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Abstract

Résumé

During the last thirty years, symplectic or Marsden—Weinstein reduction has been a major
tool in the construction of new symplectic manifolds and in the study of mechanical systems
with symmetry. This procedure has been traditionally associated to the canonical action
of a Lie group on a symplectic manifold, in the presence of a momentum map. In this
Note we show that the symplectic reduction phenomenon has much deeper roots. More
specifically, we will find symplectically reduced spaces purely within the Poisson category
under hypotheses that do not necessarily imply the existence of a momentum map. In
other words, the right category to obtain symplectically reduced spaces is that of Poisson
manifolds acted upon canonically by a Lie grodp.cite this article: J.-P. Ortega, C. R.
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Les espaces réduits symplectiques d’une action de Poisson

Pendant les trente derniers années, la réduction symplectique (aussi appelée de Marsden—
Weinstein) a joué un réle majeur lors de la construction de nouvelles variétés symplectiques
et dans I'étude des systemes mécaniques symétriques. Ce procédé a été traditionnellement
associé a I'action canonique d'un groupe de Lie sur une variété symplectique, en présence
d'une application moment. Dans cette Note, nous montrerons que le phénomeéne de la
réduction symplectique a des racines beaucoup plus profondes. Plus spécifiquement, nous
trouverons des espaces réduits symplectiques a I'intérieur de la catégorie des variétés de
Poisson sous des hypotheses qui n'impliquent pas forcément I'existence d’une application
moment. Autrement dit, la catégorie la plus générale pour I'obtention des espaces réduits
symplectiques est celle des variétés de Poisson munies de I'action canonique d’'un groupe
de Lie.Pour citer cet article: J.-P. Ortega, C. R. Acad. Sci. Paris, Ser. | 334 (2002) 999—
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Version francaise abrégée

Soit (M, {-, -}) une variété de Poisson ét un groupe de Lie qui agit su¥ d'une facon canonigue et
propre. SoitAy; la distribution lisse et intégrable s définie par l'identitéAy, :={X | f € C®(M)CY,
ol C°(M)C est I'ensemble des fonctions liss@sinvariantes suM et X est le champ de vecteurs
hamiltonien associé a la fonctiof. L'application moment optimale7 : M — M/A(; a été définie en
[12] comme la projection canonique @€ sur I'espace des feuille/A; de A;.
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Par construction, les surfaces de niveauflesont des sous-variétés immergées préservées par la
dynamique hamiltonienn&-équivariante sur la variété de Poiss@¥, {-, -}). En plus, on peut définir
une action du group€ sur I'espace de feuillesdf/A;; par rapport & laquellg” est équivariante.

Le résultat principal de cette Note est la démonstration du théoréme suivant.

THEOREME 0.1.-Soit (M, {-,-}) une variété de Poisson & un groupe de Lie qui agit suM
d’une fagon canonique et propre. Soit : M — M /A, I'application moment optimale associée a
cette action. Alors, pour un élémepte M/Aj; quelconque dont le sous-groupe d’isotrofie, agit
proprement sur7 ~1(p), I'espace des orbitesY‘l(p)/Gp est une variété quotient réguliefge.-a-d.,
la projection canoniquer,, : T ) > j‘l(p)/Gp est une submersion surjectjvé&n plus, c’est une
variété symplectique, avec la forme symplectique natugglldéfinie par 'identité

whwp(m) (X r(m), Xp(m)) ={f, h}(m), pourm e T o) et f,h e C®(M)°.

1. Introduction

Let (M, w) be a symplectic manifold an@ be a Lie group that acts freely and properly &n We will
assume that this action is canonical that is, it preserves the symplectic form and that it has an equivariant
momentum map : M — g* associated. Marsden and Weinstein [8] showed that for any yakid(M)
with coadjoint isotropy subgrou@,,, the quotienU‘l(u)/Gu is a smooth symplectic manifold with a
symplectic structure naturally inherited from thatih This procedure can be reproduced when, instead of
ag*-valued momentum map, we have&savalued momentum map in the sense of Alekseev et al. [9,1].

The study of symplectic reduction in the absence of the freeness hypothesis@rattton has given
rise to the so calle@ingular Reduction Theomyhich has been spelled out over the years in a series of
works. See [2,14,3,10,5,13], and references therein.

The first effort to perform symplectic reduction without momentum maps was carried out in [12] by
using the so calledptimal momentum magNevertheless, in the requirements of the reduction theorem
formulated in that paper there is a “closedness hypothesis” that is reminiscent at some level of the existence
of a standardg* or G-valued) momentum map.

In this Note we will formulate a symplectic reduction theorem that does not require this hypothesis and
that at the same time works in the Poisson category. More specifically, we will show that the Marsden—
Weinstein quotients constructed using the (always available) optimal momentum map associated to a
canonical Lie group action on the Poisson manif@gif, {-, -}) are smooth symplectic manifolds, provided
that the group action satisfies a customary properness hypothesis.

2. The optimal momentum map and the momentum space

The optimal momentum map was introduced in [12] as a general method to find the conservation laws
associated to the symmetries of a Poisson system encoded in the canonical action of a Lie group. We
recall its definition. Let(M, {-, -}) be a Poisson manifold and be a Lie group that acts properly o
by Poisson diffeomorphisms via the left actidn G x M — M. The group of canonical transformations
associated to this action will be denoted by := {®, : M — M | g € G} and the canonical projection of
M onto the orbit space by, : M - M/Ag = M/G. Let Aj; be the distribution oM/ defined by the
relation Aj;(m) ;== {Xr(m) | f € C>®(M)G}, for all m € M. The symbolX y denotes the Hamiltonian
vector field associated to the functighe C*(M). Depending on the context, the distributiaj, is
called theG-characteristic distributionor the polar distribution defined byA¢ [11]. Aj; is a smooth
integrable generalized distribution in the sense of Stefan and Sussman [15-18ptirhal momentum
map J is defined as the canonical projection onto the leaf spacé& gfthat is,7 : M — M/A. By
its very definition, the levels sets ¢f are preserved by the Hamiltonian flows associated tmvariant
Hamiltonian functions and’ is universalwith respect to this property, that is, any other map whose level
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sets are preserved lgy-equivariant Hamiltonian dynamics factors necessarily thrQigBy construction,
the fibers of 7 are the leaves of an integrable generalized distribution and thenéigl immersed
submanifoldsof M [6]. Recall that we say thav is an initial submanifold ofdM when the injection
i : N - M is a smooth immersion that satisfies that for any maniflé mappingf : Z — N is smooth
iff i o f:Z— M is smooth. We summarize this and other elementary properties of the fibgrinahe
following proposition.

ProPOSITION 2.1. —-Let (M, {-,-}) be a Poisson manifold and be a Lie group that acts properly
and canonically onM. Let 7 : M — M/A{; be the associated optimal momentum map. Then for any
p € M/A}; we have that

(i) The level set7~1(p) is an immersed initial submanifold o1.
(i) Thereis a unique symplectic ledfof (M, {-, -}) such that71(p) c L.
(i) Letm € M be an arbitrary element aff ~1(p). Then,71(p) C Mg, ,with Mg, :={zeM |G, =
G}

In the sequel we will denote bg, the unique symplectic leaf dff that contains7 ~1(p). Notice that as
L, is also an immersed initial submanifold &f, the injectioni, : T Yp)— L, is smooth.

The leaf spacé//Ay; is called themomentum spacef 7. We will consider it as a topological space
with the quotient topology. Letz € M be arbitrary such tha’ (m) = p € M/Ay;. Then, for anyg € G,
the map¥, (p) = J (g - m) € M/A; defines a continuouS-action onM /A, with respect to which7 is
G-equivariant. Notice that since this action is not smoothafd ; is not Hausdorff in general, there is no
guarantee that the isotropy subgroups are closed, and therefore embedded, subgrous éfowever,
there is still something that we can say:

PROPOSITION 2.2. — Let G, be the isotropy subgroup of the element M/A; associated to the

G-action onM /Ay, that we just defined. Then

(i) There is a unique smooth structure ah, for which this subgroup becomes an initial Lie subgroup
of G with Lie algebrag, given byg, = (£ € g | Em(m) € T, T ~1(p), forall m e 77 1(p)}.

(i) With this smooth structure foG,, the left action®” : G, x J (o) — J~1(p) defined by
DP(g,z) := (g, z) is smooth.

(i) This action has fixed isotropies, that is,zfe 7~ 1(p) then (Gp); = G, and G, = G, for all
me J(p).

Proof. —(i) It is a straightforward corollary of Definition 3 and Proposition 9 in page 290 of [4]. Indeed,
we can use that result to conclude the existence of a unique smooth structGreviath which it becomes
an initial subgroup ofG with Lie algebrag, = {¢ € g | there exists a smooth curve R — G, such that
c(0) = e andc’(0) = &}. An elementary argument shows thgt= {£ € g | expté - m € I L(p) for all
meJ Np),t eRY=1{§ € g|Eu(m) € TnT (p), forallme 7 1(p)}.

(i) As 7 ~1(p) is an initial submanifold oM andi, o ®* is smooth, with, : 7~(p) < M the natural
inclusion, thend” is also smooth. (iii) is a straightforward consequence of the definitioms.

3. The reduction theorem

We will now introduce our main result. In the statement we will denote by 7 ~1(p) — J(0)/G,
the canonical projection onto the orbit space of thgaction onJ ~1(p) defined in Proposition 2.2.

THEOREM 3.1 (Symplectic reduction by Poisson actions)Let (M, {-,-}) be a smooth Poisson
manifold andG be a Lie group acting canonically and properly ofi Let.7 : M — M/Aj; be the optimal
momentum map associated to this action. Then, for @aeyM/A}; whose isotropy subgrou@, acts
properly on7 ~1(p), the orbit spaceM, := j‘l(p)/Gp is a smooth symplectic regular quotient manifold
with symplectic fornw, defined by

wrwp(m) (X p(m), Xp(m)) ={f, h}(m), foranym e I () and anyf, h € C*(M)°. (1)
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Remarkl. — Letig, : T Yp) — L, be the natural smooth injection of ~1(p) into the symplectic
leaf (£, w,) of (M, {-,-}) in which itiis sitting. AsL,, is an initial submanifold of\, the injectioni,
is a smooth map. The form, can also be written in terms of the symplectic structure of the feaés
Tywp = izpa)gp. In view of this remark we can obtain the standard Symplectic Stratification Theorem of
Poisson manifolds as a straightforward corollary of Theorem 3.1 by taking the gretife}. In that case
the distributionA; coincides with the characteristic distribution of the Poisson manifold and the level sets
of the optimal momentum map, and thereby the symplectic quotiéptsire exactly the symplectic leaves.
We explicitly point this out in our next statement.

COROLLARY 3.2 (Symplectic Stratification Theorem)Let (M, {-, -}) be a smooth Poisson manifold.
Then, M is the disjoint union of the maximal integral leaves of the integrable distribufiogiven by
D(m) :={Xy(m)| f e C*(M)}, m € M. These leaves are symplectic initial submanifoldafof

Remark?2. — The only extra hypothesis in the statement of Theorem 3.1 with respect to the hypotheses
used in the classical reduction theorems is the properness of ffaction onJ 1(p). The next example
will show that this is a real hypothesis in the sense that the properness@®j thetion is not automatically
inherited from the properness of tieaction onM, as it used to be the case in the presence of a standard
momentum mapsee[12]). From this reduction point of view we can think of the presence of a standard
momentum map as an extra integrability feature of@heharacteristic distribution that makes its integrable
leaves imbedded (and not just initial) submanifolddfénd their isotropy subgroups automatically closed.

Example1 (On the properness of th&,-action). — As we announced in the previous remark, we now
present a situation where th&,-action onJ L(p) is not proper while theG-action onM satisfies
this condition. LetM := ’I_Fz X _’IFZ be the product of two two-tori whose elements we will denote by
the four-tuples(€?, €%, V1, &¥2). We endowM with the symplectic structure» defined byw :=
db1 A db2 + v/2dy1 A diya. We now consider the canonical two-torus action given (8§, €%2) .
(€%, db2 @v1 g2y .= (dO1td) datd2) dWitén) d¥ate2)) First of all, notice that since the two-torus
is compact this action is necessarily proper. MoreovefTascts freely, the corresponding orbit space
M /A2 is a smooth manifold such that the projecti’v:mTz : M — M /A is a surjective submersion. The

polar distributionAaTz does not have that property. Indeeol’,oa\/l)Tz comprises all the functiong of

the form f = f(d@1—¥1 &®-¥2)) An inspection of the Hamiltonian flows associated to such functions

readily shows that the leaves df,, that is, the level sets of the optimal momentum m@pare the

products of two leaves of an irrational foliation in a two-torus. Moreover, it can be checked that for any

pE M/ATz, the isotropy subgrouﬂ‘2 is the product of two discreet subgroups$3f each of which fill

densely the circle. We can use this density property to show that treetion on7 L(p) is not proper. Let

{(d™, )}, cn be a strictly monotone sequence of eIemenfEﬁnhat converges tee, e) in T2. Then, for

any sequencg, l.en C J 1(p) suchthat, — z € 7 1(p) in 71(p) we have thate™, €°) -z, — zin
J1(p). However, smcé[“2 is endowed with the discrete topology aid™, o)} ,en is strictly monotone

it has no convergent subsequences, which implies@hadoes not act properly o — L(p).

Example2. — A simplified version of the previous example provides a situation where the hypotheses of
Theorem 3.1 are satisfied while all the standard reduction theorems fail. Namely, there are no momentum
maps for this action and, moreover, the “closedness hypothesis” in [12] is not satisfied.

Let M := T? x T? with the same symplectic structure that we had in the previous example. We now
consider the canonical circle action given B e€?, %2 V1, gV2) .= (dO1+e) gf2 dited) gvz) |n
this case, & (M)S" comprises all the functiong of the form f = f (&%, d¥2, d®—¥1). An inspection
of the Hamiltonian flows associated to such functions readily shows that the Iea\Aiss,dhat is, the
level sets.7 ~1(p) of the optimal momentum may, are the product of a two-torus with a leaf of an
irrational foliation (Kronecker submanifold) of another two-torus. Obviously this is not compatible with the
existence of alR? or T2-valued) momentum map or with the closedness hypothesis in [12]. Nevertheless,
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the isotropiesS/} coincide with the circleS, whose compactness guarantees that its actioff oh(p)
is proper. Theorem 3.1 automatically guarantees that the quotients of theMgrra: T p)/st ~
(81 x 1 1) x {Kronecker submanifold 6f?} are symplectic.

Proof of the theorem. Since by hypothesis thé ,-action onJ ~1(p) is proper and by Proposition 2.2
it has fixed isotropies, the quotie[ﬂ'—l(p)/Gp is therefore a smooth manifold, and the projection
Tp T Yp)—> j—l(p)/Gp is a smooth surjective submersion.

We start the proof of the symplecticity @, by showing that (1) is a good definition for the form
w, in the quotientM,. Let m,m’ € J~1(p) be such thatr,(m) = 7,(m’), and v, w € T,,J 1(p),
v, w' € T,y T 1(p) be such thaty, ), - v=Tym, V, Tynp-w=Tym, w.Letf, f',g,8 € C° (M)
be such thab = X s (m), v' = X p/(m"), w = Xg(m), w' = X (m'). The conditionr,(m) = 7, (m’) im-
plies the existence of an elemeht G, such thatn’ = ®{ (m). We also have thal,r, = T,y 7, o
T,,®¢. Analogously, because of the equaliti&sr, - v = Ty, - v, Tur, - w = Tym, - w' there
exist G-invariant functionsh®, h?2 € C*(M)¢ and elementgt, &2 € g, such thatX ; (m’) — T,, @} -
Xyp(m) = 5}7_1 (M) = X2 (m'), andX  (m") — Ty DL Xo(m) = g;_l(p) (m') = X,2(m"), or, analogously
Xp(m') = Xh1+fo¢k_l(m’) = Xh1+f(m’), andX, (m') = Xh2+goq>k_1(m/) = Xhz+g(m’). Hence, we can
write

wp (mp(m") W' W) = (f', g Yom) = {h* + f. 1 + g} (m) = {h* + f.h® + g} (m)
={f.g}m) + { f.h?}(m) + {h*, g} (m) + {h*, h?} (m)
=/, 8}m) +df(m) - £5 1, (m) — d(g +h?)(m) - §5 1, ()
={f. g}m) = w, (m,(m)) (v, w).

Consequentlyw, is a well defined two-form on the quotieM,. Given thatr, is a smooth surjective
submersion, the form, is clearly smooth. The Jacobi identity for the bracket} on M implies thatw,, is
closed. These two features of the fowp can also be immediately read out of the expressiowfpgiven
in Remark 1, whose equivalence with (1) is straightforward.

It only remains to be shown thai, is non degenerate. We start our argument with a few notations
and remarks. LeHH c G be the isotropy subgroup of all the elements/jimt(p) with respect to the
smoothG ,-action on this manifold. Recall that by Proposition 2.2 this isotropy subgroup coincides with
an isotropy of theG-action onM. Since by hypothesis th&-action onM is proper, the subgroufi C G,
is necessarily compact. Moreover, the Slice theorem guarantees that for anypoifit 1(p), there is a
G-invariant neighborhootf of m in M that isG-equivariantly diffeomorphic to the twist produGtx g V;,
whereV, is a ball of radius- around the origin in some vector spakeon which H acts linearly.

Let m € J~1(p) arbitrary. Suppose that the vectsiry (m), with f € C>®(M)Y, satisfies the equality
n;‘a)p(m)(Xf(m), Xp(m)) = {f,h}(m) = 0, for all h € C°(M)°. In order to prove thaty, is non
degenerate we have to show thég(m) € 7,,(G, - m). We will do so by using the local coordinates
around the poinin provided by the Slice theorem. First of all, &sis G-invariantX y(m) € T,,Mp.
Hence, as in local coordinatedy ~ N(H) xy VH, we have thatX ¢ (m) = T..07 - (¢, v), where
7:G x V., - G xpg V, is the natural projectiort, € Lie(N (H)), andv € V. We recall thatV 7 denotes
the fixed points inV by the action ofH .

We now rephrase in these local coordinates the non degeneracy condition. Indeed, the fact that
T wp(m) (X p(m), Xp(m)) = {f, h}(m) = —dh(m) - X¢s(m) =0, forallh € C>®(M)° amounts to saying
thatdg(0) - v = 0O for all the functiongg € C*(V,)¥. On other wordsy € ({dg(0) | g € C*(V,)f o, A
known fact about proper group actiorseéProposition 3.1.1 in [10] or Proposition 2.14 in [12]) implies
thatv e ((V*))°. Consequentlyy € VH N ((V*)H)°. We now show that this intersection is trivial and
thereforev = 0 necessarily.
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We start by recallinggeeagain the references that we just quoted) that the restrictiaivtp” of
the dual map associated to the inclusign : V¥ < V is a H-equivariant isomorphism fromy*)#
to (VH)*. Now, asv € V¥ N (V*))° we have thatio, v)y = 0 for everya € (V)*)". The symbol
(-, )y denotes the natural pairing &f with its dual. We can rewrite this condition as=0{«, v)y =
(o, iyn (V))y = (i},u (), v)yu. As the restrictiony , |y« # is an isomorphism, the previous identity is
equivalentta(8, v),» =0 for all 8 € (VH)*. Consequentlyy = 0, as required.

We conclude our argument by noting thatXg(m) = T o7 - (¢, 0), we have thalX ;(m) € T, (G -
m) N Ag; (m) =T, (G, - m), which proves the nondegeneracygf. O
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