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The most sensitive search pipelines for gravitational waves from compact binary mergers use
matched filters to extract signals from the noisy data stream coming from gravitational wave detectors.
Matched-filter searches require banks of template waveforms covering the physical parameter space of
the binary system. Unfortunately, template bank construction can be a time-consuming task. Here we
present a new method for efficiently generating template banks that utilizes automatic differentiation
to calculate the parameter space metric. Principally, we demonstrate that automatic differentiation
enables accurate computation of the metric for waveforms currently used in search pipelines, whilst
being computationally cheap. Additionally, by combining random template placement and a Monte Carlo
method for evaluating the fraction of the parameter space that is currently covered, we show that
search-ready template banks for frequency-domain waveforms can be rapidly generated. Finally, we
argue that differentiable waveforms offer a pathway to accelerating stochastic placement algorithms.
We implement all our methods into an easy-to-use PYTHON package based on the JAX framework,
diffbank, to allow the community to easily take advantage of differentiable waveforms for future
searches.

DOI: 10.1103/PhysRevD.106.122001

I. INTRODUCTION

The detection of gravitational wave (GW) emission
from the binary coalescence of two black holes [1–3]
opened a new observational window onto the universe.
To extract GW signals from the noisy data stream, the
LIGO and Virgo collaborations typically employ matched

filtering.1 Here, the strain data are compared to a bank of
templates described by a set of points in the binary
parameter space and a GW waveform model. The goal
of template bank generation is to have at least one
sufficiently similar template in the bank for any potential
signal [6]. The challenge is to do this with a minimal
number of templates and computing resources. To date,
matched-filter searches for transient GW emission from
compact binary coalescences have focused on aligned-
spin black hole binary (BBH) systems on quasicircular
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1The matched filter is the optimal linear filter for maximizing the
signal-to-noise ratio of a known signal in Gaussian-distributed noise
[4]. Note that the matched filter is generally not optimal in the non-
Gaussianregimeandwhensearchingformultiplepossiblesignals [5].
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orbits.2 Significant work has therefore been put into care-
fully constructing close-to-optimal template banks for the
BBH parameter space. Conversely, less work has been done
to carry out searches from more general systems such as
BBHs with generic spins (see e.g., [9–12]) or binaries that
contain objects which significantly differ from black holes
such as boson stars or black holes with superradiant clouds
[8]. The focus of this paper is to take a first step towards
enabling fundamentally new searches, including both
beyond the Standard Model physics and new astrophysics,
by making the generation of template banks for new
systems efficient and simple.
Constructing template banks for realistic GWwaveforms

is a challenging task with many different methods currently
being employed. It is particularly difficult since the goal of
most searches is to minimize the computational cost while
achieving a given detection efficiency. Having a small
number of templates is both statistically preferable (reduces
the number of trials) and computationally preferable
(computing the matched filter repeatedly is expensive).
Template placement can be therefore thought of as a form
of the mathematical sphere-covering problem on a param-
eter space manifold with distances given by the match [13],
which measures the similarity between different gravita-
tional waveforms and is reviewed in Sec. II.
If the parameter space manifold is sufficiently flat,

optimum solutions exist for low numbers of dimensions
[14] and can be realized through lattice placement algo-
rithms which utilize a parameter space metric to guide the
template placement [15]. On the other hand, for spaces that
are curved or have complicated boundaries, lattice-based
template banks are difficult to construct [16].
An alternative is stochastic placement [17].3 Stochastic

placement works by randomly proposing template posi-
tions in the parameter space which are only accepted if they
are sufficiently far from all other templates in the bank. The
requirement of complete coverage of the parameter space is
abandoned in favor of requiring coverage with a chosen
level of confidence. Although stochastic banks are in
principle simple to construct and do not require knowledge
of the parameter space’s geometry, they become computa-
tionally expensive when the number of templates becomes
large due to the large number of match calculations needed
to check whether a template should be accepted or rejected.
Moreover, if the trial waveforms are sampled uniformly
from the parameter space, the acceptance rate may be very
small, further slowing convergence. This acceptance rate
can be improved if one uses the metric density as a
probability distribution on the space of parameters [22].

We have encountered practical difficulties in our own
work constructing template banks for new searches in LIGO
data, particularly when searching for compact objects with
large spin-induced quadrupole moments [23,24].4 While the
computational cost of performing matched filtering far
exceeds the cost of generating a stochastic template bank,
matched filtering is straightforward to parallelize while
template bank generation is not.5 This means that the wall
time6 to generate stochastic banks can make up a nontrivial
fraction of the time required to conduct a search. We have
found this to be the case when employing existing bank
generation code used by the LIGO, Virgo and KAGRA
collaborations7 in our ownwork conducting searches for new
physics in LIGO data. Meanwhile, we found it difficult to
integrate the efficient geometric template bank generation
scheme from Ref. [21] into existing GW search pipelines (in
particular GstLal), as the method generates templates in a
lower-dimensional space that cannot easily be mapped back
to physical binary parameters.
Motivated by these issues, in this paper we instead

explore the random bank generation method, first described
in Ref. [22]. We build upon this method in two key ways.
First, we introduce automatically differentiable waveforms.
These enable us to automatically compute the parameter
space metric and therefore the sampling probability dis-
tribution. Second, we introduce a new stopping criterion
that naturally accounts for parameter space boundaries
without the need to fine-tune the bank generation method
for each waveform model and parameter space. Together
these improvements make random bank generation simple
and efficient for both BBH GW models as well as more
exotic scenarios [8].
Automatic differentiation (AD) is a foundational com-

putational tool in modern machine learning [25]. AD is an
approach to exactly calculating8 derivatives of functions
defined by computer programs. It leverages the fact that
any program can be broken into elementary operations
which are each differentiable and whose derivatives can
be combined using the chain rule. This enables differ-
entiation for Oð1Þ additional computational cost beyond
the function evaluation itself. It is distinct from numerical
differentiation (which is based on finite differencing,
causing it to be numerically unstable and scale poorly

2Binary black hole templates are sufficiently similar to those
from binary neutron star and black hole–neutron star inspirals
such that dedicated template banks are not necessary [7,8].

3More recently hybrid placement schemes have been used in
the literature [18–20] along with the development of a geometric
placement algorithm [21].

4This might be due to our aim to search for spin-induced
quadrupole numbers up to κ ∼ 103.

5One option for parallelizing bank generation is to partition the
parameter space and generate banks for each of those subspaces.
This can substantially decrease bank generation time at the cost of
increasing the size of the bank. However, coming up with an
effective partition in general is complicated.

6The “wall time” for a computer program is the time elapsed
from the beginning to end of the program’s execution. For parallel
programs, this is different from “CPU time,” which is the amount
of execution time for each CPU used for the program.

7See lalapps_cbc_sbank.py in LALSuite.
8Here, exact means up to floating point errors.
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with dimensionality9) and symbolic differentiation (which
can yield cumbersome expressions that must be hand
coded). In machine learning, AD libraries [26–30] enable
the training of large neural networks via gradient descent.
More broadly, the nascent field of differentiable program-
ming combines AD with programs beyond neural net-
works, such as physics simulators (see e.g., [31]).
Differentiable programming has only been applied to a
few domains within astrophysics so far (see e.g., [32–40]),
where it enables fast, fully automated fitting and approxi-
mate Bayesian inference. Here, we utilize the PYTHON AD
framework JAX [26] to create differentiable frequency-
domain waveforms so that we can automatically compute
their parameter space metric. We demonstrate our metric
calculation is extremely accurate and fast.
To naturally account for parameter space boundaries we

introduce a new Monte Carlo (MC) method to track the
fraction of the parameter space covered as the bank is
generated. Instead of precomputing the number of tem-
plates required to cover the parameter space, as is done in
Ref. [22], we start with a number of effectualness points
which are iteratively removed once they are covered by a
template. Although these random banks contain more
templates than stochastic ones, we show that their gen-
eration can be orders of magnitude faster. Moreover, we
argue that by using the metric, the time taken to construct a
bank stochastically can also be reduced.
Finally, to help the community utilize our methods, we

present our bank generation code in an easy-to-use PYTHON

package called diffbank [41].
The remainder of this paper is structured as follows. In

Sec. II we define the metric and discuss the accuracy, speed,
and limitations of AD. In Sec. III we present our “effec-
tualness points” approach to template bank construction
and discuss its scaling behavior. We compare banks
generated with our method to others in the literature for
waveform models of different dimensionalities in Sec. IV.
Finally, we conclude in Sec. V.

II. PARAMETER SPACE METRIC AND
AUTOMATIC DIFFERENTIATION

In this section we review the definition of the parameter
space metric, discuss the accuracy of the AD metric, its
computational speed, and the limits of AD.

A. Defining the parameter space metric

Throughout this work we focus on frequency domain
waveforms which can be expressed in the form

hΞðfÞ ¼ AΞðfÞeiΨΞðfÞ; ð1Þ

where AΞðfÞ is the amplitude of the waveform,ΨΞðfÞ is the
phase and the subscript indicates dependence on a set of
parameters Ξ. To allow a comparison between two fre-
quency domain waveforms, hΞ1

ðfÞ and hΞ2
ðfÞ, one begins

by defining the noise weighted inner product,

ðhΞ1
jhΞ2

Þ≡ 4Re
Z

∞

0

df
hΞ1

ðfÞh�Ξ2
ðfÞ

SnðfÞ
; ð2Þ

where Sn is the (one-sided) noise power spectral density
(PSD). We can normalize the inner product through

½hΞ1
jhΞ2

�≡ ðĥΞ1
jĥΞ2

Þ ¼ ðhΞ1
jhΞ2

ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðhΞ1
jhΞ1

ÞðhΞ2
jhΞ2

Þp ; ð3Þ

where we introduced the normalized waveform ĥΞ ≡
h=ðhΞjhΞÞ1=2. For binaries on circular orbits observed by
a single detector, the waveform parameters can be split into
a set of intrinsic parameters θ (i.e., properties of the binary
system such as masses and spins) and two extrinsic
parameters μ ¼ ðtc;ϕcÞ,10 the time and phase at coales-
cence for the waveforms. A quantity commonly used to
characterize the difference between waveforms with differ-
ent intrinsic parameters is the match [13], given by
maximizing the inner product over the extrinsic parameters:

mðθ1; θ2Þ≡max
μ1;μ2

½hΞ1
jhΞ2

� ð4Þ

¼ max
Δtc;Δϕc

½hθ1;μ1¼0jhθ2;μ2¼0eið2πfΔtcþΔϕcÞ�; ð5Þ

where Δtc ¼ tc;1 − tc;2 is difference between the time of
coalescence for the two waveforms (similarly for the
phase). The second equality comes from the fact that the
extrinsic parameters enter only in a factor exp½ið2πfΔtc þ
ΔϕcÞ� in the inner product.11 Since ϕc only appears in the
inner product in the overall phase and the inner product
integrand takes the form of a Fourier transform, the
maximization over ϕc can be efficiently accomplished
by taking the absolute value of the Fourier transform of
the normalized inner product [42] (see also page 388 of
Ref. [43]). The mismatch distance between waveforms can
then be simply defined as mmis ≡ 1 −m.
For concreteness we will use subscript 1 to refer to the

observed signal hΞ1
and subscript 2 to refer to waveforms

from the template bank hΞ2
. To quantify howwell a template

9More precisely, finite differencing requires at least two
function evaluations per parameter.

10It is common in the GW community to say there are seven
extrinsic variables: fD; α; δ;ψ ; ι;ϕ; tcg. Respectively, these are
the luminosity distance, right ascension, declination, polarization
angle, inclination angle, phase at some reference time, and time of
coalescence. Since fD; α; δ;ψ ; ι;ϕg only affect the waveform
through an overall phase and amplitude constant (under the
assumption that the detector’s response is constant over the
duration of the waveform), these parameters can be absorbed into
a combination of ϕc and an amplitude normalization.

11This assumes a ðljmjÞ ¼ ð22Þ-only waveform.
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bank can recover signals, we introduce the effectualness ε
[44], which involves an additional maximization over the
intrinsic parameters of the waveforms in the bank:

εðθ1Þ≡max
μ1;Ξ2

½hΞ1
jhΞ2

� ¼ max
θ2

mðθ1; θ2Þ; ð6Þ

where Ξ≡ ðμ; θÞ. In general, there is no trick to maximiz-
ing over the intrinsic parameters of the bank: a given bank
must be constructed and compared with hΞ1

. The maxi-
mization in the effectualness thus amounts to finding the
template in the bank that most closely resembles the signal
hΞ1

. In other words, the effectualness quantifies the fraction
of signal-to-noise ratio (SNR) retained when using a
discretized template bank to search for a binary system
with intrinsic parameters θ1. Typically, one wants to ensure
that ε remains above a threshold value throughout θ.
In order to construct a template bank, we define the

parameter space metric gij over intrinsic parameters
[15,16,22,45–47]. We start by noting that for small
differences in the intrinsic parameters we can Taylor
expand the mismatch distance to quadratic order as

mmisðθ;θþΔθÞ≡1−mðθ;θþΔθÞ≈gijðθÞΔθiΔθj: ð7Þ
The metric is thus related to the Hessian of the match:

gijðθÞ≡ −
1

2

∂
2mðθ; θþ ΔθÞ
∂ΔθiΔθj

����
Δθ¼0

: ð8Þ

We use Latin letters to index the intrinsic parameters in the
full parameter vector Ξ. Hence, for a given functional form
of the waveform in Eq. (1), we can construct a match
between two neighboring points and then, from its deriv-
atives, obtain the metric in parameter space.
We can simplify our calculation of the metric gij in the

following way. The match in Eq. (5) is obtained by
maximization over Δϕc and Δtc. As explained above,
analytically maximizing the match with respect to Δϕc is
straightforward. Hence we construct a new metric
γIJðΔtc; θÞ that is a function of Δtc in addition to the
intrinsic parameters. We use Θ≡ ðΔtc; θÞ to denote the
concatenation of the difference in coalescence times with
the set of intrinsic parameters and index Θ with capital
Latin indices, with the first index being zero and the others
running over the intrinsic parameters. With this notation,
the metric over Θ is given by

γIJðΘÞ≡ −
1

2

∂
2maxΔϕc

½hΞ1
jhΞ2

�
∂ΔΘIΔΘJ

����
Θ¼0

ð9Þ

¼ −
1

2

∂
2j½hΞ1

jhΞ2
�j

∂ΔΘIΔΘJ

����
Θ¼0

; ð10Þ

where the absolute value accomplishes the maximization
over Δϕc. The intrinsic metric is then the projection of this
metric onto the subspace orthogonal to Δtc [13,48]:

gij ≡ γij −
γ0iγ0j
γ00

; ð11Þ

where the index 0 corresponds toΔtc.
12 Computation of the

metric gij via Eq. (10) is more efficient (and numerically
more accurate) than directly computing Eq. (8).
Finally, we define the absolute value of the metric

determinant g≡ j det gijj, the square root of which
describes the scaling of a volume element between match
space and the parameter space. More concretely, the proper
volume V of the parameter space S is given by

VS ¼
Z
S
dV; with dV ≡ ffiffiffi

g
p

dnθ: ð12Þ

Sampling from the probability density function generated
by the metric determinant across the parameter space (i.e.,
the metric density) therefore corresponds to uniform
sampling in proper volume.

B. Computing the parameter space metric
with automatic differentiation

We can use the metric in a variety of ways to construct a
template bank. For example, in parameter spaces that are
sufficiently flat, lattice placement algorithms can be used to
optimally place templates. Unfortunately, parameter space
boundaries often complicate these placement schemes. The
most common schemes used today are hybrid methods
which start out with a lattice scaffold which are then
supplemented using a stochastic placement algorithm
[18,19]; though, as mentioned above, stochastic placement
schemes are slow and can be even slower when the sampling
distribution is very different to the target distribution.
For waveforms which can be written in closed form [e.g.,

post-Newtonian (PN) waveforms covering the inspiral
phase], the metric can be decomposed in terms of a finite
number of integrals that can be numerically precomputed.
While this is practical for simple models, closed-form
models continue to grow in complexity (see e.g., [49]),
making this approach unsustainable. On the other hand, for
complex waveform models one typically must compute the
metric through numerical differentiation [18], which is
numerically unstable and scales poorly with dimension-
ality. We propose to replace these bespoke approaches with
automatic differentiation (AD).
AD is a modern computational framework which has

been extensively used throughout the machine learning
community due to its ability to differentiate through
arbitrarily complex functions at little extra cost over

12Alternatively, as discussed above we could instead compute
the metric by maximizing the match over Δtc with a Fourier
transform and differentiating through this operation. While both
methods give metrics that agree to within a few percent for the
waveforms we tested, we found differentiating through the Fourier
transform to be slower than analytically maximizing over Δtc.
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evaluating the function itself. Its popularity has now led to
the development of several efficient implementations in
both PYTHON and JULIA programming languages. We
choose to implement our metric calculation using JAX

[26] due to its native integration with PYTHON, its speed,
and its native graphics processing unit (GPU) support. We
discuss the benefits and limitations of various AD imple-
mentations below.
As an illustration of the accuracy of the AD-computed

metric, we compare to the analytically computed metric
determinant for the 2PN frequency-domain waveform
used to describe the inspiral of nonspinning quasicircular
binary black holes [50]. This metric was derived in the
dimensionless chirp time coordinates (θ0 and θ3) [45,51]
which were hand chosen to keep the metric as flat as
possible.13 In Fig. 1, we show the relative error between
the AD computed metric determinant and the analytic
calculation from Ref. [50], where we have used a PSD
representative of the Livingston detector during O3a.14 The
relative differences are extremely small and, for much of
the parameter space, only a few digits above the precision
of 64-bit floating point numbers. We performed similar
checks for a variety of other waveforms, finding similar
results for all.
As mentioned above, a key feature of AD is the speed of

evaluation. For this particular waveformwe find that a single
metric evaluation takes approximately 10−3 s on an Intel
Xeon CPU E5-2695 v4 with a 2.10 GHz clock speed or an

NVidia V100SXM2 GPU. This will of course increase with
increasingly complex waveforms, but is easily efficient
enough for our purposes and, as we show, can be used to
produce template banks extremely efficiently.
This speed also gives us easy access to other geometric

quantities that measure how non-Euclidean the parameter
space manifold is. For instance, in Fig. 2 we plot the scalar
curvature for the same 2PN waveform as is shown in Fig. 1.
The scalar curvature is a simple coordinate-invariant
quantity that encodes the local geometry of the manifold
and could be used to determine how non-Euclidean a
parameter space is. We provide a small PYTHON package,
diffjeom [52], to facilitate calculating such quantities.
In principle, there are no limitations to what can be

differentiated with AD, since any program can be decom-
posed into a set of fundamental operations which are each
differentiable.15 In practice, different AD implementations
such as PYTORCH [27], JAX [26], ZYGOTE [28], ForwardDiff
[29] and ENZYME [30] have their own restrictions.
In this work we use JAX due to its NUMPY-like interface

and ability to just-in-time-compile code to run very
efficiently. At minimum, the metric for any waveform that
can be expressed in closed form can be computed
using AD. JAX currently has limited support for special
functions, which can complicate the implementation of
waveforms involving them. A practical (but not fundamen-
tal) roadblock in implementing special functions is that
JAX ’s compiler only supports a limited type of recursion
called tail recursion. While all recursive programs can in
principle be expressed using tail recursion, performing the

FIG. 1. Comparison of the metric computed using automatic
differentiationwith an analytic referencemetric [50], parametrized
in terms of dimensionless chirp times [45]. Both were computed
using 64-bit precision floating point numbers, the precision of
which is about 15 significant digits. The noise model is described
in the text, and the frequency grid spans 10–512 Hz with a spacing
of 0.1 Hz. The colored regions are a Voronoi tessellation.

FIG. 2. The scalar curvature for the waveform from Ref. [50],
parametrized in terms of dimensionless chirp times [45]. The
configuration for the metric calculation is described in the caption
for Fig. 1.

13Note that Ref. [50] uses the notation θ1 and θ2, which we
instead refer to as θ0 and θ3. This choice was made to match onto
the subscript notation used for τ0 and τ3—see Eq. (3.18) of
Ref. [50].

14https://dcc.ligo.org/LIGO-P2000251/public.

15Of course, some functions [such as fðxÞ ¼ jxj] are non-
differentiable. This does not matter in practice, however, since it
is extremely unlikely that a function will need to be evaluated at a
point where it is nondifferentiable.
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conversion manually can be labor intensive and lead to
excessive amounts of code.
The most complicated waveforms such as the effective

one-body (EOB) formalism [53] involve difficulties aside
from the use of special functions. EOB waveforms are
generated by solving a set of differential equations (e.g.,
[54,55]) involving complex numbers at intermediate stages
of the calculation, special functions, and root finding to set
the initial conditions. In principle, JAX and other frame-
works are capable of differentiating through these oper-
ations. In this work, we focus on closed-form PN frequency
domain waveforms and leave the task of making more
complex differentiable waveforms for future investigation.

III. RANDOM BANK GENERATION

In this section we describe our bank generation pro-
cedure and discuss the general features of the banks it
produces.

A. Generating a bank

As mentioned above, our method builds upon that of
Ref. [22], which randomly samples a predetermined
number of templates to achieve a target coverage proba-
bility. Interestingly, Ref. [22] also shows that in high
dimensions, at the expense of not covering the entire
parameter space, these random template banks can actually
contain significantly fewer templates than similar banks
made using optimal lattice placement algorithms while
achieving slightly less than full coverage.
Two user-determined quantities control the generation of

a random template bank: a covering fraction η and the target
maximum mismatch mmis;�, where the mismatch is defined
in Eq. (7). For a random bank, a point in parameter space is
covered by a template if the mismatch mmis between the
point and template obeys mmis < mmis;�. Equivalently, the
point is covered if it lies within the n-dimensional ellipsoid
of scale

ffiffiffiffiffiffiffiffiffiffiffiffi
mmis;�

p
centered on the template.16 Hence, the

problem of template bank generation relates to the sphere-
covering problem, which seeks to find the smallest number
of spheres to cover an n-dimensional Euclidean space.17

However, random banks do not attempt to cover the whole

parameter space. Instead, the probability that a given point in
parameter space is covered by a template is approximately η.
Reference [22] found that by sampling template positions

from themetric density, there is a direct relationship between
the number of templates sampled, the covering fraction η,
and the total volume of the space. One can therefore
precompute the number of templates necessary to achieve
a target η. However, the analysis in Ref. [22] assumes that a
template’s volume (the interior of the ellipse defined by the
eigenvectors of the metric and scaled by

ffiffiffiffiffiffiffiffiffiffiffiffi
mmis;�

p
; see Fig. 3

for an illustration) is entirely contained within the bounda-
ries of the parameter space. Unfortunately, for nearly all
standard parameter spaces considered in GW physics, this
assumption does not hold. This motivates us to define a new
stopping criterion which accounts for the fraction of a
template’s volume remaining within the boundary.
Our procedure aims to generate a random bank with

predetermined target values of the covering fraction η and
maximum mismatch mmis;�. From a high level, we start by
sampling a set of points within the parameter space which
we then compare to templates as they are sequentially
added to the bank. The goal is to construct a running MC
estimate for the fraction of the volume of parameter space
covered by at least one of the templates in the bank, and to
stop when the predetermined target value η is reached.
In more detail, we start by generating a set of neff

effectualness points, with positions randomly sampled
according to the metric density pðθÞ ∝ ffiffiffiffiffiffiffiffiffi

gðθÞp
. To generate

the bank we sequentially add new templates, again with
positions randomly sampled according to the metric den-
sity. For each new template, we check whether or not it
covers any of the effectualness points. As previously
mentioned, each template has an accompanying ellipsoid
with its radial scale set by

ffiffiffiffiffiffiffiffiffiffiffiffi
mmis;�

p
. Any effectualness

points covered by the template’s ellipsoid are removed from
the generation process and no longer compared to newly
added templates (i.e., they are dead). This process is
repeated until the fraction of dead effectualness points
divided by the total initial number of effectualness points
neff is less than the target value η. In other words, we reach
our stopping criterion when ⌈ηneff⌉ points are covered.
We schematically illustrate the bank generation pro-

cedure in Fig. 3 for a two-dimensional parameter space.
Here, the filled red stars indicate live effectualness points
and the empty gray stars indicate dead ones. The distorted
green triangle outlines the boundary of the parameter space.
The blue points (with accompanying purple ellipsoids)
represent templates and their accompanying volume, the
scale of which is set by

ffiffiffiffiffiffiffiffiffiffiffiffi
mmis;�

p
.

Each panel represents a different stage in the bank
generation procedure. The left panel shows the initializa-
tion with only live effectualness points. The middle panel
represents an intermediate stage where some effectualness
points are dead since they have been covered by newly
added templates. The right panel shows the bank once the

16Note that technically the ellipsoid is defined by an
n-dimensional hypersphere with radius

ffiffiffiffiffiffiffiffiffiffiffiffi
mmis;�

p
which is trans-

formed into an ellipsoid using the metric. Equivalently, the axes
of the ellipsoid can be defined by scaling the eigenvectors of the
metric by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mmis;�=λi

p
, where fλig are the eigenvalues of the

metric.
17The metrics in this paper are typically curved rather than flat.

However, in cases where the metric is flat, one can use the metric
to transform to Euclidean space so that the covering problem at
hand is indeed an example of the sphere covering problem in
Euclidean space. Note, however, that optimal lattice placement
schemes can still be tricky to implement when the boundaries of
the parameter space are nontrivial.
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stopping criterion has been met for a target η ¼ 0.9 (i.e.,
90% of the effectualness points are covered). The bank
generation relies solely on computing the number of
covered effectualness points when we add templates.
The remaining white region at the end of the bank
generation is the portion of parameter space that remains
uncovered and contains ð1 − ηÞneff of the original points.
At the start of bank generation, one is required to

perform a match calculation for each effectualness point
for every template added to the bank. Fortunately, this is
offset by the fact that the probability of a template covering
an effectualness point is initially large, falling only as
effectualness points are removed. Since our generated
banks are based on an MC estimate of η, the randomness
of the stopping criteria leads to a realized covering fraction
η̂ ∼ η, with the associated MC error derived in the
Appendix:

ση̂ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ηÞη
neff − 1

s
; ð13Þ

where we assume the errors are Gaussian. Importantly,
since this is an MC estimate, it does not depend on the
dimensionality or volume of the parameter space. Since this
error tends to zero as neff approaches infinity, using a large
number of effectualness points yields a bank with coverage
fraction near the target η. One therefore needs to choose an
neff large enough that ση̂ is small, but small enough that the
time to generate the bank is not too long. This effect is

clearly illustrated in Fig. 4, for which we generate a number
of random banks with different neff and the same target
coverage η ¼ 0.9, together with a reference stochastic
bank.
For each bank we use a separate set of injected points to

measure the achieved η̂ (shown as blue dots in the left hand
panel). Each random bank produces a different realization
of η̂ and a different number of templates. We see however,
that η̂ is always within ∼2ση̂ (shown by the gray bands) of
η, regardless of the neff . From Fig. 4 we can see that neff ¼
103 leads to relatively small variability in both η̂ and the
bank size, while maintaining good computational effi-
ciency in our tests throughout the sections below. We
therefore recommend neff ¼ 103 for η ∼ 0.9 (regardless of
parameter space volume or dimensionality), although this
must be adjusted according to the user’s preferences.
Since η is bounded from above (η ≤ 1), in principle the

error should be asymmetric around η̂. This is especially true
for η̂ ∼ 1 or for low numbers of effectualness points. The
left-hand panel of Fig. 4 clearly shows the limitation of our
error estimate where the gray 2ση̂ error band extends above
η ¼ 1 when neff ∼Oð10Þ. In practice however, we will
always use neff ¼ Oð103Þ, where the error is well away
from the boundary for η ¼ 0.9.
An additional impact of our stopping criterion is that the

number of templates can vary between banks generated
using the same waveform model and with the same input
values for η and mmis;�. As neff is increased, the variance in
the number of templates required to meet the stopping
criterion is reduced (illustrated in the right-hand panel of

FIG. 3. A schematic illustration of our template bank generation procedure. The bank generation starts with neff live effectualness
points which are sampled according to the metric density pðθÞ ∝ ffiffiffiffiffiffiffiffiffi

gðθÞp
(illustrated by the filled red stars in the left panel). The solid

(green) curves in the shape of a distorted triangle illustrate the boundary of the parameter space. Templates (illustrated by the blue points
with accompanying purple ellipses with radial scale

ffiffiffiffiffiffiffiffiffiffiffiffi
mmis;�

p
) are then added sequentially where the template’s position is also sampled

from the metric density. Each time a template is added, the match is calculated for all live effectualness points. If the match is greater than
1 −mmis;� for some effectualness point, then that point is indeed successfully described by the new template; that effectualness point
“dies” (illustrated by the empty stars in the central panel which are covered by at least one template). This sampling continues until
⌈ηneff⌉ effectualness points are covered (illustrated in the right panel for η ¼ 0.9 and neff ¼ 10). Hence the choice of η determines our
stopping criterion. Note here we have taken the orientation and size of the template ellipses to be constant. In general both will vary over
the parameter space, further complicating bank generation.
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Fig. 4). One therefore needs to choose a sufficiently large
neff in order to minimize bank size variance but small
enough to maintain fast generation (the default choices will
be discussed below). See Sec. III B for a full description of
the models used to generate Fig. 4.
Finally, in order to actually sample from the probability

distribution pðθÞ ∝ ffiffiffiffiffiffiffiffiffi
gðθÞp

associated with the metric, we
employ rejection sampling [57]. Rejection sampling
requires selecting a proposal distribution qðθÞ which is
easy to sample from and for which there exists a constantM
such that MqðθÞ ≥ pðθÞ for all values of θ. A sample from
pðθÞ can be generated using the following procedure:

(i) Sample μ ∼ qðθÞ.
(ii) Sample u uniformly over the interval [0, 1].
(iii) If u < pðθÞ=½MqðθÞ�, return θ. Otherwise, repeat the

procedure.
We use a uniform distribution over the parameter space as
the proposal. The constantM is then equal to the maximum
value of

ffiffiffi
g

p
over the parameter space. In practice, this point

often lies on the boundary of the space and can be found
numerically; alternatively, it can be estimated using empiri-
cal supremum rejection sampling [58]. We note that for
parameter spaces where the ratio between the square roots
of the maximum and minimum values for the metric
determinant is large, rejection sampling can become inef-
ficient. Nevertheless, we have found that the metric
evaluation is easily fast enough to quickly generate
template banks in the parameter spaces typically considered
for GWs. This sampling could be improved through
importance sampling or using normalizing flows to learn
the sampling distribution (see e.g., Ref. [59] and the recent
review Ref. [60]). We leave this to future work.

B. Scaling and coverage properties

Here we study the scaling of the size and generation
time for our random template banks. We begin by obtaining
simple scaling relations to build rough intuition.
Subsequently, in the remainder of this section, we will
perform numerical experiments that illustrate how realistic
banks deviate from these simple relations. We also compare
the size and generation time of our banks with stochas-
tic ones.
Let q denote the probability that a randomly placed

template covers a given effectualness point. For parameter
spaces that are much larger than any template or with
periodic boundary conditions, q is the ratio of the volume
of a template to the volume of the space:

q ¼ VT

VS
¼ mmis;�n=2Vn

VS
: ð14Þ

The second equality expresses the template’s volume in
terms of the space’s dimensionality n, the maximum
mismatch mmis;�, and the volume of an n-dimensional unit
sphere Vn. For the waveforms we used in tests (described in
the next section), we find this simple relation rarely holds
due to boundary effects. For example, if a template’s
ellipsoid extends significantly beyond the boundary of
the parameter space in a given direction, the nominal
volume VT will differ from the actual volume of parameter
space the template covers [16] (as illustrated in Fig. 3). In
this case we do not expect q to scale precisely as mmis;�n=2,
and must instead use an MC approach to estimate q.
Boundaries also make q position dependent. In the most

FIG. 4. Left panel: covering fraction η of random banks as a function of the number of effectualness points neff using the model
configuration explained in Sec. III B. The blue points indicate estimates of η̂ calculated using an additional set of randomly injected
points (i.e., not the effectualness points used to generate the bank). The gray bands show the one and two ση̂ error bands on η̂. Note that
for neff ∼Oð10Þ, the error extends to the unphysical region η ≥ 1. This could be corrected by using an asymmetric estimate of ση̂ such as
the Jeffreys interval [56]). Right panel: the number of templates in the bank required to meet the stopping criterion as a function of neff .
For comparison, we also plot the number of templates in a stochastic bank (orange line) which was generated with η ¼ 0.9. Note that in
this example we find thatNR

T > neff for neff ∼Oð104Þ. In this case, the scaling estimates discussed in Sec. III B will be inaccurate since a
single template is likely to cover multiple effectualness points.
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dramatic case we tested it can vary by nearly 100% when
the parameter space has narrow corners.
Nevertheless, to obtain rough intuition, we first use a

position-independent q to obtain simple scaling relations as
follows. First we consider the expected size of our banks.
Assuming the probability of covering multiple effectual-
ness points with the same template is negligible, the
average number of live effectualness points remaining after
N templates have been generated is ð1 − qÞNneff .18 Bank
generation terminates when the number of live points is less
than or equal to ð1 − ηÞneff . Equating these quantities gives
the average number of templates at termination:

NR
T ¼ logð1 − ηÞ

logð1 − qÞ : ð15Þ

This is exactly the same scaling (as a function of η and q) as
for random template banks described in Ref. [22].
We can also estimate the average bank generation time.

The cost of generating a template depends on the number of
remaining live points, which is initially neff. After generat-
ing a new template, the number of remaining live points is
reduced by a factor of 1 − q on average. This means the
total computational cost is proportional to

CR ∝
XNR

T

k¼1

ð1 − qÞk−1neff ¼ neff
1 − ð1 − qÞNR

T

q
: ð16Þ

To make contact with the scaling properties of stochastic
template banks, we modify our random bank procedure by
adding a rejection step. This step requires comparing a
proposal template with all the other templates in the bank
and only adding it to the bank if its match with each of them
is below m�. The other elements of our bank generation
procedure remain the same (e.g., sampling templates
according to the metric density and the convergence
criterion). Note that this differs from the typical conver-
gence criterion for stochastic banks, which involves waiting
until the acceptance rate for new templates drops below a
predetermined threshold (see e.g., [17–19]). Instead, we
propose applying our convergence criterion to stochastic
bank generation since it more directly connects with the
coverage properties of the bank (i.e., η and m�).
Generating a stochastic bank in this manner allows us to

write a simple scaling relation for its generation time. Due
to the rejection step, the average number of proposals
required to generate the kth template is the inverse of the
covering fraction, ð1 − qÞ−ðk−1Þ. Each of these proposals
requires computing the match with the k − 1 templates in
the bank. The total bank generation cost is therefore

CS ∝CRjNR
T →NS

T
þ
XNS

T

k¼1

ðk−1Þð1−qÞ−ðk−1Þ

¼CRjNR
T →NS

T
þð1−qÞ1−NS

T ½NS
Tqþð1−qÞNS

T −1�
q2

; ð17Þ

whereNS
T denotes the size of the stochastic bank andN

R
T →

NS
T indicates that one needs to replace NR

T with NS
T in

Eq. (16). Unfortunately it is difficult to write a closed-form
expression for NS

T, though it is always lower than NR
T .

Below we will therefore use NS
T to denote the number of

templates in a stochastic bank at termination, but note that
this cannot be calculated a priori.
To experimentally check and compare these scaling

relations, we use the TaylorF2 waveform model with
the spin contributions to the phase turned off. This yields a
3.5PN waveform in two dimensions which we parametrize
using the black hole masses m1 and m2, with the restriction
m1 > m2. We consider masses between 1 M⊙ and 3 M⊙.
For simplicity and speed we employ the analytic LIGO-I
noise power spectral density from Table IV of Ref. [61],
defined for f > fs as

SnðfÞ¼10−46 Hz−1

×9½ð4.49xÞ−56þ0.16x−4.52þ0.52þ0.32x2�; ð18Þ

where x≡ f=f0, f0 ¼ 150 Hz, and the lower cutoff is
fs ¼ 40 Hz. We use a frequency range of 40–512 Hz and
spacing of Δf ¼ 0.1 Hz. Finally, we use neff ¼ 10 00 for
all tests. To estimate the covering probability q, we first
randomly sample 10 000 independent pairs of templates
and points according to the metric density. For each pair we
then check whether the template covers the corresponding
point and take the total fraction of covered points to be our
estimate of q. Over the range m� ∈ ½0.75; 0.95�, this MC
estimate yields values between q ¼ 0.01 and q ¼ 0.0023.
The number of templates and cost of generation for both

stochastic and random banks are plotted in Fig. 5. We also
plot our estimates for these quantities from Eq. (15) (top
row) and Eqs. (16) and (17) (bottom row). In applying
Eqs. (16) and (17) we fix NR

T to the true sizes of the
template banks rather than using the estimate from Eq. (15).
For most choices of the covering fraction and maximum
mismatch, the sizes of the random and stochastic banks
differ by less than a factor of 2. However, for large values of
the covering fraction and small values of the maximum
mismatch, this can increase to a factor of 4. The CPU time
required to perform a search with one of our template banks
would thus be correspondingly larger than with a stochastic
bank. On the other hand, the generation time of the random
banks is a factor of a few to over an order of magnitude
faster than for the stochastic banks.
Our scaling relations approximately hold for high maxi-

mummismatches and low covering fractions.However, they
18Note that this formula does not assume a given effectualness

point is only covered by a single template.
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deviate from the experimental results at higher values of
those parameters [i.e., when ð1 −mmis;�Þ → 1 or η → 1].
The reason is that our relations ignore the fact that the
covering probability q varies dramatically over the param-
eter space due to boundary effects. More precisely, the
probability of covering the final few effectualness points is
substantially lower than the averaged value of q we use to
derive the estimates in the figure, driving up the bank size
and generation time. This is particularly true for high η since
a higher fraction of the total points needs to be covered,
therefore emphasizing the regions with a lower q (for fixed
mmis;�). On the other hand, lower values of mmis;� (with fixed
η) lead to an increased variation of q across the parameter
space which in turn leads to a similar inaccuracy in scaling
estimates.
It is worth noting that the probability of accepting a

template during stochastic bank generation can vary sig-
nificantly depending on the proposal distribution used.19 In
particular, if the proposal distribution significantly differs
from the metric density, the average number of proposals
needed to accept a template will increase [16] (i.e., q will
decrease) and therefore the associated cost of generating a
stochastic bank will also increase. Since the metric evalu-
ation using AD is so cheap, we therefore recommend using

the metric density to improve the efficiency of stochastic
bank generation.

C. Mean mismatch

A key quantifier for a template bank is the maximum
mismatch between a waveform which lies within the range
of parameters covered by the bank, and the bank itself.
Geometric template banks can enforce a maximum mis-
match, which in turn describes the maximum loss of SNR
that can occur due to the discreteness of the bank when
carrying out matched-filtering searches. For stochastic and
random template banks, no guarantee is made for the
maximummismatch, and instead the appropriate quantity is
the expected mismatch hmmisi, as a function of η and mmis;�.
For random template banks, a closed form expression can
be derived when boundaries are neglected, using the
probability density for the mismatch given in Ref. [22].
The expected mismatch is

hmmisi ¼
mmis;�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

− logð1 − ηÞ
r

erf

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− lnð1 − ηÞp
mmis;�

�

− ð1 − ηÞ1=m2
mis;� : ð19Þ

This expression can be used as a rough guide to select the
parameters required for a desired hmmisi.

FIG. 5. Scaling of bank size and cost of generation as a function of minimum match and target covering fraction. The analytic
estimates (orange points) come from Eq. (15) (top row) and Eqs. (16) and (17) (bottom row). Note that our analytic estimates start to
differ from our real banks for ð1 −mmis;�Þ → 1 and η → 1. This is due to the growing importance of a spatially dependent q (see text for
more details). In the bottom row, one can see that the cost of generating a stochastic bank is significantly greater than a random bank.
This difference continues to grow with larger template banks. All plots are based on the two-dimensional 3.5PN model and analytic
model for the noise power spectral density described in the text.

19Here we define the proposal distribution as the distribution
used to generate proposal points (which are then either accepted
or rejected) during stochastic bank construction.
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Although Eq. (19) is derived neglecting boundary
effects, it should approximately apply when the total
template volume outside of the boundaries of the bank is
smaller than the volume contained within the boundaries.
In the case where boundary effects are important (i.e., a
substantial fraction of the total template volume extends out
of bounds), this expression will overestimate the mean
mismatch. This is because the portion of the template
ellipsoid that lies out of bounds has a higher mismatch. The
regions remaining in bounds will thus have a lower mean
mismatch, making the analytic expression an overestimate
of the true mean mismatch.

IV. COMPARISONS WITH EXISTING
METHODS AND BANKS

In this section we generate template banks for real
waveforms in two-, three-, and four-dimensional parameter
spaces and compare to existing template banks in the
literature. We additionally demonstrate that search-ready
random banks can be generated with little computational
overhead using diffbank [41].

A. Realistic banks

Here we consider three waveforms with varying degrees
of complexity and dimensionality. To easily discuss the
different waveforms, we name each waveform according to
its PN order and dimensionality of parameter space. Below
we provide the waveform names as well as a short
description of the waveform and parameter space:

(i) 3.5PN-2D.—First, we consider the TaylorF2
waveform model but ignore all contributions from
spin to the phase of the waveform. In particular, it is
a 3.5PN waveform in two dimensions (we use m1

and m2 for the mass of each binary object and
enforce m1 > m2). Here we consider 1 M⊙ ≤ m1;
m2 ≤ 3M⊙. This is the same waveform employed in
the previous section to study the scaling and cover-
age properties of random banks. We were unable to
find a suitable bank from the literature to compare
with; we therefore construct our own stochastic bank
with the same mmis;� and η.

(ii) 2.5PN-3D.—Second, we look at a 2.5PN waveform
in three dimensions introduced in Ref. [62]. Im-
portantly, this waveform model adds an additional
spin parameter θ3S which accounts for aligned spin
components for both objects. While the waveform is
parametrized in terms of the dimensionless chirp
times ðθ0; θ3Þ and this spin parameter θ3S, the
boundaries are defined in terms of the physical
properties of the components of the system. As
explained in Table I of Ref. [62], the component
masses are restricted to the interval ½1; 20� M⊙ and
the total mass is fixed between ½2; 21� M⊙. Objects
with mass below 2 M⊙ are considered neutron

stars, with spin parameters χ restricted to the
range ½−0.4; 0.4�. Heavier objects are considered
black holes with spin parameters restricted to
½−0.98; 0.98�. The cutoff frequency f0 used to define
the chirp times is set to 20 Hz.

(iii) 3.5PN-4D.—Finally, we consider the TaylorF2
waveform model which, in addition to the black hole
masses, has parameters describing the magnitude of
the aligned spin components of each black hole, χ1;2.
This model is typically used to search for low-mass
binary signals in current LIGO and Virgo analyses
(see e.g., [3,63] and the references therein) and
therefore represents our current state of the art. We
use the same mass ranges as for 3.5PN-2D and
additionally consider −0.99 ≤ χ1;2 ≤ 0.99. These
ranges were chosen to directly compare to the binary
neutron star banks generated in Ref. [21].

For the 2D and 4D banks we use the frequency range
24–512 Hz, Δf ¼ 0.1 Hz, and neff ¼ 1000. For the 3D
bank we instead use the frequency range 20–2200 Hz with
the same frequency spacing (for consistency with the
reference bank) and neff ¼ 1300 (due to the large value
of η used by the reference bank). The noise models, η
values, and mmis;� values for each waveform are listed in
Table I. These were chosen to align as closely as possible
to those used to generate the banks with which we are
comparing.
In Table I we show the resulting generation times and

bank sizes. The banks were made using a single NVidia
V100SXM2 graphical processing unit with 16 GB of
memory using 64-bit floating point precision. For com-
parison we also list the sizes of reference banks generated
with similar values of mmis;� and η.20 For the 3.5PN-2D
model, the reference bank is a stochastic bank we generated
ourselves. The reference banks for the 2.5PN-3D and
3.5PN-4D models are the stochastic bank from Ref. [62]
and the “geometric placement” bank from Ref. [21].
For all three waveforms, to achieve the same covering

fraction η, the number of templates required in the reference
banks is smaller than the number in our random banks. The
stochastic 3.5PN-2D (reference) bank contains about 30%
fewer templates than the corresponding random bank. Our
other random banks’ sizes are within a factor of 3.8 of the
more minimal reference ones. We also note that the higher
value of η used for the 2.5PN-3D model caused the random
template bank to be significantly larger than the reference
stochastic bank. This feature is expected based of the trend
seen in Fig. 5, and illustrates that random banks grow
quickly for η → 1. Since smaller bank sizes are preferable,
it is therefore advisable to use a sufficiently high η to cover

20η is not an explicit parameter used to generate the 2.5PN-3D
and 3.5PN-4D reference banks. Instead we extract these from the
caption of Fig. 3 in Ref. [62] and the binary neutron star curves in
the upper panel of Fig. 5 in Ref. [21] respectively.
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a significant fraction of the parameter space, but not so high
that the random bank is too large. Based off of the scaling
in Fig. 5, we see that the bank sizes start to deviate
significantly at η ∼ 0.9 and therefore advise using a
similar value.
From the above discussion, it is clear that random banks

are not optimal: they do not use the minimum number of
templates to cover the maximum amount of parameter
space. However, our random banks have several major
advantages. They are much more efficient to generate than
the reference banks. For the 3.5PN-2D stochastic reference
bank, the generation time was over 250 times longer (33 h
45 min 45 s) than for our random bank on the same
hardware. Indeed our random banks are extremely simple
to generate in practice and for higher dimensions may even

become significantly more efficient than optimal lattice
placement schemes [22]. In the future, it is expected that
more sophisticated waveforms of ever-higher dimension-
ality (more parameters) will be used in the analysis of
LIGO and Virgo data. Hence our method of template bank
generation will become ever more important due to its
efficiency.
Finally, in Fig. 6 we show the cumulative distribution

function of the effectualness calculated for 1000 randomly
sampled points in the parameter space for all three banks.
The dashed vertical lines indicate the banks’ values of
mmis;�. The horizontal bands show 1 − ðη̂� 2ση̂Þ—i.e., the
cumulative distribution function (CDF) corresponding to
the target covering fraction with uncertainties coming from
using a finite number of effectualness points. All our banks
achieve a covering fraction within this error band at their
values of mmis;�. This can be seen from the plot as the CDFs
for each bank pass through the corresponding vertical line
within the corresponding band.

V. DISCUSSION AND CONCLUSION

Data from existing and planned gravitational wave
detectors promise to be a goldmine for refining our
understanding of astrophysics, astronomy, and fundamental
physics. This work addresses the problem of constructing
template banks for generic frequency domain waveforms,
enabling searches for new types of compact binary coa-
lescence signals using matched filtering pipelines. To date,
matched-filter searches have focused on aligned-spin BBH
systems on quasicircular orbits. Our goal is to allow more
general searches that might potentially lead to discovery of
new astrophysics and physics beyond the Standard Model.
In matched filtering, the strain data are compared to a

bank of templates described by a set of points in the
binary parameter space and a GW waveform model. The
foundation of our new bank generation scheme is differ-
entiable waveforms, which make it possible to efficiently
compute the parameter space metric for gravitational

FIG. 6. Cumulative distribution function for effectualnesses of
each of the three different template banks as labeled in the legend.
In each case the effectualnesses were computed at 1000 points
sampled from the metric density. The vertical lines show the
target values of 1 −mmis;� for each bank; note that the blue and
orange lines overlap. The bands show the CDF corresponding to
the target value of η plus and minus 2ση̂, Eq. (13); the blue and
green bands overlap.

TABLE I. Results of our random template bank generation tests for three waveforms described in the text. The first column is the name
of the bank in terms of PN order and dimensionality of parameter space. The quantities m� and η are the chosen values of the target
minimum match and target covering fraction of the template bank. For the given frequency range and noise model, Tgen is the generation
time for our random template bank, and NR

T is the number of templates in our bank. For comparison, the last column indicates the size
Nref

T of reference banks. For the 3.5PN-2D model the reference bank is a stochastic bank that we ourselves generated; for the other
models, the reference bank size is taken from the literature as indicated. All our banks were generated on an NVidia V100SXM2 with
16 GB of memory using 64-bit floats.

Name m� η Frequency range Noise model Tgen NR
T Nref

T

3.5PN-2D 0.95 0.9 24–512 Hz LIGO Livingston O3aa 7 min 55 s 10 780 7197
2.5PN-3D 0.95 0.993 20–2200 Hz aLIGOZeroDetHighPowerb 64 h 17 min 44 s 2075 173 549 194 [62]
3.5PN-4D 0.96 0.9 24–512 Hz LIGO O2c 51 min 46 s 280 967 116 443 [21]

ahttps://dcc.ligo.org/LIGO-P2000251/public.
bFrom PYCBC [64].
chttps://github.com/jroulet/template_bank/.
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waveforms using automatic differentiation. We use this
metric to implement a new variant of random template bank
generation [22] that uses a set of fixed effectualness points
to monitor the bank’s coverage properties. A schematic
illustration of our template bank generation procedure is
shown in Fig. 3. Starting from neff effectualness points
sampled according to the metric density, we sequentially
add templates until a predetermined fraction η of these
points is covered, i.e., the match between the point and a
given template exceeds a minimum value 1 −mmis;� (typ-
ically we chose η ∼ 0.9 and 1 −mmis;� ∼ 0.95).
This approach has several advantages:
(i) Computing the metric with automatic differentiation

removes the need to derive the metric by hand or by
use of numerical differentiation, which can be noisy
and involve many waveform evaluations.

(ii) The generation time for our banks scales much more
favorably than for stochastic banks as a function of
the parameters controlling its effectualness coverage
(mmis;� and η). This was borne out by our numerical
experiments. In combination with our use of the JAX

automatic differentiation framework, this enables
rapid generation of template banks using CPUs
or GPUs.

(iii) Our new approach to monitoring convergence re-
moves the precalculation of bank size previously
required for random bank generation [22] which is
challenging to perform for waveforms where the
template volume extends well beyond the parameter
space boundaries (cf. Sec. III A). Our method addi-
tionally provides a Monte Carlo error estimate for
the fraction of the parameter space covered by
the bank.

(iv) Finally, we go beyond the random banks studied in
Ref. [22] by accounting for parameter space boun-
daries. In particular, using effectualness points to
calculate the coverage of the template bank naturally
accounts for parameter space boundaries without
any fine-tuning. This feature is essential for using
random banks for realistic GW waveforms.

We also compared with template banks from the liter-
ature that use realistic waveform models of different
dimensionalities and with different detector noise models.
We found that we could rapidly generate comparable
random banks on a single GPU. We also showed that
neff ¼ 1000 is sufficient to accurately monitor covering
fraction of the bank such that the realized covering fraction
η̂ is close to the target value η.
Our approach inherits some of the advantages and

disadvantages of other random template bank methods.
In comparison to lattice banks our random banks do not
fully cover the parameter space, but are much simpler to
generate since they work in curved parameter spaces with
arbitrary boundaries. In comparison with the more widely
used stochastic banks, our random banks are larger by a

factor of ∼1.5 to ∼3.75 in our experiments. While this
correspondingly increases the CPU time required for
searches using our banks, this may not result in a
correspondingly larger wall time, since matched filtering
searches are straightforward to parallelize. On the other
hand, our banks are much faster to generate than stochastic
banks. Since bank generation is more difficult to paral-
lelize, this helps counteract the search wall time increase
caused by our larger banks.
To make random banks more efficient, one could imple-

ment a secondary pruning step which removes unnecessary
templates. Unfortunately, all such pruning calculations are
likely to require a significant number of match calculations
and may be as computationally expensive as simply
constructing a stochastic bank from the beginning.21 We
leave a more detailed investigation of a pruning step to
future work.
The use of automatic differentiation to calculate the

metric comes with some practical restrictions on the form
of the waveform, discussed in Sec. II B. We expect these
restrictions will loosen as JAX and other automatic differ-
entiation frameworks mature. Another potential issue is the
strong hierarchy of parameters (i.e., the chirp mass is the
main parameter governing the shape of the waveform while
the mass ratio has little impact), which can cause the metric
to be poorly conditioned, leading to instabilities in the
calculation of its determinant. We expect this could be
alleviated through automatically learning new waveform
parametrizations (akin to chirp times), though we leave this
for future work (see also Ref. [19]).
Lastly, we have implemented our template bank gen-

erator in the easy-to-use diffbank package to enable
physicists to rapidly create template banks for their
favorite waveform models. We are currently utilizing this
tool to construct a template bank to search for objects with
enhanced spin-induced quadrupoles in LIGO data [23,24].
We hope that diffbank spurs the community to perform
searches for other novel compact objects in the new world
of gravitational wave data and to investigate other uses for
differentiable waveforms.

ACKNOWLEDGMENTS

We thank Chris Messenger for useful discussions.
A. C. acknowledges support from the Schmidt Futures
foundation. A. C. and C.W. received funding from the
Netherlands eScience Center, Grant No. ETEC.2019.018.
T. D. P. E. and K. F. acknowledge support by the
Vetenskapsrådet (Swedish Research Council) through
Contract No. 638-2013-8993 and the Oskar Klein Centre
for Cosmoparticle Physics. H. S. C. gratefully acknowl-
edges support from the Rubicon Fellowship awarded by the

21One could also imagine optimizing the final random bank in
order to increase η [65], although this may be even more
computationally expensive than a pruning step.

EFFICIENT GRAVITATIONAL WAVE TEMPLATE BANK … PHYS. REV. D 106, 122001 (2022)

122001-13



Netherlands Organisation for Scientific Research (NWO).
K. F. acknowledges support as a Jeff & Gail Kodosky
Endowed Chair in Physics at the University of Texas at
Austin. K. F. acknowledges funding from the U.S.
Department of Energy, Office of Science, Office of High
Energy Physics program under Award No. DE-SC0022021
at the University of Texas, Austin. C. M. and A. Z. were
supported by NSF Grant No. PHY-1912578. C.W. received
funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innova-
tion program (Grant Agreement No. 864035). This material
is based upon work supported by NSF’s LIGO Laboratory
which is a major facility fully funded by the National
Science Foundation. This research was enabled in part by
support provided by Calcul Québec [66] and the Digital
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APPENDIX: MONTE CARLO
ERROR ESTIMATION FOR THE

COVERING FRACTION η

In this appendix we explain how to derive the
Monte Carlo error on our estimate of η̂ [Eq. (13)].
Define the function cðθÞ over the parameter space as

being equal to one if θ is covered by a template in a bank
and equal to zero otherwise. The true covering fraction η of
the bank is obtained by averaging c over the whole
parameter space (i.e., integrating and dividing by the
space’s volume V). This can also be approximated through
MC integration by randomly sampling a set Θ of n
parameter points uniformly over the space and averaging
c over them, yielding η̂:

η ¼ 1

V

Z
dθ cðθÞ ≈ 1

neff

X
θ∈Θ

cðθÞ ¼ η̂: ðA1Þ

MC error estimates are typically obtained using the
central limit theorem (CLT). By the CLT, were we to
repeatedly compute η̂ with large enough n, the values
would follow a normal distributionN ðη; σ2=nÞ, where σ2 is
the variance of c:

σ2 ¼ 1

V

Z
dθ½cðθÞ − η�2

¼ 1

V

Z
dθ½cðθÞ2 − 2cðθÞηþ η2�

¼ 1

V

Z
dθ cðθÞ − η2

¼ ηð1 − ηÞ; ðA2Þ

where we used the fact c2ðθÞ ¼ cðθÞ. This implies that
ση̂ ≡ σ=

ffiffiffi
n

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − ηÞ=np

estimates the error on η̂. Since
the true values of σ and η are unknown, we instead
approximate them with the mean and standard deviation
of c evaluated over our set of points Θ.
Since our bank generation procedure gives a MC

estimate of η by tracking how many effectualness points
have been covered, we can also use the logic above to
determine the accuracy of this estimate. While the con-
ditions of the CLT are not strictly satisfied since values of c
evaluated at each effectualness point are not independent
due to the stopping criterion, we apply it regardless. Since
bank generation stops when a fraction η of effectualness
points are covered, we have η̂ ¼ ⌈ηneff⌉=neff ≈ η. This
implies the set of covered pointsΘ1 has size ⌈ηneff⌉ and the
set of uncovered points Θ0 has size neff − ⌈ηneff⌉. Then our
estimate for the error on η̂ is

ση̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

neff

1

neff − 1

X
θ∈Θ

½cðθÞ − η�2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

neff

1

neff − 1

�X
θ∈Θ0

η2 þ
X
θ∈Θ1

ð1 − ηÞ2
�s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

neff

ðneff − ⌈ηneff⌉Þη2 þ ⌈ηneff⌉ð1 − ηÞ2
neff − 1

s

≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − ηÞ
neff − 1

s
; ðA3Þ

where we assumed η was large enough that ⌈ηneff⌉ ≈ ηneff ,
and the neff − 1 factor is Bessel’s correction for estimating
the variance from samples. This is the equation we sought
to derive [Eq. (13)].
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