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Abstract We prove that if T is a lattice of Q-rank at least 7 in a simple linear Lie group, then
any red-analytic, volume-preserving action of I' on a closed 4-manifold of nonzero
Euler characteristic factors through a finite group action. To cite this article: B. Farb,
P.B. Shalen, C. R. Acad. Sci. Paris, Ser. | 334 (2002) 1011-1014. O 2002 Académie des
sciences/Editions scientifiques et médicales Elsevier SAS

Actions analytiquesréelles, conservant le volume, deréseaux sur les
variétés dedimension 4

Résumé Soit I" un réseau dans un groupe de Lie linéaire simple, dont le rang rationnel est supérieur
ou égal a7, et soit M une variété fermée de dimension 4 dont la caractéristique d’ Euler—
Poincaré est non nulle. Nous montrons que toute action anaytique réelle de I sur M,
qui conserve le volume, se factorise a travers |'action d'un groupe fini. Pour citer cet
article: B. Farb, PB. Shalen, C. R. Acad. Sci. Paris, Ser. | 334 (2002) 1011-1014. 00 2002
Académie des sciences/Editions scientifiques et médicales Elsevier SAS

1. Results

Zimmer conjectured in [14] (see also [8]) that the standard action of SL(n, Z) on the n-torusis minimal
in the following sense;

CONJECTURE 1.1.— Any smooth, volume-preserving action of any finite-index subgroup I' < SL(n, Z)
on a closed r-manifold factors through a finite group action if n > r.

While Conjecture 1.1 has been proved for actions which also preserve an extra geometric structure such
as a pseudo-Riemannian metric (see, e.g., [14]), amost nothing is known in the general case. For r = 2 and
n > 4, the conjecturewas proved for real-analytic actionsin [5] and [2]. Quite recently, Polterovich [10] has
brought ideas from symplectic topology to the problem, using these to give a proof of Conjecture 1.1 for
orientable surfaces of genus > 1; his methods actually prove Conjecture 1.1 for the torus as well (see[3]).
For r = 3, Conjecture 1.1 isknownonly in some specia caseswhereI" contains sometorsion and the action
isreal-anaytic (see[2]).
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The main result of this note, Theorem 1.2 below, implies that Conjecture 1.1 is true in the case where
r =4, n > 8, M hasnonzero Euler characteristic, and the action isreal-analytic. To statethe general version
of thetheorem, we follow the conventionsused by Wittein [12]. Consider anonuniformlatticeI" inasimple
linear Lie group G with R-rank(G) > 2. Then G may be given the structure of an algebraic groupover Q in
such away that " is commensurate with the group of Z-pointsin G. After passing to atorsion-free subgroup
of finite index, one deducesthis from Margulis's Arithmeticity Theorem and Remark 6.17 of [12]. We then
definethe Q-rank of to bethe Q rank of G with this Q-structure; it follows from Theorem 2.10 of [12] that
this notion of Q-rank is well-defined.

THEOREM 1.2.— Let T" be a lattice of Q-rank > 7 in a simple linear Lie group G. Then any real-
analytic, volume-preserving action of I on a closed 4-manifold of nonzero Euler characteristic factors
through a finite group action.

The main ingredient in the proof of Theorem 1.2 is Theorem 7.1 of [2] on red-anaytic actions
which preserve a volume form. This theorem, which is the most difficult result in [2], gives an invariant
submanifold of codimension at least 2 for centralizers of elementswith fixed-points. Thisis precisely where
we use the hypothesisin Theorem 1.2 that the action preserves volume. One can then complete the proof by
applying results of [11], which show that real-analytic (not necessarily area-preserving) actions of certain
lattices on 2-dimensional manifolds must factor through finite groups.

For the case of symplectic actions, some further progress on Conjecture 1.1 can be found in [10].

2. Proof of Theorem 1.2

Before giving the proof of Theorem 1.2, we will need two algebraic properties of lattices with large
Q-rank.

ProPOSITION 2.1.— Let T bealattice of Q-rank d ina simplelinear Lie group G. Then the following
hold:
() Ifd > 7then T contains commuting subgroups A and B which are respectively isomorphic to lattices
of Q-rank 2 and d — 3insimplelinear Lie groups.
(2) If d > 4then T" contains a torsion-free nilpotent subgroup which is not metabelian.

Proof. — Without loss of generality, we may assume that G is a Q-algebraic group of Q-rank d and that
I" isthe group of Z-pointsof G.

The proof of the first statement is similar to that of Proposition 2.1 of [2]. Note that, after passing if
necessary to a Q-split subgroup of the algebraic Q-group G whose root system is the reduced subsystem
of the Q-root system of G, we may assume G is Q-split.

Since G is Q-simple, the Q-root system @ of G isirreducible, and the Dynkin diagram determined by
® therefore appearsin the list givenin Section 11.4 of [7]. By going through thislist, one seesthat in every
casewhered > 7, onemay “erase avertex” of the diagram to obtain a graph with 2 components: one with
two vertices and another which isa Dynkin diagram with at least d — 3 vertices. Let G and G2 be the root
subgroups corresponding to these two components of the Dynkin diagram. Then the group of Q-points of
G1 hasQ-rank at least 2, the group of Q-pointsof G2 has Q-rank at least d — 3, and G1 commuteswith Go.

Now I'; = ' N G; isthe group of Z-points of the algebraic Q-group G;. ThegroupsA=T71and B=T"
have the required properties.

To provethe second statement, note that since G has Q-rank > 4, we can find a connected, nilpotent Lie
subgroup N of G whichis defined over Q and has derived length > 3, i.e., is not metabelian. AST N N is
the group of Z-points of the Q-group N, itisalatticein N, and in particular is Zariski-densein N. Hence
' N N is nilpotent and has no metabelian subgroup of finite index. AsT" N N must have a torsion-free
subgroup of finite index, the assertion follows. O
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We now turn to the proof of Theorem 1.2. We shall say that agroup action p : " — Diff(M) isfiniteif p
has finite image, and infinite otherwise. We assume that the lattice I", of Q-rank d > 7, admits an infinite,
volume-preserving, real-analytic action on M, a 4-manifold of nonzero Euler characteristic; this will lead
to a contradiction. By part (1) of Proposition 2.1, I' contains commuting subgroups A and B which are
isomorphic to lattices of Q-rank 2 and d — 3 > 4 respectively.

Let yp be any infinite order element of A. By atheorem of Fuller [4], any homeomorphism of a closed
manifold of nonzero Euler characteristic has a periodic point; the proof is an application of the Lefschetz
fixed-point theorem and basic number theory. Hence some positive power y of yg has afixed point.

We will aso need the following two facts. One of the corollaries (see, e.g., Corollary 11.7 of [12] or
Theorem VI11.3.12 of [9]) of the Margulis Superrigidity theorem is that if A is commensurable with the
group of Z-points a Q-simple algebraic Q-group G with Q-rank(G) > 1 and R-rank(G) > 2, then any
representation of A into a compact Lie group must have finite image. Since R-rank(B) > Q-rank(B) > 4,
this fact together with the Superrigidity Theorem itself implies that any representation of B into GL (4, R)
has finite image. Second, since I' is a lattice in asimple linear Lie group G of R-rank > 2, the Margulis
Finiteness Theorem (see, e.g., Theorem 8.1 of [15]) gives that T" is almost simple in the sense that any
normal subgroup of I' must be finite or of finite index.

The propertiesof I', A and B that we have stated show that they satisfy the hypotheses of Theorem 7.1
of [2] (with n = 4). For the reader’s convenience we recall the statement here.

THEOREM 7.1 OF [2].—Let T" be an almost simple group. Suppose we are given an infinite, volume-
preserving, real-analytic action of I" on a closed, connected n-manifold M. Supposefurther that I contains
commuting subgroups A and B with the following properties:

— Thereexistsan element ¥ € A, noncentral in I", having a fixed pointin M.

— Aisisomorphicto a lattice of Q-rank > 2.

— Bisnoncentral inT.

— Any representation of any finite-index subgroup of B in GL (r, R) hasfinite image.

Then there is a nonempty, connected, real-analytic submanifold W ¢ M of codimension at least 2 which
isinvariant under a finite-index subgroup B’ of B. Furthermore, the action of this subgroup on W isinfinite.

Remark 2.2.— The action of B’ on the surface W produced by this theorem is not necessarily area
preserving.

We now conclude the proof of Theorem 1.2. Let B’ be the subgroup, and W the submanifold, given
by Theorem 7.1 of [2]. Then B’ is alattice of Q-rank at least 4, W is a compact, connected manifold of
dimension0, 1 or 2, andtheaction of B’ on W isinfinite. If dim W = 0 we have an immediate contradiction,
since no group admits an infinite action on a point. If dimW = 1 then we have a contradiction to Witte's
theorem [13] that a lattice of Q-rank > 2 admits no infinite action on S*. (For a generalization of Witte's
result, see Burger—Monod[1] or Ghys[6].) Now supposethat dimW = 2, so that W isacompact, connected
surface. It follows from part (2) of Proposition 2.1 that B’ contains a torsion-free nilpotent subgroup H
whichisnot metabelian. But Rebelo [11] showed that any nilpotent group of real-analytic diffeomorphisms
of a compact, connected surface must be metabelian. (Rebelo states his result only in the orientable case.
However, an action of a nilpotent group on a non-orientable surface gives rise to an action of a Z/27-
extension of that group on the orientable double cover; since a Z/2Z extension of a nilpotent group is
nilpotent, it follows that Rebelo’s result holds in the non-orientable case.) Hence the action of H on W
is not effective. Since H is torsion-free, there is an infinite-order element of H < B’ which acts trivially
on W, so that the action of B’ on W hasinfinitekernel. Since B’ isalmost simple by the Margulisfiniteness
theorem, this kernel must havefinite index in B’, so that the action of B’ on W isfinite, and we again have
acontradiction. O
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