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A B S T R A C T   

The use of circular hollow sections (CHS) have seen a large increase in usage in recent years mainly because of 
the distinctive mechanical properties and unique aesthetic appearance. The focus of this paper is the behaviour of 
cold-rolled CHS beam-columns made from normal and high strength steel, aiming to propose a design formula for 
predicting the ultimate cross-sectional load carrying capacity, employing machine learning. A finite element 
model is developed and validated to conduct an extensive parametric study with a total of 3410 numerical 
models covering a wide range of the most influential parameters. The ANN model is then trained and validated 
using the data obtained from the developed numerical models as well as 13 test results compiled from various 
research available in the literature, and accordingly a new design formula is proposed. A comprehensive com-
parison with the design rules given in EC3 is presented to assess the performance of the ANN model. According to 
the results and analysis presented in this study, the proposed ANN-based design formula is shown to be an 
efficient and powerful design tool to predict the cross-sectional resistance of the CHS beam-columns with a high 
level of accuracy and the least computational costs.   

1. Introduction 

There has been an increasing usage of circular hollow sections (CHS) 
in recent years, owing principally to their unique aesthetic appearance 
and distinctive mechanical properties including outstanding perfor-
mance in compression and bi-axial bending resistance and superior 
torsional resistance. They have been used in a wide range of structural 
members such as columns, beams, arches, trusses and wind turbine 
towers. The typical production methods for CHS are cold-forming or hot- 
rolling. The cold-formed CHS exhibit a continuous rounded stress–strain 
response caused by cold-working throughout the forming process, 
whereas the hot-finished CHS have a linear elastic response followed by 
well-defined yield plateau and moderate degree of strain hardening 
[1–6]. This paper concerns with the behaviour of cold-formed CHS 
beam-column. 

In recent years, high strength structural steel CHS are being 
increasingly popular in the construction industry owing to the excep-
tional benefits from high strength steels and hollow sections such as high 

strength-to-weight ratio, lighter cross-sectional area, long-span struc-
tures and reduced carbon footprint. In particular, high strength steel 
CHS are more appropriate for heavily loaded members, where the steel 
members would otherwise be very thick, long-span roofs, high-rise 
buildings, bridges and offshore structures. However, the initial cost of 
high strength steel CHS is relatively higher than the conventional 
normal steel. In spite of this, it has been shown that they are attractive 
and efficient material as a result of the cost savings associated with the 
reduction in the material usage, fabrication, handling and trans-
portation [7,8]. The behaviour of both normal and high strength steel 
CHS beam-columns is the focus of the current study. 

The rapid computerized development in the artificial intelligence 
provides an efficient and reliable means for predicting the structural 
performance of steel members. This allows to develop design formulas 
and account for various influential parameters. Artificial Neural 
Network (ANN) is one of the most common methods in artificial intel-
ligence employed to solve complex engineering problems, giving accu-
rate predictions of the behaviour of structural elements [9,10]. They are 
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based on schematic procedures which include pattern recognition and 
prediction. The typical layout of the ANN comprises of input layer, 
hidden layer and output layer. The input and output parameters are 
interconnected through several weighted connections in the hidden 
layer, the so-called neurons. The number of these neurons have a direct 
influence on the quality of the predicted outputs. Therefore, it is crucial 
that a sensitivity study is conducted. 

A review of existing research on structural steel of CHS reveals that 
there has been considerable research into the behaviour of stub columns 
including hot-rolled [11–17] and cold-formed [18–23], as well as the 
behaviour of flexural members produced using hot-rolling [24–27] and 
cold-forming [28–32]. There has been a general scarcity of test data on 
CHS beam-columns (i.e. hot-rolling members [12,14,19,33] and 
cold-forming [34–36]). A series of tests and numerical models on 
hot-finished and cold-formed CHS beam-columns has been recently 
conducted by Meng and Gardner [37,38]. From the literature review, 
additional research on the CHS beam-columns is still required to provide 
accurate prediction of the structural performance of CHS beam-columns 
and to achieve more efficient design rules. Applications of artificial 
neural networks for predicting various structural behaviour in 
constructional steel elements include steel beams [39–45], steel plates 
[46–48] and cellular and castellated steel beam [49–54], as well as 
limited studies on the steel connections [55–57] and frames [58]. There 
is a lack of available research into the response of CHS beam-columns 
using the ANN. Hence, the aim of this paper is to predict the 
cross-sectional resistance of the cold-rolled CHS beam-columns made 
from both normal high strength steels implementing the power of ANN. 
Building on previously developed and validated finite element model 
(FE) by Meng and Gardner [38], the ANN model is trained and devel-
oped using an extensive parametric study with a total of 3410 data 
points. Accordingly, an ANN-based formula is proposed for predicting 
the cross-sectional resistance of CHS beam-columns. Detailed de-
scriptions on the development and validation of the ANN model are 
discussed. Furthermore, the accuracy of the design rules in the prEN 
1993-1-1:2020 [59], which is the current EC3 draft, is assessed through 
a comparative study with the results obtained from the FE model and 
ANN model. 

2. Eurocode 3 design rules 

This section presents the new stability design provisions provided in 
prEN 1993-1-1:2020 [59] for CHS beam-columns structural steel, with a 
particular focus given to the cross-section classifications and the 
beam-column interaction relationship. In this scenario, the EC3 code 
classifies the cross-sections into four classes for the verification of local 
buckling, which is based on the deformation capacity (ε =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
235/fy

√
). 

Considering CHS, each class is limited depending on the slenderness 

(D/tε2), where D is the outer diameter, and t is the thickness. Classes 1 
and 2 are those that can reach full plastic cross-sectional resistance. The 
slenderness limit for classes 1 and 2 are 50 and 70, respectively. Sections 
classified within the class 3 are those capable of only reaching the elastic 
cross-sectional resistance and do not achieve the plastic cross-sectional 
resistance owing to inelastic local buckling failure. For class 3, the 
slenderness limit is equal to 90 and 140, considering compression and 
bending, respectively [36]. In this context, due to interaction between 
compression and bending, there is a transition limit equal to 
2520/(5ψ + 23), in which ψ is the ratio between the maximum and 
minimum cross-sectional stresses. That boundary is shown in Fig. 1. 
Finally, class 4 cross-sections are characterized by local buckling failure 
prior to reaching their elastic cross-sectional resistance. It is noteworthy 
that class 4 sections were out of the scoop of this study. 

The beam-column interaction relationship specified in EC3 can be 
simplified, according to Eq. (1), in which NEd and MEd represent the 
applied axial force and bending moment, respectively, k is the interac-
tion factor, χ is the column buckling reduction factor and γM1 is the 
partial safety factor taken as 1.0 for carbon steel members, owing the 
axisymmetric geometry of CHS. The cross-sectional resistances to 
compression (Nc,R) and bending (Mc,R) are determined by Eqs. (2)–(4), 
where Wel and Wpl are the elastic and plastic section modulus. The 
column buckling reduction factor (χ) is calculated by Eqs. (5)–(7), in 
which, Ncr is the Euler buckling load and λ is the relative slenderness. 
The codified values of the imperfection factor (α) are given in Table 1. 

NED

χNc,R
/

γM1
+ k

MED

Mc,R
/

γM1
≤ 1.0 (1)  

Nc,R = Afy for class 1 − 3 cross sections (2)  

Mc,R = Wplfy for class 1 − 2 cross sections (3)  

Mc,R = Welfy for class 3 cross sections (4)  

χ =
1

φ +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
φ2 + λ2

√ ≤ 1 (5)  

λ =
Nc,R

Ncr
for class 1 − 3 cross sections (6)  

φ = 0.5
(
1 + α(λ − 0.2) + λ2 ) (7) 

The interaction factor (k) is calculated by Eq. (8) for class 1–3, in 
which Cm is a parameter accounting for the shape of the first order 
bending moment diagram. 

k = Cm

(

1 + (λ − 0.2)
NED

χNc,R
/

γM1

)

for λ ≤ 1

k = Cm

(

1 + 0.8
NED

χNc,R
/

γM1

)

for λ > 1
(8)  

3. Finite element modelling and validation 

A finite element model was developed using the general FE software 
Abaqus [60] in order to study the structural behaviour of cold-formed 
CHS beam-columns made from normal and high strength steel, with 
the aim of using it to train and validate the ANN model through 
generating an extensive range of parametric study; employing a similar 
approach to that successfully validated by Meng and Gardner [38] in a 
previous study. This was shown to accurately predict the behaviour of 

Fig. 1. Slenderness limits.  

Table 1 
Values for EC3 imperfection factor (α) for buckling curve [59].  

Buckling curve a0 a b c d 

Imperfection factor (α) 0.13 0.21 0.34 0.49 0.76  
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CHS beam-columns in terms of the load-deflection response, ultimate 
bearing capacity, buckling behaviour and failure mode [38]. This sec-
tion presents a brief summary on the development and validation of the 
FE model, and provides a concise description of the parametric study. 

3.1. Development of the FE model 

In order to numerically replicate the structural response of the cold- 
formed CHS beam-columns, geometrically and materially nonlinear 
analyses with imperfections were performed on the FE simulation 
models using the Riks solver supplied in the Abaqus FE package [60]. 
The four-noded shell element with reduced integration (S4R) was 
adopted, as it is well suited for the numerical modelling of thin-walled 
steel structures [36,61]. Assuming symmetrical boundary conditions 
along the longitudinal and mid-cross-sectional planes, only one quarter 
of the CHS element was modelled. To improve the efficiency and reduce 
the computational costs a finer mesh size was applied in the mid-span 
while coarser mesh in the rest of the model [38]. Kinematic coupling 
was employed to link degree of freedoms to a reference point at the end 
sections in which pinned in-plane and fixed out-plane boundary condi-
tions were applied to the reference point. Local and global geometric 
imperfections were included using the first buckling modes. 

The material properties of the normal and high strength were pre-
sented in the model using the constitutive stress-strain relationship 
proposed by Ref. [62]. Given that the experimental stress-strain re-
lationships inherently include the contribution of the dominant bending 
residual stresses induced by section forming [63–65], these stresses were 
not explicitly introduced in the FE modelling. This is also applied to the 
residual stresses developed mainly during section welding which are 
shown to have a negligible effect on the overall structural response [63, 

66,67]. Further detailed discussion on the development of the FE model 
is provided in Ref. [38]. 

3.2. Validation of the FE model 

The FE models were validated in terms of load-deflection relation-
ship, ultimate bearing capacity, and failure mode. The geometrical de-
tails of CHS beam-columns are given in Table 2 with their corresponding 
tests results including ultimate load (Nu) and mid-height lateral deflec-
tion (Δu). Fig. 2 exhibits a comparison of the load-mid height lateral 
deflection curves obtained from the FE model and their corresponding 
experimental response. It is found that the overall experimental 

Table 2 
CHS beam-column specimens with measured dimensions and test results [38].  

Cross-section Designation Depth (mm) Thickness (mm) Critical length (mm) Eccentricity (mm) Nu (kN) Δu (mm) 

CHS 139.7 × 4 C1-1200-e10 140.15 3.97 1399.5 10 943.8 11.92 
C1-1200-e25 140.10 3.94 1399.8 25 738.8 18.21 
C1-1200-e50 140.08 3.95 1399.8 50 565.0 23.55 
C1-1200-e85 140.10 3.96 1399.1 85 425.6 27.30 
C1-1200-e170 140.15 3.95 1398.5 170 261.5 30.88 

CHS 139.7 × 5 C2-1200-e10 140.43 4.90 2598.5 10 785.6 28.48 
C2-1200-e25 140.47 4.91 2599.5 25 644.7 40.41 
C2-1200-e50 140.43 4.92 2598.5 50 505.1 50.23 
C2-1200-e85 140.39 4.89 2599.0 85 377.2 61.72 
C2-1200-e170 140.45 4.88 2599.5 170 247.9 77.48  

Fig. 2. Typical numerical and experimental load-deflection curves for cold- 
formed CHS beam-columns [38]. 

Fig. 3. Typical failure modes obtained experimentally and numerically for C1- 
1200- e50 [38]. 

Table 3 
Comparisons of buckling resistances obtained numerically and experimentally 
using different global geometric imperfection [38].   

Nu,FE/Nu,test 

Measured 
ωg 

ωg = Lcr/ 
2000 

ωg = Lcr/ 
1000 

ωg = Lcr/ 
500 

Mean 0.982 0.980 0.970 0.956 
Coefficient of 

variation 
0.027 0.026 0.030 0.034  
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response is well replicated by the FE model in terms of the initial stiff-
ness, ultimate cross-sectional resistance and failure tendency. A com-
parison of the failure modes obtained experimentally and numerically 
are shown in Fig. 3. The figure shows excellent agreement of the 
buckling failure mode. For robust validation, a comparison between the 
numerical (Nu,FE) and experimental (Nu,test) ultimate loads was con-
ducted over four global geometric imperfection amplitudes (ωg) as 
shown in Table 3. It is noteworthy to indicate that the global geometric 
imperfection factors were determined experimentally using a laser beam 
projected parallel to the specimen by measuring the distances between 
the specimen and laser beam at the mid-span and both ends. It is 
observed that the global geometric imperfection has a very slight in-
fluence on the ultimate bearing resistance. Hence, the FE model with a 
geometric imperfection value of critical length (Lcr)/1000 was consid-
ered in the parametric analysis since it provides an accurate and 
consistent predictions of the structural behaviour and is in line with the 
EC3 column buckling rules [59]. 

3.3. Parametric study 

A parametric study on 3410 numerical models was conducted to 
generate additional cross-sectional resistance of cold-formed steel CHS 
beam-columns, implementing a wide spectrum of influential parameters 
including diameter-to-thickness ratio (D/t), wall thickness (t), effective 
length of the columns (Lcr), eccentricity (e) and the yield strength of the 
steel (fy). These parameters were found to be the most influential pa-
rameters govern the design of CHS beam-columns (i.e. [36–38]) and 
thus are selected in this study. Both Normal and high strength steels 
were included using five different steel grades ranging from S355 to 
S900. The material properties for the various steel grades are listed in 
Table 4, in compliance with EC3 rules [59]. Given that S900 is a 
high-strength steel and is outside the scope of EC3, its yield stress (fy) 
and ultimate stress (fu) were assumed to be 900 MPa and 945 MPa, 
respectively, and the Young’s modulus of elasticity (E) was taken as 210 
GPa. Additionally, the outer diameter of the section was set at 100 mm 
while the thickness was ranged between 1.18 and 15 mm in order to 
provide a wide-ranging variety of D/tε2 values up to the EC3 Class 3 
limit. The length of CHS specimens ranged from 300 to 5300 mm, 
leading to have a large spectrum of relative slenderness values, between 
0.2 and 2. To develop different load combinations, the initial eccen-
tricities, which were identical at both extremities, extended from 2.4 to 
360 mm. The results of this extensive parametric study are employed in 
the next section to train and validate the ANN model. 

4. Development of the artificial neural network (ANN) 

In this section, a total of 3410 models generated from the parametric 
study as well as 13 test results compiled from various research available 
in the literature [18,19,34,37,38] are employed to train and validate the 
ANN model, aiming to predict the cross-sectional capacities of cold 
-formed CHS beam-columns. The data is shown to cover a wide range of 
key influential parameters including various geometries, material 
properties with different eccentricities. 

4.1. Neural network architecture 

An Artificial Neural Network (ANN) typically consists of an input 
layer, hidden layer (containing a set number of nodes), and an output 
layer. Fig. 4 provides an example of a 3 node Artificial Neural Network. 
Each input parameter is connected to each node in the hidden layer, 
thereafter, every node in the hidden layer is connected to the output 
layer. The role of the neural network is to assign a weight, bias, and 
transfer function to these connections to help determine the value of the 
output layer. Any node whose output exceeds the defined threshold 
value is activated and begins providing data to the next layer. Other-
wise, no data is transmitted to the network’s next tier. 

The Neural Network Toolbox in Matlab [68] was used in this study, 
employing a Multi-Layer Perceptron Network (MLPN) to solve the 
input-output fitting problem with a two-layer feed forward network. The 
input parameters used to help predicting the buckling resistance were 
the ratio of diameter over thickness (D/t), thickness (t), Critical length 
(Lcr), Youngs modulus (e) and Yield strength (fy). With these input pa-
rameters, 4 models were produced which consisted of 3, 5, 7 and 9 nodes 
in the hidden layer. The number of nodes in the hidden layer plays a 
crucial role in determining the complexity and accuracy of the neural 
network. Using less number of nodes may reduce the accuracy of the 
model while having additional nodes could potentially over fit the data 
and result in more complex predicted formula. 

4.2. Input and output normalization 

To improve the learning speed and accuracy of the models, the input 
and output data had to be normalized using Eq. (9). Where, Xn repre-
sents the normalized value, Xa represents the actual value, Ymax and Ymin 
denotes the minimum and maximum values for each row of X (+1 and 
− 1, respectively) and Xmax and Xmin are the minimum and maximum 
values for the input/output parameters, respectively (Table 5). 
Normalization improves the training of the neural network model as the 

Table 4 
Nominal mechanical properties for hot-finished and cold-formed hollow sections 
for Steel grade S355-900 [38].  

Grade E (MPa) fy (MPa) fu (MPa) 

S355 210 000 355 490 
S460 210 000 460 540 
S550 210 000 550 600 
S690 210 000 690 770 
S900 210 000 900 945  

Fig. 4. ANN Model with 3 neurons in the hidden layer.  

Table 5 
Parameters used to normalize input and target values.  

Input/Target Parameter Xmin Xmax Ymin Ymax 

D/t 6.68 72.39 − 1 1 
t (mm) 1.38 15 − 1 1 
Lcr (mm) 297.3 5255.08 − 1 1 
e (mm) 0 351.12 − 1 1 
fy (mm) 355 1054 − 1 1 
Nu (kN) 13.24 3204.85 − 1 1  
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training data is narrow for some parameters and elongated for others 
[69]. It is worth to note that the output obtained from Eq. (9) is in the 
form of normalized value and therefore de-normalization of the output is 
required to represent the results in Nu (kN). 

Xn =
(Ymax − Ymin)(Xa − Xmin)

(Xmax − Xmin
+ Ymin (9)  

4.3. Learning (training) algorithm and transfer function 

The algorithm used in this study was the Lavenberg-Marquardt back 
propagation training algorithm since it is fast, provides consistent 
convergence and be used for small and medium sized problems. To 
ensure that the algorithm provides accurate predictions without over- 
fitting the models, the data in the MATLAB toolbox is divided into 
training, validation, and testing sets. 70% of data is used for training the 
model with the model adjusted according to errors, 15% of data is used 
for validation in which the network generalization is measured, and 
training is stopped when there is no further improvement and 15% of 
data is used for testing an independent review on the performance of the 
model during and after training. To assess the accuracy of the models at 
this stage, the regression is reviewed for all the data sets. Eqs (10) and 
(11) show the hyperbolic tangent transfer function that is used in 
determining the normalized output value based on the normalized input 
values. 

Os =Bs
1 +

∑r

k=1

(

who
k,l

2
1 + e− 2Hk

− 1
)

(10)  

Hk =Bk
2 +

∑q

j=1
wih

j,k.Ij (11)  

where, Os represents the normalized output value, q is the number of 
input parameters; r is the number of hidden neurons; Bs

1 and Bk
2 are the 

biases of sth output neuron and kth hidden neuron (Hk), respectively; 
wih

j,k is the weights of the connection between Ij and Hk; woh
k,l are the 

weights of the connection between Hk and Os. 

4.4. Assessing accuracy and quantifying input variable contributions 

To assess the accuracy of the models, a comparison between the 
actual and predicted values was reviewed alongside an assessment into 
the impact of each input parameter. To review the accuracy of predicted 
values, the regression (R), Root Mean Square Error (RMSE) and Mean 
Absolute error (MAE) was determined using Eqs. (12)–(14), where ti and 
Oi are the actual and predicted buckling resistance, N is the total number 
of data points in each set of data. O and t are the average of the predicted 
and actual buckling resistance. 

R=

∑N

i=1
(Oi − Oi)(ti − ti)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(Oi − Oi)

2 ∑N

i=1
(ti − ti)

2

√ (12)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(Oi − ti)

2

N

√
√
√
√
√

(13)  

MAE =
1
N

∑N

i=1
|Oi − ti| (14)  

Table 6 
Assessment of the ANN models with different neurons.  

Number of neurons Training Validation Testing All data 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE MAE 

3 0.997 0.019 0.997 0.022 1.000 0.020 0.997 0.019 0.012 
5 0.999 0.011 0.999 0.009 0.999 0.008 0.999 0.010 0.005 
7 1.000 0.007 1.000 0.007 1.000 0.008 1.000 0.007 0.004 
9 1.000 0.005 1.000 0.005 0.999 0.006 1.000 0.005 0.003  

Fig. 5. Comparison between the bearing cross-sectional capacity obtained from the ANN model (with seven neurons) and those observed numerically and exper-
imentally. Contribution. 
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5. Results 

5.1. Optimization and validation 

The accuracy of the ANN model with different number of neurons is 
illustrated in Table 6. The statistical parameters including regression 
(R2) and Root Mean Square Error (RMSE), and Mean Absolute Error 
(MAE) during training, validation, testing and the date sets are obtained. 
It can be noted that there is a clear coloration between the accuracy of 
the ANN prediction and the number of neurons in the hidden layer as the 
accuracy increases by increasing the number of neurons. For instance, 
the R2, RMSE and MAE values for the model with 3 neurons are 0.997, 
0.0194 and 0.0122, respectively, while these same values for model with 
9 neurons are 0.9998, 0.005, and 0.0032, respectively. However, using 
more neurons in the ANN model potentially results in over-fitting and 
the model becomes complex and impractical for use in real-life engi-
neering applications. Therefore, 7 neurons model is selected to predict 
cross-sectional capacity as it shows high level of accuracy and a stable 
level of convergence. 

Fig. 5 illustrates comparisons between the ultimate cross-sectional 
capacities predicted by ANN model (Nu,ANN) with those obtained using 
FE model and experimental tests (Nu,actual). The figure shows excellent 
level of accuracy between the predicted and actual results with regres-
sion value of R2 = 0.9996 and RMSE and MSA values of 0.0069 and 
0,0042, respectively, as seen in Table 6. 

The importance of the five input parameters, namely D/t, t, Lcr, e and 
fy, used in the ANN model, is shown in Fig. 6. The highest contribution 
value calculated using Garson algorithm corresponds to the most 
important input parameter. It can be noted that the eccentricity (e) and 
the diameter-to-thickness ratio D/t have the most effect on the resistance 
while the yield strength (fy), the effective length (Lcr) and the wall 
thickness (t) have the least impact. Fig. 6 also shows the percentage 
contribution of each input parameter to the cross-sectional capacity. The 
contribution of the input parameters D/t, t, Lcr, e and fy are 29.8%, 7.2%, 
10.9%, 41.7%, and 10.4%, respectively. In conclusion, as the ANN 
model with seven neurons provides predictions with high level of 

accuracy, it will be used in the following sections. 

5.2. ANN-based formula 

Eq. (15) shows ANN-based formula to predict the normalized cross- 
sectional resistance of the cold-formed CHS beam-columns made from 
normal and high strength steel. The input parameters, which should fall 
within Xmax and Xmin range indicated in Table 5, should be normalized 
using Eq. (9). To calculate the normalized cross-sectional capacity 
(NANN)n, the parameters H1, H2, …, H7 should be determined using Eq 
(16) and substituted into Eq. (15). As previously stated, the cross- 
sectional capacity can be calculated by denormalisation process. In 
these expressions, (D/t)n, (t)n, (Lcr)n, (e)n and (fy)n are the normalized 
inputs of D/t, t, Lcr, e and fy, respectively. The constants w1(i,j) are the 
connection weights between neuron in the hidden layer (i) and input (j), 
while w2(i) are the connection weights between the neuron in the hid-
den layer (i) and the output. B1(i) are the bias for each neuron (i) in the 
hidden layer, and B2 is the output bias and is equal to 0.370627. The 
values of w1(i,j), w2(i), and B1(i) corresponding to each neuron i are 
given in Table 7. 

(NANN)n =B2 +
∑n=7

i=1
w2(i)

(
2

1 + e− 2Hi
− 1

)

(15)  

Hi =B1(i)+w1(i, 1)(D/t)n +w1(i, 2)(t)n +w1(i, 3)(Lcr)n +w1(i, 4)(e)n

+ w1(i, 5)
(
fy
)

n

(16)  

5.3. Comparison with design standards 

In this section, the results obtained by the finite element method are 
compared with ANN and EC3, presented in section 2, considering the 
steel grades studied in the parametric study as well as the tests per-
formed by Refs. [18,19,34,37,38] as shown Fig. 7. The figure also shows 
the discrepancy limits between the predicted ultimate capacity and the 
corresponding actual values through drawing four dotted lines reflecting 
deviations of +15%, +10%, − 10% and − 15%. In general, the results 
presented in the figure indicate that the ANN model provides excellent 
predictions of the corresponding FE cross-sectional capacities and better 
performance compared with that of EC3 design rules. A comparison of 
the predictions obtained from the ANN model with tests is shown in 
Fig. 7a. The average ratio of predicted-to-tested cross-sectional capacity 
for ANN model are 0.94 with the statistical measures of RMSE, standard 
deviation, and variance being 50.8, 14.8% and 2.2%, respectively. These 
same values for EC3 are 0.78, 332, 8.7% and 0.8%, respectively. These 
findings emphasise the accuracy and validity of the ANN model. 

For steel grade S355 (Fig. 7b), the average ratio of the ANN-to-FE 
predictions (Nu,ANN/Nu,FE) is 1.02 with the RMSE, standard deviation, 
and variance being 8.1, 10.3% and 1.1%, respectively. On the other 
hand, the average ratio of the EC3-to-FE predictions (Nu,EC3/Nu,FE) is 
0.94 with the statistical values of 14.7, 6.6% and 0.4%, respectively. 
Regarding the S460 high-strength steel, the comparison between the FE 
model and predictions is shown in Fig. 7c. The average of the predicted- 

Fig. 6. Importance of the input parameters.  

Table 7 
The connection weight and the bias values.  

Neuron w1(i,j) w2(i) B1(i) 

D/t t Lcr e fy Nu 

1 0.3738 − 0.2461 0.1412 2.1547 − 0.7370 3.5967 4.1821 
2 − 0.7541 − 0.2009 0.6098 2.1956 − 0.4514 − 4.2642 2.9217 
3 − 1.1625 0.4532 0.3823 0.4603 − 0.2360 0.5280 0.5054 
4 1.5866 − 0.1348 − 0.2737 − 0.3478 0.2326 − 2.1052 − 0.4051 
5 − 1.5821 − 0.1494 0.3000 0.3728 − 0.2325 − 2.6010 0.1156 
6 − 0.6884 0.3684 0.6352 2.3225 − 0.4386 3.6477 3.5057 
7 0.0039 0.2131 − 0.6172 − 6.9613 0.4752 4.3937 − 9.2361  
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Fig. 7. Comparison of the cross-sectional resistance of the CHS beam-columns obtained from the ANN model and EC3.  
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to-FE result ratio are 0.99 and 0.92 for the ANN model and EC3, 
respectively. The values of RMSE, standard deviation, and variance are 
6.4, 4.7% and 0.2% for the ANN model and 23.6, 6.0% and 0.4% for 
EC3. 

Fig. 7 d, e and f show the results for S550, S690 and S900 steel 
grades. The average values of the predicted-to-FE results for these grades 
are 0.99, 1 and 1 for the ANN model and 0.92, 0.9 and 0.89 for the EC3, 
respectively. The statistical values for the ANN model show a better 
convergence with FE results than that of the EC3. For instance, the 
values of RMSE, standard deviation, and variance for the ANN model are 
6.8, 3.1% and 0.1% for grade S550, 10.8, 3.3% and 0.1% for grade S690 
and 14.4, 2.7% and 0.2% for grade S900, respectively. These same 
values for EC3 are 34.6, 5.3% and 0.3%, for grade S550, 63.1, 5.3% and 
0.3%.for grade S690 and 105.9, 5.1% and 0.3%.for grade S900, 
respectively. It is noted that the EC3 predictions tend to be slightly 
conservative and demonstrate a large scatter of the data compared with 
the predictions of the ANN model, especially for a higher steel grade. 

A summary of the key statistical parameters for the all predictions is 
presented in Table 8, including the ANN model and the design rules in 
EC3, using various statistical measures. As observed, the RMSE and MAE 
values for the ANN model are significantly lower than those calculated 
using EC3 by around 5.5 times on average. Based on the results pre-
sented in this study, the ANN model is shown to be an effective and 
reliable design tool with a high level of accuracy. 

6. Conclusions 

This paper has examined the behaviour of cold-rolled CHS beam- 
columns made from normal and high strength steel. The primary 
objective of this study is to accurately predict the ultimate cross- 
sectional load carrying capacity of CHS beam-columns employing the 
artificial neural network (ANN). An extensive parametric study with a 
total of 3410 data points was conducted to expand the data pool and to 
cover a wide spectrum of the influential parameters including various 
geometries, material properties and different eccentricities. The ANN 
model is then trained and validated to propose a new design formula for 
predicting the cross-sectional capacity of CHS beam-columns. A 
comprehensive comparison with the design rules given in EC3 is pre-
sented to assess the performance of the ANN model. Consequently, the 
following key findings and observations are summarized.  

• The accuracy of the model is improved by the increasing the number 
of neurons in the hidden layer. However, this might require addi-
tional computational time and results in a more complicated pre-
diction formula. Therefore, it is advised to use the minimum number 
of neurons that maintains a sufficient level of accuracy.  

• Following the analysis of the importance of the input parameters, it is 
observed that ultimate cross-sectional resistance of the CHS is highly 
influenced by the eccentricity and the diameter-to-thickness ratio, 

where on the other hand the yield strength, the effective length and 
the wall thickness have the least impact.  

• There is an excellent agreement between the ANN predictions and 
the corresponding experimental values with the average ratio of 
predicted-to-tested cross-sectional capacity for ANN model being 
0.94 with the statistical measures of RMSE, standard deviation, and 
variance being 50.8, 14.8% and 2.2%, respectively. These same 
values for the numerical model are 1, 11, 5.91 and 5.9%, respec-
tively. These findings emphasise the accuracy and validity of the 
ANN model.  

• The EC3 predictions are shown to be slightly conservative and 
exhibit a large scatter of the data compared with those derived using 
the ANN model. The average ratio of predicted-to-tested cross- 
sectional capacity for EC3 is 0.91 with the statistical measures of 
RMSE, standard deviation, and variance being 60.1, 6.16% and 
6.76%, respectively.  

• The proposed ANN-based design formula is found to be an efficient 
and powerful design tool to predict the cross-sectional resistance of 
the CHS beam-columns with least computational costs. 
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Table 8 
Summary of the key statistical parameters.   

Mean (kN) Standard deviation (%) Coeff. of variation (%) R2 RMSE (kN) MAE (kN) 

Nu,ANN/Nu,FE 1.001 5.91% 5.90 0.999 11.00 6.68 
Nu,EC3/Nu,FE 0.911 6.16% 6.76 0.990 60.08 36.91  
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Appendix A  

Table A1 
Details of experimental tests used in the ANN model  

Tested by Depth (mm) Thickness (mm) Critical length (mm) Eccentricity (mm) fy (N/mm2) Nu (kN) 

Meng, & Gardner [38] 140.15 3.97 1399.5 10 742.4 943.8 
140.1 3.94 1399.8 25 742.4 738.8 
140.08 3.95 1399.8 50 742.4 565 
140.1 3.96 1399.1 85 742.4 425.6 
140.15 3.95 1398.5 170 742.4 261.5 
140.43 4.9 2598.5 10 729.7 785.6 
140.47 4.91 2599.5 25 729.7 644.7 
140.43 4.92 2598.5 50 729.7 505.1 
140.39 4.89 2599 85 729.7 377.2 
140.45 4.88 2599.5 170 729.7 247.9 

Nseir [19] 159 6.5 900 0 607.3 1788 
159 6.9 900 45 607.3 1060 

Wagner [34] 50.8 4.9022 1673.2 19.05 515.7 120.7 
76.2 6.5278 1724 38.1 582.6 304.7 

Ma et al. [18] 89 2.93 1655 0.28 1054 444.4 
88.9 2.94 1655 2.98 1054 367.9 
88.9 2.92 1655 10.39 1054 300.3 
88.9 2.94 1655 21.68 1054 249.3 
89 2.95 1655 39.72 1054 200.9 
89 2.94 1655 79.85 1054 144.3 
88.8 2.94 1655 151.54 1054 98.4 

Meng, & Gardner [37] 140.02 3.94 620.01 49.43 742.4 715.4 
140.13 3.94 620.16 83.64 742.4 505.6 
140.08 3.95 619.8 171.24 742.4 302.7 
140.38 4.88 620.24 9.72 729.7 1417.2 
140.35 4.86 620.83 24.51 729.7 1136.6 
140.34 4.89 619.66 49.69 729.7 887.8 
140.37 4.88 620.16 83.84 729.7 648.4 
140.37 4.86 620 168.93 729.7 381.6 
168.35 3.93 705.04 10.37 720 1400.6 
168.37 3.93 705.09 25.02 720 1194.7 
168.43 3.93 705.14 40.22 720 985.2 
168.07 3.93 705.35 76.02 720 726.8 
168.59 3.91 704.6 151.01 720 455.9 
140.06 3.95 619.5 9.94 742.4 1129.2 
140.11 3.94 619.42 25.02 742.4 924.4  

Appendix B 

List of notation 

This list defines the symbols used in this paper. However, those are not included here are defined in the text as appropriate.   

fy The yield strength of the steel 

fu The ultimate strength of the steel 
e Eccentricity 
D/t Diameter-to-thickness ratio 
Lcr Effective length of the columns 
E The Young’s modulus of elasticity 
ε ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

235/fy
√

ψ The ratio between the maximum and minimum cross-sectional stresses 
Nc,R The cross-sectional resistances to compression 
Mc,R The cross-sectional resistances to bending 
Ncr The Euler buckling load 
λ The relative slenderness 
χ The column buckling reduction factor 
γM1 The partial safety factor 
k The interaction factor 
α The imperfection factor 
Cm A parameter accounting for the shape of the first order bending moment diagram 
ωg The global geometric imperfection 
Xn The normalized value 
Xa The actual value 
Ymax The minimum value for each row of X 
Ymin The maximum value for each row of X 
Xmax The minimum value for the input parameters 
Xmin The maximum value for the output parameters 

(continued on next page) 
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(continued ) 

fy The yield strength of the steel 

Os The normalized output value 
q The number of input parameters 
r The number of hidden neurons 
Bs

1 The biases of sth output neuron 
Bk

2 The biases of kth hidden neuron (Hk) 
wih

j,k The weights of the connection between Ij and Hk 

woh
k,l The weights of the connection between Hk and Os. 

RMSE Root Mean Square Error 
R Regression 
MAE Mean Absolute Error  
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