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Abstract We are interested in finding Sobolev functions with “large” singular sets. GivenN,k ∈ N,
1< p < ∞, kp < N , for any compact subsetA of R

N , such that its upper box dimension
is less thanN − kp, we construct a Sobolev functionu ∈ Wk,p(RN) which is singular
precisely onA. We introduce the notions of lower and upper singular dimensions of Sobolev
space, and show that both are equal toN −kp. To cite this article: D. Žubrinić, C. R. Acad.
Sci. Paris, Ser. I 334 (2002) 539–544. 2002 Académie des sciences/Éditions scientifiques
et médicales Elsevier SAS

Ensembles singuliers des fonctions de Sobolev

Résumé Nous sommes intéressés à trouver des fonctions de Sobolev dont l’ensemble des singularités
est « grand ». Étant donnéN,k ∈ N, 1< p < ∞, kp < N , pour chaque sous-ensembleA
compact deRN , dont la « box-dimension » supérieure est plus petite queN − kp, nous
construisons une fonction de Sobolevu ∈ Wk,p(RN) qui est singulière précisément surA.
Nous introduisons les notions de dimensions singulières inférieure et supérieure de l’espace
de Sobolev, et montrons que ses valeurs sontN − kp. Pour citer cet article : D. Žubrinić,
C. R. Acad. Sci. Paris, Ser. I 334 (2002) 539–544. 2002 Académie des sciences/Éditions
scientifiques et médicales Elsevier SAS

Version française abrégée

Soientu : R
N → R une fonction mesurable et Singu l’ensemble des singularités deu, c’est-à-dire

x0 ∈ Singu si ils existantα > 0, R > 0, C > 0, tels queu(x) � C|x − x0|−α p.p. surBR(x0). Nous
introduisons la notion dedimension singulière inférieurede l’espace de Sobolev Wk,p(RN), N,k ∈ N,
par

s-dimWk,p
(
R
N

) = sup
{

dimH(Singu) : u ∈ Wk,p
(
R
N

)}
,

où dimH est la dimension de Hausdorff. Ladimension singulière supérieureest définie par

s-dimWk,p
(
R
N

) = sup
{

dimH(e-Singu) : u ∈ Wk,p
(
R
N

)}
,

où e-Singu est l’ensemble élargi des singularités deu, défini par (4). Il est clair que e-Singu contient
Singu et, par exemple, les singularités logarithmiques deu aussi. Le but de cet article est de prouver que si
1< p <∞, k entier positif ou nul,kp �N , alors

s-dimWk,p
(
R
N

) = s-dimWk,p
(
R
N

) =N − kp.
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En particulier, sikp =N alors dimH(e-Singu)= 0 pour toutu ∈ Wk,p(RN). Nous montrons aussi que pour
chaque sous-ensembleA compact deRN , dont la « box-dimension » supérieure est plus petite queN − kp,
on peut construire une fonctionu ∈ Wk,p(RN) qui est singulière précisément surA. Il est intéressant de
noter que s-dimLp(RN)=N , à condition que 1� p <∞. PourX = ⋂

1�p<∞ Lp(RN) on a s-dimX = 0,

tandis que s-dimX =N .

1. Introduction

One of the earliest results related to the question of size of singular sets of Sobolev functions is stated in
Reshetnyak [21, Theorem 1.8] (relying on Fuglede [9, Theorem 2]): iff ∈ Lp(RN), f � 0, andGα is the
Bessel potential kernel, then the set of allx for which (Gα ∗ f )(x)= ∞, has(α,p)-Bessel capacity equal
to zero. This implies that the Hausdorff dimension of this set is at mostN − αp, which is an immediate
consequence of Reshetnyak [21, Corollary 2], or Adams and Hedberg [1, Theorem 5.1.13] (for the case
α = 1 see Heinonen, Kilpeläinen and Martio [13, Theorem 2.26], or Malý and Ziemer [18, Theorem 2.53]).
The aim of this paper is to show that the upper boundN − αp for the Hausdorff dimension of singular
sets of Sobolev functions cannot be improved. Our Theorems 1 and 2 are of a similar nature as Fuglede
[9, Theorem 8], which characterizes subsetsE of R

N for which the systemSk(E) of all k-dimensional
Lipschitz surfaces intersecting the set is exceptional of orderp. There, the “borderline” valueN − kp (with
kp 	=N ) appears analogous to our Theorem 1. As shown in Fuglede [9, Theorem 6], the systemSk(E) is
exceptional iff there existsf ∈Lp(RN), f � 0, such that the corresponding Riesz potential is infinite onE,
without being identically infinite. Here we deal with Bessel potentials.

Singularities of Sobolev functions have been studied in a monograph by Jaffard and Meyer [14,
Chapter II] using wavelet methods, but with weaker type of singularities than we consider here. We deal
with singularities in the classical sense. Our results complement those stated in [14, Theorem 2.1] and
methods of proof are different. Among numerous contributions related to singular sets of Sobolev functions
and quasilinear elliptic equations with singular solutions, we cite Deny [5], Deny and Lions [6], Fuglede [9,
10], Aronszajn and Smith [2], Serrin [22], Reshetnyak [21], Stein [23], Havin and Mazya [12], Bagby and
Ziemer [3], Meyers [19] Veron [24], Mou [20], Grillot [11], Kilpeläinen [16], Korkut, Pašić and Žubriníc
[17], Žubrinić [26], and the references therein.

Letu : R
N → R be a measurable function. We say thatu has singularity at least of orderα > 0 atx0 ∈ R

N

if there existR > 0 andC > 0 such thatu(x)� C|x − x0|−α for a.e.x ∈BR(x0), whereBR(x0) is an open
ball of radiusR centered atx0. We say thatu has singularity of orderα on a nonempty subsetA of R

N , if
there existR > 0 andC > 0 such thatu(x)� Cd(x,A)−α for a.e.x ∈AR , whered(x,A) is the Euclidean
distance fromx toA andAR is R-neighbourhood ofA.

The set of all singular points of a given measurable functionu : R
N → R, having order at leastα > 0,

will be denoted by Singα u. We define thesingular set ofu by

Singu=
⋃
α>0

Singα u. (1)

Let X be an arbitrary Banach space (or just a nonempty set) of measurable functionsu : R
N → R. We

definelower and upper singular dimensionof X by

s-dimX = sup
{

dimH(Singu) : u ∈X
}
, (2)

s-dimX = sup
{

dimH(e-Singu) : u ∈X
}
, (3)

respectively, where e-Singu is defined by

e-Singu=
{
x0 ∈ R

N : lim sup
r→0

1

rN

∫
Br(x0)

u(x)dx = +∞
}
. (4)
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We call it extended singular set ofu. As we see, e-Singu is contained in the complement of the set of
Lebesgue points ofu. Note that e-Singu contains among others also iterated logarithmic singularities ofu.
Since Singu ⊆ e-Singu, we have s-dimX � s-dimX � N . If s-dimX = s-dimX, the common value is
calledsingular dimensionof X and denoted by s-dimX. In the sequel we shall need the notion of upper
box dimension of a subsetA of R

N (also known as the upper Minkowski dimension), that we denote by
dimBA, see, e.g., Falconer [7]. Recall that dimH A� dimBA. Here is the main result of this paper.

THEOREM 1. –
(a) If 1<p <∞, k ∈ N, kp <N , andA is a compact subset ofRN such that

dimBA<N − kp, (5)

then there exists a Sobolev functionu ∈ Wk,p(RN) which is singular precisely onA. Furthermore,

s- dimWk,p
(
R
N

) =N − kp. (6)

(b) If kp = N , thendimH(e-Singu) = 0 for any u ∈ Wk,p(RN). In other words,s-dimWk,p(RN) = 0,
which is(6) for kp =N .

(c) If 1 � p <∞, thens-dimLp(RN)=N , which is(6) for k = 0.
(d) For X = ⋂

1�p<∞ Lp(RN) we haves-dimX = 0, whiles-dimX =N .

Of course, the same result is true for the corresponding Sobolev and Lebesgue spaces modelled on
arbitrary open domainO in R

N .

Example1. – Antoine’s necklaceA in R
3 (for its definition see, e.g., [15]) is clearly compact and

3-rectifiable, so that its three dimensional Minkowski content exists and is finite, and equals to its Lebesgue
measure (seeFederer [8, Theorem 3.2.39]). Using Theorem 1(a) we obtain that there exists a Sobolev
functionu ∈ H1(R6) which is singular precisely onA⊂ R

3 ⊆ R
6. We do not know ifN = 6 is the smallest

possible number with the above property.

2. Singular sets of Bessel potentials ofLp-functions

Let α > 0, and letGα : R
N → R be the Bessel kernel, which is defined by its Fourier transform:

Ĝα(x)= (2π)−N/2(1+ |x|2)−α/2. It is well known thatGα(x) > 0 for all x ∈ R
N , see, e.g., Ziemer [25].

We shall need the following asymptotic properties of the Bessel kernel, which follow immediately from
[25, p. 65]. Assuming that 0< α <N , then for anyR > 0 there exist positive constantsC1, C2 andD, such
that

C1

|x|N−α
�Gα(x)� C2

|x|N−α
if |x| �R, (7)

andGα(x)� D exp(−|x|) if |x| � R. Let us introduce Bessel potential spaces Lα,p(RN) = {Gα ∗ f : f ∈
Lp(RN)}, where∗ is the usual convolution operator. Forα = 0 we define L0,p(RN) = Lp(RN). Now we
formulate a result about singular sets of Bessel potentials.

THEOREM 2. – Assume that1< p < ∞, 0< α < N/p. Then for any compact subsetA of R
N such

that

dimBA<N − αp, (8)

there exists a functionu ∈ Lα,p(RN) which is singular precisely onA. Furthermore,

s- dimLα,p
(
R
N

) =N − αp. (9)

If αp =N thendimH(e-Singv)= 0 for anyv ∈ Lα,p(RN), that iss-dimLα,p(RN)= 0.

For the proof of Theorem 1 we shall need the following result due to A.P. Calderón, see, e.g., [25,
Theorem 2.6.1], or the original paper of Calderón [4].
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THEOREM 3 (A.P. Calderón). –Assume thatk is a positive integer, and1< p <∞. ThenLk,p(RN)=
Wk,p(RN).

Next, we shall make use of an interesting result about integrability of the functiond(x,A)−γ on
R-neighbourhoodAR of A, due to Hardt and Mou. See Mou [20, Lemma 3.6], where it was formulated for
the case whenA has finites-dimensional Minkowski content, but the same proof holds whenA has finite
s-dimensionalupperMinkowski content as well.

LEMMA 1 (Hardt, Mou). – Assume that0 � s < N andA is a compact subset ofRN such that its
s-dimensional upper Minkowski content ofA is finite. If 0< γ < N − s, then

∫
AR

d(x,A)−γ dx < ∞ for
anyR > 0.

In the proof of Theorem 2, step (b), the following result will be essential, which seems to be of interest in
itself. Theorem 4 implies seemingly obvious inclusion Singv ⊆ {v = +∞} for a class of Bessel potentialsv
(and also for Riesz potentials, providedαp <N ). We state it without proof.

THEOREM 4. – Assume that1< p < ∞, 0 < α < N , and letG : R
N × R

N → R be a nonnegative
potential kernel, such thatG(x,y) is lower semicontinuous inx for a.e.y, and measurable iny for all x.
We assume that there existC1,C2,R > 0 such that for anyx,

C1

|x − y|N−α
�G(x,y)� C2

|x − y|N−α
for a.e.y ∈ BR(x), (10)

and there exists a bounded, nonnegative, nonincreasing functiong ∈ Lp′
((R,∞); rN−1) such that for allx

we haveG(x,y)� g(|x − y|) for a.e.y ∈ R
N \ BR(x). Let v = G ∗ f , wheref ∈ Lp(RN), f � 0. Then

e-Singv ⊆ {v = ∞}.
Proof of Theorem2. – (a) Let us choose anys ∈ (dimBA,N − αp). Since s > dimBA, then the

s-dimensional upper Minkowski content ofA (see, e.g., Federer [8] for its definition) is equal to 0. Let
us define an auxilliary functionf : R

N → R by

f (x)=
{
d(x,A)−γ for x ∈AR,

0 for x ∈ R
N \AR,

(11)

where we takeγ such thatα < γ < N−s
p

, which is possible due tos < N − αp. By Lemma 1 we have that

f ∈ Lp(RN). Let x be any point contained inAR \A and choose anyx0 ∈A such that|x − x0| = d(x,A).
We assume without loss of generality thatx0 = 0. Hence,d(y,A)� |y| and using (7) we obtain:

u(x)= (Gα ∗ f )(x)=
∫
AR

Gα(x − y) d(y,A)−γ dy

�
∫
B|x|/2(0)

C1

|x − y|N−α
· |y|−γ dy.

It is clear that fory ∈B|x|/2(0) we have|x − y| � 3
2|x|, so that:

u(x)�
∫
B|x|/2(0)

C1

(
3

2
|x|

)α−N

· |y|−γ dy = C

|x|γ−α
= C

d(x,A)γ−α
, (12)

whereC is a positive constant. Sinceγ > α, we obtain thatA is a singular set ofu of orderγ − α, that is
A⊆ Singγ−αu.

(b) Inequality s-dimLα,p(RN) � N − αp in (9) follows immediately from (a) and the fact that for any
λ ∈ (0,N) there exists a setA in R

N whose upper box dimension and Hausdorff dimension are both equal
to λ. For example, ifλ is noninteger, we writeλ= s + �λ� with s ∈ (0,1) and setA= C × [0,1]�λ�, where
C is a generalized Cantor set such that dimHC = s, see Falconer [7, Example 4.5 or 4.7].
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Now we prove that s-dimLα,p(RN) � N − αp. For Bessel potentialsv = Gα ∗ f , wheref ∈ Lp(RN),
we consider the set{Gα ∗ f = ∞}. Since we are interested in generating singularities, we can assume
without loss of generality thatf (x) � 0 (note thatGα ∗ f � Gα ∗ f+). Due to Theorem 4 we have
e-Sing(Gα ∗ f )⊆ {Gα ∗ f = ∞}. This implies,

dimH
(
e-Sing(Gα ∗ f )) � dimH{Gα ∗ f = ∞}. (13)

Using Reshetnyak [21, Theorem 1.8], or Adams and Hedberg [1, Proposition 2.3.7], we have that
Capα,p{Gα ∗ f = ∞} = 0, where Capα,p is (α,p)-capacity. By Reshetnyak [21, Corollary 2], or Adams
and Hedberg [1, Theorem 5.1.13] (for the case ofα = 1 see Heinonen, Kilepläinen and Martio [13,
Theorem 2.26], or Malý and Ziemer [18, Theorem 2.53]), it follows that dimH{Gα ∗ f = ∞} � N − αp.
Taking supremum in (13) over allf � 0 we obtain that s-dimLα,p(RN) � N − αp. This completes the
proof of (9).

(c) It is easy to see that the functionGα ∗ f is continuous onRN \ AR (an easy consequence of the
Lebesgue Dominated Convergence Theorem) and dominated by a continuous function onAR \A. Hence,
A is precisely the set of singularities ofGα ∗ f . ✷

Proof of Theorem1. – Claims (a) and (b) follow immediately from Theorems 2 and 3. (c) From
Lemma 1, using functions of the form (11), we conclude that s-dimR

N =N . (d) The proof of s-dimX = 0
is trivial, since Singu = ∅ for any u ∈ X. To prove that s-dimX = N , take anys < N . We define
u(x) = log1/d(x,A) onAR for fixedR > 0, andu(x) = 0 otherwise, whereA is any given compact set
with s = dimHA= dimB A<N (seestep (b) in the proof of Theorem 2). By noting that for anyγ > 0 there
existsC > 0 such thatu(x)� C · d(x,A)−γ onAR , and using Lemma 1, we easily derive thatu ∈ Lp(RN)

by takingγ < 1
p
(N − s). Henceu ∈X. Note that e-Singu=A. ✷

Modifying slightly the proof of Theorem 2, it is easy to see that we can generate singularities of Sobolev
functions having prescribed positive orderβ or larger, on a given set.

THEOREM 5. –For any positive real numbersα andβ , (α+β)p <N , and any compact subsetA of R
N

such that

dimBA<N − (α + β)p, (14)

there exists a Sobolev functionu ∈ Lα,p(RN) having singularity at least of orderβ on A, that is
u(x)� C · d(x,A)−β a.e. onAR, for someC > 0 andR > 0.

Remark1. – It is easy to extend the notions of lower and upper singular dimension from sets of
measurable functions to any nonempty subsetX of the space of Schwarz distributionsD′(RN).

Acknowledgements.I express my gratitude to the anonymous referee for his critical remarks. My thanks go also
to Professor Tero Kilpeläinen for pointing out Reshetnyak’s paper to me, and the argument involving capacity, which
simplified the original proof of Theorem 2.
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