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Note presented by Étienne Ghys.

Abstract We prove that if � is a lattice of Q-rank at least 7 in a simple linear Lie group, then
any real-analytic, volume-preserving action of � on a closed 4-manifold of nonzero
Euler characteristic factors through a finite group action. To cite this article: B. Farb,
P.B. Shalen, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 1011–1014.  2002 Académie des
sciences/Éditions scientifiques et médicales Elsevier SAS

Actions analytiques réelles, conservant le volume, de réseaux sur les
variétés de dimension 4

Résumé Soit � un réseau dans un groupe de Lie linéaire simple, dont le rang rationnel est supérieur
ou égal à 7, et soit M une variété fermée de dimension 4 dont la caractéristique d’Euler–
Poincaré est non nulle. Nous montrons que toute action analytique réelle de � sur M ,
qui conserve le volume, se factorise à travers l’action d’un groupe fini. Pour citer cet
article : B. Farb, P.B. Shalen, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 1011–1014.  2002
Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

1. Results

Zimmer conjectured in [14] (see also [8]) that the standard action of SL(n,Z) on the n-torus is minimal
in the following sense:

CONJECTURE 1.1. – Any smooth, volume-preserving action of any finite-index subgroup � < SL(n,Z)

on a closed r-manifold factors through a finite group action if n > r .

While Conjecture 1.1 has been proved for actions which also preserve an extra geometric structure such
as a pseudo-Riemannian metric (see, e.g., [14]), almost nothing is known in the general case. For r = 2 and
n > 4, the conjecture was proved for real-analytic actions in [5] and [2]. Quite recently, Polterovich [10] has
brought ideas from symplectic topology to the problem, using these to give a proof of Conjecture 1.1 for
orientable surfaces of genus > 1; his methods actually prove Conjecture 1.1 for the torus as well (see [3]).
For r = 3, Conjecture 1.1 is known only in some special cases where � contains some torsion and the action
is real-analytic (see [2]).
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The main result of this note, Theorem 1.2 below, implies that Conjecture 1.1 is true in the case where
r = 4, n � 8, M has nonzero Euler characteristic, and the action is real-analytic. To state the general version
of the theorem, we follow the conventions used by Witte in [12]. Consider a nonuniform lattice � in a simple
linear Lie group G with R-rank(G) � 2. Then G may be given the structure of an algebraic group over Q in
such a way that � is commensurate with the group of Z-points in G. After passing to a torsion-free subgroup
of finite index, one deduces this from Margulis’s Arithmeticity Theorem and Remark 6.17 of [12]. We then
define the Q-rank of to be the Q rank of G with this Q-structure; it follows from Theorem 2.10 of [12] that
this notion of Q-rank is well-defined.

THEOREM 1.2. – Let � be a lattice of Q-rank � 7 in a simple linear Lie group G. Then any real-
analytic, volume-preserving action of � on a closed 4-manifold of nonzero Euler characteristic factors
through a finite group action.

The main ingredient in the proof of Theorem 1.2 is Theorem 7.1 of [2] on real-analytic actions
which preserve a volume form. This theorem, which is the most difficult result in [2], gives an invariant
submanifold of codimension at least 2 for centralizers of elements with fixed-points. This is precisely where
we use the hypothesis in Theorem 1.2 that the action preserves volume. One can then complete the proof by
applying results of [11], which show that real-analytic (not necessarily area-preserving) actions of certain
lattices on 2-dimensional manifolds must factor through finite groups.

For the case of symplectic actions, some further progress on Conjecture 1.1 can be found in [10].

2. Proof of Theorem 1.2

Before giving the proof of Theorem 1.2, we will need two algebraic properties of lattices with large
Q-rank.

PROPOSITION 2.1. – Let � be a lattice of Q-rank d in a simple linear Lie group G. Then the following
hold:
(1) If d � 7 then � contains commuting subgroups A and B which are respectively isomorphic to lattices

of Q-rank 2 and d − 3 in simple linear Lie groups.
(2) If d � 4 then � contains a torsion-free nilpotent subgroup which is not metabelian.

Proof. – Without loss of generality, we may assume that G is a Q-algebraic group of Q-rank d and that
� is the group of Z-points of G.

The proof of the first statement is similar to that of Proposition 2.1 of [2]. Note that, after passing if
necessary to a Q-split subgroup of the algebraic Q-group G whose root system is the reduced subsystem
of the Q-root system of G, we may assume G is Q-split.

Since G is Q-simple, the Q-root system � of G is irreducible, and the Dynkin diagram determined by
� therefore appears in the list given in Section 11.4 of [7]. By going through this list, one sees that in every
case where d � 7, one may “erase a vertex” of the diagram to obtain a graph with 2 components: one with
two vertices and another which is a Dynkin diagram with at least d − 3 vertices. Let G1 and G2 be the root
subgroups corresponding to these two components of the Dynkin diagram. Then the group of Q-points of
G1 has Q-rank at least 2, the group of Q-points of G2 has Q-rank at least d −3, and G1 commutes with G2.

Now �i = � ∩ Gi is the group of Z-points of the algebraic Q-group Gi . The groups A = �1 and B = �2
have the required properties.

To prove the second statement, note that since G has Q-rank � 4, we can find a connected, nilpotent Lie
subgroup N of G which is defined over Q and has derived length � 3, i.e., is not metabelian. As � ∩ N is
the group of Z-points of the Q-group N , it is a lattice in N , and in particular is Zariski-dense in N . Hence
� ∩ N is nilpotent and has no metabelian subgroup of finite index. As � ∩ N must have a torsion-free
subgroup of finite index, the assertion follows. ✷
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We now turn to the proof of Theorem 1.2. We shall say that a group action ρ :� → Diff(M) is finite if ρ

has finite image, and infinite otherwise. We assume that the lattice �, of Q-rank d � 7, admits an infinite,
volume-preserving, real-analytic action on M , a 4-manifold of nonzero Euler characteristic; this will lead
to a contradiction. By part (1) of Proposition 2.1, � contains commuting subgroups A and B which are
isomorphic to lattices of Q-rank 2 and d − 3 � 4 respectively.

Let γ0 be any infinite order element of A. By a theorem of Fuller [4], any homeomorphism of a closed
manifold of nonzero Euler characteristic has a periodic point; the proof is an application of the Lefschetz
fixed-point theorem and basic number theory. Hence some positive power γ of γ0 has a fixed point.

We will also need the following two facts. One of the corollaries (see, e.g., Corollary II.7 of [12] or
Theorem VIII.3.12 of [9]) of the Margulis Superrigidity theorem is that if � is commensurable with the
group of Z-points a Q-simple algebraic Q-group G with Q-rank(G) � 1 and R-rank(G) � 2, then any
representation of � into a compact Lie group must have finite image. Since R-rank(B) � Q-rank(B) � 4,
this fact together with the Superrigidity Theorem itself implies that any representation of B into GL(4,R)

has finite image. Second, since � is a lattice in a simple linear Lie group G of R-rank � 2, the Margulis
Finiteness Theorem (see, e.g., Theorem 8.1 of [15]) gives that � is almost simple in the sense that any
normal subgroup of � must be finite or of finite index.

The properties of �, A and B that we have stated show that they satisfy the hypotheses of Theorem 7.1
of [2] (with n = 4). For the reader’s convenience we recall the statement here.

THEOREM 7.1 OF [2]. – Let � be an almost simple group. Suppose we are given an infinite, volume-
preserving, real-analytic action of � on a closed, connected n-manifold M . Suppose further that � contains
commuting subgroups A and B with the following properties:

– There exists an element γ ∈ A, noncentral in �, having a fixed point in M .
– A is isomorphic to a lattice of Q-rank � 2.
– B is noncentral in �.
– Any representation of any finite-index subgroup of B in GL(n,R) has finite image.
Then there is a nonempty, connected, real-analytic submanifold W ⊂ M of codimension at least 2 which

is invariant under a finite-index subgroup B ′ of B . Furthermore, the action of this subgroup on W is infinite.

Remark 2.2. – The action of B ′ on the surface W produced by this theorem is not necessarily area
preserving.

We now conclude the proof of Theorem 1.2. Let B ′ be the subgroup, and W the submanifold, given
by Theorem 7.1 of [2]. Then B ′ is a lattice of Q-rank at least 4, W is a compact, connected manifold of
dimension 0, 1 or 2, and the action of B ′ on W is infinite. If dimW = 0 we have an immediate contradiction,
since no group admits an infinite action on a point. If dimW = 1 then we have a contradiction to Witte’s
theorem [13] that a lattice of Q-rank � 2 admits no infinite action on S1. (For a generalization of Witte’s
result, see Burger–Monod [1] or Ghys [6].) Now suppose that dimW = 2, so that W is a compact, connected
surface. It follows from part (2) of Proposition 2.1 that B ′ contains a torsion-free nilpotent subgroup H

which is not metabelian. But Rebelo [11] showed that any nilpotent group of real-analytic diffeomorphisms
of a compact, connected surface must be metabelian. (Rebelo states his result only in the orientable case.
However, an action of a nilpotent group on a non-orientable surface gives rise to an action of a Z/2Z-
extension of that group on the orientable double cover; since a Z/2Z extension of a nilpotent group is
nilpotent, it follows that Rebelo’s result holds in the non-orientable case.) Hence the action of H on W

is not effective. Since H is torsion-free, there is an infinite-order element of H � B ′ which acts trivially
on W , so that the action of B ′ on W has infinite kernel. Since B ′ is almost simple by the Margulis finiteness
theorem, this kernel must have finite index in B ′, so that the action of B ′ on W is finite, and we again have
a contradiction. ✷
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