anyR > 0 there exist positive constantg, C2> and D, such

that

C1_ G < 22
TN X X)X
|x|N_°‘ o |x|N_0‘

if |x| <R, (7)

andG,(x) < Dexp(—|x|) if |x| > R. Let us introduce Bessel potential spac&g(RY) = {Gy * f: f €
L?(RN)}, wherex is the usual convolution operator. Fer= 0 we define ©7(RV) = L?(RV). Now we
formulate a result about singular sets of Bessel potentials.

THEOREM 2. — Assume thal < p < 0o, 0 < a < N/p. Then for any compact subsatof R such
that

dimgA < N —ap, (8)
there exists a function € L% ?(R") which is singular precisely od. Furthermore,
sdimL*?(RY) =N — ap. 9)
If ap = N thendimy (e-Singv) = 0 for anyv € L*?(R"), that iss-dimL*”(R") = 0.

For the proof of Theorem 1 we shall need the following result due to A.P. Calderén, see, e.g., [25,
Theorem 2.6.1], or the original paper of Calderén [4].

541



D. Zubrini €/ C. R. Acad. Sci. Paris, Ser. | 334 (2002) 539-544

THEOREM 3 (A.P. Calderon). -Assume that is a positive integer, andl < p < co. ThenL¥P(RN) =
WP (RN).

Next, we shall make use of an interesting result about integrability of the fundtiend)™" on
R-neighbourhoodi ; of A, due to Hardt and Mou. See Mou [20, Lemma 3.6], where it was formulated for
the case wherd has finites-dimensional Minkowski content, but the same proof holds whedras finite
s-dimensionalipperMinkowski content as well.

LEMMA 1 (Hardt, Mou). — Assume tha® < s < N and A is a compact subset &" such that its
s-dimensional upper Minkowski content &fis finite. If0 <y < N — s, theanR d(x, A~V dx < oo for
anyR > 0.

In the proof of Theorem 2, step (b), the following result will be essential, which seems to be of interestin
itself. Theorem 4 implies seemingly obvious inclusion Sirg {v = +o0} for a class of Bessel potentials
(and also for Riesz potentials, provided < N). We state it without proof.

THEOREM 4. — Assume thall < p < 00, 0 <a < N, and letG : RV x RY — R be a nonnegative
potential kernel, such thak (x, y) is lower semicontinuous in for a.e.y, and measurable iy for all x.
We assume that there ex&t, C2, R > 0 such that for any,

C1

C2
m SG(x,y)S W for a.e.y e Br(x), (10)

|
and there exists a bounded, nonnegative, nonincreasing furg:&dnl”((R, 00); rN=1) such that for allx
we haveG (x, y) < g(lx — y|) fora.e.y e RN \ Br(x). Letv = G = f, wheref € L?(R"), f > 0. Then
e-Singv C {v = 00}.

Proof of Theorem2. —(a) Let us choose any € (dimgA, N — ap). Sinces > dimgA, then the
s-dimensional upper Minkowski content df (seg e.g., Federer [8] for its definition) is equal to O. Let
us define an auxilliary functiorf : RV — R by

_Jd(x, A7V forxe Ag,
f(x)_{o forx e RN \ Ag,

where we take’ such thatx <y < N;S, which is possible due to< N — ap. By Lemma 1 we have that

f eLP(RN). Letx be any point contained iz \ A and choose anyp € A such thafx — xo| = d(x, A).
We assume without loss of generality thgt= 0. Henced(y, A) < |y| and using (7) we obtain:

11)

U(x) = (Ga % f)(x) = / Gux — ) d(y, A) " dy

AR

C1
> i
- Bix1/2(0) |X _y|N_O[

It is clear that fory € Bj|,2(0) we havelx — y| < §|x|, so that:

3 a—N C C
vz [ ()= - e (12)
Bix)/2(0) | x| d(x,A)

whereC is a positive constant. Singe> «, we obtain thatd is a singular set of of ordery — «, that is
AC Sing},_au.
(b) Inequality s-dim.%?(RY) > N — ap in (9) follows immediately from (a) and the fact that for any
A € (0, N) there exists a set in RY whose upper box dimension and Hausdorff dimension are both equal
to 1. For example, if\. is noninteger, we write = s + | 1] with s € (0, 1) and setd = C x [0, 1], where
C is a generalized Cantor set such that diéh= s, see Falconer [7, Example 4.5 or 4.7].

542



Pour citer cet article : D. Zubrini ¢, C. R. Acad. Sci. Paris, Ser. | 334 (2002) 539-544

Now we prove that simL*?(RV) < N — ap. For Bessel potentials = G, * f, wheref € L?(RN),
we consider the s€lG,, * f = oco}. Since we are interested in generating singularities, we can assume
without loss of generality thaf(x) > 0 (note thatG, * f < G4 * fT). Due to Theorem 4 we have
e-SingGy * f) € {Gy * f = oco}. This implies,

dimy (e-SingGy * f)) < dimy{Gy * f = 00}. (13)

Using Reshetnyak [21, Theorem 1.8], or Adams and Hedberg [1, Proposition 2.3.7], we have that
Cap, ,{Ga * f =00} =0, where Cap , is (@, p)-capacity. By Reshetnyak [21, Corollary 2], or Adams
and Hedberg [1, Theorem 5.1.13] (for the casexof 1 see Heinonen, Kileplainen and Martio [13,
Theorem 2.26], or Maly and Ziemer [18, Theorem 2.53]), it follows thati i@y, * f = co} < N — ap.
Taking supremum in (13) over aff > 0 we obtain that SimL*”(R") < N — ap. This completes the
proof of (9).

(c) It is easy to see that the functi@, * f is continuous orR" \ A (an easy consequence of the
Lebesgue Dominated Convergence Theorem) and dominated by a continuous functign @n Hence,
A is precisely the set of singularities6f, x f. O

Proof of Theoreml. —Claims (a) and (b) follow immediately from Theorems 2 and 3. (c) From
Lemma 1, using functions of the form (11), we conclude that sRfim= N. (d) The proof of s-dink =0
is trivial, since Singi = ¢ for any u € X. To prove that simX = N, take anys < N. We define
u(x) =logl/d(x, A) on Ay for fixed R > 0, andu(x) = O otherwise, wherel is any given compact set
with s =dimy A =dimg A < N (seestep (b) in the proof of Theorem 2). By noting that for any 0 there
existsC > 0 such that(x) < C -d(x, A)~Y on Ag, and using Lemma 1, we easily derive that L? (R")
by takingy < %(N —5). Hencex € X. Note thate-Sing = A. O

Modifying slightly the proof of Theorem 2, it is easy to see that we can generate singularities of Sobolev
functions having prescribed positive orgeor larger, on a given set.

THEOREM 5. —For any positive real numbetsandg, (« + 8) p < N, and any compact subsétof R"
such that

dimgA < N — (@ + B) p. (14)

there exists a Sobolev functiane L*?(R") having singularity at least of ordeg on A, that is
u(x)>C-d(x,A)P a.e.onAg, for someC > 0andR > 0.

Remark1. -1t is easy to extend the notions of lower and upper singular dimension from sets of
measurable functions to any nonempty subisef the space of Schwarz distributio®$(R" ).

Acknowledgements.| express my gratitude to the anonymous referee for his critical remarks. My thanks go also
to Professor Tero Kilpeléinen for pointing out Reshetnyak’s paper to me, and the argument involving capacity, which
simplified the original proof of Theorem 2.
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