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1

Introduction

1.1 Human Resources

Psychological science builds on data collected from human research subjects.
Since the beginnings of experimental research in psychology approximately 150
years ago, thousands of participants have industriously filled in questionnaires,
pushed buttons, memorized items, solved riddles, and even shared their most
personal experiences in the service of science. In the best case scenario, psycho-
logical experiments present a win-win-situation for scientists and participants:
Scientists can use the collected data to push the boundaries of knowledge in their
field, participants gain valuable insights about themselves. However, the real-
ity is often different. Tasks performed by participants in psychological studies
are often tedious and repetitive, questionnaires are lengthy, and useful personal
insights are rare. Some psychological studies even involve procedures that are
potentially harmful for participants, such as deception schemes, pain affliction,
or drug intoxication (Edens & Gil, 1995; Sieber, Iannuzzo, & Rodriguez, 1995; van
Ravenzwaaij, Dutilh, & Wagenmakers, 2012). Researchers in psychology there-
fore have a moral obligation to carefully examine the ethical basis of their data
collection and to weigh the potential benefits and harms caused by their studies.

Responsible data collection has many different facets. First and foremost,
psychologists need to minimize the mental and physical strain that experiments
cause for participants. For example, this can mean choosing the least invasive ex-
perimental procedure, reducing the number of trials in a task, offering sufficient
breaks, and providing participants with extensive debriefings after deceptions
(American Psychological Association, 2017). Another core principle of responsi-
ble data collection is efficiency, following the simple rule: “Do not collect more
data than necessary” (Hunter & Hoff, 1967).

The ethical motivation for research efficiency becomes clear when consider-
ing the potential adverse effects of excessive data collection. Let us assume that
a psychological study collected data from 200 participants where only 150 partic-
ipants were needed. In the first instance, this means that 50 people carried out
pointless busywork and were unnecessarily subjected to a potentially unpleasant
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1. Introduction

procedure. However, this is not the only potentially adverse effect. Testing 50 ex-
cess participants consumed crucial scientific resources. The experiment may have
required lab space, utensils, money for participant compensation, and last but not
least the experimenter’s time and attention. All these resources could have been
used on a different study to enhance scientific progress. Collecting data from
too many participants is therefore connected to substantive opportunity costs. A
different kind of indirect damage can occur in studies with immediate practical
implications: The delay caused by collecting excess data can affect the well-being
of all potential beneficiaries of the scientific innovation. For example, delays in-
curred in clinical research may lead to delays in the distribution of superior treat-
ment methods, thus impacting patients’ quality of life.

It is important to note that excessive data collection can also occur at the level
of individual participants. For example, subjecting participants to an unnecessar-
ily large number of trials in a task can increase the study duration and thus ren-
der the procedure needlessly tiresome and time-consuming (Westgate & Steidle,
2020). Particularly when it comes to demographic information, every additional
collected data point also increases the risk of de-anonymization of participants in
a dataset (Ross, Iguchi, & Panicker, 2018). Since many psychology studies involve
sensitive information, for example, on mental health or relationship quality, de-
anonymization and misuse of sensitive information can seriously affect the lives
and well-being of participants. It is therefore vital to collect data sparingly – not
only on the study-level, but also on the level of individual participants.

1.2 How Much Is Enough?

Collecting data parsimoniously is only one side of research efficiency. The sec-
ond part is determining how much data is necessary to warrant scientifically ro-
bust conclusions. If the studied sample is too small, concerns of generalizability
can arise and phenomena existing in the larger population can be easily over-
looked (Cohen, 1988; Streiner, 2006). Consequently, while excessive data col-
lection bears the danger of wastefulness and participant exhaustion, excessive
parsimony jeopardizes the scientific value of a study.

In the past, psychological studies have indeed been more frequently criticized
for testing too few, rather than too many participants (M. Bakker, Hartgerink,
Wicherts, & van der Maas, 2016; Etz & Vandekerckhove, 2016; Fraley & Vazire,
2014). This is understandable given the current academic culture where moral, fi-
nancial, and career incentives align to motivate researchers to conduct small-scale
studies (M. Bakker, van Dijk, & Wicherts, 2012). With modest research funding
and an academic publishing system that pushes researchers to churn out new
findings, researchers often feel compelled to collect the bare minimum of obser-
vations. However, researchers’ intuitions about minimal required sample sizes
are often misguided.

Typically, researchers severely underestimate the number of participants
needed to obtain statistically compelling results. For example, in a survey
among psychology researchers conducted by M. Bakker et al. (2016) 95% of
the respondents underestimated the sample size needed to reliably detect a
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small effect. In part, this may be blamed on commonly used rules-of-thumb for
sample size determination. For example, a popular wisdom states that “authors
must collect at least 20 observations per cell [of the experimental design]” (Sim-
mons, Nelson, & Simonsohn, 2011, p. 1362). Such broad generalizations cannot
provide sensible guidance because they neglect the fact that adequate sample
sizes depend on the research context. For research areas like psychology where
small effect sizes and low measurement accuracy predominate (Bosco, Aguinis,
Singh, Field, & Pierce, 2015; Michell, 1997), rules-of-thumb typically lead to an
underestimation of necessary sample sizes.

An intuitive way to understand the interaction of sample size and research
context is to picture the sample size as the resolution on a computer screen that
displays scientific results. With increased resolution, that is, higher sample sizes,
it becomes possible to see small effects of experimental interventions that would
otherwise remain hidden in a blur. Conversely, if the resolution is lower, only
large experimental effects can be reliably detected. A higher resolution also in-
creases researchers’ confidence in what exactly is displayed and can balance out
the low resolution of measurement tools used in an experiment. Thus, if re-
search contexts are dominated by small effect sizes, low measurement accuracy,
and a high-stakes environment that requires high confidence for scientific claims,
higher sample sizes are necessary. Simplistic rules-of-thumb neglect these inter-
actions, and researchers struggle to configure sample sizes to the research con-
text on an intuitive basis. Best-practice approaches to sample size determination
therefore rely on formal statistical methods that take the specific features of the
research context into account.

The traditional statistical method for sample size determination in quantita-
tive research is an a-priori power analysis. The concept of statistical power stems
from frequentist statistics and describes the probability that a hypothesis test
yields a statistically significant result if the tested effect is present in the pop-
ulation (Cohen, 1988). For example, let us assume that a group of researchers
is interested in testing the facial feedback hypothesis, positing that participants’
affective ratings of stimuli are influenced by their current (unrelated) facial ex-
pression (Strack, Martin, & Stepper, 1988). Statistical power is the probability to
“detect” the facial feedback effect using a frequentist hypothesis test if the effect
indeed exists. As such, it is closely related to the probability of a type II error
(false negative test decision), which occurs if the hypothesis test does not yield
a significant result even though the effect exists. For example, a false negative
test decision would occur if the researchers could not detect the facial feedback
effect although it factually exists on a population level. A higher statistical power
immediately implies a smaller probability for type II errors, but can usually only
be achieved by increasing the sample size of a study. In the frequentist statistical
paradigm, sample size determination is therefore guided by the overarching goal
of error control.
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1. Introduction

1.3 More Than Power

The goal of this dissertation is to widen the focus of research planning from its
narrow fixation on the rate of wrong decisions towards a broader perspective on
the informativeness of experiments. With the advent of Bayesian hypothesis test-
ing in psychology, it has become increasingly popular to express the informative-
ness of an study through the extent to which it can update the beliefs of a rational
observer (Andrews & Baguley, 2013; Wagenmakers et al., 2018). For example, a
study demonstrating the facial feedback effect would be deemed informative if
the evidence is sufficiently compelling to convince a skeptic of the existence of the
effect. Crucially, the Bayesian statistical framework makes it possible to directly
quantify the amount of evidence obtained for competing hypotheses. Thus, the
expected informativeness of a study can be judged by the expected amount of
evidence it provides about the tested hypotheses. Similar to statistical power,
the expected amount of evidence typically increases with larger sample sizes.
Therefore, sample sizes can be calibrated with the goal of obtaining compelling
evidence. Chapters 2, 3, 4, and 5 of this dissertation are dedicated to this topic.

The Bayesian statistical framework does not only allow researchers to quan-
tify the relative evidence for competing hypotheses. It also requires them to
formulate their scientific hypotheses more precisely (Lee & Vanpaemel, 2017).
Specifically, all competing hypotheses need to be formalized in mathematical
models, and within each model a-priori expectations need to be formulated
about unknown quantities. These expectations are mathematically expressed in
so-called prior distributions on parameters, that is, probability distributions that
express pre-data knowledge about unknown quantities in the model (Lindley,
2004). For example, researchers may not know the size of the facial feedback
effect before data collection, but they may suspect from previous preregistered
replication attempts in the field of embodied cognition (e.g., Morey et al., 2022)
that the effect size is small. This prior knowledge can be expressed in a prior dis-
tribution by choosing a probability distribution that assigns a higher plausibility
to small effect sizes (Gronau, Ly, & Wagenmakers, 2020).

As more prior knowledge is incorporated into statistical models, their predic-
tions become more constrained and thus easier to distinguish from the predic-
tions of other statistical models. This aspect of informativeness of model com-
parisons has a direct impact on the sample sizes needed to obtain compelling
evidence in a study. If competing models make distinct predictions about data,
fewer observations are typically needed to obtain compelling evidence for either
of the models. In this dissertation, Chapters 2 and 4 discuss how the degree of
informativeness of prior distributions influences sample size planning. Chapters
6 and 7 discuss challenges in transforming researcher’s conceptual prior knowl-
edge into prior distributions – a necessary step before informative model com-
parisons can be set up.

1.4 Boosting Efficiency

So far, we have operated under the implicit assumption that the sample size is
determined before the start of a psychological study. This so-called fixed-N de-
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sign approach is typically taught in introductory classes on quantitative research
methodology and is well-known among social science researchers (e.g., Dubey
& Kothari, 2022; Jhangiani, Chiang, Cuttler, & Leighton, 2019). In a fixed-N de-
sign the number of observations is set to a certain number before the start of data
collection, preferably by means of a formal sample size determination method
(Cohen, 1988). Once the sample size has been fixed, any deviation from the
planned number of observations is strictly discouraged. In the frequentist statis-
tical framework, this restriction happens for a good reason. If the sampling plan
is unclear, the p-value, the central quantity in frequentist hypothesis testing, be-
comes uninterpretable (Wagenmakers, 2007). Moreover, researchers can enforce
statistically significant results by repeatedly evaluating the p-value during data
collection and stopping conditional on the result. This practice, called optional
stopping, is considered a questionable research practice since it drives up the prob-
ability of false-positive results (Armitage, McPherson, & Rowe, 1969; Simmons et
al., 2011, see also Chapter 8 of this dissertation). To ensure the trustworthiness
of results, it is therefore vital to preregister and strictly follow a-priori sampling
plans in the frequentist statistical framework (van ’t Veer & Giner-Sorolla, 2016).

Despite its wide-spread use and statistical justification, the rigid regimen of
fixed-N designs does arguably not reflect most people’s intuition about the sci-
entific process. Science is often portrayed as an iterative process of knowledge
acquisition where information is collected until the investigated phenomenon
has been sufficiently well understood (Jevons, 1874). However, if sample sizes
are fixed a-priori, this means that sometimes data collection is stopped before
sufficient information has been obtained and sometimes data collection is con-
tinued even though the results of the experiment are already conclusive. For-
mal approaches to sample size determination can only partly mitigate this issue
because they are based on incomplete prior knowledge about the studied phe-
nomenon (see Chapter 5 for a more thorough discussion of this topic). A fixed-N
design can therefore never fully do justice to the principle of research efficiency
(Wald & Wolfowitz, 1948).

An alternative to fixed-N designs is provided by sequential designs. In a se-
quential design, the number of observations is not predetermined. Instead, an
analyst verifies at several occasions throughout the study whether a pre-defined
stopping criterion has been met. If the stopping criterion has not been reached
yet, another batch of observations is collected. Once the stopping criterion has
been reached, the data collection is terminated. This makes sequential designs
highly efficient because sampling can be stopped precisely when sufficient in-
formation has been collected (Wald & Wolfowitz, 1948). Indeed, when one of
the most prominent sequential hypothesis testing methods, the Sequential Prob-
ability Ratio Test (SPRT), was developed in 1943, the British National Defense
Research Committee considered the resource savings sufficiently “useful for the
war effort to make it desirable to keep the results out of the reach of the enemy”
(Wald, 1945, p. 121). As a result, the methodology remained confidential until
the end of the Second World War, and the corresponding seminal paper was pub-
lished in 1945. This demonstrates the remarkable impact sequential sampling can
have on the efficiency on research designs.

Sequential designs can be conducted in any statistical framework (Pocock,
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1977; Schönbrodt, Wagenmakers, Zehetleitner, & Perugini, 2017; Wald, 1945).
However, the Bayesian statistical framework lends itself particularly well to se-
quential designs. All quantities used for inference about models and parameters
in Bayesian statistics can be interpreted independent of sampling plans (Rouder,
2014). This allows for considerable flexibility in Bayesian sequential designs. In
particular, neither the maximum sample size nor the number of interim “looks”
need to be defined in advance. Researchers can stop data collection whenever
they deem results sufficiently compelling, when their financial resources dry out,
or when they prefer to focus on different research projects.

Given the overall uptick in the use of Bayesian methods in psychology re-
search as well as the considerable flexibility of Bayesian sequential designs, it
is not surprising that there has been an increased interest in using Bayesian se-
quential designs for hypothesis testing in psychology (Beffara, Bret, & Nalbor-
czyk, 2018; Schnuerch & Erdfelder, 2020; Schönbrodt & Wagenmakers, 2018).
This dissertation explores how Bayesian sequential designs can be planned and
executed with application examples in psychology research. Specifically, Chap-
ter 2 describes a procedure to determine the expected sample size in a sequential
Bayesian hypothesis test, providing researchers with a tool to assess the costs of
an experiment before data collection. Chapter 4 applies this methodology with
the goal of comparing the efficiency of sequential Bayesian hypothesis tests to
Wald’s SPRT. This chapter also gives insights into the role of prior distributions
for the efficiency of Bayesian sequential hypothesis tests. Finally, Chapters 5 and
9 illustrate how the flexibility of Bayesian designs can be used to create sequen-
tial testing procedures that effectively balance the need for informativeness and
resource efficiency.

1.5 Big Little Lies

In 2011, an article in the Journal of Social and Personality Psychology written
by Cornell professor Daryl J. Bem caused considerable stir among psychology
researchers (Bem, 2011). The article claimed to have found evidence for partici-
pants’ ability to “feel the future”, that is, to anticipate emotional stimuli through
extrasensory perception. The reported findings stood in conflict with most read-
ers’ firm beliefs about the laws of nature, and thus led to investigations into
potential alternative causes for the stunning results. The emerging explanation
blamed the implausible findings on Bem’s way of analyzing the data; specifi-
cally the insufficient disambiguation between confirmatory and exploratory re-
sults (Wagenmakers, Wetzels, Borsboom, & van der Maas, 2011). Same as many
other psychology researchers at the time (John, Loewenstein, & Prelec, 2012), Bem
allegedly engaged p-hacking and HARKing, two questionable research practices
that have since become infamous for blowing up the number of false-positive
findings in psychology (Simmons et al., 2011). The two practices are based on
misusing the methodological flexibility in data analysis to generate statistically
significant results and promoting them as confirmatory, while failing to disclose
the full range of conducted analyses (Kerr, 1998; Simonsohn, Nelson, & Simmons,
2014a).
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1.6. Chapter Outline

Questionable research practices and bad-faith experimentation as revealed in
Bem’s studies can pose a serious threat to scientific progress. If research pro-
grams build on false-positive findings, whole research fields can fall in disgrace.
A prominent research area that met this fate is the field of social priming (Yong,
2012). Social priming investigates how subtle cues can influence behavior. The
field had gained considerable public attention for its surprising and sometimes
unintuitive findings. However, it was cast in serious doubt after seminal findings
could not be independently replicated and instances of data faking had come to
light (Chivers, 2019). The scale of ramifications can hardly be overestimated: It
became clear that thousands of dollars in research funding had probably been in-
vested in pointless studies, researchers had built their careers on false-positive re-
sults, and practical interventions had been promoted without a reliable evidence
base. The waste of time, money, and resources, as well as the loss of credibility for
the wider field of psychology research was staggering (Dominus, 2017; Ioannidis
et al., 2014; Pashler & Wagenmakers, 2012).

In response to the ensuing crisis of confidence, new scientific practices have
been proposed with the goal to mitigate questionable research practices in the
future and to ensure the trustworthiness of findings in psychology (Nosek et al.,
2015). The proposed practices permeate the entire research process, and include
among others a stronger focus on theory-building, large-scale replication efforts,
public preregistration of hypotheses, data sharing and independent reanalysis,
more robust statistical methods, and new publication formats (Chambers, 2013;
Cumming, 2014; Nosek, Ebersole, DeHaven, & Mellor, 2018; Rouder, 2016; The
Open Science Collaboration, 2015; van Rooij & Baggio, 2021; Wagenmakers et
al., 2011). In the past decade, many of the new practices have become a corner-
stone of responsible data collection in psychology and other fields (Christensen et
al., 2019; Nosek & Lindsey, 2018). Nevertheless, questionable research practices
have not completely disappeared and continue to threaten the informativeness
of psychological studies (Gopalakrishna et al., 2022). Mitigating the influence
of p-hacking and HARKing and supporting researchers in conducting open and
reproducible science therefore remains an ongoing mission. In this dissertation,
Chapters 8 and 9 are dedicated to this endeavor, with Chapter 8 being concen-
trated on the identification and prevention of p-hacking and Chapter 9 providing
support for preregistrations through a Bayesian two-stage procedure.

1.6 Chapter Outline

The overarching goal of this dissertation is to outline new avenues for increasing
the informativeness and efficiency of research in psychological science. It puts an
emphasis on Bayesian statistical methods and delineates how research designs
can benefit from the distinct features of Bayesian statistics. Moreover, it broad-
ens the traditional view on research informativeness towards the quantification
of evidence, informative model comparisons, and the mitigation of analytic flex-
ibility.

7



1. Introduction

1.6.1 Part I: Research Design in the Bayesian Age

The first part of this dissertation examines experimental design through the lens
of the Bayesian statistical framework. Chapter 2 presents Bayes Factor Design
Analysis (BFDA), a simulation-based methodology for sample size determination
in Bayesian hypothesis testing. It maps out different objectives in sample size de-
termination for fixed-N and sequential Bayesian designs, and illustrates how the
use of informed prior distributions can reduce the number of observations that
are necessary to obtain a certain strength of evidence. The chapter also provides
a user-friendly web-based application for BFDA for independent-samples t-tests
that allows researchers to conduct BFDAs with ease.

BFDA is fairly computationally expensive and needs to be recomputed mul-
tiple times in the process of finding an appropriate design. Chapter 3 attempts
to reduce the computational burden of BFDA in the context of Latent Growth
Curve Models (LGCMs) by applying the concept of power equivalence to Bayesian
designs. LGCMs are used to investigate trends over the course of multiple lon-
gitudinal measurement occasions. A design analysis allows researchers to find
the optimal compromise between the number of measurement occasions and the
overall duration of the study. The chapter demonstrates how the notion of power
equivalence can be used to find groups of designs with the same operating char-
acteristics, thus rendering the recomputation of BFDAs for these groups obso-
lete. Notably, the chapter is the only one in this dissertation describing design
planning both at the level of an individual participant (through the number of
measurement occasions) and on the study level (through the overall number of
participants).

Chapter 4 applies the BFDA methodology to investigate differences in effi-
ciency between two sequential hypothesis testing methods: the Sequential Prob-
ability Ratio Test (SPRT) and the Sequential Bayes Factor Test (SBFT). Recently
published works in the field of psychological methods have argued that the SPRT
yields lower average sample sizes than the SBFT (Schnuerch & Erdfelder, 2020).
In this chapter, I argue that these comparisons exaggerated the efficiency benefits
of the SPRT, and that differences between the procedures depend on gradual dif-
ferences in model specifications. Indeed, the chapter demonstrates that the two
testing procedures are sufficiently similar to be viewed as two instances of the
same overarching framework. As a result, the chapter provides practical guid-
ance on how researchers can balance test efficiency, robustness against model
misspecification, and uncertainty quantification in the design of sequential hy-
pothesis tests within the overarching framework.

Chapter 5 extends the concept of design analyses from a-priori to interim de-
sign analyses. Interim design analyses make it possible to overcome the issue of
sparse a-priori information in design planning and allow researchers to flexibly
adapt sampling plans in Bayesian sequential designs throughout the course of a
study. Two simulated application examples illustrate the use of interim design
analyses in the context of pilot study designs and futility stopping, respectively.
The examples map out different design decisions that researchers can make based
on the interim design analyses and analyzes their impact on the resulting operat-
ing characteristics of the designs.

8



1.6. Chapter Outline

1.6.2 Part II: Eliciting Priors for Informative Model Comparisons

Several chapters in Part I of this dissertation demonstrated the increased effi-
ciency and informativeness of Bayesian hypothesis tests when testing models
with informed prior distributions. The second part of the dissertation takes
a closer look at the specification of informed prior distributions based on the
knowledge of field experts. Chapter 6 describes a variety of different decisions
that researchers need to make in the process of prior elicitation, starting with
the selection of experts and model parameters for elicitation, moving to different
elicitation techniques, and concluding with alternative ways to combine infor-
mation elicited from different experts. Several analyses illustrate the potential
impact of these methodological decisions on the elicitation results. The goal
of the chapter is to raise awareness for the analytic flexibility that is present in
prior elicitation and to provide researchers with a more structured approach to
navigate the methodological decisions in prior elicitation procedures.

Chapter 7 evaluates the influence of expert selection on elicited prior distri-
butions and informed Bayesian model comparisons in more detail. In a first step,
the interpersonal variability of prior distributions elicited from six researchers
from different subfields of psychology is assessed. In a second step, the elicited
prior distributions are applied in a re-analysis of 1710 studies in psychology. The
results of the re-analyses are then subjected to a sensitivity analysis with regard
to three criteria measuring the qualitative and quantitative conclusions of the hy-
pothesis tests. The chapter makes two main contributions: From a substantive
angle, the re-analyses demonstrate that Bayesian hypothesis testing is sensitive
to the prior distribution, but using different elicited priors rarely changes the
qualitatative results. From a methodological perspective, the sensitivity analy-
ses provide a blueprint for Bayesian robustness analyses with different informed
prior distributions.

1.6.3 Part III: Eliminating Questionable Research Practices

The third part of this dissertation explores the informativeness of experiments
more generally in the context of good research practices. Chapter 8 demonstrates
how psychological studies can lose their scientific value if researchers use ques-
tionable research practices. The chapter provides a comprehensive overview of
p-hacking strategies and investigates through simulation studies how each of the
strategies influences the probability of obtaining false-positive results. The simu-
lation results are then used for a preliminary meta-scientific evaluation of several
potential solutions to the p-hacking problem. Among the investigated possible
solutions, reporting Bayes factors in addition to p-values stands out as a viable
option, allowing for a critical re-evaluation of research results if evidence for the
null hypothesis was found despite a significant p-value.

Preregistration is one of the most widely used countermeasures against p-
hacking and other questionable research practices. The meta-scientific evalua-
tion in Chapter 8 indicated that in order to provide effective protection against
p-hacking, preregistrations need to meticulously restrict all researcher degrees of
freedom. However, researchers often struggle with specifying their analyses ex-
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actly before seeing the data. Chapter 9 therefore proposes a Bayesian two-stage
design where a preliminary dataset is explored in a first stage until the researcher
has found a satisfying analysis pipeline that can be preregistered, and analysis re-
sults are subjected to a confirmatory test in a second stage. Importantly, the pro-
posed design allows for a carry-over of information between the two stages via
the prior distribution, thus allowing for informed model comparisons in the sec-
ond stage. Moreover, the design is highly efficient because it allows for sequential
testing in both stages. The design presented in Chapter 9 therefore combines sev-
eral novel design elements described in previous chapters.
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2

A Tutorial on Bayes Factor Design Analysis
Using an Informed Prior

Abstract

Well-designed experiments are likely to yield compelling evidence with
efficient sample sizes. Bayes Factor Design Analysis (BFDA) is a recently de-
veloped methodology that allows researchers to balance the informativeness
and efficiency of their experiment (Schönbrodt & Wagenmakers, 2018). With
BFDA, researchers can control the rate of misleading evidence but, in addi-
tion, they can plan for a target strength of evidence. BFDA can be applied
to fixed-N and sequential designs. In this tutorial, we provide an introduc-
tion to BFDA and analyze how the use of informed prior distributions affects
the results of the BFDA. We also present a user-friendly web-based BFDA
application that allows researchers to conduct BFDAs with ease. Two practi-
cal examples highlight how researchers can use a BFDA to plan for informa-
tive and efficient research designs.

This chapter is published as Stefan, A. M., Gronau, Q. F., Schönbrodt, F. D., & Wagenmakers,
E.-J. (2019). A tutorial on Bayes Factor Design Analysis using an informed prior. Behavior Research
Methods, 51(3), 1042–1058. https://doi.org/10.3758/s13428-018-01189-8 Also available as PsyArXiv
preprint: https://psyarxiv.com/aqr79/
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2. A Tutorial on BFDA Using an Informed Prior

2.1 Introduction

A well-designed experiment strikes an appropriate balance between informative-
ness and efficiency (Schönbrodt & Wagenmakers, 2018). Informativeness refers
to the fact that the ultimate goal of an empirical investigation is to collect evi-
dence, for instance concerning the relative plausibility of competing hypotheses.
By carefully planning experiments, researchers can increase the chance of ob-
taining informative results (Platt, 1964).1 Perhaps the simplest way to increase
informativeness is to collect more data. Large-N experiments typically result in
lower rates of misleading evidence (Ioannidis, 2005), increased stability and pre-
cision of parameter estimates (Lakens & Evers, 2014), and a higher replicability
of experiments (Etz & Vandekerckhove, 2016). However, sample sizes are subject
to the constraints of time, money, and effort2 — hence, the second desideratum of
a well-designed experiment is efficiency: data collection is costly and this drives
the need to design experiments such that they yield informative conclusions with
as few observations as possible. There is also an ethical argument for efficiency,
as it is not just the resources of the experimenter that are at stake, but also the
resources of the participants.

In sum, a carefully planned experiment requires that researchers negotiate
the trade-off between informativeness and efficiency (Dupont & Plummer, 1990).
One useful approach to navigate the trade-off is to conduct a prospective design
analysis (Gelman & Carlin, 2013). This method for planning experiments aims
to ensure compelling evidence while avoiding sample sizes that are needlessly
large. Design analyses can be conducted in both frequentist and Bayesian analy-
sis frameworks (Cohen, 1992; Kruschke, 2013). The most prominent example of
prospective design analyses is the frequentist power analysis (Gelman & Carlin,
2014), which builds on the idea of controlling the long-term probability of obtain-
ing significant results given a certain population effect (Cohen, 1988, 1992).

However, the frequentist power analysis has important shortcomings. First,
it focuses solely on controlling the rates of false positives and false negatives in
significance testing. Other aspects of the informativeness of experiments, such as
the expected strength of evidence or the stability and unbiasedness of parameter
estimates are neglected (Gelman & Carlin, 2013, 2014; Schönbrodt & Wagenmak-
ers, 2018). Second, frequentist power analysis heavily relies on a priori effect size
estimates, which are informed by external knowledge (Gelman & Carlin, 2013).
This is problematic insofar as effect size estimates derived from academic liter-
ature are likely to be inflated due to publication bias and questionable research
practices (Perugini, Gallucci, & Costantini, 2014; Simmons et al., 2011; Vevea &
Hedges, 1995); to date, there is no optimal method for correcting the biased es-
timates (E. C. Carter, Schönbrodt, Gervais, & Hilgard, 2019). Alternatively, fre-
quentist power analysis can be based on the smallest effect size one wants to

1Platt (1964) referred to the method of planning for informative results as “strong inference”. One
of the main components of strong inference is “Devising a crucial experiment [...], with alternative
possible outcomes, each of which will, as nearly as possible, exclude one or more of the hypotheses.”
(p. 347)

2In addition, when already large sample sizes are further increased, the incremental effect on
statistical power is only small (Lachin, 1981).
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detect. However, this approach is used less often in practice (Anderson, Kelley,
& Maxwell, 2017) and in many cases, defining the minimal important effect size
is difficult (Prentice & Miller, 1992).

Recently, several alternative approaches for prospective design analysis have
been proposed that can at least partly overcome the shortcomings of frequentist
power analysis (e.g., Gelman & Carlin, 2014; Schönbrodt & Wagenmakers, 2018).
This chapter will focus on one of them: Bayes Factor Design Analysis (BFDA;
Schönbrodt & Wagenmakers, 2018), a method based on the concept of Bayesian
hypothesis testing and model comparison (Jeffreys, 1961; Kass & Raftery, 1995;
Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010; Wrinch & Jeffreys, 1921).

One of the advantages of BFDA is that it allows researchers to plan for com-
pelling evidence. In a BFDA, the strength of empirical evidence is quantified by
Bayes factors (Jeffreys, 1961; Kass & Raftery, 1995). Compared to the conven-
tional power analysis, this means a shift from the focus on the rate of wrong
decisions to a broader perspective on informativeness of experiments. Just as
a frequentist prospective power analysis, a BFDA is usually conducted in the
planning phase of experimental design, that is before the data collection starts.
However, it could also be conducted and sensibly interpreted “on-the-go” dur-
ing data collection (Rouder, 2014; Schönbrodt & Wagenmakers, 2018), which can
also be considered as an advantage over the current standard approach toward
design analyses. Furthermore, BFDA can be applied both to fixed-N designs,
where the number of observations is determined in advance, and to sequential
designs, where the number of observations depends on an interim assessment of
the evidence collected so far (Schönbrodt & Wagenmakers, 2018; Schönbrodt et
al., 2017).

This chapter is directed to applied researchers who are already familiar with
the basic concepts of Bayesian data analysis and consider using BFDA for plan-
ning experiments.3 It has the following objectives: (1) to provide an accessible in-
troduction to BFDA; (2) to introduce informed analysis priors to BFDA which al-
low researchers more freedom in specifying the expectations about effect size un-
der the alternative hypothesis; (3) to demonstrate how the use of informed analy-
sis priors in BFDA impacts experimental efficiency; (4) to present a user-friendly
software solution to conduct BFDAs; and (5) to provide a step-by-step instruction
for two common application examples of BFDA. Thus, this tutorial-style chapter
not only provides an application-oriented introduction to the method proposed
by Schönbrodt and Wagenmakers (2018), but also makes new contributions by
introducing informed priors and a ready-to-use software solution.

The outline of this chapter is as follows. First, we briefly describe Bayes fac-
tors and introduce informed analysis priors as a means of incorporating prior in-
formation about effect sizes in study designs. Then, we explain the BFDA method
in greater detail, addressing both fixed-N and sequential designs. Using two typ-
ical analysis priors as an example, we then examine the effects of informed and
default analysis priors on the results of a BFDA. Next, we present an interactive

3A comprehensive introduction to Bayesian inference is beyond the scope of this chapter. The
interested reader is referred to Etz, Gronau, Dablander, Edelsbrunner, and Baribault (2018) for an
overview of introductory materials on Bayesian statistics.
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web application for BFDA alongside step-by-step instructions for two application
examples. The chapter concludes by discussing possible extensions and implica-
tions for empirical research.

2.2 Bayes Factors as a Measure of Strength of Evidence

The Bayes factor was originally developed by Harold Jeffreys (1935), building on
earlier work published with his co-author Dorothy Wrinch (Wrinch & Jeffreys,
1919, 1921, 1923) as well as on the work of J. B. S. Haldane (Etz & Wagenmakers,
2017; Haldane, 1932). The Bayes factor quantifies the evidence in favor of one
statistical model compared to another (Kass & Raftery, 1995). Mathematically,
it is defined as the ratio of two marginal likelihoods: The likelihood of the data
under the null model (M0) and the likelihood of the data under the alternative
model (M1).

BF10 =
p(D | M1)

p(D | M0)
(2.1)

The Bayes factor can be understood as an updating factor for prior beliefs. For
example, when the modelsM0 andM1 are deemed equally probable a priori, so
that p(M1) = p(M0) = 0.5, a Bayes factor of BF10 = 6 means that after conduct-
ing the experiment,M1 is deemed 6 times more likely thanM0 – corresponding
to a posterior probability of 86% forM1 and 14% forM0 (Kass & Raftery, 1995).

The Bayes factor plays a central role in Bayesian hypothesis testing
(J. O. Berger, 2006; Lewis & Raftery, 1997). Whereas decisions about the re-
jection of hypotheses are based on p-values in frequentist hypothesis testing,
decision rules in Bayesian hypothesis testing are based on Bayes factors (Good,
2009, p. 133ff). Usually, defining decision rules implies defining a lower and up-
per decision boundary on Bayes factors. If a resulting Bayes factor is larger than
the upper boundary, it is regarded as good-enough evidence for the alternative
hypothesis. If a Bayes factor is smaller than the lower boundary, it is regarded
as good-enough evidence for the null hypothesis. If a resulting Bayes factor
lies between the boundaries, the evidence is deemed inconclusive (Bernardo
& Rueda, 2002). In order to define decision boundaries and interpret evidence
from the Bayes factor, researchers often rely on a rough heuristic classification
scheme of Bayes factors (Lee & Wagenmakers, 2013). One specification of this
classification scheme is depicted in Table 2.1.

A complete Bayesian decision making process also involves the specifica-
tion of utilities, that is, the value judgments associated with decision options
(e.g., J. O. Berger, 1985; Good, 2009; Lindley, 1985). However, many Bayesian
statisticians focus exclusively on evidence and inference, ignoring the context-
dependent specification of utilities. The decision rules for Bayes factors discussed
here are decision rules for evidence (i.e., what level of evidence is deemed suffi-
ciently compelling?). These rules may be influenced by prior model plausibility
and by utilities, but these elements of the decision process are not specified sepa-
rately and explicitly.
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Table 2.1 A heuristic classification scheme for Bayes factors BF10 (Lee and
Wagenmakers 2013, p. 105; adjusted from Jeffreys 1961)

Bayes factor Evidence category
> 100 Extreme evidence forM1

30 – 100 Very strong evidence forM1

10 – 30 Strong evidence forM1

3 – 10 Moderate evidence forM1

1 – 3 Anecdotal evidence forM1

1 No evidence
1/3 – 1 Anecdotal evidence forM0
1/10 – 1/3 Moderate evidence forM0
1/30 – 1/10 Strong evidence forM0
1/100 – 1/30 Very strong evidence forM0

< 1/100 Extreme evidence forM0

The use of Bayes factors as a measure of evidential strength provides several
advantages. First, Bayes factors can quantify evidence forM0 andM1 (Kass &
Raftery, 1995). This means that in contrast to p-values, they can distinguish be-
tween absence of evidence and the evidence of absence (Altman & Bland, 1995;
Dienes, 2014). Bayes factors also do not require the two models to be nested,
which increases researchers’ freedom in formulating relevant hypotheses (Kass
& Raftery, 1995). Another advantage of Bayes factors is that their interpretation
remains meaningful despite optional stopping (Rouder, 2014). This allows se-
quential research designs where the decision about the continuation of sampling
depends on the value of the Bayes factor (Schönbrodt et al., 2017).

2.3 Bayes Factors with Informed Priors

As stated before, the Bayes factor is defined as the ratio of the marginal likelihood
of the data under the null and the alternative model, respectively. In the simplest
case both models, M0 and M1, represent point hypotheses which means that
they assume that the parameter in question (e.g., the effect size) takes one spe-
cific value (e.g., “M0: The parameter θ is 0.”, “M1: The parameter θ is 1”). In
this case, the Bayes factor is equivalent to a simple likelihood ratio. However, hy-
potheses often rather assume that the parameter in question lies within a certain
range of values (e.g., M1: “The parameter θk is larger than 0, and smaller values of
θ are more likely than larger values.”). Such a-priori assumptions about parameters
can be expressed through a distribution that assigns a probability (density) to
parameter values. We call this distribution the prior distribution on parameters.
The marginal likelihood can then be calculated by integrating over the parameter
space, so that

p(D | Mk) =

∫
p(D | θk,Mk)π(θk | Mk) dθk, (2.2)

where θk is the parameter under Mk, π(θk | Mk) is its prior density, and
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p(D | θk,Mk) is the probability density of the data D given a certain value of the
parameter θk (Kass & Raftery, 1995; Rouder, Speckman, Sun, Morey, & Iverson,
2009).

Opinions differ as to how much information should be included in the prior
distribution on parameters, that is, π(θk | Mk). So-called “objective” Bayesians
favor non-informative distributions which do not put too much weight on single
parameter values and are constructed to fulfill general desiderata (Ly, Verhagen,
& Wagenmakers, 2016; Rouder et al., 2009). Objective Bayesians advocate default
prior distributions that do not rely on the idiosyncratic understanding of a theory
and on the potentially flawed subjective elicitation of an informative prior distri-
bution (J. O. Berger, 2006). In contrast, so-called “subjective” Bayesians argue
that “the search for the objective prior is like the search for the Holy Grail” (Fien-
berg, 2006, p. 431). Subjective Bayesians claim that no statistical analysis can be
truly objective, and they critique objective Bayesians for using prior distributions
that are at best inaccurate reflections of the underlying theory (Goldstein, 2006).

In its original version, BFDA was applied to Bayesian hypothesis testing with
objective priors (Schönbrodt & Wagenmakers, 2018). In this chapter, we intro-
duce subjective priors to BFDA and investigate how their use impacts design
efficiency. As in the original article, we will use Bayesian t-tests with directional
hypotheses to illustrate the procedure. As proposed by Rouder et al. (2009), we
will use a central Cauchy distribution with a scale parameter of r =

√
2/2 as a

default (“objective”) prior distribution on effect size δ. This prior is also a de-
fault setting in current statistical software covering Bayesian statistics like the
BayesFactor package (Morey & Rouder, 2018) for the R Environment for Statistical
Computing (R Development Core Team, 2011) and JASP (JASP Team, 2021). The
informed prior distribution investigated in this chapter was originally elicited by
Gronau et al. (2020) for a replication study in the field of social psychology and,
in our opinion, can serve as an example for a typical informed prior for the field
of psychology. It is a shifted and scaled t-distribution with a location parameter
of µ = 0.35, 3 degrees of freedom, and a scale parameter of r = 0.102. Both prior
distributions (objective and informed) are depicted in Figure 2.1.

2.4 Bayes Factor Design Analysis for Fixed-N and Sequential Designs

One important step of experimental planning is to determine the sample size of
the experiment. In fixed-N designs, the sample size is determined before con-
ducting an experiment based on pre-defined desiderata for the expected strength
of evidence and the probability of decision errors (Schönbrodt & Wagenmakers,
2018). In sequential designs, instead of a fixed sample size a decision rule is
set before the start of the experiment. This decision rule determines when the
sampling process will be stopped. Researchers can decide at every stage of the
experiment on the basis of the decision rule whether to (1) accept the hypothesis
being tested; (2) reject the hypothesis being tested; or (3) continue the experi-
ment by making additional observations (Wald, 1945). For example, a researcher
might aim for a strength of evidence of 6, and thus collect data until the Bayes
factor (BF10) is larger than 6 or smaller than 1/6. Sequential designs are particu-
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Figure 2.1: Informed and default prior distribution on effect size δ used in this
chapter. Default prior distribution proposed by Rouder et al. (2009) for Bayesian
t-tests, informed prior distribution elicitated by Gronau et al. (2020) for a replica-
tion study in social psychology.

larly easy to use in a Bayesian framework since the Bayes factor is robust against
optional stopping, so no correction mechanism needs to be employed for look-
ing at the data before the experiment is concluded (Rouder, 2014; Schönbrodt
et al., 2017).4 Additionally, it is guaranteed that finite decision boundaries will
eventually be reached, since the Bayes factor approaches 0 or ∞ when the data
are overwhelmingly informative which happens when the sample size becomes
very large (a property called consistency; Ly et al. 2016).

BFDA can help researchers plan experiments with both fixed-N and sequen-
tial designs. The target outcomes of BFDAs depend on the choice of design. In
fixed-N designs, a BFDA provides researchers with a distribution of Bayes fac-
tors, that is, of the expected strength of evidence. Large Bayes factors pointing
towards the wrong hypothesis can be interpreted as misleading evidence because
they likely lead to decision errors. Researchers define “large Bayes factors” based
on two boundaries, e.g., “all Bayes factors that are smaller than 1/10 or larger than
10 are counted as strong evidence for the null and alternative hypothesis, respec-
tively”.

For sequential designs, the BFDA results a large number of sampling trajec-
tories. Each sampling trajectory mimics one possible experimental sequence, for
example “a researcher starts with 10 participants and adds one participant at a
time until the Bayes factor of the collected data is larger than 6 which happens
at the 21st participant”. In sequential designs, the end point of the sampling tra-

4For a discussion on whether optional stopping creates bias, see Schönbrodt et al. (2017, pp. 330-
332) and Schönbrodt and Wagenmakers (2018, pp. 139f).
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jectory, which is the final sample size of the experiment, is a random variable.
Hence, the most interesting information a BFDA can provide in sequential de-
signs is a probability distribution of this random variable, that is a probability
distribution of final sample sizes. Additionally, a BFDA can estimate the percent-
age of trajectories that will arrive at the “wrong” boundary, that is at the upper
boundary when the null hypothesis is true or at the lower boundary when the al-
ternative hypothesis is true. This percentage of trajectories can be interpreted as
rate of misleading evidence in sequential designs (Schönbrodt & Wagenmakers,
2018).

BFDA is based on Monte Carlo simulations. The simulation procedure
is displayed in a flowchart in Figure 2.2 and can be summarized as follows
(Schönbrodt & Wagenmakers, 2018):

1. Simulate a population that reflects the effect size under M1. If the effect
size underM1 is composite (e.g.,M1 : δ ∼ t(0.35, 3, 0.102)), draw a value
of δ from the respective distribution. In the example analysis used in this
chapter, we simulate two subpopulations with normal distributions. In the
following sections, we will refer to simulated populations with effect sizes
of δ = 0.2, δ = 0.35, δ = 0.8, and δ = 0.

2. Draw a random sample of size N from the simulated subpopulations. For
the fixed-N design, the sample size corresponds to the pre-determined sam-
ple size. For the sequential design, the initial sample size corresponds to
a minimum sample size, which is either required by the test (e.g., for an
independent-sample t-test, this sample size is equal to 2 observations per
group) or set to a reasonable small number. In our example, we chose a
minimum sample size of 10 observations per group.

3. Compute the Bayes factor for the simulated data set. In sequential design,
increase the sample size by 1 if the Bayes factor does not exceed one of the
decision thresholds and compute the resulting Bayes factor with the new
sample. Continue doing so until either of the thresholds is reached (e.g.,
BF10 < 1/6 or BF10 > 6).

4. Repeat steps 1 to 3 m times, e.g., m = 10, 000.

5. In order to obtain information on the design under the M0, steps 1 to 4
must be repeated underM0, that is, with two populations that have a stan-
dardized mean difference of δ = 0.

For the fixed-N design, the simulation results in a distribution of Bayes factors
underM1 and another distribution of Bayes factors underM0. To derive rates
for false-positive and false negative evidence, one can set decision thresholds and
retrieve the probability that a study ends up in the “wrong” evidential categories
according to these thresholds. For the sequential design, the simulation results in
a distribution of N that is conditional on the set evidence thresholds. The rates of
misleading evidence can be derived by analyzing the percentage of cases which
fell into the “wrong” evidential category, that is, arrived at the wrong boundary.

20



2.5. BFDA with Informed Priors

design prior / 

population model 

draw sample of size N 

sample of size N 

compute BF (based on 

analysis prior) 

BF10 

save result 

m
 tim

es 

design prior / 

population model 

draw initial sample of 

size Ninit 

sample of size Ninit 

compute BF (based on 

analysis prior) 

BF10 
save result & 

sample size 

m
 tim

es 

bounds reached? 

start new trajectory 

draw 1 additional 

observation and add it to 

sample 

updated sample 

Fixed-N Procedure Sequential Procedure 

Figure 2.2: Flowchart of the BFDA simulation process. Rectangles show actions,
diamonds represent decisions, and parallelograms depict outputs. Typically, the
simulation is conducted once under the null and once under the alternative hy-
pothesis.

2.5 Bayes Factor Design Analysis with Informed Priors

As in earlier work (O’Hagan, Stevens, & Campbell, 2005; Walley, Smith, Gale, &
Woodward, 2015), Schönbrodt and Wagenmakers (2018) distinguish “design pri-
ors” and “analysis priors”. Both are prior distributions on parameters, but have
different purposes. Design priors are used before data collection as data gener-
ating model to simulate (sub)populations. Analysis priors are used for Bayesian
statistical analysis of the collected data (O’Hagan et al., 2005; Schönbrodt & Wa-
genmakers, 2018).

As both kinds of priors represent beliefs about the true state of nature under
the hypotheses in question, some researchers may feel this distinction is artificial.
This holds especially true when design priors are distributions, that is, when sim-
ulated effect sizes are generated from distributions. The introduction of informed
priors to BFDA makes the distinction unnecessary and can therefore yield more
intuitive results.

The following sections explore the impact of the choice of priors on design
efficiency and informativeness in greater depth. It is important to note that in
practice the choice of priors should always be based on theoretical considerations
and not only on their influence on design properties. However, we will show that
the choice of priors is an important aspect of a design that needs to be considered
in the planning of experiments.
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2.6 Bayes Factor Design Analysis for Fixed-N Designs

In the fixed-N design, sample size and expected population effect size are defined
by the researcher. Questions that can be answered by a BFDA for this design are:

• What Bayes factors can I expect?

• What is the probability of misleading evidence?

• What sample size do I need to obtain true positive or true negative evidence
with a high probability?

In the following sections, we will tackle these questions and explore the effects
of the choice of analysis prior for different design priors and sample sizes. In our
examples, we use four different effect sizes as a design prior: δ = 0 as data gen-
erating model underM0, δ = 0.2 as a small effect size which is somewhat larger
than what would be expected if there was a null effect but somewhat smaller than
what would be expected from the informed analysis prior distribution, δ = 0.35
as a true effect size which perfectly matches the mode of the informed analysis
prior distribution, and δ = 0.8 as a large effect size which is still within the typical
range for the field of psychology (Perugini et al., 2014), but which is considerably
larger than what would be expected from the informed analysis prior. Addition-
ally, we will consider sample sizes between N = 10 and N = 500 observations
per group, which is typical for the field of psychology (Fraley & Vazire, 2014;
Marszalek, Barber, Kohlhart, & Cooper, 2011).

2.6.1 Expected Bayes Factors

As can be seen in Figure 2.3, expected Bayes factors increase with increasing sam-
ple size if the true effect size is larger than zero. If there is no difference between
groups (δ = 0), the expected Bayes factor approaches zero. This implies that the
mean log Bayes factor decreases to −∞ when sample size increases. In other
words, when sample size increases, so does the evidence for the true data gener-
ating model. However, evidence for the null hypothesis accumulates at a slower
rate than evidence for the alternative hypothesis (V. E. Johnson & Rossell, 2010).
In Figure 2.3, this can be seen from the smaller gradient of the panel for δ = 0.

As expected, the choice of the analysis prior influences the expected Bayes
factor. If the true effect size lies within the highest density region of the informed
prior distribution (e.g., δ = 0.2, δ = 0.35), the evidence accumulates faster when
the informed prior distribution is used compared to when a default prior is used.
In contrast, if the true effect size is much larger than the mode of the informed
prior distribution (e.g., δ = 0.8), the expected Bayes factor for a given sample
size is slightly larger for the default prior approach. This can be understood as
a higher “riskiness” of the choice of the informed prior. Researchers who plan a
study can be more conservative by choosing broader analysis priors — these are
less efficient in general (e.g., they yield lower Bayes factors for the same sample
size) but more efficient when the true effect size does not match the prior expecta-
tions. Alternatively, researchers who already have specific expectations about the
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Figure 2.3: Expected Bayes factors for different true effect sizes. Expected Bayes
factors are defined as the raw Bayes factors corresponding to the mean log Bayes
factors for a specific sample size. Evidence accumulates more slowly when the
null hypothesis is true (δ = 0) than when it is false.

population parameter can make riskier predictions by choosing informed prior
distributions — these are potentially more efficient, but only when the true effect
size matches the expectations.

When data are generated under the null hypothesis (top left panel in Fig-
ure 2.3), there is no unconditional efficiency gain for informed or default analysis
priors. If the sample size is smaller than 100 observations per group, the ex-
pected evidence for the null hypothesis is stronger in the default prior approach.
For larger sample sizes, the informed prior approach yields stronger evidence.

2.6.2 Probability of Misleading Evidence

Rates of misleading evidence can only be determined in a decision-making con-
text. These rates are dependent on the choice of cut-off values that guide the
decision towardsM0 orM1. In a Bayesian framework, cut-off values are usually
determined in terms of Bayes factors by choosing an upper and a lower decision
boundary. Typically, these boundaries are chosen symmetrically. This means that
the upper and lower boundary are defined as bBF and 1/bBF , respectively.

Figure 2.4 shows the expected rates of misleading evidence for symmetric
boundaries given different true effect sizes. What may come as a surprise is that
the rate of misleading evidence does not decrease continuously with increasing
sample size. This happens because evidence is mostly inconclusive for small sam-
ple sizes, that is, the Bayes factor is larger than the lower boundary but smaller
than the upper boundary. For example, if δ = 0 and we choose N = 10 per group
and decision boundaries of 1/10 and 10, the resulting evidence is inconclusive in
over 99% of the cases. Therefore, the evidence is misleading in only a very small
number of cases, but it also does not often motivate any decision either. This
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Figure 2.4: Rates of false positive (FP) and false negative (FN) evidence in fixed-
N design for different true effect sizes. If informed analysis priors are used, less
FN evidence occurs. If default analysis priors are used, less FP evidence occurs.

illustrates an important difference compared to standard frequentist statistics:
While there are mostly only two possible outcomes of an experiment in frequen-
tist statistics, namely, a decision for or against the null hypothesis, the absence of
evidence is a possible third outcome in Bayesian hypothesis testing.5

Analogous to frequentist statistics, rates of misleading evidence decrease as
effect size and sample size increase. In addition, the choice of decision boundaries
also influences the quality of decisions: the higher the boundaries, the lower the
rates of misleading evidence. Figure 2.4 shows that the informed and default
prior approach have distinct properties in terms of error rates. While rates of false
positive evidence are mostly lower for the default analysis prior, rates of false
negative evidence are mostly lower for the informed analysis prior. This may
be important when planning a study because sample size or decision boundaries
may need to be adjusted accordingly depending on the prior distribution.

2.6.3 Sample Sizes to Obtain True Positive or True Negative Evidence
with a High Probability

An important characteristic of a good experiment is its ability to provide com-
pelling evidence for a hypothesis when this hypothesis is true. In fixed-N de-
signs this can be achieved by determining the number of observations needed to
obtain strong positive evidence (when M1 is true) or strong negative evidence
(whenM0 is true) with a high probability. Just as rates of misleading evidence,

5In frequentist statistics, there also exist tests that allow for this three-way distinction, e.g., the
Wald test (Wald, 1943), but these are seldomly used in practice.
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Figure 2.5: Required sample sizes per group to obtain true positive (ifM1 is true)
or true negative (ifM0 is true) evidence with an 80% probability for symmetric
decision boundaries between 3 and 6 and different effect sizes δ. Largest sample
sizes are required if the true effect size is small but non-zero.

these rates of true positive and true negative evidence also depend on the chosen
Bayes factor boundaries. The question here is: “Which sample size is required to
obtain a Bayes factor that exceeds the ‘correct’ boundary with a high probability,
say 80%?”

If the design prior is larger than zero, this critical sample size can be obtained
by repeatedly conducting a fixed-N BFDA for increasing sample sizes and com-
puting the 20% quantile of each Bayes factor distribution. The critical sample
size is reached when the 20% quantile of the Bayes factor distribution exceeds
the Bayes factor boundary (this means that for this sample size 80% of the Bayes
factors are larger than the boundary). Figure 2.5 depicts the required sample sizes
for symmetric boundaries between 3 and 6 for different true effect sizes when us-
ing either a default or an informed analysis prior.

Clearly, if the true effect size is large, smaller sample sizes are sufficient to
detect an effect. For example, when the true effect size is δ = 0.35 and the default
analysis prior is used, 185 observations per group are needed to obtain a Bayes
factor larger than 5 with a probability of 80%. In contrast, only 33 observations
per group are needed to obtain the same evidence strength with the same proba-
bility for δ = 0.8. When the null hypothesis is true in the population (δ = 0), 340
observations are needed to gain the same strength of evidence in favor of the null.
The largest sample sizes are required when the true effect size lies close to zero
but does not equal zero. The reason is that it is difficult to determine whether
in this regionM0 orM1 was the data generating process, so Bayes factors will
often meander between the boundaries or arrive at the wrong boundary.

There are also perceivable differences between the default and informed prior
approach. In general, smaller samples are required if an informed analysis prior
is used. This corroborates the findings mentioned in earlier sections of this chap-
ter, that the informed prior approach is more diagnostic for smaller sample sizes.

In practice, if researchers want to plan for strong evidence independently of
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Figure 2.6: An example for the sequential sampling procedure (true effect size:
δ = 0.35, symmetric boundaries: {1/6, 6}, analysis prior: default). Misleading
evidence occurs mainly when trajectories end early.

whether the null or the alternative hypothesis is valid in the population, they
can compute the critical sample size for both hypotheses and plan for the larger
sample size. For instance, if 185 observations per group are needed to obtain true
positive evidence in 80% of the time (if H1 is true) and 340 observations per group
to obtain true negative evidence in 80% of the time (if H0 is true), it is sensible to
aim for the higher sample size because before the experiment is conducted it is
not clear whether the effect size is zero or non-zero in the population. Of course,
researchers can also set different criteria for decision bounds or true evidence
rates depending on the hypothesis.

2.7 Bayes Factor Design Analysis for Sequential Designs

In sequential designs, sampling is continued until the desired strength of evi-
dence is reached; consequently, the evidence is now fixed. However, prior to
conducting the experiment, it is unknown at which sample size these bound-
aries will be reached and how often Bayes factor trajectories arrive at the wrong
boundary (see Figure 2.6). Thus, we can ask the following two questions in a
BFDA for sequential designs:

1. Which sample sizes can be expected?

2. What is the probability of misleading evidence?

2.7.1 Expected Sample Sizes

Since the final sample size in a sequential design is a random variable, one of
the most urgent questions researchers have when planning sequential designs is
what sample size they can expect. BFDA answers this question with a distribu-
tion of sample sizes. The quantiles of this distribution can be used to plan exper-
iments. For example, researchers might be interested in a plausible estimate for
the expected sample size. Since the distribution is skewed, the median provides a
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Figure 2.7: Median sample sizes per group and 95% quantiles of the sample size
distribution in sequential design for different symmetric decision boundaries for
Bayes factors with informed and default analysis priors. Black lines are for me-
dians, grey lines for 95% quantiles. Solid lines represent the default prior, dotted
lines the informed prior.

good measure for this central tendency. When planning for resources, researchers
might also be interested in a plausible estimate for the maximum sample size they
can expect. In this case, it is reasonable to look at a large quantile of the distribu-
tion, for example the 95% quantile. Figure 2.7 displays the median and the 95%
quantile of sample size distributions for symmetric decision boundaries between
3 and 30 (corresponding to lower boundaries from 1/3 to 1/30 and upper bound-
aries from 3 to 30). For small to medium effect sizes, the required sample sizes
are clearly smaller when informed analysis priors are used. For large effect sizes
(e.g., δ = 0.8), the default analysis prior approach is more efficient. However, for
large effect sizes the required sample sizes are small in general, and consequently
the efficiency gain is relatively modest. When the null hypothesis is true in the
population, there is a striking difference in the 95% quantile of the sample size
distribution. This shows that in this case it is more likely that it takes very long
until the Bayes factor trajectory reaches a threshold when the default analysis
prior is used.

2.7.2 Probability of Misleading Evidence

In sequential designs, misleading evidence is defined as Bayes factor trajectories
that arrive at the “wrong” decision boundary, that is, at theM0 boundary when
M1 is correct and vice versa (Schönbrodt et al., 2017). As can be seen in Figure 2.6,
misleading evidence occurs mainly when Bayes factor trajectories end early, that
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Figure 2.8: Rates of misleading evidence in sequential design for different deci-
sion boundaries and true effect sizes.

is when sample sizes are still small.6.
Figure 2.8 displays rates of misleading evidence in sequential designs. One

can observe a rapid decline in error rates when symmetrical decision boundaries
are raised from 3 to about 10. When they are further increased, error rates im-
prove only marginally. This finding is important for balancing informativeness
and efficiency in the planning stage of an experiment with sequential designs. To
ensure informativeness of experiments, rates of misleading evidence can be con-
trolled, but this usually comes at the cost of efficiency in terms of sample size. In
sequential designs, a good balance can be found by increasing decision bound-
aries (and thereby sample sizes) until error rates change only marginally.

When comparing designs with default and informed analysis priors, the same
pattern as in the fixed-N design can be observed. While models with informed
priors yield comparatively less false negative evidence, models with default pri-
ors yield less false positive evidence. However, these differences disappear with
large decision boundaries.

2.8 A Shiny App for Bayes Factor Design Analysis

In the previous sections, we have highlighted how, in the planning stage of an
experiment, a BFDA can help balance important aspects of informativeness and
efficiency, namely the expected strength of evidence, the rates of misleading
evidence, and the (expected) sample size. Yet, conducting a BFDA may be
troublesome to some researchers because (a) it requires advanced knowledge of
programming as it is not yet an integral part of statistical software; and (b) Monte

6This property can be described by a Conditional Accuracy Function (Luce, 1986)
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Carlo simulations are computationally intensive and therefore time-consuming.
In the second part of this chapter, we therefore want to introduce a user-friendly
app which makes BFDA accessible to researchers without programming ex-
perience or access to high-performance computers. First, we provide a short
overview on the app, then we demonstrate its application in two examples by
giving step-by-step instructions on how to use the app to answer two questions
on design planning.

We used the Shiny package for R to create the BFDA app (W. Chang, Cheng,
Allaire, Xie, & McPherson, 2017). Shiny is an open source R package that pro-
vides a web framework for building dynamic web applications with an R-based
graphical user interface. The core of the app is a large database of precomputed
Monte Carlo simulation results, which allows users to conduct a BFDA quickly.
Depending on the available computer power, one simulation can easily take an
entire day, and our database solution overcomes this computational hurdle. In to-
tal, we conducted 42 different simulations spanning 21 different true effect sizes.
Our simulation code is based on the BFDA package for R (Schönbrodt & Stefan,
2018) and is available under CC-BY4.0 license on https://osf.io/3f5qd/.

The app consists of two parts, one for fixed-N designs and the other for se-
quential designs. The app allows users to conduct all analyses mentioned in the
previous sections; in addition, it provides summary plots for a preliminary anal-
ysis as well as additional figures for single-case scenarios (e.g., distribution of
Bayes factors in fixed-N design for a specific sample size). Moreover, it allows
users to download dynamic, time-stamped BFDA reports.

Users can choose effect sizes between δ = 0.2 and δ = 1.2 under the alter-
native hypothesis, symmetric decision boundaries between 3 and 30, and (for
the fixed-N design) sample sizes between 10 and 200 per group. This parameter
range is typical for the field of psychology (Fraley & Vazire, 2014; Lee & Wagen-
makers, 2013; Marszalek et al., 2011; Perugini et al., 2014). Users can also evaluate
how their experimental design behaves when the null hypothesis is true, that is,
when δ = 0. They can also choose between the two analysis priors that are used
throughout this chapter (see Figure 2.1).

The BFDA app is an interactive and open-source application. This means that
users can decide what information should be displayed and integrated in the
analysis report. The source code of the app as well as all simulated results are
openly accessible and can be downloaded from GitHub (https://github.com/
astefan1/Bayes-Factor-Design-Analysis-App) and the OSF platform (https://osf
.io/3f5qd/), respectively. This allows users who want to adapt the BFDA simu-
lation when it does not meet their needs.

In the following sections, we introduce two application examples for the
BFDA app, tackling typical questions that a researcher could have in the plan-
ning stage of an experiment.
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2.9 Two Step-by-Step Application Examples

2.9.1 Fixed-N Design: Can I Find Evidence for the Null?

One of the main advantages of the Bayesian method is that it makes it possible to
quantify evidence in favor of the null hypothesis (Altman & Bland, 1995; Dienes,
2014). Yet, finding evidence for the null hypothesis is typically more difficult
than for the alternative hypothesis (Jeffreys, 1961, p. 257). This is also illustrated
in Figure 2.3, which shows that as sample size increases, Bayes factors decrease
at a lower rate for δ = 0 than they increase when δ > 0. This implies that larger
sample sizes are needed to gain the same strength of evidence forM0 as forM1.

This leads to a potential asymmetry in evidential value of experiments: If the
sample size of an experiment is small, it may be likely to gain strong evidence
for the alternative hypothesis if M1 is true but highly unlikely to gain strong
evidence for the null hypothesis ifM0 is true. Thus, for small sample sizes the
possible informativeness of the Bayesian method is not fully exploited, because
it is only possible to distinguish between “evidence forM1” and “inconclusive
evidence”.

In this example, we use BFDA to assess whether it is possible to gain strong
evidence for the null hypothesis in a particular research design. We consider the
following scenario: A recent study on researchers’ intuition about power in psy-
chological research found that roughly 20% of researchers follow a rule-of-thumb
when designing experiments (M. Bakker et al., 2016). The authors specifically
mention the “20 subjects per condition” rule, which states that 20 observations
per cell guarantee sufficient statistical power (Simmons et al., 2011). In an inde-
pendent sample t-test this corresponds to two groups of 20 observations each.

Is a sample size of 20 observations per group sufficient to obtain strong evi-
dence for the null? We will answer this question step-by-step by using the BFDA
app (see Figure 2.9). The app can be accessed under http://shinyapps.org/apps/
BFDA/.

1. Choosing a design: As our question involves a specific sample size, we
need to choose the tab for fixed-N design.

2. Choosing the priors: In our example, we did not specify whether we want
to use default or informed analysis priors. However, it could be interesting
to compare whether the results are robust to the choice of prior, so we will
select both in this example. The selection of the design prior (expected effect
size under the alternative hypothesis, see slider on the left) is not relevant
in our example, because we are solely interested in the null hypothesis, that
is δ = 0.

3. Choosing a sample size: As defined in the question, we are interested in a
design with 20 observations per group, so the slider should be adjusted to
20.

4. Choosing a decision boundary: We will choose a boundary of 10, which
demarcates the threshold between moderate and strong evidence according
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to the classification by Lee and Wagenmakers (2013, see Table 2.1). This
choice of boundaries corresponds to an upper boundary of 10 and a lower
boundary of 1/10.

5. Select information that should be displayed: We are interested in the ex-
pected distribution of Bayes factors. Thus, we will select the options “Dis-
tribution of Bayes Factors” (yielding graphic output), “Median Bayes Fac-
tors” (as an estimate for the expected Bayes factor), and “5%, 25%, 75%, and
95% Quantiles” (to get a numeric summary of the entire distribution) The
results of the precomputed Monte Carlo simulations are displayed in the
panel on the right of Figure 2.9. On top, a table with the medians of the
Bayes factor distribution is displayed. For the informed analysis prior, the
median Bayes factor underM0 is 0.53, and for the default analysis prior it
is 0.31. The table underneath shows the 5%, 25%, 75%, and 95% quantiles
of the Bayes factor distribution. We can see that for both analysis priors, the
5% quantile equals 0.13. The figures at the bottom show that in most cases,
the evidence is inconclusive given the selected boundaries as indicated by
the large yellow areas. Bayes factors smaller than 1/10 can only be expected
in 0.6% of the cases for default priors and in 2% of the cases for informed
priors. Combining these results, one can conclude that it is highly improb-
able that a Bayesian t-test with N = 20 per group yields strong evidence for
the null hypothesis, even if the null hypothesis is true. The sample size is
too small to fully exploit the advantages of the Bayesian method and should
therefore be increased.

6. Download report: To store the results, a time-stamped report in pdf format
can be downloaded by clicking on the download button on the right top
of the page. The report contains the results as well as the selected options
for the design analysis. The report for our first application example can be
downloaded from https://osf.io/3f5qd/.

2.9.2 Sequential Design: How Large Will My Sample Be?

In sequential designs, sampling continues until a certain decision boundary is
reached. Thus, researchers cannot know the exact sample size prior to the study.
However, planning for financial and organizational resources often requires at
least a rough idea about the final sample size. In our second example we therefore
want to show how a BFDA can answer the question: “How large will my sample
be?”

We will again explain how to use the BFDA app to answer the question step-
by-step (see Figure 2.10). The app can be accessed under http://shinyapps.org/
apps/BFDA/.

1. Choosing a design: As we are interested in the expected sample size in a
sequential design, we need to choose the sequential design tab.

2. Choosing a design prior: Try to answer the question: “What effect size
would you expect if your alternative hypothesis is true?” This is the same
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Figure 2.10: Screenshot from the Bayes Factor Design Analysis (BFDA) app. Pur-
ple numbers are added to describe the procedure of answering the question:
“How large will my sample size be in a sequential design given certain decision
boundaries and true effect sizes?”

33



2. A Tutorial on BFDA Using an Informed Prior

question that you have to ask yourself if you want to construct a reason-
able informed analysis prior. So one possibility to choose the effect size
is to choose the mode of the informed analysis prior. However, it is also
possible to follow the approach of a safeguard power analysis (Perugini et
al., 2014) and choose a smaller effect size to avoid underestimating the true
sample size or to use the smallest effect size of interest. We will follow a
safeguard power approach in the example and choose an expected effect
size of δ = 0.2. Theoretically, it would also be possible to use a distribu-
tion of effect sizes as a data generating model which illustrates the uncer-
tainty about the data generating process, but this option is not included in
our app since it would necessitate the storage of additional precomputed
Monte Carlo simulations which would dramatically slow down the app.
The simulation code is, however, easy to adjust (see example on the OSF
platform: https://osf.io/3f5qd/). Thus, if users like to conduct these new
simulations, they can make use of our open source code.

In the next two steps we are going to customize the summary plot on the top
of the app. The summary plot shows the expected (median) sample sizes
per group for different symmetric decision boundaries given the selected
effect size. Analyzing the summary plot at first can help balance evidence
strength and sample size in the choice of decision boundaries.

3. Choosing an analysis prior: The summary plot allows us to check easily
how much the sample size estimates depend on the choice of the prior dis-
tribution. We therefore choose both the default and the informed prior dis-
tribution on effect size.

4. Selecting additional information on the dispersion of the sample size distri-
bution: Especially for researchers with scarce resources, it may be useful to
obtain boxplot-like information on upper (and lower) bounds of the distri-
bution. The BFDA app includes the option to display the quartiles and the
5% and 90% quantile of the distribution. However, the question we want to
answer refers mainly to the expected sample size, so we do not tick these
options.

5. The summary plot shows a steep increase in expected sample sizes when
decision boundaries increase. Moreover, it reveals a considerable sensitiv-
ity of the method for the choice of the analysis prior, namely considerable
smaller sample sizes for informed than for default priors. For the following
analyses, we will choose a relatively small symmetric decision boundary
of 6, classified as “moderate evidence” by Lee and Wagenmakers (2013),
assuming that it represents a reasonable starting point for a good trade-off
between efficiency and informativeness. In practice, this trade-off is depen-
dent on the available resources, on the stage of the research process, and on
the desired strength of evidence.

6. Choosing an analysis prior: As before, we will choose both the default and
the informed prior distribution to be able to compare the results.
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7. Select information that should be displayed: We select both numeric (medi-
ans, 5%, 25%, 75%, and 95% quantiles) and graphic representations (violin
plots) of the distribution of sample sizes from the list. We could have cho-
sen more options, but these suffice to demonstrate the case.

The results of the Monte Carlo simulations are displayed on the right of Fig-
ure 2.10. First, statistics of the distribution of sample sizes are displayed for
M0 andM1. We can see that the expected sample sizes are a little smaller
when the null hypothesis is correct than when the alternative hypothesis is
correct. Moreover, as in the summary plot, we can see that under the alter-
native hypothesis, the expected sample size is smaller when the informed
analysis prior is used. Remember, however, that these gains in efficiency
come at the cost of higher type I error rates. Under the null hypothesis, the
choice of the analysis prior has little effect on the expected sample sizes. For
default priors, we can see from the quartiles tables that the 80% quantile of
the sample size distribution underM1 is 235 per group. For informed pri-
ors it is 130. If planning for resources requires a definite maximum sample
size (e.g., in grant applications), these are good estimates that can be used
for these purposes. Due to the skewness of the distribution, our original
question on the expected sample size can be answered best with the medi-
ans: For default prior distributions, the expected sample size is 56 obser-
vations per group, for informed prior distributions 76 observations (ifM1

is true). The figure at the bottom of the page gives a visual representation
of the distribution of sample sizes. It combines traditional violin plots with
boxplots and a jitter representation of the raw data. Note that due to the
extreme skewness of the distribution the y-axis is log-scaled for enhanced
readability.

8. Download report: As in the fixed-N design, it is also possible to down-
load a time-stamped dynamic report of the results. This can be achieved by
clicking on the download button on the left sidebar panel. The report for
the analyses of our second application example can be downloaded from
https://osf.io/3f5qd/.

2.10 Conclusion

In this chapter, we demonstrated the effects of the choice of priors on the results
of a Bayes Factor Design Analysis (BFDA) and introduced a Shiny app which
facilitates conducting a BFDA for the practical user. We provided a detailed,
tutorial-style overview on the principles of BFDA and on the questions that can
be answered through a BFDA and illustrated how these questions can be an-
swered using the BFDA app.

When comparing informativeness and efficiency of designs with different
analysis priors, it is clear that for most effect sizes within the typical range of
psychology, fewer participants are required in the informed-prior design. This
becomes especially clear in sequential designs where frequently fewer than half
as many participants are required in informed-prior designs than in default-
prior designs. Additionally, informed-prior designs also yield higher expected
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Bayes factors in a fixed-N design. This indicates that informed-prior designs are
more efficient in terms of sample size and more informative in terms of expected
strength of evidence than default-prior designs. However, informed-prior de-
signs with a highest density region at small effect sizes also coincide with higher
false-positive error rates compared to default-prior designs. This has to be taken
into consideration when judging the informativeness of these designs.

Although comparing designs with default and informed prior distributions is
sensible on a conceptual level, because it yields information on how “objective”
and “subjective” designs behave in general, it is not possible to infer recommen-
dations for or against specific prior distributions. In our opinion, the prior dis-
tributions should represent intuitions about effect sizes under the investigated
hypotheses in a specific case, and not be chosen merely because of their expected
effects in a design analysis. What we can infer from our results is that it pays
to include available information in the prior distribution, because this enhances
informativeness. However, if the true effect size differs greatly from the location
of an informed prior distribution, the relative benefit of informed priors becomes
negligible or can even turn into a disadvantage. It may therefore be prudent to
plan such that the results will likely be compelling regardless of the prior distri-
bution that is used.

In the chapter and the accompanying app, we demonstrate the effects of the
choice of analysis priors using only two prior distributions as an example. How-
ever, these results can be generalized to other default and informed analysis pri-
ors. The more the alternative hypothesis differs from the null hypothesis, the
easier will it generally be to gain evidence for one or the other. This means that
analysis priors which incorporate more information will generally have an effi-
ciency advantage over relatively vague analysis priors. The specific BFDA results
for other priors than the ones used in this chapter can be obtained by adjust-
ing the parameters of the analysis prior in the code of the simulation procedure
which we provide online together with this chapter on https://osf.io/3f5qd/ or
with the BFDA R package starting from version 0.4.0 (Schönbrodt & Stefan, 2018).

Although BFDA is only applied to t-tests in this chapter, the procedure of
BFDA can also be generalized to other hypothesis tests. For example, similar
analyses may be developed for ANOVAs (for an application, see Field et al., 2020)
or for the comparison of two proportions as is popular in medicine. The main
challenge here is to develop suitable data generating processes for the simulation
algorithm which can be used as a design prior in the BFDA.

The BFDA approach we present in this chapter shares many similarities with
the generalized Bayesian Power Analysis approach presented by Kruschke (2013)
and Kruschke (2018) who also present a simulation-based method for design ana-
lyses in a Bayesian context. However, these authors focus on parameter estima-
tion. Thus, instead of focusing on the Bayes factor as a measure of evidence
strength, their analysis results are centered around indicators of the posterior
distribution. They also propose a different standard for the definition of design
priors. Specifically, they do not support the idea of a smallest effect size as a
basis for the definition of design priors and use only distributed design priors.
Most importantly, the current approach presented in this chapter extends previ-
ous expositions of generalized Bayesian Power Analysis to sequential Bayesian
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designs.
The process of BFDA presented in this chapter follows exactly the plan out-

lined by Schönbrodt and Wagenmakers (2018). By providing a method to plan
for efficiency and informativeness in sequential designs, their approach allows
for increased flexibility in research designs compared to designs based on fre-
quentist power analyses. From a Bayesian perspective, research designs could,
however, be even more flexible. Theoretically, it would be possible to ask at any
point in the sampling procedure: Is the expected gain in evidence worth the ef-
fort of collecting the next datum? However, this approach requires knowledge
about the expected change in Bayes factors given the collected data, about the so-
cial and financial costs of data collection, and about the utility of changes in the
Bayes factor. Determining these parameters is difficult at the moment and awaits
future research.

In sum, the BFDA is a powerful tool that researchers can use to balance ef-
ficiency and informativeness in the planning stage of their experiments. Our
interactive Shiny app supports this endeavor by making computationally inten-
sive Monte Carlo simulations redundant for one class of standard designs and
by providing a graphical user interface, so that no programming experience is
required to conduct the analyses. Although it currently covers only the indepen-
dent sample t-test and only two prior distributions, the app can be extended to
other designs, as both simulation results and source code of the app are openly
accessible. To conclude, we hope to have provided an accessible introduction to
BFDA and have encouraged more researchers to adopt BFDA as an additional
tool for planning informative experiments.

37





3

Bayesian Power Equivalence in
Latent Growth Curve Models

Abstract

Longitudinal studies are the gold standard for research on time-
dependent phenomena in the social sciences. However, they often entail
high costs due to multiple measurement occasions and a long overall study
duration. It is therefore useful to optimize these design factors while main-
taining a high informativeness of the design. Von Oertzen and Brandmaier
(2013) applied power equivalence to show that Latent Growth Curve Mod-
els (LGCMs) with different design factors can have the same power for
likelihood-ratio tests on the latent structure. In this chapter, we show that the
notion of power equivalence can be extended to Bayesian hypothesis tests of
the latent structure constants. Specifically, we show that the results of a Bayes
Factor Design Analysis (BFDA; Schönbrodt & Wagenmakers, 2018) of two
power equivalent LGCMs are equivalent. This will be useful for researchers
who aim to plan for compelling evidence instead of frequentist power and
provides a contribution towards more efficient procedures for BFDA.

This chapter is published as Stefan, A. M., & von Oertzen, T. (2020). Bayesian power equivalence
in latent growth curve models. British Journal of Mathematical and Statistical Psychology, 73(S1), 180-193.
https://doi.org/10.1111/bmsp.12193 Also available as PsyArXiv preprint: https://psyarxiv.com/
xnwyf/
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3. Bayesian Power Equivalence in Latent Growth Curve Models

3.1 Introduction

Researchers design experiments to gain knowledge of the world. In a world of
limited resources, it is ethical to conduct these experiments efficiently (Halpern,
Karlawish, & Berlin, 2002). Hunter and Hoff (1967) define research efficiency as
“the amount of useful information obtained per unit cost”. Often, longitudinal
studies entail especially high costs. These accrue either due to a long overall
study duration, for example when a treatment has to be administered over a long
period of time, or due to a large number of measurement occasions, for example
when non-reusable testing material is spent at each testing event. It is therefore
especially important to plan longitudinal studies carefully so that an optimal bal-
ance between study costs and the expected gain in information can be achieved
(Brandmaier, von Oertzen, Ghisletta, Hertzog, & Lindenberger, 2015).

Longitudinal designs can be statistically evaluated with a sub-group of struc-
tural equation models (SEMs; for an overview see e.g. Baltes, Reese, & Nessel-
roade, 1988) called Latent Growth Curve Models (LGCMs; see e.g. T. E. Duncan
& Duncan, 2009). In a simple LGCM, the values of a variable across several mea-
surement occasions (xi) are modeled as a combination of a latent intercept (I)
and a latent slope (S). The intercept has a constant influence on the measurement
occasions, while the slope adds time-dependent linear changes (see Figure 3.1).
To add nonlinear changes, a quadratic or higher-order term can be introduced
(T. E. Duncan & Duncan, 2009). For example, Lindenberger and Ghisletta (2009)
investigated cognitive and sensory decline in elderly participants with an LGCM.
In this context, the intercept parameter captured the participants’ initial abilities
and the slope parameter captured the extent of the linear time-dependent decline.

Figure 3.1: Schematic representation of a Latent Growth Curve Model (LGCM).
More measurement occasions can be added as depicted for xt. Latent variables
represent the intercept (I) with variance σ2

i and slope (S) with variance σ2
s .
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An advantage of LGCMs is that they allow the direct estimation of between-
subjects variability in the latent intercept and slope, described as the variance of
the intercept (σ2

I ) and the variance of the slope (σ2
S) in the model. These random

effects represent the individual differences in initial performance and change, re-
spectively (Rogosa & Willett, 1985). In an LGCM where the intercept reflects the
initial status of the observed variable, the intercept-slope covariance (σIS) reflects
the extent to which individual differences in the initial status correlate with sub-
sequent change (Rovine & Molenaar, 1999). Thus, in the example used earlier
(Lindenberger & Ghisletta, 2009), the variance of the intercept can be interpreted
as the variability of cognitive and sensory abilities of participants at the begin-
ning of the study. The variance of the slope corresponds to differences in the
steepness of the cognitive decline between participants. A positive covariance
between intercept and slope in the example would show that participants with
higher initial abilities suffer from a more rapid decline.

In a frequentist setting, an important aspect of the quality of a design is its sta-
tistical power, which is defined as the long-term probability of correctly rejecting
the null hypothesis under a given population effect size that differs from zero.
The statistical power of a design depends on the size of the effect in the popula-
tion, on the significance level α of the hypothesis test, on the sample size N, and
on the measurement design (Brandmaier, von Oertzen, Ghisletta, Lindenberger,
& Hertzog, 2018; Cohen, 1992). For most traditional hypothesis tests, such as a z-
test or a t-test, it is possible to calculate the statistical power analytically (Murphy,
Myors, & Wolach, 2014). However, for most SEMs there is no analytical solution
available, so the statistical power of a model has to be estimated via numerical
approximations (e.g., Saris & Satorra, 1993) or through simulations (e.g., Hertzog,
von Oertzen, Ghisletta, & Lindenberger, 2008; Muthén & Muthén, 2002).

Von Oertzen (2010) introduced the concept of power equivalence, which de-
scribes that two designs have the same statistical power to detect a true effect.
Power equivalence can be used to find research designs that are most resource
efficient among designs with the same power. For example, von Oertzen and
Brandmaier (2013) illustrated how power equivalence facilitates finding a cost-
optimal solution among multiple longitudinal designs. In longitudinal designs,
power equivalence can be established by balancing the overall duration of the
study and the number of measurement occasions. To keep the power constant,
more measurement occasions are required if the overall study duration is short-
ened. By comparing multiple power-equivalent longitudinal designs based on
data and cost estimates from the Berlin Aging Study (BASE; Ghisletta, McAr-
dle, & Lindenberger, 2006), von Oertzen and Brandmaier (2013) showed that the
overall study costs could be reduced by 16% compared to the original design
while keeping the statistical power with respect to the variance of slopes con-
stant. Thus, power equivalence can facilitate the planning of future studies in
two ways: First, instead of conducting multiple potentially resource-intensive
power analyses for different designs, a power analysis has to be computed only
once for a theoretically infinite number of power-equivalent designs. Second,
knowing that certain designs do not differ in an important aspect of design qual-
ity, researchers can focus on minimizing the costs (Hunter & Hoff, 1967).

Conceptually, power equivalence as applied in von Oertzen and Brandmaier
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Figure 3.2: Measurement occasions of three power equivalent models measuring
a linear trend. The power equivalent models were computed for σ2

i = 2, σ2
e = 1,

and three, five, and seven measurement occasions. All designs assume a first
measurement occasion at time t = 0.

(2013) can be described by the following procedure. Any LGCM can be reduced
to a power equivalent model with a minimum number of observed parameters,
from which further power equivalent models can be derived. These power equiv-
alent models balance different design parameters, for example the number of
measurement occasions (j = 1, ..., k) and the time distance between measurement
occasions, modeled in the path parameters θS→xj , so that the power to detect an
effect (e.g., σS > 0) is equivalent1. This is reflected in the effective error variance
σ2

eff which is shared by all power-equivalent models. Figure 3.2 schematically
depicts this trade-off: A linear trend is measured with three power equivalent
designs which differ in their number of measurement occasions and their overall
study duration.

In recent years, the replicability crisis (Pashler & Wagenmakers, 2012) as well
as continuing criticism regarding the frequentist hypothesis testing framework
(e.g., Edwards, Lindman, & Savage, 1963; Wagenmakers, 2007) have led to a
growing interest in Bayesian methods for statistical inference.2 The single most
important quantity in Bayesian hypothesis testing is the Bayes factor (Kass &
Raftery, 1995). Mathematically, the Bayes factor (BF10) is defined as the ratio
of the marginal likelihood of the data under the alternative model, p(D | M1),
and the marginal likelihood of the data under the null model, p(D | M0). It
provides a continuous quantification of the evidence in favor of one statistical
model compared to another statistical model.

1Note that although j in theory can go down to the number of latent variables involved in the
test, in practical cases j needs to be at least equal to the number of latent variables (e.g., two for a
linear LGCM, or three for a quadratic LGCM) to estimate all distribution parameters of the latent
variables.

2An easily accessible introduction to Bayesian inference can be found in Etz & Vanderkerckhove
(2018).
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Since most researchers aim to collect compelling evidence in a study, both
very large or very small Bayes factors can be regarded as a desirable outcome of
a study. For example, a Bayes factor of BF10 = 10 indicates a tenfold increase in
prior odds to posterior odds in favor of the alternative hypothesis after having
observed the data, while a Bayes factor of BF10 = 1/10 indicates a tenfold increase
in prior odds in favor of the null hypothesis. How large the Bayes factors get that
an experiment yields, depends on the tested models (described by likelihoods
and prior distributions), on the population effect size, on the amount of collected
data, that is, the number of observations in the sample, and on the measurement
design (Stefan, Gronau, Schönbrodt, & Wagenmakers, 2019). Assuming that the
models are determined by the research question, only the sample size and mea-
surement design can be directly influenced by the researcher. This shows that
researchers who use Bayesian statistics to evaluate their data are also in the need
to balance the costs and the information gain of their designs - in other words
that design planning is an important topic from a Bayesian viewpoint, too.

How can researchers find an adequate sample size or measurement design so
that their study likely yields compelling evidence, but is also designed economi-
cally? Schönbrodt and Wagenmakers (2018) proposed a framework called “Bayes
Factor Design Analysis” (BFDA) that enables researchers to find the expected
Bayes factors of their design. Their approach is based on Monte Carlo simula-
tions where data are repeatedly simulated under a population model (“design
prior”) and a Bayesian hypothesis test is conducted for each of these samples.
BFDA is applicable to both sequential Bayesian designs, where the sample size
is gradually increased until a prespecified Bayes factor is reached, and fixed-N
designs, where the sample size is specified prior to data collection. For the latter
more traditional sampling procedure, a BFDA results in a distribution of Bayes
factors that enables researchers to assess the informativeness of their planned de-
sign.

In this chapter, we show that the notion of power equivalence can be extended
to Bayesian hypothesis tests. Specifically, we show that the results of a BFDA for
a fixed-N design (Schönbrodt & Wagenmakers, 2018) of two power equivalent
models as defined by von Oertzen (2010) are equivalent. Our findings are not
only relevant on a conceptual level as they instantiate a bridge between frequen-
tist and Bayesian methods. They also provide Bayesians with a possibility of
design justification in longitudinal settings and help to save resources in design
planning because computationally expensive BFDAs need to be conducted only
once for power equivalent designs.

The chapter is structured as follows: First, we will formally prove the equiv-
alence of BFDA results for power equivalent models. In a second step, we will
substantiate our proof with a simulation for power equivalent LGCMs. Then, we
will provide an application example that illustrates how Bayesian power equiv-
alence can facilitate design planning. We will discuss the implications and limi-
tations of our findings at the end of this chapter.
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Figure 3.3: Power equivalent reduction of an LGCM. Panel A shows an LGCM
with three measurement occasions which can be reduced to the minimal power
equivalent model displayed in panel B.

3.2 Formal Proof of BFDA Equivalence for Power Equivalent Models

In this section, we show formally that two power equivalent models with the
same parameter set θ will also produce the same distribution of the Bayes Factor
when comparing two hypotheses about θ under data generated by a population
model. We assume that the hypotheses are represented through prior distribu-
tions π1 and π2 on the parameter of interest, θ. As usual one or both can be point
priors, i.e., degenerated prior distributions with the mass fixed at any specific
point.

Power equivalence on multivariate normal models, as defined in von Oertzen
(2010), can be expressed as a combination of two basic power equivalent opera-
tions. The first one is a linear transformation of the observed variables, the sec-
ond an omission of observed variables with a probability distribution which is
constant with respect to θ, and which are independent of other variables. For
example, in an LGCM, the linear transformation transforms the measurement
model into a minimal model with one observed variable that is dependent on the
latent slope and a number of variables that are independent of the latent slope
(and hence of the slope variance parameter). An example for a power equivalent
transformation of an LGCM can be seen in Figure 3.3. The mathematical details
of the calculation can be found in the Appendix of this chapter.

Let (S,m) be the estimated covariance matrix and mean of a sample and (Σ, µ)
of a model. In the following, we will write LΣ,µ(S,m) for the minus two log
likelihood, i.e.,
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LΣ,µ(S,m) = −2 logL(S,m | Σ, µ). (3.1)

We start by showing two simple lemmata.

Lemma 1. For any multivariate normal model with covariance matrix Σ and mean µ, an
orthogonal transformation Q on the model space does not change the likelihood function.

Proof. The minus two log likelihood of a multivariate normal with parameter µ
and Σ and a dataset with mean m and covariance matrix S per participant is

LΣ,µ(S,m) = c+ ln(|Σ|) + Tr(Σ−1S) + (m− µ)TΣ−1(m− µ). (3.2)

Transforming all four distribution parameters with Q results in

LQΣQT ,Qµ(QSQT , Qm) = c+ ln(|QΣQT |) + Tr(QΣ−1QTQSQT )

+ (m− µ)TQTQΣ−1QTQ(m− µ)

= c+ ln(|QΣQT |) + Tr(QΣ−1SQT )

+ (m− µ)TΣ−1(m− µ), (3.3)

where the determinant and the trace do not change by an orthogonal transforma-
tion, therefore,

−2 logL(QSQT , Qm | QΣQT , Qµ) = c+ ln(|Σ|) + Tr(Σ−1S)

+ (m− µ)TΣ−1(m− µ)

= LΣ,µ(S,m). (3.4)

Lemma 2. For any multivariate normal model with covariance matrix Σ and mean µ,
omitting observed variables which have distributions that are constant with respect to
some parameter set θ and are independent of all other parameters does not change the
likelihood ratio of any two parameter values θ1 and θ2.

Proof. For simplicity of notation, we prove that the difference of the minus two
log likelihoods is constant.

Let Σ =

(
Σ1(θ) 0

0 Σ2

)
be the separation of Σ and µ =

(
µ1(θ)
µ2

)
be the sep-

aration of µ into a first part that depends on θ and a second, independent part
that does not. We separate the data distribution accordingly. Note that the co-
variances between the two blocks in the data distribution are not relevant for the
likelihood, i.e., we can write
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LΣ(θ),µ(θ)(S,m) = c+ ln(Σ1(θ)|) + Tr(Σ1(θ)−1S1)

+ (m1 − µ1(θ))TΣ1(θ)−1(m1 − µ1(θ))

+ ln(|Σ2|) + Tr(Σ−1
2 S2) + (m2 − µ2)TΣ−1

2 (m2 − µ2) (3.5)

When taking the difference of the minus two log likelihoods for θ1 and θ2, the
second part of the equation and c cancels, so that the difference solves to

LΣ(θ1),µ(θ1)(S,m)− LΣ(θ2),µ(θ2)(S,m)

= ln(|Σ1(θ1)|) + Tr(Σ1(θ1)−1S1)

+ (m1 − µ1(θ1))TΣ1(θ1)−1(m1 − µ1(θ1))

− ln(|Σ1(θ2)|)− Tr(Σ1(θ2)−1S1)

− (m1 − µ1(θ2))TΣ1(θ2)−1(m1 − µ1(θ2))

= LΣ1(θ1),µ1(θ1)(S1,m1)− LΣ1(θ2),µ1(θ2)(S1,m1)

(3.6)

We conclude that the likelihood ratio remains constant under both base power
equivalent operations, and hence under all combinations of those. Since the
Bayes factor is the ratio of two prior-weighted likelihoods, we conclude further
that the Bayes factor is unaltered by power equivalent transformations for any
data set (S,m) and parameter sets θ1 and θ2. Thus, in particular, the distribution
of the Bayes factor is identical for any priors π1 and π2 and any data distribution:

Corollary 3. If (ΣA(θ), µA(θ)) and (ΣB(θ), µB(θ)) are two power equivalent multi-
variate normal models A and B, then under any distribution for data sets (S,m) and
prior distributions π1 and π2 to be compared, the corresponding distribution of the Bayes
factor is identical for both models.

Proof. For simplicity, we omit the explicit separation of S and m in S1 and S2 and
m1 and m2, respectively, because the irrelevant parts are ignored by the likeli-
hood function (see proof of Lemma 2). For any specific outcome (S,m) of the ran-
dom variable representing the data, let (S∗,m∗) be the power equivalent trans-
formation of the data as explained at the beginning of this Section. The Bayes
factor for the first model is given by

BFA12(S,m) =

∫
θ1
L(S,m | ΣA(θ1), µA(θ1))π1(θ1)dθ1∫

θ2
L(S,m | ΣA(θ2), µA(θ2))π2(θ2)dθ2

(3.7)

which can be rewritten as

BFA12(S,m) =

∫
θ1

L(S,m | ΣA(θ1), µA(θ1))π1(θ1)∫
θ2
L(S,m | ΣA(θ2), µA(θ2))π2(θ2)dθ2

dθ1
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=

∫
θ1

1∫
θ2

L(S,m|ΣA(θ2),µA(θ2))π2(θ2)
L(S,m|ΣA(θ1),µA(θ1))π1(θ1) dθ2

dθ1

=

∫
θ1

1∫
θ2

L(S∗,m∗|ΣB(θ2),µB(θ2))π2(θ2)
L(S∗,m∗|ΣB(θ1),µB(θ1))π1(θ1) dθ2

dθ1

=

∫
θ1
L(S∗,m∗ | ΣB(θ1), µB(θ1))π1(θ1)dθ1∫

θ2
L(S∗,m∗ | ΣB(θ2), µB(θ2))π2(θ2)dθ2

= BFB12
(S∗,m∗) (3.8)

Since the Bayes factor is identical for both models for any specific outcome of the
data, its distribution under any random distribution of (S,m) is identical for both
power equivalent models.

3.3 Simulation Study

We performed a simulation study to illustrate the equivalence of Bayes factor
distributions for power equivalent LGCMs. As in von Oertzen and Brandmaier
(2013), we concentrated on a single parameter of interest: σ2

S , the interindividual
variance in the latent slope parameter. The focal Bayesian hypothesis test there-
fore compared the two models M0 : σ2

S = 0 and M1 : σ2
S ∼ π1 where π1 is a

prior distribution that allows the parameter σ2
S to vary. We operationalized this

prior distribution as a gamma distribution with a shape parameter of k = 1 and
a rate parameter of β = 0.5. This prior places most weight on parameter val-
ues between 0 and 6 and can be considered as an example for an informed prior
for typical effect sizes in psychology (see e.g., S. C. Duncan, Duncan, & Strycker,
2006; Iddekinge et al., 2009; von Oertzen & Brandmaier, 2013). In this special case,
all parameters of the model apart from σ2

S are considered to be known and fixed.
Thus, the Bayes factor can be calculated through a simple integration procedure.

For our simulation study, we conducted a total of 36 BFDAs, where each
BFDA result is based on 1000 Bayes factors. All BFDAs were performed using
the following Monte Carlo simulation algorithm: (1) Find three power equiva-
lent models with the given parameters for σ2

E and σ2
I ; (2) simulate 1000 datasets

for each of the models given a certain population parameter (design prior) for σ2
S ;

(3) compute the Bayes factor for each of the datasets.
We compare the results of a fixed-N BFDA for 3 power equivalent LGCMs un-

der 12 different population models (design priors). The three power equivalent
models have 7, 5, and 3 equally distanced measurement occasions, respectively,
and were computed using the equations provided in von Oertzen and Brand-
maier (2013, see Appendix). In the simulations, we varied the variance of the in-
tercept σ2

I , the residual variance σ2
E , and the true variance of the slope (σ2

S | H1).
All BFDAs were conducted for a sample size of N = 300.

Figure 3.4 shows the distributions of log Bayes factors for the three power
equivalent models under all simulated conditions. Overall, the distributions are
nearly identical for the power equivalent models which illustrates the formal
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3. Bayesian Power Equivalence in Latent Growth Curve Models

proof of BFDA equivalence conducted in the previous section of this chapter.
Generally, the Bayes factors are very large, which happens due to the relatively
large dataset and the assumption that several important parameter values of the
model are already known. There are small differences in the Bayes factor dis-
tributions that can be explained through the random variation in the simulation
process.

The simulation code as well as the simulation results are openly accessible on
https://osf.io/hkt4p/.

3.4 Application Example: Effects of a Mindfulness Training

In this section, an applied example is discussed that illustrates how the notion
of power equivalence can be used to facilitate a-priori design analyses for lon-
gitudinal studies. We will build on a study by Kiken, Garland, Bluth, Palsson,
and Gaylord (2015) who investigated the psychological effects of a mindfulness
training. Mindfulness is a cognitive state of nonjudgmental awareness in which
an individual pays attention to the thoughts, emotions, and sensations of the
moment. Kiken et al. (2015) measured state mindfulness with the Toronto Mind-
fulness Scale (Lau et al., 2006) at seven equally distanced measurement occasions
during an ongoing mindfulness training that was directed at increasing the par-
ticipants’ general level of mindfulness. Using an LGCM, they concluded that
while the training led on average to an increase in mindfulness, there were no-
ticeable differences between individuals regarding the amount of change, i.e.,
there was considerable variability in the slope of state mindfulness.

In this example application, we assume that researchers developed a new
training method that is supposed to be equally effective for all participants. As
the researchers would like to quantify evidence in favor of the null hypothesis
(σ2
S = 0), they decide to use Bayesian hypothesis testing (Wagenmakers et al.,

2018). When planning the study, they have two goals: Making sure that their
envisioned sample size is large enough to obtain strong evidence in favor of the
null hypothesis (BF01 ≥ 10) if the null hypothesis is true and minimizing the
overall study costs. For this example, we roughly estimate that the costs for each
measurement occasion are $10 per participant (e.g., for participant compensation
or data entry), and that the running costs are $500 per week (e.g., for renting lab
space, employing assistants to run the study). We further assume that the envi-
sioned sample size of the researchers is N = 50. Thus, when planning the study,
two design questions come up: (1) Is a sample size of N = 50 enough to achieve
strong evidence in favor of the null hypothesis when the null hypothesis is true,
and (2) which of the power equivalent designs is most cost-efficient?

First, the researchers can now conduct a BFDA based on the design and results
of the original study, that is seven equally distanced measurement occasions, a
variance of intercepts of σ2

I = 43.6, and an error variance of σ2
E = 21.45. The re-

sults for a sample size ofN = 50 show that the Bayes factor (BF10) will be smaller
than 0.1 in 99.8% of the cases, that is, there is a high chance to obtain strong evi-
dence in favor of the null hypothesis if the null hypothesis is true (see Figure 3.5).
Being convinced by the high degree of informativeness, the researchers can now
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3. Bayesian Power Equivalence in Latent Growth Curve Models

Table 3.1 Power-equivalent models for testing the variance of slopes in a
mindfulness training based on results of Kiken et al. (2015).

Waves Assessment time Wave costs Running costs Total costs
3 7.28 1500 3642 5142
7 6.00 3500 3000 6500

10 3.55 5000 1773 6773

−20 −15 −10 −5 0
log BF10

Evidence for H0 Inconclusive evidence

Figure 3.5: Bayes factor distribution resulting from a BFDA based on the results
of Kiken et al. (2015) for a design with a fixed sample size of N = 50 and a true
population effect size of σ2

S = 0.

proceed to find the most cost-efficient design with the same power. Using power
equivalence, the researchers can come up with several power-equivalent mea-
surement designs. Table 3.1 shows three power-equivalent designs with 3, 7, and
10 measurement occasions, respectively (see the Appendix for details about the
computation). All these designs share the same Bayes factor distribution based
on the BFDA of the original design. However, they differ in their respective costs.
As we can see from the total costs in Table 3.1, the measurement design with three
measurement occasions is the most cost-efficient. Prolonging the overall study
duration by 1.2 weeks, but reducing the number of measurement occasions to
three can therefore lead to a cost reduction of roughly 20%. There is no need
to recalculate the BFDA because the researchers already know that all power-
equivalent designs are equally informative.
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3.5 Discussion

Reducing study costs while keeping the results informative is an important prac-
tical objective of experimental design (Hunter & Hoff, 1967). In longitudinal stud-
ies, a cost reduction can often be achieved by finding a trade-off between the total
duration of the study and the number of measurement occasions. In a frequentist
setting, researchers can optimize this trade-off while keeping the design infor-
mative by comparing several power equivalent models (von Oertzen, 2010; von
Oertzen & Brandmaier, 2013). While these models all have the same statistical
power (Cohen, 1992), they exhibit different combinations of overall study length
and number of measurement occasions. In this chapter, we showed that the no-
tion of power equivalence can be transferred to a Bayesian hypothesis testing
framework. Specifically, we could show that power equivalence models yield
the same Bayes factor distributions in a Bayes Factor Design Analysis (BFDA;
Schönbrodt & Wagenmakers, 2018). Therefore, power equivalent designs are
equally informative both from a frequentist and Bayesian viewpoint. This shows
that power equivalent models can also be used in Bayesian design planning to
negotiate trade-offs between costs and informativeness in longitudinal studies.

Our findings can be interpreted as an extension of both power equivalence
(von Oertzen, 2010; von Oertzen & Brandmaier, 2013) and BFDA (Schönbrodt &
Wagenmakers, 2018). From the perspective of power equivalence, we provide a
straightforward generalization of the approach and show that it can also be used
in the Bayesian process design planning. This highlights the relevance of the
approach and raises the question whether further generalizations are possible.
For example, the general notion of power equivalence could be generalized to
statistical models other than Latent Growth Curve Models (LGCMs). Our results
show that this would be a relevant contribution to design planning methods both
from a frequentist and a Bayesian viewpoint. From the perspective of BFDA, our
findings provide a first step towards a simplification of the procedure. Since the
approach is based on Monte Carlo simulations, conducting a BFDA can be com-
putationally expensive. Finding models that yield the same BFDA results can
substantially facilitate the process of Bayesian design planning because a BFDA
needs to be conducted only once for all of these power equivalent models. Our
results show that finding such power equivalent models is possible. Future re-
search could be directed at finding more conditions for equality of BFDA results
and to extend our results to sequential Bayesian designs.

By making power equivalence available to a new statistical domain, our study
increases its practical applicability to the planning of experimental designs. Ad-
ditionally, we make it easy for researchers to optimize their study designs based
on power equivalence and BFDA by providing the code for all analyses con-
ducted in this chapter in an online appendix. By using well-documented func-
tions, we hope to encourage researchers to reuse our code and adapt it to their
own practical applications. However, currently, the practical applicability of
power equivalence in experimental design is still restricted by two important
limitations. Firstly, the mathematical derivation for power equivalence requires
that parameters which are not part of the hypothesis (in our example the vari-
ance of the intercept σ2

I and the error variance σ2
E) are fixed. In practice, this is
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3. Bayesian Power Equivalence in Latent Growth Curve Models

a strong assumption. However, if these parameters are not known, they (or the
effective error σ2

eff) can be estimated prior to the computation of power equiva-
lence. A second limitation is that currently power equivalence requires a fixed
structure matrix (von Oertzen, 2010), so it is only directly applicable to models
like LGCMs, Change Score Models, Dual Change Score Models, Latent Differ-
ential Models, and basic models (e.g., ANOVAs). Nevertheless, these describe a
considerable part of SEMs used today.

From a broader perspective, our findings illustrate that despite of method-
ological differences and occasional heated debates between frequentist and
Bayesian methods and their respective proponents (see e.g., Wagenmakers, Lee,
Lodewyckx, & Iverson, 2008), often relevant insights can be gained from describ-
ing the world from both perspectives. We hope that by showing how the notion
of power equivalence and the BFDA method can be combined, we will have
made a contribution towards an increased feasibility of Bayesian experimental
planning. Eventually, we hope that the existence of straightforward methods for
design planning can encourage more researchers to plan their study designs for
efficiency and informativeness.
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3.A Computation of Power Equivalent Models

Equations for the computation of power equivalent LGCMs following von
Oertzen and Brandmaier (2013). For any original model with measurement oc-
casions at told, we can construct a power equivalent model with ñ measurement
occasions at tnew. The residual variance σ2

E and the intercept variance σ2
I are

considered to be known and fixed and do not differ between models.

tnew = λ · t̃, (3.9)

where

λ =

√
σ2
E

σ2
eff
·

σ2
I ñ+ σ2

E

(σ2
I ñ+ σ2

E)
∑ñ
j=1 t̃

2
j − σ2

I (
∑ñ
j=1 t̃j)

2
(3.10)

t̃j = (j − 1) · max(told)

ñ− 1
(3.11)

σ2
eff =

σ2
E(σ2

I ñ+ σ2
E)

(σ2
I ñ+ σ2

E)
∑ñ
j=1(λt̃j)2 − σ2

I (
∑ñ
j=1 t̃j)

2
(3.12)

In our simulations, we used power equivalent models with 7, 5, and 3 mea-
surement occasions. The power equivalent models with 5 and 3 measurement
occasions were derived from the model with 7 measurement occasions at t =
0, 1, ..., 6.

In our application example, we used a design with 7 measurement occasions
at t = 0, 1, ..., 6 as a starting point and derived power equivalent models with 3
and 10 measurement occasions from this model using the equations above. The
variance of the intercept σ2

I and the error variance σ2
E were derived from Kiken

et al. (2015) and were set to σ2
I = 43.6 and σ2

E = 21.45.
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4

Efficiency in Sequential Testing: Comparing
the Sequential Probability Ratio Test and the

Sequential Bayes Factor Test

Abstract

In a sequential hypothesis test, the analyst checks at multiple steps dur-
ing data collection whether sufficient evidence has accrued to make a deci-
sion about the tested hypotheses. As soon as sufficient information has been
obtained, data collection is terminated. Here, we compare two sequential hy-
pothesis testing procedures that have recently been proposed for use in psy-
chological research: the Sequential Probability Ratio Test (SPRT; Schnuerch
& Erdfelder, 2020) and the Sequential Bayes Factor Test (SBFT; Schönbrodt
et al., 2017). We show that although the two methods have different philo-
sophical roots, they share many similarities and can even be mathematically
regarded as two instances of an overarching hypothesis testing framework.
We demonstrate that the two methods use the same mechanisms for evidence
monitoring and error control, and that differences in efficiency between the
methods depend on the exact specification of the statistical models involved,
as well as on the population truth. Our simulations indicate that when de-
ciding on a sequential design within a unified sequential testing framework,
researchers need to balance the needs of test efficiency, robustness against
model misspecification, and appropriate uncertainty quantification. We pro-
vide guidance for navigating these design decisions based on individual pref-
erences and simulation-based design analyses.

This chapter is published as Stefan, A. M., Schönbrodt, F. D., Evans, N. J., & Wagenmakers, E.-J.
(in press). Efficiency in sequential testing: Comparing the Sequential Probability Ratio Test and the
Sequential Bayes Factor Test. Behavior Research Methods, https://doi.org/10.3758/s13428-021-01754-8.
Also available as PsyArXiv preprint: https://psyarxiv.com/ry4fw/
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4. Efficiency in Sequential Testing: Comparing the Sequential Probability
Ratio Test and the Sequential Bayes Factor Test

4.1 Introduction

Across scientific disciplines, researchers use statistical hypothesis tests to eval-
uate the outcomes of experiments that assess the validity of claims about the
world. Conducting scientific experiments can require substantial resources of
time, money, and effort, and can put human and animal subjects under consider-
able strain. It is therefore in the best interest of all scientific stakeholders to use
efficient hypothesis testing procedures (Hunter & Hoff, 1967). Since the costs of
a study are often proportional to sample size (Dupont & Plummer, 1990), opti-
mizing research efficiency means finding a research design that minimizes the
number of observations needed (Myung & Pitt, 2009).

Sequential designs constitute a powerful tool to achieve experimental effi-
ciency (e.g., Schönbrodt et al., 2017; Wald & Wolfowitz, 1948). On average, se-
quential hypothesis tests yield substantially smaller sample sizes than conven-
tional hypothesis tests that assume a fixed sample size based on a statistical
power analysis. Studies investigating the efficiency of sequential designs have
consistently found reductions in sample sizes of 50% or more compared to these
fixed sample size designs (e.g., Schnuerch & Erdfelder, 2020; Schönbrodt et al.,
2017; Wald, 1945). This makes sequential hypothesis testing an attractive choice
when resources are scarce.

In a sequential hypothesis test, researchers check at every step of the data col-
lection process whether sufficient evidence has been obtained to make a decision
about the tested hypotheses.1 Data collection is terminated as soon as sufficient
information about the tested hypotheses has accrued (Wald, 1945). Conceptually,
this sequential sampling procedure resembles the practice of “optional stopping”
that has been repeatedly criticized as a questionable research practice (Armitage
et al., 1969; John et al., 2012). However, sequential hypothesis tests provide a
framework of carefully designed decision rules that allow for valid statistical in-
ference despite optional stopping (Wald, 1945).

Recently, two existing sequential hypothesis testing methods have been
brought to the attention of a wide audience of psychology researchers: the
Sequential Probability Ratio Test (SPRT; Schnuerch & Erdfelder, 2020) and the
Sequential Bayes Factor Test (SBFT; Schönbrodt et al., 2017). Both methods are
applicable to a wide range of hypothesis tests, and can therefore be used in many
research scenarios (Rouder, 2014; Wald, 1945).

In some disciplines of psychology, the SPRT has already enjoyed great pop-
ularity for many years. In psychological assessment, Ferguson (1969) designed
a sequential mastery test using the SPRT methodology as early as 1969. Semi-
nal work by Reckase (1983) combined the SPRT with item response theory, and
has been the basis for more recent methodological developments in the field of
computerized classification testing (e.g., Eggen, 2011; Eggen & Straetmans, 2000;
Finkelman, 2008; C.-J. Lin & Spray, 2000). The SPRT has also been used to study
speeded decision making in humans and other animals (Bogacz, Brown, Moehlis,
Holmes, & Cohen, 2006; Luce, 1986; Milosavljevic, Malmaud, Huth, Koch, &

1Throughout the manuscript we assume that a test is conducted after each datapoint. However,
sequential tests also allow for larger sets of data to be collected at each step. This will influence the
sample sizes and error rates of the design.
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Rangel, 2010; Purcell et al., 2010; Ratcliff, 1978; Townsend & Ashby, 1983), and
is the basis for modern models of human decision making such as the Drift Dif-
fusion Model (Bogacz et al., 2006; Griffith, Baker, & Lepora, 2021). With the in-
creasing uptake of Bayesian statistics in psychology in the past years, SBFTs have
become more popular as well. For example, Bayesian sequential testing has been
applied in developmental psychology on for experiments on early word learning
(Mani et al., 2020), or in cognitive psychology in experiments on learning and
decision making (Perquin et al., 2020; Stojić, Schulz, P. Analytis, & Speekenbrink,
2020). Recently, there has been a strong focus on developing, comparing, and
promoting sequential testing procedures for the independent-samples t-test, one
of the most commonly used statistical tests in psychological research (Wetzels et
al., 2011). This chapter will use the t-test as an example as well, but our results
apply to the broader class of SPRTs and SBFTs.

In a recent article, Schnuerch and Erdfelder (2020) contrasted the SPRT t-test
and the sequential Bayesian t-test based on simulations with diffuse priors and
a specific set of stopping rules. For this scenario, they concluded that the two
main advantages of the SPRT are that (1) it is more efficient than the sequential
Bayesian test, and (2) it allows for explicit control of error rates. A similar claim
was made by Pramanik, Johnson, and Bhattacharya (2021) based on their com-
parison of the SBFT and a modified SPRT procedure that allows researchers to
set a maximum sample size.

Here, we demonstrate that the simulation conditions used by Schnuerch and
Erdfelder (2020) constitute an extreme case within an otherwise more nuanced
relationship between the two hypothesis testing procedures. Specifically, we ex-
tend their simulations to show that the SPRT and SBFT are procedurally and
mathematically similar, and that their relative efficiency depends on the exact
model specification and the true population parameters. We argue that recent
attempts to compare the efficiency of the two methods have presented favor-
able scenarios for the SPRT, as the true effect sizes perfectly matched the effect
size assumptions postulated in its statistical models. We also demonstrate that
simulation and optimization techniques make explicit error control possible for
both hypothesis testing procedures. Given the close relationship between the
SPRT and SBFT, we argue that the choice of the sequential testing method can
be regarded as a multi-dimensional choice within a unified framework where
several desiderata can be weighted with regard to the specific research context
at hand. This presents a new perspective because although previous research
has acknowledged the similarities between the two sequential testing methods
(e.g., Schnuerch & Erdfelder, 2020), authors have typically treated them as dis-
tinct methodologies. We believe that there are many theoretical and practical ad-
vantages to viewing them as part of an overarching framework, and will present
these in the course of this chapter.

Our manuscript is structured as follows. First, we will show that the SPRT
and SBFT can be regarded as two instances of a common sequential hypothesis
testing framework. Then, we explore what this means for the efficiency of the two
hypothesis testing methods using a set of simulation studies. We show that dif-
ferences in efficiency between the two hypothesis testing procedures are gradual
and depend on the exact model specification. The third part of our manuscript
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addresses the question of choosing an adequate sequential hypothesis testing
method in an applied research setting. Based on our simulations, we discuss
several desiderata that researchers need to weigh in planning sequential designs,
and present several pragmatic research strategies that result from these design
decisions.

4.2 How Similar Are the SBFT and SPRT?

Previous research has presented the SBFT and SPRT as two distinct methodolo-
gies for sequential hypothesis testing (e.g., Pramanik et al., 2021; Schnuerch &
Erdfelder, 2020). In the following sections, we will demonstrate that the methods
are, in fact, part of the same overarching hypothesis testing framework. Our ar-
gument rests two pillars: First, we show that the monitored outcome that quan-
tifies the collected evidence at every step of the sequential process, is closely re-
lated in the SPRT and SBFT. Second, we demonstrate that stopping rules can
be defined based on the same principles for both sequential testing procedures.
Since the error rates of a sequential hypothesis test are governed by the definition
of the stopping rule, we also show that error rates can be explicitly controlled in
both procedures.

4.2.1 Evidence Monitoring: Likelihood Ratio vs. Bayes Factor

All sequential hypothesis tests are based on monitoring an analysis outcome as
sample size increases. If the outcome fulfills certain pre-specified stopping crite-
ria, data collection is terminated. If it does not fulfill the criteria, data collection is
continued by collecting an additional observation (Schönbrodt et al., 2017; Wald,
1945). Both the SPRT and the SBFT monitor a quantity that measures the relative
evidence for two competing models, with the models representing the null and
the alternative hypothesis, respectively. As soon as sufficient evidence for either
model has accrued, the data collection is stopped and a decision is made in favor
of the model that received stronger support from the data (Wald, 1945).

4.2.1.1 SPRT: Monitoring the Likelihood Ratio

In the SPRT, the monitored quantity is a likelihood ratio that is defined as the like-
lihood of the data D under the alternative modelM1 divided by the likelihood
of the data under the null modelM0,

LR10 =
f(D | M1)

f(D | M0)
=
f(D | θ1)

f(D | θ0)
. (4.1)

Each model likelihood function contains a set of fixed parameter values, θi,
with i ∈ {0, 1}. For example, in the one-sided SPRT t-test, the likelihood functions
for the null and alternative model are both t-distributions with ν = n1 + n2 − 2
degrees of freedom, where n1 and n2 are the sample sizes of the two groups
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that should be compared.2 The data are summarized by a t-statistic (Rushton,
1950; Schnuerch & Erdfelder, 2020). The null model posits that Cohen’s δ0, the
standardized mean difference between the groups, equals zero. The alternative
model assumes a fixed effect size δ1 that differs from zero. The non-centrality
parameter ∆i of the t-distributions depends on the effect size that is assumed in
the models,

LRSPRT t-test, one-sided =
f(t | ν,∆1)

f(t | ν,∆0)
, with ∆i = δi

√
n1 × n2

n1 + n2
for i = {1, 2} . (4.2)

In the two-sided SPRT t-test (Hajnal, 1961), the likelihood functions are based
on squared t-values to indicate that no knowledge about the sign of the effect
exists. Since it can be shown that t2(ν,∆) = F (1, ν,∆2), the likelihood ratio can
be expressed as the ratio of a noncentral to a central F -distribution (Brereton,
2015),

LRSPRT t-test, two-sided =
f(t2 | ν,∆1)

f(t2 | ν,∆0)
=
f(F | 1, ν,∆2

1)

f(F | 1, ν,∆2
0)
. (4.3)

Note that the quantity monitored in the SPRT differs from the test statistic in
the Generalized Likelihood Ratio test (GLR; Neyman & Pearson, 1928). Specifi-
cally, the likelihood functions are evaluated at fixed parameter values, and not at
their data-dependent maximum. This is also true for the sequential extensions of
the GLR test, as developed by X. Li, Liu, and Ying (2014), or by Thompson (2009)
for computerized adaptive testing.

4.2.1.2 SBFT: Monitoring the Bayes Factor

In the SBFT, the monitored analysis outcome is the Bayes factor. Conceptually,
the Bayes factor can be understood as an extension of the likelihood ratio that
accounts for uncertainty about the model parameters (Jeffreys, 1961). This epis-
temic uncertainty is expressed through the prior distribution, that is, a probability
density function that is placed on parameter values in the statistical model. Math-
ematically, the Bayes factor is defined as the ratio of two marginal likelihoods
(Kass & Raftery, 1995), in which the likelihood function, f(D | θ), is weighted by
the prior distribution, p(θ), and averaged across the parameter space. The Bayes
factor can therefore be defined as

BF10 =
p(D | M1)

p(D | M0)
=

∫
f(D | θ1) p(θ1) dθ1∫
f(D | θ0) p(θ0) dθ0

. (4.4)

The specification of the prior distribution has been a longstanding topic of dis-
cussion among Bayesian statisticians (e.g., J. O. Berger, 2006; Goldstein, 2006;

2Note that SPRT t-tests are technically testing composite hypotheses, as a weight function (i.e.,
prior) of 1/V ar on the variance is implied under both models (Cox, 1952). Therefore, they are not
optimal tests in the sense of Wald and Wolfowitz (1948). However, in all other aspects they are equiv-
alent to Wald’s SPRT (Wald, 1945, p. 181f; Cox, 1952), which makes the distinction of limited practical
importance (Cox, 1952). In fact, Lai (1981) showed that Wald and Wolfowitz’s proof may also hold
asymptotically for SPRT t-tests.
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Jeffreys, 1961; Lindley, 2004). Researchers often use so-called “uninformative” or
“default” prior distributions for the alternative model (J. O. Berger, 2006). These
prior distributions are specified to fulfill several conceptual desiderata and as-
sign non-negligible probabilities to a wide range of values (Consonni, Fouskakis,
Liseo, & Ntzoufras, 2018). A common default prior distribution for the effect
size parameter δ in the alternative model in a Bayesian t-test is a zero-centered
Cauchy distribution with a scale parameter of

√
2/2 (Morey & Rouder, 2018;

Rouder et al., 2009). In this distribution, 50% of the probability mass lies be-
tween values of −0.707 and +0.707. In the remainder of this chapter, we refer to
this prior specification as the default prior setup.

An alternative to default prior distributions are informed prior distributions
that incorporate substantive application-specific prior knowledge about the pa-
rameter (Goldstein, 2006). As a general rule, informed prior distributions are
more peaked around certain parameter values when more prior knowledge ex-
ists (Dienes, 2019). In the most extreme case, the prior distribution can be reduced
to a point prior that assigns all mass to a single value (Etz, Haaf, Rouder, & Van-
dekerckhove, 2018). Informed prior distributions can be defined based on the-
oretical considerations, previous literature, or expert knowledge (Stefan, Evans,
& Wagenmakers, 2020; Vanpaemel, 2010; Verhagen & Wagenmakers, 2014). In
Bayesian t-tests, informed prior distributions on the effect size δ in the alterna-
tive model most often take the form of a non-central normal or t-distribution
(Gronau et al., 2020). One particular piece of information that can be integrated
in the prior distribution is the information about the sidedness of the effect. For
example, the facial feedback hypothesis posits a one-sided effect, namely that
participants who hold a pen between their teeth rate a cartoon as more funny
than participants who hold the pen between their lips (Strack et al., 1988). For
positive directional one-sided tests like this, the prior distribution on the param-
eter of interest is truncated to include only positive values (Wagenmakers et al.,
2010).

4.2.1.3 Bayes Factors Converge to Likelihood Ratios

It is important to note that if point priors are placed on all model parameters, the
Bayes factor reduces to a likelihood ratio (Jeffreys, 1961, p. 396). In Bayesian null
hypothesis testing, it is customary to specify a point prior on zero for the param-
eter of interest in the null hypothesis and a default or informed prior distribution
for the parameter of interest in the alternative model (Wagenmakers et al., 2010).
Therefore, as the width of the prior distribution around a parameter value in the
alternative model decreases, the Bayes factor approaches the likelihood ratio that
specifies the same parameter value in the alternative model. Figure 4.1 demon-
strates this in an example for the t-test. In the example, the Bayes factor uses a
normal distribution centered on Cohen’s δ of 0.5 as a prior distribution on effect
size in the alternative model. The alternative model in the likelihood ratio also
assumes an effect size of δ1 = 0.5. As the variance of the normal prior decreases,
the difference between the log Bayes factor and the log likelihood ratio for the
same data decreases as well.
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Figure 4.1: Difference between the log likelihood ratio and the log Bayes factor for
a t-value of 2.5, i.e., a sample effect size of δ=0.5 in a sample of size 50 per group.
The mode of the prior distribution and the effect size assumed in the alternative
model in the likelihood ratio are equal to δ1 = 0.5. The Bayes factor approaches
the likelihood ratio as the width of the prior distribution decreases.

4.2.1.4 Implications for Sequential Testing

For sequential tests, the relationship between likelihood ratios and Bayes factors
implies that the monitored outcome in the SPRT and in the SBFT can be numer-
ically very close. The degree of similarity depends on the extent to which the
SPRT parameter value is representative of the prior distribution in the Bayesian
test. Although the effect of informed prior distributions on Bayesian sequential
testing has been demonstrated earlier (Stefan et al., 2019), recent efforts to com-
pare the SPRT and SBFT have focused solely on sequential Bayesian tests with
default prior distributions (Pramanik et al., 2021; Schnuerch & Erdfelder, 2020).
However, as becomes clear from Figure 4.1, this comparison provides an ex-
treme example of the differences that can occur between the SPRT and sequential
Bayesian tests. The reason for this is that default prior distributions are not only
relatively wide, but their mode also does not coincide with the parameter value
in the alternative model in the SPRT. Notably, the specification of uncertainty
about parameters allows for a seamless integration of model comparison and pa-
rameter estimation in the Bayesian framework, since prior distributions can be
meaningfully updated to posterior distributions. Thus, although the Bayes fac-
tor is numerically nearly identical to the likelihood ratio if the prior is extremely
narrow, there remains a qualitative difference in the possibility of the model to
incorporate new information. We will discuss this in more detail in the section
about uncertainty specification later in this chapter.
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4.2.2 Stopping Rules and Error Rate Control

The sequential testing procedure in the SPRT and SBFT requires the definition of
an upper and lower evidence threshold (Schönbrodt et al., 2017; Wald, 1945). If
the outcome measure is smaller than the lower threshold, a decision for the null
hypothesis is made; if the outcome measure is larger than the upper threshold,
a decision for the alternative hypothesis is made; if the outcome measure lies
between the two thresholds, an additional observation is collected.

The threshold definition is directly related to the error rates and the aver-
age sample size of the sequential design. Generally, wider thresholds lead to
higher average sample sizes because more evidence is required to make a deci-
sion. However, wider thresholds also lead to lower rates of false positive and
false negative decisions (Schnuerch & Erdfelder, 2020; Stefan et al., 2019). This
makes the definition of thresholds for sequential designs an interesting optimiza-
tion problem. In the following, we show that the definition of optimal thresholds
follows the same principles in the SPRT and SBFT.

4.2.2.1 SPRT: Controlling Error Rates With Wald’s Thresholds

For the SPRT, Wald (1945) recommended constant thresholds defined through the
following formulae,

A =
(1− β)

α
,

B =
β

(1− α)
,

(4.5)

where A and B are the values of the two thresholds on the likelihood ratio, and
α and β are the maximum rates of false positive evidence and false negative ev-
idence, respectively, that a researcher is willing to tolerate. For example, a re-
searcher aiming for nominal error rates of α = 0.05 and β = 0.1 would calculate
Wald’s thresholds as A = (1− 0.1)/0.05 = 18, and B = 0.1/(1− 0.05) = 0.105.

It can be shown that if either of the postulated models is the true data gen-
erating process, Wald’s thresholds provide an upper limit to the effective α and
β error rate, namely, α′ ≤ 1/A and β′ ≤ B (see Appendix 3.A for an outline
of Wald’s proof). In certain situations, effective error rates can be substantially
smaller than α and β, which means that Wald’s thresholds can overcontrol the
error rates. The extent of overcontrol depends on the model specification. If the
effect size postulated in the alternative model approaches zero, that is, if the null
and alternative model get increasingly similar, the effective error rates approach
the nominal error rates. If the alternative model postulates a large effect size, the
SPRT overcontrols the error rates.

The reason for this imprecise error control is that the likelihood ratio often ex-
ceeds the thresholds rather than matching them exactly at the termination of the
sequential process (Wald, 1945, p. 132). This phenomenon of “overshooting” is
more likely to happen when the models are dissimilar, because in these cases the
likelihood ratio can be changed substantially by a single observation. In contrast,
when the models are similar, each new observation causes only small changes in
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Figure 4.2: In the SPRT t-test with Wald’s thresholds, the sum of effective error
rates approaches the sum of nominal error rates as the effect size postulated in the
alternative model decreases. Depicted effective error rates are based on Monte-
Carlo simulations from the null and the alternative model with 10,000 iterations
and Wald’s thresholds for nominal error rates of α = 0.05 and β = 0.1.

the likelihood ratio, which leads to less overshooting and a closer match in er-
ror rates. It is important to note that overshooting does not prohibit exact error
control altogether. For dissimilar models, stopping thresholds that provide exact
error control are narrower than Wald’s thresholds and can be found via numeric
optimization methods (see Figure 4.3 for an example with δ0 = 0 and δ1 = 0.5).

Figure 4.2 demonstrates the dependence of error rates on the model specifi-
cation in the SPRT with Wald’s thresholds for the t-test. The effective error rates
(here, displayed as the sum of false positive and false negative errors) are based
on Monte-Carlo simulations from the null and the alternative model with 10,000
iterations and stopping according to Wald’s thresholds. Note that error control
in the SPRT as displayed in the figure is conditional on the truthfulness of one of
the two models, that is, the design no longer guarantees error control if a third
model is the the true data generating model. We will discuss this issue later in
this chapter.

4.2.2.2 SBFT: Symmetric and Non-Symmetric Thresholds

In the SBFT, thresholds are often chosen to be symmetric around a Bayes factor of
BF = 1 (Schönbrodt et al., 2017). For example, a researcher might choose to col-
lect data until a Bayes factor larger than 10 or smaller than 1/10 is reached. This
practice often signals that the researcher’s primary concern is strength of evi-
dence rather than control of error rates. For example, a researcher might aim
for a strength of evidence of 10, that is, the data should be at least 10 times
more likely to have occurred under the selected model than under the competing
model (Schönbrodt & Wagenmakers, 2018; Stefan et al., 2019).

Although it is common practice, there is no statistical reason for exclusively
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using symmetric thresholds in the SBFT. In fact, there are many reasons why a re-
searcher might choose non-symmetric thresholds, for example to account for the
fact that evidence accumulates more slowly for the null hypothesis than for the
alternative hypothesis (V. E. Johnson & Rossell, 2010) or to incorporate utilities
of hypotheses in the design (Good, 1983). As can be seen from Wald’s thresholds,
non-symmetric thresholds are also beneficial if a researcher wants to control the
rates of misleading evidence of their design. Adjusting the thresholds indepen-
dently does not only allow the researcher to match the envisioned error rates of
the design more closely, but also leads to lower average sample sizes (Stefan et
al., 2019).

As in many other complex hypothesis testing scenarios (e.g., Green &
MacLeod, 2016), there is no analytical solution to obtain the error rates of an
SBFT. However, optimal thresholds can be found in an iterative process using
Bayes Factor Design Analysis (BFDA; Schönbrodt & Wagenmakers, 2018), a
simulation-based methodology that allows researchers to obtain the expected
sample size and rates of misleading evidence of a sequential Bayesian design.
In a BFDA, a large number of samples is generated from a population model
representing the null or the alternative hypothesis, respectively. These samples
are then analyzed using the sequential Bayesian design and the sample sizes and
error rates of the design are tracked (Schönbrodt & Wagenmakers, 2018; Stefan
et al., 2019). Optimal thresholds can be determined by defining an objective
function on sample size and error rates and re-running the BFDA in an iterative
process using optimization methods to find the thresholds that minimize the ob-
jective function. Notably, these optimal thresholds do not lead to an overcontrol
of error rates because they are adjusted to the statistical models used in the test.
We provide commented code for the simulation and optimization in the online
appendix of this manuscript at https://osf.io/5esbc.

4.2.2.3 Same Mechanism of Error Control

Both in the SPRT and in the SBFT, error rates can be controlled by adjusting the
stopping thresholds of the design. Wald’s thresholds provide a computation-
ally simple, analytic solution to the boundary optimization problem in the SPRT,
but they lead to effective error rates that can be substantially smaller than the
envisioned maximum error rates of the design. To obtain exact error control,
simulation-based methods are necessary to determine optimal stopping thresh-
olds in both sequential testing procedures.

Figure 4.3 shows such computationally optimized thresholds for α = 0.05
and β = 0.1. Wald’s thresholds are wider than thresholds that provide exact er-
ror control, and therefore lead to an overcontrol of error rates. Additionally, it
is evident from the figure that optimal thresholds depend on the model specifi-
cation. The SPRT model and different Bayesian models clearly require different
stopping thresholds to control the error rates at the same level.
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Figure 4.3: Stopping thresholds that provide exact error control in the SPRT and
in the SBFT for αmax = 0.05 and βmax = 0.1, as well as Wald’s thresholds. Left
panel: Computationally optimized thresholds that provide exact error control in
the SPRT are different from Wald’s thresholds. Right panel: Optimized thresh-
olds for SBFT designs with different prior distributions (see legend). All thresh-
olds are determined under the assumption of a population effect size of δ = 0.5.

4.2.2.4 Implications for Sequential Testing

Based on the previous sections, we can make three observations about threshold
definition and error control in the SPRT and SBFT: (1) SPRT and SBFT control er-
ror rates through the same mechanism, namely threshold adjustment; (2) thresh-
olds need to be defined through simulation methods in both tests if exact error
control is desired; and (3) optimal thresholds depend on the model specification.
Thus, if an SBFT with symmetric thresholds is compared to an SPRT with Wald’s
thresholds, as has recently been proposed by Schnuerch and Erdfelder (2020), it
is only natural that error control in the SBFT will be inferior to the SPRT because
the thresholds in the SBFT were not adjusted to control error rates. In the same
vein, it cannot be expected that the same stopping thresholds applied to two dif-
ferent designs will yield the same error rates. A difference in observed average
sample sizes between the SPRT and SBFT can only be interpreted as a difference
in test efficiency if the testing procedures are equated on at least one other di-
mension, that is, if they control error rates at the same level or if they yield the
same amount of evidence. Researchers who wish to compare an SPRT and an SBF
design therefore need to decide whether they want to impose the same stopping
thresholds (i.e., the tests stop when the same amount of evidence is collected) or
whether they want to compare two designs with the same error rates (i.e., differ-
ing stopping thresholds). We will present both types of comparison in the next
sections.

4.3 Which Sequential Testing Procedure Is More Efficient?

In the previous sections, we showed that the SPRT and the SBFT are similar in
many respects. Here, we show that differences in efficiency between the methods
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are gradual and depend on the exact model and design specification. Efficiency
is important in all practical applications where time, money, or effort are propor-
tional to the sample size required by a research design, or where the well-being
of research subjects is affected by long testing procedures (Hunter & Hoff, 1967).
In all sequential hypothesis testing procedures, sample size is a random variable
that can vary between experiments. Therefore, we present average (expected)
sample sizes for each procedure. As described earlier, we compare designs that
either have the same error rates (i.e., optimized thresholds) or the same stopping
thresholds (i.e., require the same amount of evidence for data collection to be
stopped). This allows us to disentangle the effects of threshold definition on the
expected sample size and on the error rates of the design. Since the difference
between likelihood ratios in the SPRT and the Bayes factor in the SBFT depends
on the definition of the prior distribution, we also use SBFTs with different prior
distributions in our comparison.

4.3.1 Efficiency Under Ideal Conditions: A Note on Oracle Priors

In the following two sections, we investigate the efficiency of the SPRT and SBFT
under ideal conditions, where the true effect size matches the model expectations
as closely as possible. This means that the population effect size is either equal to
zero, i.e., the parameter postulated in the null hypothesis, or it matches the effect
size parameter (SPRT) or the mode of the prior distribution on effect size (SBFT)
in the alternative model. We call this an oracle prior setup because it implies that
researchers are able to make correct predictions about the population parameters.
It should be noted that the SPRT naturally benefits from this setup, because the
models compared in the SPRT are exact representations of the true population
models. Due to the inherent uncertainty about parameter values, the efficiency
of the SBFT can only approach the efficiency of the SPRT in these cases.

In reality, it is of course highly unlikely that the true data generating process
matches the a-priori expectations of a researcher exactly (Box, 1976; Wald, 1945).
However, it is still relevant to compare models under idealized circumstances be-
cause they describe a reliable best-case scenario with minimal expected sample
sizes and effective error control. Any model misspecification distorts the stated
properties of the hypothesis tests, most prominently, the desired error rates of
the design. We will analyze the behavior of the two hypothesis testing methods
under the condition of model misspecification after the investigation of the ide-
alized scenario.

4.3.2 Efficiency of One-Sided Tests

In the following, we will use Monte-Carlo simulations to compare the efficiency
of the one-sided SPRT t-test and the one-sided sequential Bayesian t-test in an
oracle-prior setup. As outlined before, we compare tests that are either matched
in terms of error rates or in terms of stopping thresholds. We use true effect
sizes of δ = 0.2, δ = 0.5, and δ = 0.8 under the alternative hypothesis, and
a true effect size of δ = 0 under the null hypothesis. We decided to use these
effect sizes because they cover the range of typical effect sizes in psychological
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studies (Wetzels et al., 2011) and have been used in earlier studies comparing
the SPRT and SBFT (Schnuerch & Erdfelder, 2020). In the SBFT, we use four
different prior distributions on effect size under the alternative model for each
comparison: A default zero-centered Cauchy distribution with scale r =

√
2/2

and informed normal distributions that are centered on the population effect size
and have variances of σ2 = 0.3, σ2 = 0.1, or σ2 = 0.001. We decided to use three
informed priors with increasingly smaller variances to be able to demonstrate
what happens if the informed prior approaches a point prior. In the SPRT, the
effect size postulated in the alternative model is always equal to the simulated
population effect size. In the SBFT, the simulated population effect size is equal
to the mean of the informed prior. Analysis code can be found in our online
appendix (https://osf.io/5esbc/). Appendix 3.B provides detailed result tables
of our simulations.

4.3.2.1 Same Thresholds

In the following, we apply Wald’s thresholds for maximum error rates of α = 0.05
and β = 0.1 to both sequential hypothesis tests. We decided to use Wald’s thresh-
olds because they are commonly recommended for the SPRT (Schnuerch & Erd-
felder, 2020; Wald, 1945), and they allow researchers to control error rates (al-
though issues of overcontrol exist, as discussed earlier). Figure 4.4 displays the
results of these analyses. The upper panels display the average sample sizes un-
der the null and alternative hypothesis. In all cases, the SPRT has the lowest
average sample size. This can be expected since the true data generating process
exactly matches the models postulated in the SPRT. The average sample sizes in
the SBFT approach the SPRT as the prior distribution becomes narrower around
the population parameter. The wide, zero-centered default prior distribution typ-
ically leads to the highest average sample sizes. This result corroborates earlier
simulation results by Schnuerch and Erdfelder (2020), and can be explained by
the (dis)similarity between the Bayes factor and likelihood ratio discussed ear-
lier (see also Figure 4.1). Another interesting aspect visible in the figure is that
average sample sizes in SPRT and SBFT are more similar if the (postulated) pop-
ulation effect size under the alternative hypothesis is large. In this case, both
tests can capitalize on faster rates of evidence accumulation and typically stop
data collection after a very small number of observations. The lower panels of
Figure 4.4 show the false positive and false negative error rates of the designs
when Wald’s thresholds are imposed on all tests. It becomes clear that Wald’s
thresholds do not control error rates for all configurations of the SBFT; however,
the deviations from the maximum false positive and false negative error rates are
typically minor. In fact, Wald’s thresholds also overcontrol error rates for most
SBFT settings.

4.3.2.2 Same Error Rates

In the following, we optimized thresholds in the SBFT to yield the same effective
error rates as the SPRT with Wald’s thresholds, i.e., a false positive error rate of
α = 0.039, and false negative error rates of β = 0.090, β = 0.082, and β = 0.052
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Figure 4.4: Average sample sizes and error rates for the one-sided SPRT t-test
(crosses) and sequential Bayesian t-test (circles, squares) with Wald’s thresholds.
All results are based on the assumption of an oracle prior, i.e., that the true effect
size is either zero or the parameter δ1 specified in the alternative model of the
SPRT. Dotted lines show the maximum false positive and false negative error
rates.

for population effect sizes of δ = 0.2, δ = 0.5, and δ = 0.8, respectively (see
crosses in Figure 4.4).

Finding the optimal thresholds that can provide exact error control with min-
imal sample sizes in the SPRT or SBFT requires an efficient optimization proce-
dure. At the heart of the optimization procedure is an objective function that
takes in the two threshold values, and computes a summary statistic (e.g., the
mean) of the expected sample sizes under the null and alternative model, while
penalizing for error rates that exceed the desired levels. This objective function
can be minimized using a standard multidimensional optimization algorithm.
Here, we used a differential evolution algorithm as implemented in the R package
NMOF (Schumann, 2019). Differential evolution is a derivative-free stochastic
optimization algorithm that was developed to be applied to continuous-valued
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Figure 4.5: Average sample sizes for the one-sided SPRT t-test (crosses) and se-
quential Bayesian t-test (circles, squares) when thresholds are optimized so that
the tests yield the same error rates. All results are based on the assumption of an
oracle prior, i.e., that the true effect size is either zero or the parameter δ1 specified
in the alternative model of the SPRT.

problems (Engelbrecht, 2007). The calculation of error rates and expected sample
sizes requires a large number of Monte-Carlo simulations of the sequential pro-
cess under each of the two competing models. As the data generating models
remain constant regardless of the thresholds, it is possible to draw the Monte-
Carlo samples once at the beginning of the optimization for each hypothesis,
and limit the objective function to “cutting off” the sampled trajectories based
on the proposed thresholds. This reduces computing time for the optimization
from several hours to a few seconds, since Bayes factors or likelihood ratios only
have to be computed on the original sample. The optimization procedure yields
evidence thresholds for the SBFT that are model-specific and lead to an exact
matching to the effective error rates of the SPRT while keeping the average sam-
ple sizes at a minimum. We provide commented sample code with customiz-
able functions for the threshold optimization procedure in our online appendix
(https://osf.io/5esbc/).

As can be seen from Figure 4.5, the SPRT yielded lower average sample sizes
than the SBFT when thresholds are optimized such that the tests have the same er-
ror rates. However, the differences in average sample size are not as pronounced
as when the same thresholds are applied to both testing procedures. A reason
for this is that the optimized thresholds in the SBFT are typically narrower than
the thresholds yielding the same error rates in the SPRT, as can be seen from Fig-
ure 4.3.
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4.3.3 Efficiency of Two-Sided Tests

As we discussed earlier, the sidedness of a sequential test influences the mod-
els involved in the test. Therefore, it is important to consider both one-sided and
two-sided tests when comparing the efficiency of the SBFT and of the SPRT. In the
previous sections, we compared the two procedures for one-sided tests. To pro-
vide a comprehensive comparison, we repeated all simulations with two-sided
tests. Unless otherwise mentioned, the comparison setup is identical to the one-
sided analyses. Informed prior distributions in the SBFT are unimodal and peak
at the simulated population effect size. Analysis code can be found in our online
appendix (https://osf.io/5esbc/). Appendix 3.C provides detailed result tables
of our simulations.

4.3.3.1 Same Thresholds

Figure 4.6 displays the average sample sizes under the null and under the al-
ternative model for the two-sided test when Wald’s bounds are applied to both
procedures. Interestingly, we can see that the SPRT t-test is no longer more ef-
ficient than the sequential Bayesian t-test. Across all conditions, the sequential
Bayesian design with an extremely narrow prior distribution (σ2 = 0.001) has
lower average sample sizes. How can this be explained? As we outlined ear-
lier, the SPRT model is defined in absolute terms, that is, the squared t-value is
entered into the likelihood. However, raw values occur on the real line, which
means that the alternative hypothesis in the test effectively places a point prior
on both +∆ and −∆. In contrast, one-sided and two-sided models in the SBFT
differ due to the truncation of the prior distribution. While the prior distribution
covers the whole range of values in the two-sided case, it is truncated at δ = 0 in
the one-sided case. However, for highly informed prior distributions, the trunca-
tion does not change the probability densities of the distribution much because
the full distribution assigned only little prior mass to values in the truncated area.
Therefore, for (highly) informed prior distributions, the two-sided Bayesian t-test
is more similar to the one-sided Bayesian t-test than to the two-sided SPRT.

4.3.3.2 Same Error Rates

When error rates are controlled through optimized stopping thresholds, the same
pattern emerges. The two-sided SBFT with an extremely narrow prior distri-
bution yields lower average sample sizes than the two-sided SPRT. The default
Cauchy prior typically yields the highest average sample sizes.

The question remains whether any of the most efficient models in the two-
sided case can be justified from a model building perspective. Neither a “double”
point prior on an effect size and its additive inverse, nor a spiked prior on an
effect size that allows for effect sizes of a different sign seems to be an intuitive
choice in most application scenarios. We will discuss the question of theory-
based model specification later in this manuscript.
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Figure 4.6: Average sample sizes and error rates for the two-sided SPRT t-test
(crosses) and sequential Bayesian t-test (circles, squares) with Wald’s thresholds.
All results are based on the assumption of an oracle prior, i.e., that the true effect
size is either zero or the parameter δ1 specified in the alternative model of the
SPRT. Dotted lines show the maximum false positive and false negative error
rates.
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Figure 4.7: Average sample sizes for the one-sided SPRT t-test (crosses) and se-
quential Bayesian t-test (circles, squares) when thresholds are optimized so that
the tests yield the same error rates. All results are based on the assumption of an
oracle prior, i.e., that the true effect size is either zero or the parameter δ1 specified
in the alternative model of the SPRT.

4.3.4 Robustness Against Model Misspecification

In the SPRT and sequential Bayesian tests, expectations about the population ef-
fect size determine the model specification. The previous sections assumed that
these expectations were true, that is, that either the null or the alternative model
of the SPRT were the data generating process. However, in real-life applications,
it is fair to assume that this idealized scenario rarely if ever applies (Box, 1976;
Wald, 1945). The ensuing model misspecification distorts the properties of the
hypothesis test.

In the following, we explore how model misspecification influences the aver-
age sample sizes and the test decisions in the SPRT and in the sequential Bayesian
t-test. To ensure continuity to the previous sections, we compare the SPRT and
the SBFT with the same settings for expected effect sizes and prior distributions.
In our simulations of model misspecification, we allowed for population effect
sizes under the alternative model between δ = 0.1 and δ = 1.0. This implies that
the (most likely) effect size δ1 specified in the alternative model can both over-
and underestimate the true effect size. We compare directional designs that yield
the same error rates if either of the specified models is true. In the SPRT, the er-
ror rates were controlled using Wald’s thresholds. Error rates in the SBFT were
matched to the effective error rates in the SPRT using the optimization procedure
described earlier in this chapter.
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Figure 4.8: False negative error rates for the SPRT and sequential Bayesian t-test
when the true effect size δtrue does not match the effect size postulated in the null
or alternative model (δ0 = 0 and δ1 = δ, respectively).

4.3.4.1 False Negative Results

Figure 4.8 depicts the rate of test decisions in favor of the null hypothesis. Given
that the simulated true population effect size is always larger than zero, this rate
can be considered the false negative error rate of the design. If the true effect
size is smaller than expected, the false negative error rate of the design exceeds
the nominal error rate. The results show that throughout all conditions, false
negative error rates in the SPRT are higher than in the SBFT. This demonstrates
that the SBFT is a more conservative testing procedure that is more robust against
model misspecification than the SPRT in terms of false negative error rates. The
reason for this is that the Bayesian test spreads probability across an effect size
range, such that multiple effect sizes can be considered to be in accord with the
model. As in the previous analyses, the properties of the SBFT are more similar
to the SPRT if narrow prior distributions are chosen.

4.3.4.2 Average Sample Sizes

Figure 4.9 depicts the average sample sizes under different degrees of model mis-
specification. For all conditions, average sample sizes increase if the true popu-
lation effect size is smaller than expected. However, if the population effect size
approaches zero, the average sample sizes decrease again in many conditions. As
can be seen from the increasing false negative error rates in Figure 4.8, this can be
explained by early termination in favor of the null model. If the true effect size is
larger than expected, average sample sizes decrease compared to the oracle prior
scenario. Interestingly, this decrease is particularly strong for the SBFT with wide
prior distributions in the alternative model. If the effect size is sufficiently large,
the average sample size for the SBFT can even be smaller than for the SPRT (see,
e.g., the left panel of Figure 4.9 for large δtrue). The reason is that wide prior distri-
butions assign a higher plausibility to large effect sizes, which means that these
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Figure 4.9: Sample sizes for the SPRT and sequential Bayesian t-test when the true
effect size δtrue does not match the effect size postulated in the null or alternative
model (δ0 = 0 and δ1 = δ, respectively).

models make better predictions if these large effect sizes materialize.

4.3.5 Implications for Sequential Testing

Our efficiency comparisons showed that the SPRT requires substantially smaller
average sample sizes than the SBFT under ideal conditions, that is, when the true
population effect size equals the effect size proposed in the alternative model of
the SPRT. However, this increased efficiency comes at the cost of lower robustness
against misspecifications. If the population effect size is smaller than the effect
size proposed in the alternative model of the SPRT, error rates in the SPRT are
higher than in the SBFT. If the population effect size is larger than expected, the
SPRT eventually has larger average sample sizes than the SBFT. It can therefore
be concluded that the SPRT benefits substantially from an oracle prior simulation
setup. Generally, the design properties of the SBFT approach the SPRT when in-
creasingly narrow prior distributions under the alternative model are used. This
means that SBFTs with highly informed prior distributions are more efficient in
terms of average sample sizes, but also less robust against model misspecifica-
tions than SBFTs with wide prior distributions. Taken together, our results indi-
cate that differences in the SPRT and the SBFT are contingent on the specifics of
model formulation as well as on the data generating process at the population
level. Researchers planning a sequential hypothesis test should be aware that the
model and threshold specification dynamically influence the properties of the
planned design. In the next section, we provide guidance on how to navigate
these design decisions.
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4.4 How to Choose a Sequential Testing Procedure in Real-World Appli-
cations

In this final section, we address the question how researchers can decide on a
model specification for real-world applications. We provide several guiding prin-
ciples and investigate pragmatic research strategies that have been proposed with
regard to the SPRT and SBFT.

4.4.1 Uncertainty Specification

The SBFT assumes uncertainty about parameter values under the alternative hy-
pothesis (Schönbrodt et al., 2017) while this is not the case for the SPRT (Hajnal,
1961; Wald, 1945). Therefore, one important consideration in the choice of the se-
quential hypothesis testing framework is whether uncertainty about parameter
values should be quantified.

From a theoretical standpoint, the question arises which situations warrant
the specification of uncertainty. Arguably, only a very limited number of re-
search contexts provides researchers with sufficient background knowledge to
confidently define a single specific effect size under each of the competing mod-
els. For example, researchers in physics might wonder whether a physical con-
stant takes one value or another, or mechanical engineers might be interested
in the question whether a certain object was built with either of two materials.
In the social sciences, however, it is difficult to find examples where a theory
provides researchers with an unequivocal single effect size. In fact, in Bayesian
statistics, there has even been a longstanding debate whether research contexts
typically provide sufficient reliable prior information for the specification of in-
formed prior distributions (Fienberg, 2006; Goldstein, 2006). A substantial num-
ber of Bayesian statisticians advocate for the use of wide default prior distribu-
tions because they reflect a high amount of uncertainty, such as the Cauchy distri-
bution used here (Consonni et al., 2018; Savage, 1954). Moreover, in the Bayesian
statistical framework, learning about parameter values from the data becomes
impossible when a point prior is used because the prior distribution cannot be
meaningfully updated to a posterior distribution (Etz & Vandekerckhove, 2018).
Thus, from a Bayesian perspective, formulating a point prior on parameter val-
ues in the alternative model in the face of uncertainty seems rash or even reckless.
However, proponents of the SPRT argue that it is not necessary to view the spec-
ified parameters as a researcher’s best guess for the underlying population effect
(Schnuerch & Erdfelder, 2020). Instead, they argue that the parameter values can
be interpreted as the smallest effect size researchers are interested in detecting.
This view stems from approaches to power analysis where a smallest effect size
of interest (SESOI) or the lower threshold of a confidence interval is used to plan
for sufficiently large sample sizes (Lakens & Evers, 2014; Perugini et al., 2014).
However, this leads to a model that can be no longer interpreted as a manifesta-
tion of theory, as we will discuss below.
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4.4.2 Model Predictions

Traditionally, statistical models are interpreted as mathematical manifestations
of theories (Vanpaemel, 2010). From this perspective, one of the key aspects of a
model is its generative property, that is, its ability to make realistic predictions
that are in accord with a theory (Gelman, Simpson, & Betancourt, 2017; Van-
paemel, 2010). If a researcher acknowledges the null and alternative model as
justifiable manifestations of plausible theories, the results of the test can be di-
rectly interpreted as a test of theory.

In the SPRT, researchers following a theory-driven model specification ap-
proach would engage in a “Best Guess” heuristic when determining the effect
size for the alternative model. This means that they would specify the parame-
ter based on their beliefs about the most likely parameter values under a given
theory (Dienes, 2019). Note that by definition a SESOI specification of the effect
size parameter does not represent a researcher’s best guess, but a lower bound
on what the researcher deems realistic or interesting (e.g., Button et al., 2015;
Lakens, Scheel, & Isager, 2018; Perugini et al., 2014; Simonsohn, 2015). Thus, the
SESOI specification results in an effect size that is likely to underestimate the true
population effect size and can lead to biased model predictions. From a purely
frequentist point of view, this may be viewed as unproblematic since the primary
focus is on error control, and model predictions are only secondary.

In the SBFT, informed prior distributions allow models to make theoretically
meaningful predictions (Lee & Wagenmakers, 2013). Informed prior distribu-
tions can be formulated based on theoretical considerations, previous literature,
or beliefs of substantial experts (Lee & Vanpaemel, 2017; Stefan et al., 2020; Ver-
hagen & Wagenmakers, 2014). If there is a high degree of uncertainty about the
effect size, default prior distributions, such as the central Cauchy, can also yield
models with realistic predictions that reflect researchers’ theory-based beliefs.
However, researchers arguably often have more pre-data knowledge about an
effect size than the vague predictions of default prior distributions suggest (Di-
enes, 2019). Therefore, the use of default prior distributions is in practice rarely
driven by substantive theories and often results in unrealistic model predictions
(Stefan et al., 2020).

4.4.3 Design Planning vs. Model Inference

An interesting aspect about the SPRT and SBFT is that design planning and model
inference are not independent of each other. As we showed before, optimal deci-
sion thresholds that control error rates are dependent on the model specification,
and average sample sizes depend on the combination of models, thresholds, and
true population effect size. Researchers eager to save resources might be tempted
to start planning a sequential hypothesis test by examining the average sample
sizes of different sequential hypothesis testing setups, and selecting the one that
promises conclusive results with minimal sample sizes. However, the test yield-
ing the lowest average sample sizes under ideal conditions is not necessarily an
appropriate test for a specific research scenario. For example, an SPRT postu-
lating an effect size of δ = 1 under the alternative model may stop after few
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observations, but it might not compare models that are realistic for social science
where effect sizes are typically smaller (Wetzels et al., 2011). More generally, re-
stricting prior distributions on effect size under the alternative model to a small
range of values can result in considerable efficiency gains, but it can also lead to
more frequent model rejections and can therefore be regarded as a risky choice in
terms of design planning. Due to dependencies like the ones outlaid, researchers
planning an SPRT or SBFT always need to consider the interplay between effi-
ciency and model inference in the design planning process. However, it might
be useful to remember at this point that even the least efficient sequential de-
sign is typically more efficient than the most efficient design with fixed sample
sizes. Therefore, researchers may benefit from considering the aspect of design
efficiency in a broader context.

One sequential testing configuration that stands out in terms of design plan-
ning is the SBFT with default prior distributions. Models with default prior dis-
tributions signal a high a-priori uncertainty about the effect size (Consonni et al.,
2018). Unlike informed or point priors, default priors do not place much prior
mass on any particular parameter values. Therefore, any parameter value can
reasonably be assumed to be the true effect size during design planning (this pa-
rameter value is also known as the “design prior”; Schönbrodt & Wagenmakers,
2018; Stefan et al., 2019). The thresholds of the default SBFT can be constructed
with regard to this effect size, such that error rates of the design are controlled
if the true population effect size is equal to or larger than the specified design
prior (see for examples Figure 4.5 and 4.8). In practice, the design prior could
for example be a best guess or a SESOI, but theoretically, the error rates of the
design can be controlled with regard to any postulated effect size, without hav-
ing to assign a high weight to this effect size in the model itself (Schönbrodt &
Wagenmakers, 2018; Stefan et al., 2019). Therefore, for models with default prior
distributions, design planning can be disentangled from model specification. Al-
though this is technically possible for models with informed prior distributions,
it is only theoretically meaningful for default prior distributions.

4.4.4 A Comparison of Pragmatic Research Strategies

In the previous sections, we mentioned several pragmatic research strategies that
have been proposed with regard to sequential hypothesis testing. Researchers
can decide to use an SPRT based on a best guess or a smallest effect size of in-
terest, or they can opt for an SBFT with informed or default prior distributions.
Each of the proposed strategies has advantages and disadvantages that might
manifest themselves to a different extent in different research contexts. Table
4.1 summarizes these properties of the research strategies that were described in
the previous sections. Researchers deciding for a sequential testing procedure
must carefully weigh the advantages and disadvantages in the context of their
application domain. For example, researchers in a field with high uncertainty
about effect sizes might find uncertainty quantification more important than re-
searchers who work in fields with theories that make precise predictions. It is
important to note that the “informed SBFT” strategy in fact incorporates a wide
variety of prior specifications that can morph into all of the other categories (as
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we explained in the section on evidence monitoring earlier in this manuscript).
Therefore, the strategies listed in Table 4.1 should not be understood as distinct
approaches, but as archetypal examples on a continuous dimension. It is also
important to mention that the list in Table 4.1 assumes that a researcher has al-
ready decided to use a sequential hypothesis testing procedure (as opposed to a
fixed sample design). Therefore, the items are limited to relative advantages and
disadvantages within the sequential hypothesis testing framework.

Table 4.1 Advantages and Disadvantages of Pragmatic Research Strategies

Research
Strategy

Advantages (4) and Disadvantages (6)

SESOI SPRT 4 Small average sample sizes compared to SBFT*
4 Robust error control
6 Unrealistic model predictions
6 Uncertainty quantification impossible

Best-Guess
SPRT

4 Small average sample sizes compared to SBFT*
4 Theoretically meaningful model predictions
6 Highly susceptible to model misspecification
6 Uncertainty quantification impossible

Informed
SBFT

4 Theoretically meaningful predictions
4 Smaller average sample sizes than default SBFT*
6 Larger average sample sizes than SPRT*
6 More susceptible to model misspecification than default
6 SBFT

Default
SBFT

4 Can be specified without prior knowledge about effect size
4 Independence of design planning and model specification
6 Likely to yield unrealistic model predictions
6 High average sample sizes compared to all other methods*

Note: SESOI SPRT: SPRT with δ1 = Smallest Effect Size of Interest; Best-Guess SPRT:
SPRT with δ1 = best guess / constant predicted by theory; Informed SBFT: SBFT with
informed prior distribution; Default SBFT: SBFT with default prior distribution; * in
an ideal (oracle prior) scenario.

4.5 Conclusions

Sequential hypothesis testing procedures constitute a powerful tool to achieve
experimental efficiency (Wald & Wolfowitz, 1948). In this manuscript, we com-
pared two sequential hypothesis testing procedures that have been proposed for
the use in psychological research, the Sequential Probability Ratio Test (SPRT;
Hajnal, 1961; Wald, 1945) and the Sequential Bayes Factor Test (SBFT; Schönbrodt
et al., 2017). We showed that recent efforts to compare the two designs have exag-
gerated the differences between the two approaches and that, philosophical dif-
ferences notwithstanding, the choice between the two methods can be regarded
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as a continuous choice within a unified framework rather than a dichotomous de-
cision. We demonstrated that differences in efficiency between the methods are
gradual, and discussed how the desideratum of efficiency needs to be weighed
against other desiderata (e.g., robustness against model misspecification) when
choosing a sequential testing design.

In this chapter, our focus has been to lay out similarities between the SPRT and
SBFT. Nevertheless, it should be noted that the two hypothesis testing procedures
are associated with different philosophies of statistical testing. While the SPRT
has been developed to optimize the balance between error control and expected
sample size (Wald, 1945; Wald & Wolfowitz, 1948), the SBFT has been proposed
with a focus on Bayesian evidence strength (Schönbrodt et al., 2017). This raises
the question whether, from a theoretical point of view, a sequential design that
takes both evidence strength and error rates into account should be classified as
an SBFT, an SPRT, or a new hybrid methodology. For example, a researcher might
initially define stopping thresholds based on error rate considerations, but then
widen the thresholds if they do not deem the resulting evidence compelling. Or a
researcher might decide to monitor a likelihood ratio but define stopping thresh-
olds based on evidence strength. Indeed, hybrid forms of sequential hypothesis
tests can already be found in the early literature on sequential testing, among oth-
ers in Wald’s own work regarding SPRTs for composite hypotheses (Wald, 1945,
p. 181 ff.). Sequential tests for composite hypotheses have also been proposed
more recently in the context of ability testing with IRT (Thompson & Ro, 2007).
Here, we take the stance that it is not necessary to proclaim a new hybrid method-
ology for each of these applications. In our opinion, design decisions on the con-
tinuum between SPRT and SBFT can reflect different philosophies of statistical
testing as well as different priorities with regard to the operating characteristics
of the test.

Both sequential hypothesis testing methods discussed in this manuscript have
been shown to be substantially more efficient than comparable tests with fixed
sample sizes (Schnuerch & Erdfelder, 2020; Schönbrodt et al., 2017; Wald & Wol-
fowitz, 1948). They can also be considered superior to traditional frequentist se-
quential hypothesis testing procedures such as group sequential designs (O’Brien
& Fleming, 1979; Pocock, 1977) because they do not require a strict schedule for
interim analyses and do not lose statistical power with an increasing number of
interim analyses. Thus, SPRT and SBFT can yield substantial efficiency gains for
experiments in scientific fields that decide to adopt them.

Many results in this chapter rely on finding a sequential design with pre-
specified error rates by optimizing the stopping thresholds. In the literature,
many examples for simulation-based power analyses for sequential designs with
fixed thresholds can be found (e.g., Schnuerch & Erdfelder, 2020; Schönbrodt &
Wagenmakers, 2018; Stefan et al., 2019). However, to the best of our knowledge,
optimizing thresholds using numeric optimization algorithms to obtain certain
design characteristics is a novel idea. We believe that the procedure will be most
relevant to researchers using the SBFT, since Wald’s thresholds are not guaran-
teed to provide effective error control for Bayesian sequential designs,3 and op-

3Schnuerch, Heck, and Erdfelder (2021) make a point that the weighted average of all type II error
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timal thresholds often differ substantially from Wald’s thresholds. In the SPRT,
optimizing thresholds might only lead to a small absolute reduction in average
sample sizes, since Wald’s thresholds deviate most from the optimal thresholds
for large effect sizes, where expected sample sizes are already low. However,
when each observation is costly or data collection is time consuming, these small
efficiency gains on the scale of average sample sizes may be equivalent to large
reductions in the study cost or study duration. Therefore, we believe that re-
searchers conducting an SPRT may also be interested in threshold optimization.
In the online appendix of this chapter, we provide commented R code for the
threshold optimization procedure in the SBFT and SPRT, which we hope will be
easy to use and adapt for researchers in practice.

The SPRT and SBFT are both guaranteed to stop at a finite sample size (Ly et
al., 2016; Wald, 1945). However, a limitation of the procedures is that they are not
guaranteed to end at a sample size that is practically feasible. This means that re-
searchers might be forced to stop sampling early due to a lack of resources. In this
case, no test decision can be made, but the monitored outcome of the tests, that is,
the Bayes factor or likelihood ratio, can still be interpreted as evidence strength in
favor of the models (Rouder, 2014). Existing adaptations of the procedures, such
as the maxSBF design (Schönbrodt et al., 2017) or the MSPRT (Pramanik et al.,
2021), have attempted to resolve this issue. Depending on the maximum sample
size defined for the procedure, these methods can yield very similar results to the
SPRT or the SBFT described in this manuscript (Pramanik et al., 2021; Schönbrodt
& Wagenmakers, 2018).

In sum, sequential hypothesis tests provide an important addition to a re-
searcher’s methodological toolbox and can substantially increase the efficiency
of research designs. Similar to other statistical analysis methods, it is crucial that
researchers employing these methods are familiar with their theoretical assump-
tions and practical implications. Here, we investigated the theoretical underpin-
nings of two sequential methods, the SPRT and the SBFT, and discussed several
guiding principles for their application. We hope that this provides researchers
with the necessary knowledge to find the adequate sequential hypothesis testing
strategy for their application domain.

4.A Wald’s Thresholds and Error Rates

The following proof stems from Wald’s 1945 article introducing the Sequential
Probability Ratio Test. It describes the relation between the thresholds A and B
of the sequential design and the error rates α and β.

Let p0m and p0m be the joint probability density of m observations under the
null and alternative hypothesis, respectively. A sequential testing procedure can
then be described by the following rules:

• AcceptH1 if p1mp0m
≥ A,

rates based on the effect sizes specified in the prior distribution underM1 will be smaller than the
maximum error rate. However, this does not imply that the effective error rate is smaller than the
specified error rate for any specific effect size.

80



4.A. Wald’s Thresholds and Error Rates

• AcceptH0 if p1mp0m
≤ B,

• Take an additional observation if B < p1m
p0m

< A.

Let {xm} (m = 1, 2, ...,∞) be an infinite sequence of observations. The set of
all possible sequences {xm} is called the infinite dimensional sample spaceM∞.
Any particular {xm} inM∞ is called a point inM∞. For any set of real numbers
a1, ..., an, we denote C(a1, ..., an) the subset of M∞ which consists of all points
{xm} for which x1 = a1, ..., xn = an. We call C a cylindric point.

A cylindric point is said to be of type 1 if

p1m

p0m
=
f1(a1)f1(a2)...f1(an)

f0(a1)f0(a2)...f0(an)
≥ A and

B <
p1m

p0m
< A for m = 1, ..., n− 1.

A cylindric point is said to be of type 0 if

p1m

p0m
=
f1(a1)f1(a2)...f1(an)

f0(a1)f0(a2)...f0(an)
≤ B and

B <
p1m

p0m
< A for m = 1, ..., n− 1.

Let Qi be the sum of all cylindric points C of type i (i ∈ {0, 1}). For any subset of
M∞, we denote P (MS) the probability ofMS calculated under the assumption
that hypothesis Hi(i ∈ {0, 1}) is true. Since the sequential process is guaranteed
to stop at a finite sample size (Wald, 1944), the probability that the sequential
process terminates at either of the thresholds equals one; Pi(Q0 +Q1) = 1.

For each sample for which C(x1, ..., xn) is an element of Q1, the inequality
p1n
p0n
≥ A holds. Hence, P1(Q1) ≥ P0(Q1)A. Similarly, for each sample for

which C(x1, ..., xn) is an element of Q0, the inequality p1n
p0n
≤ B holds. Hence,

P1(Q0) ≤ P0(Q0)B.

Since P0(Q1) is the probability to commit a type I error and P1(Q0) is the proba-
bility to commit a type II error, we have P0(Q1) = α and P1(Q0) = β. Since Q0

and Q1 are disjoint, it follows that P0(Q0) = 1− α and P1(Q1) = 1− β.

From these relations, we can see that the following inequalities hold:

1. 1− β ≥ Aα,

2. β ≤ B(1− α),

3. α
1−β ≤

1
A ,

4. β
1−α ≤ B.

When A and B are given, upper limits for α and β can be inferred from these
inequalities. It follows immediately from (3) and (4) and the fact that 0 < α <
1, 0 < β < 1 that α ≤ 1/A and β ≤ B.
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4.B Tables: Efficiency of the Directional SBFT and SPRT

Table 4.2 Efficiency of the directional SBFT with Wald’s thresholds for α=0.05
and β=0.1.

True δ Prior Prior µ Prior σ2 ASS Error Rate
H1 true

0.200 Normal 0.200 0.001 263.177 0.081
0.500 Normal 0.500 0.001 43.677 0.076
0.800 Normal 0.800 0.001 19.631 0.049
0.200 Normal 0.200 0.100 346.531 0.015
0.500 Normal 0.500 0.100 54.946 0.006
0.800 Normal 0.800 0.100 22.028 0.013
0.200 Normal 0.200 0.300 344.167 0.065
0.500 Normal 0.500 0.300 58.599 0.005
0.800 Normal 0.800 0.300 23.617 0.003
0.200 Cauchy 346.442 0.115
0.500 Cauchy 65.980 0.002
0.800 Cauchy 26.386 0.000

H0 true
0.000 Normal 0.200 0.001 248.725 0.052
0.000 Normal 0.500 0.001 37.118 0.052
0.000 Normal 0.800 0.001 17.225 0.041
0.000 Normal 0.200 0.100 711.843 0.046
0.000 Normal 0.500 0.100 141.303 0.041
0.000 Normal 0.800 0.100 31.807 0.043
0.000 Normal 0.200 0.300 418.765 0.039
0.000 Normal 0.500 0.300 166.594 0.040
0.000 Normal 0.800 0.300 66.065 0.035
0.000 Cauchy 295.763 0.026

Note: True δ = true population effect size expressed as Cohen’s δ. ASS = Av-
erage sample size. Results are based on 1000 Monte-Carlo simulations per
condition. Cauchy prior is a zero-centered Cauchy distribution with a scale
parameter of

√
2/2.
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Table 4.3 Efficiency of the directional SPRT with Wald’s thresholds for α=0.05
and β=0.1.

True δ δ1 ASS Error Rate
H1 true

0.200 0.200 252.088 0.090
0.500 0.500 42.802 0.082
0.800 0.800 19.970 0.056

H0 true
0.000 0.200 206.650 0.039
0.000 0.500 36.079 0.039
0.000 0.800 17.323 0.039

Note: True δ = true population effect size expressed as Cohen’s δ. δ1 = Fixed
effect size parameter in the alternative model. ASS = Average sample size.
Results are based on 1000 Monte-Carlo simulations per condition.
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4.C Tables: Efficiency of the Two-Sided SBFT and SPRT

Table 4.5 Efficiency of the two-sided SBFT with Wald’s thresholds for α = 0.05
and β = 0.1.

True δ Prior Prior µ Prior σ2 ASS Error Rate
H1 true

0.200 normal 0.200 0.300 440.309 0.004
0.500 normal 0.500 0.300 63.453 0.000
0.800 normal 0.800 0.300 24.125 0.000
0.200 normal 0.200 0.100 397.281 0.000
0.500 normal 0.500 0.100 56.645 0.000
0.800 normal 0.800 0.100 22.119 0.011
0.200 normal 0.200 0.001 263.177 0.081
0.500 normal 0.500 0.001 43.677 0.076
0.800 normal 0.800 0.001 19.631 0.049
0.200 Cauchy 446.635 0.087
0.500 Cauchy 78.722 0.000
0.800 Cauchy 31.653 0.000

H0 true
0.000 normal 0.200 0.300 921.507 0.044
0.000 normal 0.500 0.300 487.159 0.044
0.000 normal 0.800 0.300 132.099 0.035
0.000 normal 0.200 0.100 1954.403 0.050
0.000 normal 0.500 0.100 280.926 0.044
0.000 normal 0.800 0.100 32.614 0.043
0.000 normal 0.200 0.001 248.725 0.052
0.000 normal 0.500 0.001 37.118 0.052
0.000 normal 0.800 0.001 17.225 0.041
0.000 Cauchy 437.811 0.026

Note: True δ = true population effect size expressed as Cohen’s δ. ASS = Aver-
age sample size. Results are based on 1000 Monte-Carlo simulations per condi-
tion. Cauchy prior is a zero-centered Cauchy distribution with a scale parame-
ter of

√
2/2.
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4. Efficiency in Sequential Testing: Comparing the Sequential Probability
Ratio Test and the Sequential Bayes Factor Test

Table 4.6 Efficiency of the two-sided SPRT with Wald’s thresholds for α=0.05
and β=0.1.

True δ δ1 ASS Error Rate
H1 true

0.200 0.200 314.584 0.090
0.500 0.500 54.675 0.085
0.800 0.800 23.196 0.079

H0 true
0.000 0.200 327.955 0.044
0.000 0.500 54.501 0.041
0.000 0.800 22.354 0.039

Note: True δ = true population effect size expressed as Cohen’s δ. δ1 = Fixed
effect size parameter in the alternative model. ASS = Average sample size.
Results are based on 1000 Monte-Carlo simulations per condition.
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5

Interim Design Analysis Using Bayes Factor
Forecasts

Abstract

A fundamental part of experimental design is to determine the sample
size of a study. However, sparse information about population parameters
and effect sizes before data collection renders effective sample size planning
challenging. Specifically, sparse information may lead research designs to be
based on inaccurate a-priori assumptions, causing studies to use resources
inefficiently or to produce inconclusive results. Despite its deleterious impact
on sample size planning, many prominent methods for experimental design
fail to adequately address the challenge of sparse a-priori information. Here
we propose a Bayesian Monte Carlo methodology for interim design analyses
that allows researchers to analyze and adapt their sampling plans throughout
the course of a study. At any point in time, the methodology uses the best
available knowledge about parameters to make projections about expected
evidence trajectories. Two simulated application examples demonstrate how
interim design analyses can be integrated into common designs to inform
sampling plans on the fly. The proposed methodology addresses the problem
of sample size planning with sparse a-priori information and yields research
designs that are efficient, informative, and flexible.

This chapter is published as a preprint: Stefan, A. M., Gronau, Q. F., & Wagenmakers, E.-J.
(2022). Interim design analysis using Bayes factor forecasts, https://psyarxiv.com/9sazk
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5. Interim Design Analysis Using Bayes Factor Forecasts

5.1 Introduction

Well thought-out study designs are at the heart of experimental research. The
scientific relevance of rigorous study design has often been compared to the im-
portance of architectural plans (e.g., B. K. Forscher, 1963; Winer, 1962). Without
a proper plan, a building may not match a client’s expectations or – even worse
– may be prone to collapse in a storm. Similarly, without rigorous experimental
design, study results may not provide the desired information and may not with-
stand scientific scrutiny. However, unlike architects who have detailed advance
information about the terrain, researchers often need to plan studies based on
prior knowledge that is relatively vague.

Before conducting an experiment, researchers rarely have reliable information
about the effect size that will be observed. Therefore, sample size calculations are
in practice often based on rules of thumb (Browne, 1995), generic classifications
of “small”, “medium”, or “large” effect sizes (Cohen, 1988), or on overly opti-
mistic effect size estimates from the existing literature (Etz & Vandekerckhove,
2016). Typically, these sample size calculations lead researchers to underestimate
the required sample size, prompting them to conduct small-scale studies that
are unlikely to detect existing effects (Maxwell, 2004). It has been argued that
such underpowered studies are partly responsible for the credibility crisis that
has recently engulfed many empirical disciplines (Baker, 2016; M. Bakker et al.,
2012; Button et al., 2013; Smaldino & McElreath, 2016). However, insufficient
prior information about effect sizes can also lead researchers to overestimate de-
sired sample sizes, resulting in a waste of resources (Chalmers & Glasziou, 2009).
This issue should not be dismissed as purely financial: For example, a prolonged
study duration can prevent patients from obtaining superior treatments, or can
result in the unnecessary killing of lab animals (Ioannidis et al., 2014).

Below we first present three solutions that are currently used to overcome the
issue of sparse information in the research design phase. We explain why none
of these solutions is ideal, and on this basis derive several desiderata for research
designs in practice. We then propose a methodology for interim design analyses
using Bayes factor forecasts, and describe how it can be used to design studies
that fulfill the aforementioned desiderata. Finally, we showcase two application
scenarios to illustrate how interim design analyses can be used in practice.

5.2 Sparse Information in Design Planning: Current Solutions

Researchers have explored several ways to overcome the challenge of sparse in-
formation in design planning. In the following, we will critically discuss three ap-
proaches that belong to the current canon of accepted design planning methods.
It is not our intention to discredit these methods. On the contrary, we believe that
these methods are often used by researchers who care deeply about good research
practices and who are willing to put extra effort into design planning instead of
relying on crude heuristics. However, we will show that all three methods suffer
from important shortcomings and can lead to inefficient experiments.
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5.2. Sparse Information in Design Planning: Current Solutions

5.2.1 Solution 1. Power Analysis Based on a Pilot Study

Pilot studies are common practice to explore a new experimental protocol. They
can be useful to learn the “mechanics of a trial” (Wittes & Brittain, 1990, p. 66),
and to assess the feasibility of a procedure that will eventually be used in a larger
main study (Leon, Davis, & Kraemer, 2011). Pilot studies can be categorized
into internal and external pilot studies, depending on whether the pilot data
is incorporated into the main analysis or not, respectively (Lancaster, Dodd, &
Williamson, 2004).

The pilot study is usually more similar to the main study than any other ex-
isting study from the literature. In these cases, researchers may use effect size es-
timates from pilot data to inform the sample size calculations for the main study
(Anderson et al., 2017; Lancaster et al., 2004; Sakaluk, 2016). However, sample
sizes in pilot studies are typically substantially smaller than recommended stan-
dards for confirmatory trials (Wittes & Brittain, 1990). This means that there
is considerable uncertainty about the effect size based on the pilot study data.
Specifically, point estimates of the effect size of interest can strongly deviate from
the true population value. Consequently, sample size calculations based on these
unreliable estimates will be non-optimal. For this reason, several authors have
warned against conducting power analyses based on point estimates obtained
from pilot study data (e.g., Albers & Lakens, 2018; Kraemer, Mintz, Noda, Tin-
klenberg, & Yesavage, 2006; Leon et al., 2011).

A second issue of using pilot studies for design planning is that the collected
data are often discarded and not used to make inferences about the target hy-
potheses, even if no changes were made to the design. For example, out of 57
articles that reported pilot studies in the Journal of Experimental Psychology: Gen-
eral in 2020, only two incorporated pilot study data into their main analyses (see
our online appendix on https://osf.io/xh2ep/ for a list of studies). Of course,
there may be good reasons for analyzing pilot data separately, for example, if a
non-representative sample was collected, if the experimental task was changed,
or if experimenters were not blinded to the manipulation (Lancaster et al., 2004).
However, if the pilot study was conducted for the sole purpose of obtaining an
unbiased preliminary effect size estimate, discarding the pilot data amounts to a
waste of resources.

5.2.2 Solution 2. Safeguard Power Analysis

Effect size estimates from the available literature are often inflated by publication
bias or questionable research practices (M. Bakker et al., 2012; Ioannidis, 2008).
Several authors have suggested to correct for this bias by downward-adjusting
the target effect size in a power analysis (e.g, Anderson et al., 2017; Anderson &
Maxwell, 2017; McShane & Böckenholt, 2016; Perugini et al., 2014). We will use
the term safeguard power analysis to collectively refer to these approaches (Perug-
ini et al., 2014).1 There are many strategies to obtain a lower-bound estimate of

1Perugini et al. (2014) introduced the term to refer to a specific type of correction, namely, us-
ing the lower bound of a confidence interval. Here, we use it pars pro toto for the whole group of
approaches.
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5. Interim Design Analysis Using Bayes Factor Forecasts

the effect size, for example using a publication-bias corrected effect size estimate
(Anderson et al., 2017), the lower bound of a confidence interval (Perugini et al.,
2014), or a power-calibrated effect size (McShane & Böckenholt, 2016). However,
all safeguard power approaches bear the danger of over-correction, thus poten-
tially resulting in large and relatively inefficient sample sizes.

A similar issue occurs when power analyses are based on a minimal im-
portant difference or a smallest effect size of interest (see King, 2011, for an
overview). The underlying idea of these approaches is that small non-zero
treatment effects can be practically irrelevant. Therefore, experiments can be
designed based on an effect size that just passes the threshold of practical inter-
est. This method is particularly appropriate for Phase III medical clinical trials
in which the goal is to ascertain the clinical value of a new drug or treatment
for a specific population of patients (Norman, Sloan, & Wyrwich, 2003; Pfizer,
2020). When applied in more general settings, however, the minimal important
difference (or the smallest value one cares about2) may be much smaller than
what can reasonably be expected, thus leading to overpowered study designs
(Mehta & Pocock, 2011).

5.2.3 Solution 3. Sequential Hypothesis Testing

In a sequential hypothesis test, researchers decide after every observation
whether to (1) accept the focal hypothesis, (2) reject the focal hypothesis, or
(3) continue the study by collecting an additional observation (Wald, 1945).
Data collection is stopped once conclusive evidence has been obtained (Stefan,
Schönbrodt, Evans, & Wagenmakers, 2022). Examples of sequential hypothesis
testing procedures include the Sequential Probability Ratio Test (Schnuerch &
Erdfelder, 2020; Wald, 1945), the Sequential Bayes Factor Test (Schönbrodt et al.,
2017), and Safe Testing (e.g., Grünwald, de Heide, & Koolen, 2021).

Sequential hypothesis testing procedures address the issue of vague prior in-
formation about effect sizes in sample size planning in several ways. Most impor-
tantly, sequential procedures relieve the researcher from the burden of determin-
ing a fixed sample size in advance. Specifically, stopping rules are based on the
desired strength of evidence instead of researchers’ pre-data predictions about
effect sizes (Stefan, Schönbrodt, et al., 2022). Moreover, by allowing intermediate
peeks at the test decision criterion, sequential hypothesis testing procedures en-
sure that a conclusion about the tested models can be reached as early as possible
(Wald & Wolfowitz, 1948). However, this does not imply that sequential hypoth-
esis testing procedures are entirely free of a-priori assumptions about effect sizes.
Specifically, prior knowledge about parameters is used in the formal specification
of the statistical models (Stefan, Schönbrodt, et al., 2022). If this prior knowledge
is incorrect, sequential designs suffer from model misspecification issues that un-
dermine the interpretability of results.

In practice, many researchers still hesitate to implement sequential testing
procedures. One reason is that traditional sequential designs (e.g., Wald’s SPRT)
disregard resource constraints. Although these designs guarantee that a test de-

2As discussed by Morey (2020).
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5.3. Desiderata for Research Designs in Practice

cision will be reached with a finite sample size (Wald, 1945), it is unclear whether
sufficient evidence can be obtained with the resources that are available. A po-
tential solution has been suggested in the form of max-N designs that include a
maximum sample size in the stopping rule, such that data collection is stopped
once conclusive evidence or a maximum sample size has been reached (Pramanik
et al., 2021; Schönbrodt et al., 2017). However, without prior information about
the population effect size, it is impossible to determine the operating characteris-
tics of these designs, specifically, how likely they will stop at the maximum sam-
ple size without reaching compelling evidence (Stefan et al., 2019). This makes
it difficult for researchers to judge whether or not it is sensible to run the study
with the envisioned maximum sample size.

5.3 Desiderata for Research Designs in Practice

The examples above illustrate that current best practices do not adequately ad-
dress the issue of sparse information in design planning. In the following, we
will formulate several desiderata for practical research design that address the
shortcomings of the previously presented methods. The list of desiderata is not
designed to be exhaustive, but we believe that its elements are largely uncontro-
versial among substantive researchers.

5.3.1 Aim for Conclusive Evidence

An adequate design makes it likely that the study will result in compelling ev-
idence about a research question. Researchers should try to avoid situations in
which resources are depleted before compelling evidence has been collected. The
general goal is for every study by itself to make a valuable contribution to the
literature by supporting scientific claims with compelling evidence.

5.3.2 Take Resource Constraints into Account

No matter how well-funded a project might be, research is always subject to re-
source constraints that limit the amount of time, money, and energy a researcher
can spend on a single project. Even if no financial limits existed, ethical consider-
ations should prevent researchers from subjecting more people or animals than
necessary to a potentially unpleasant or distressing procedure. An efficient re-
search design takes these resource constraints seriously. This means that studies
should neither pretend that resource constraints do not exist (e.g., in open-ended
sequential designs), nor should they ignore the effects of resource constraints on
the reliability of results (e.g., in underpowered fixed-N studies).

5.3.3 Do Not Discard Data

Study designs should aim to make the best use of available resources. Collect-
ing data for the sole purpose of obtaining preliminary effect size estimates and
throwing them out afterwards (e.g., in external pilot studies), is wasteful, and
should be avoided if possible.
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5. Interim Design Analysis Using Bayes Factor Forecasts

5.3.4 Design Studies Using the Best Available Information

When designing studies, it is important to carefully consider all available infor-
mation. Rigid planning for a worst case scenario (e.g., in a safeguard power
analysis) can lead to overspending of resources, whereas overly optimistic design
planning (e.g., based on biased literature) can lead to underspending of resources
(i.e., underpowered studies). When taking the available information about effect
sizes into account, it is also important to consider the uncertainty about these ear-
lier estimates, such that sampling variability does not unduly influence the study
design (as it often happens for power analyses based on pilot studies).

5.3.5 Allow for Adjustments Based on New Knowledge

In many situations, researchers start out with little information about the tested
models, but quickly acquire additional information about parameters during the
sampling procedure. Ideally, research designs should be adaptable based on
this new information, such that envisioned sample sizes can be decreased or in-
creased, or the experiment can be stopped based on the updated knowledge. So
far, none of the current best practices embraces this idea.

In the remainder of this manuscript, we will demonstrate how Bayes factor
forecasts can be used for interim design analyses with the goal of designing stud-
ies that fulfill the above-mentioned desiderata. We will first explain the formal
foundations of Bayes factor forecasts and then illustrate their application in two
examples.

5.4 Bayes Factor Forecasts

Bayes factors are the focal quantity of interest in Bayesian hypothesis testing
(Rouder, Haaf, & Vandekerckhove, 2018). They are computed as the ratio of two
marginal likelihoods and constitute a continuous measure of relative evidence
strength (Jeffreys, 1961). In the customary notation for Bayes factors, two indices
indicate the models that represent the tested hypotheses. For example, if a BF10 is
reported, values larger than one indicate evidence in favor of the alternative hy-
pothesisM1, and values smaller than one indicate evidence in favor of the null
hypothesisM0 (Wagenmakers et al., 2018).

As more and more data accrue, Bayes factors generally show stronger evi-
dence in favor of the hypothesis that predicts the data better (Jeffreys, 1961). This
means that Bayes factors can indicate evidence in favor of the alternative or in
favor of the null hypothesis, depending on which hypothesis explains the data
better. Unlike p-values, Bayes factors allow for intermediate evaluations at any
point during the data collection process. For example, researchers can “peek” at
the Bayes factor after every fifth or tenth observation (Schönbrodt et al., 2017).
Based on the accumulated evidence at any of these points, researchers are free to
decide whether they want to continue or stop data collection (Rouder, 2014).

If the data are overwhelmingly informative, the Bayes factor shows infinite
evidence in favor of the hypothesis that predicts the data better (Jeffreys, 1961;
Ly et al., 2016). However, for finite sample sizes, Bayes factors are subject to
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5.4. Bayes Factor Forecasts

sampling variability (Schönbrodt & Wagenmakers, 2018; Stefan et al., 2019). This
means that for any finite sample we plan to collect, we can make predictions
about Bayes factor values that are more or less likely to occur conditional on a
data generating process. In the following, we will call these predictions Bayes
factor forecasts (Trotta, 2007).

The most common application of Bayes factor forecasts is in the context of an
a-priori Bayes factor design analysis (BFDA; Schönbrodt & Wagenmakers, 2018;
Stefan et al., 2019). Similar to a frequentist power analysis, the goal of an a-priori
BFDA is to analyze the operating characteristics of a design before data collec-
tion. For example, an a-priori BFDA can be used to investigate the probability of
obtaining compelling evidence with a certain fixed-N design or to determine the
expected sample size in a Sequential Bayes Factor Test. Predictions in a BFDA are
based on Monte Carlo simulations. Assuming a certain data generating process,
a large number of synthetic data sets are created and analyzed using the Bayesian
hypothesis testing procedure. This yields a distribution of simulated hypothesis
testing outcomes that can be analyzed to obtain the operating characteristics of
the design. For example, Figure 5.1 shows the Bayes factor distribution result-
ing from a fixed-N a-priori BFDA for a Bayesian independent samples t-test for
a sample size of N = 50 per group, assuming a population effect size of δ = 0.5.
Based on the quantiles of the distribution, it is possible to derive claims about
the plausibility of certain Bayes factor values as well as about the probability of
the Bayes factor falling into certain ranges of values. For example, for the given
parameters, the probability of obtaining strong evidence for the alternative hy-
pothesis, as defined by a Bayes factor larger than 10, is 34.7%, as indicated by the
shaded green area under the curve in Figure 5.1. Similarly, for the given param-
eters, there is a 95% probability that the Bayes factor will fall in the interval of
0.23 ≤ BF10 ≤ 1889.77, as can be seen from the grey area in Figure 5.1.

An a-priori BFDA can be interpreted as a special case of a Bayes factor fore-
cast. Specifically, it is a Bayes factor forecast that is conducted before data collec-
tion and is therefore solely based on prior knowledge about the model parame-
ters. As such, it suffers from the same downside as a traditional power analysis:
The usefulness of an a-priori BFDA crucially depends on the accuracy of prior
information a researcher has before seeing the data. For example, the predictions
about the Bayes factor in Figure 5.1 are predicated on the assumption that the
population effect size is δ = 0.5. However, as we have argued before, information
about effect sizes is typically sparse prior to data collection, so this assumption
might be wrong. In the following section, we will show how this issue of sparse
knowledge can be addressed using interim design analyses.
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Figure 5.1: Distribution of Bayes factors resulting from an a-priori fixed-N BFDA
for a two-sided independent samples t-test with N = 50 per group, population
effect size δ = 0.5, prior on effect size in the alternative hypothesis model δ ∼
N(0, 1).

5.5 Interim Bayes Factor Design Analysis

One advantage of the Bayesian statistical framework is that the interpretation
of the results is independent of the stopping rule applied to the data collection
procedure (J. O. Berger & Wolpert, 1988; Edwards et al., 1963; Rouder, 2014; but
see de Heide & Grünwald, 2021; Grünwald et al., 2021; Sanborn & Hills, 2014).
Therefore, in the Bayesian framework, the envisioned sample size of a study can
be flexibly adapted for any reason and at any point during a study. This opens
up the possibility for repeatedly conducting design analyses throughout the data
collection procedure, and for adapting sampling plans on the fly, based on the
newly acquired knowledge. In the remainder of this manuscript, we will refer to
these design analyses as interim design analyses, or, more specifically, as Interim
Bayes Factor Design Analyses, since we will be relying on Bayes factor forecasts.
Figure 5.2 provides a conceptual depiction of these interim design analyses in-
corporated in a study workflow.

Compared to an a-priori BFDA, interim BFDAs have the advantage that they
can build on knowledge about the models and model parameters that was gained
from the collected data. In the Bayesian paradigm, knowledge about the plausi-
bility of models after observing data is encoded in the posterior model proba-
bilities. Similarly, the plausibility of parameter values after observing data is
encoded in the posterior distribution for this parameter value under a certain
model (Wagenmakers et al., 2018). This means that at any point during data col-
lection, Bayes factor forecasts can be updated in a coherent manner using the
currently available knowledge in the form of posterior model probabilities and
posterior parameter distributions, and the design can be adapted based on these
updated forecasts. In the following, we will describe how an interim BFDA can
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Figure 5.2: Conceptual depiction of interim design analyses in a study work-
flow. At different stages during the study, interim design analyses are conducted
based on the accumulated knowledge. These design analyses can influence the
sampling plan. Sample size at N0 equals zero.

be schematically implemented and applied in practice.

5.5.1 Implementation of Interim Bayes Factor Design Analyses

At any time point t during data collection, the data collected so far can be denoted
as Dt. For ease of presentation, we assume that the goal of data collection is to
compute a Bayes factor test between two competing hypotheses, a null and an
alternative hypothesis, and that each hypothesis is represented by a statistical
model,M0 andM1, respectively. The current amount of evidence forM1 versus
M0 can be quantified by a Bayes factor, BF10,t. If no data has been collected so
far, the Bayes factor equals 1, indicating no evidence in favor of either model.

Other than the Bayes factor, researchers can also compute the posterior distri-
butions of parameters under each model at time point t. Posterior distributions
can be calculated by updating prior distributions with the available data using
Bayes’ rule (e.g., Rouder & Morey, 2019):

p(θ | Dt,Mi)︸ ︷︷ ︸
Posterior

distribution

= p(θ | Mi)︸ ︷︷ ︸
Prior

distribution

× p(Dt | θ,Mi)

p(Dt | Mi)︸ ︷︷ ︸
Updating factor

with i ∈ {0, 1}. (5.1)

To make a prediction about the future development of the Bayes factor under
M0 orM1, a researcher can now follow the following steps:

1. Draw a sample θ∗ from the posterior distribution p(θ | Dt,Mi). Depending
on the number of parameters in the model, θ∗ can be a single value or a
vector of parameter values.

2. Simulate a dataset Dj of size Nj using the modelMi with parameters fixed
to θ∗ as the data generating mechanism.

3. Combine the simulated dataset, Dj , with the already collected data Dt, and
compute a Bayes factor for the joint data.

4. Repeat steps (1) to (3) many times (k), and record the Bayes factor in each
iteration.
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Figure 5.3: Example for an interim design analysis in the form of a Bayes fac-
tor forecast. Model-averaged predictions are obtained by weighting conditional
forecasts by the posterior model probabilities.

This process yields a distribution of k Bayes factors that can be interpreted as
a probabilistic prediction for the amount of evidence that will have accumulated
after collecting an additional Nj observations, provided thatMi is the data gen-
erating model. Notably, the prediction is based on the best available knowledge
at time point t, since it takes both the knowledge about model parameters and
the accumulated evidence up until time point t into account.

With the procedure described above, researchers can obtain predictions that
are conditional on a statistical modelM0 orM1. However, whenever a Bayesian
hypothesis test is conducted, there is uncertainty about the true model. It is often
of interest to incorporate this uncertainty about the model into the Bayes factor
forecast. In practice, this can be achieved through Bayesian model averaging
(e.g., Hinne, Gronau, van den Bergh, & Wagenmakers, 2020; Hoeting, Madigan,
Raftery, & Volinsky, 1999). In Bayesian model averaging, predictions under each
model are weighted by the plausibility of the model. In an intermediate design
analysis, the plausibility of the models at time point t is expressed through the
posterior model probability p(M0 | Dt) and its complement p(M1 | Dt). In
the simulation procedure above, predictions can be weighted by simulating k ×
p(M0 | Dt) data sets under the null model and k × p(M1 | Dt) data sets under
the alternative model, and combining the resulting Bayes factor distributions.

Figure 5.3 illustrates the implementation of a model-averaged Bayes factor
forecast. The upper two panels show predictions that are conditional on the null
model (left side) and alternative model (right side), respectively. These predic-
tions can be averaged by weighting them by the posterior model probabilities.
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The resulting prediction is depicted in the bottom panel. In the scenario depicted
in Figure 5.3, an initial sample of 30 observations per group was collected, and
the resulting Bayes factor at time point twas indecisive. The Bayes factor forecast
looks N2 = 50 observations into the future based on the accumulated data and
the posterior knowledge about parameters. We can see that if data were gener-
ated under M0, the Bayes factor is likely to remain indecisive, but under M1,
there is a 35.9% probability to achieve conclusive evidence in favor ofM1. The
model-averaged predictions display a compromise between the predictions un-
derM0 andM1, with a probability of 17.6% to reach conclusive evidence forM1

and an 82.3% probability for the Bayes factor to remain inconclusive. Note that
the Bayes factor forecast becomes more uncertain as we attempt to look more ob-
servations into the future, as expressed by the widening colored fan in the figure.
This is due to the fact that the simulated samples become less and less dominated
by the observed data, and more by the random data that incorporates uncertainty
about parameters and, in the case of model-averaged predictions, models.

5.6 Applications of Interim Bayes Factor Design Analyses

In this section we present two application examples to illustrate how interim
BFDAs can be used to design studies that fulfill the desiderata specified earlier. In
both cases, we focus on how sampling plans can be adjusted based on the results
of interim design analyses. The interim design analyses follow the procedure de-
scribed in the previous section. The first example illustrates how pilot studies can
be smoothly integrated in a Bayesian design approach using an interim BFDA.
The second example addresses the current shortcomings of Bayesian sequential
designs by introducing interim BFDAs into the sequential process and adding a
stopping condition based on futility (Snapinn, Chen, Jiang, & Koutsoukos, 2006).

5.6.1 Application 1: Internal Pilot Studies

In the social sciences it is common practice to decide on a sample size based on pi-
lot study data. However, the associated design decisions often disregard the un-
certainty about parameter values, and pilot data are usually discarded after they
have been used for power analyses (Albers & Lakens, 2018; Kraemer et al., 2006).
Internal pilot studies aim to address these issues by providing a principled frame-
work that allows for refining the research design based on intermediate results
and re-using the pilot data for the final analysis. In the clinical trial literature,
several approaches have been developed to accommodate internal pilot studies
within the frequentist framework (for an overview, see Friede & Kieser, 2006).
However, the vulnerability of frequentist analyses towards changes in the data
collection process severely limits the flexibility of these designs. For example,
frequentist internal pilot study designs usually restrict interim analyses to the
estimation of nuisance parameters and do not allow for early stopping once suf-
ficient evidence has been obtained (Birkett & Day, 1994; Denne & Jennison, 1999;
Wittes & Brittain, 1990; Zhang, Muller, Goodenow, & Chi, 2018).

In the following, a simulated case study demonstrates how an interim BFDA
can be used in a Bayesian internal pilot study design. In contrast to existing fre-
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quentist methods, the design provides substantive flexibility in terms of the the
interim design analysis as well as in the resulting design decisions. We map out
several of these design decisions and show their consequences for the operating
characteristics of the design.

5.6.1.1 Case Study: A Bayesian Internal Pilot Study Design

For the purpose of illustration, we assume that a group of researchers is inter-
ested in testing a directional hypothesis regarding the means of two groups us-
ing a Bayesian independent-samples t-test. They collect an initial sample size of
Npilot = 20 per group as part of a pilot study. We further assume that the pi-
lot study follows exactly the same experimental design as the envisioned main
study, such that the data in the two parts of the study can be expected to be
generated by the same underlying process (i.e., the data can be said to be ex-
changeable). Based on the pilot data, the researchers can then conduct an interim
BFDA that will inform their decision on how to proceed with the main part
of the study. The core decision they need to make at this point is to deter-
mine the sample size of the main study. In the following, we will assume that
they decide between N2 ∈ {0, 30, 80, 130, 180}, resulting in a total sample size of
Ntotal ∈ {20, 50, 100, 150, 200} per group, where N2 = 0 is equivalent to discon-
tinuing the study after the pilot. Apart from keeping our example simple, the
relatively coarse increments in sample size reflect that in practice data collection
often occurs in batches of participants. For example, researchers may test mul-
tiple participants at the same time, obtain funding in fixed quantities, involve
other labs in data collection that collect a fixed number of participants, or book
experimental equipment for a fixed period of time.

In the internal pilot study design, the Bayes factor forecast yields the prob-
ability of obtaining strong evidence with the combined sample, conditional on
the observed pilot data. Depending on the research question, researchers may be
interested in predictions generated underM0,M1, or in model-averaged predic-
tions (cf. Figure 5.3). From a substantive point of view, finding evidence for the
null hypothesis is often equally interesting to finding evidence for the alternative
(e.g., Keysers, Gazzola, & Wagenmakers, 2020). In this scenario, model-averaged
predictions may be most informative, as they provide the probability of obtaining
strong evidence regardless of the true data generating process. However, in other
cases, it might be more interesting to examine conditional predictions, akin to a
traditional statistical power analysis. For example, if the purpose of the study is
to demonstrate the superior effectiveness of a new treatment if it is indeed more
effective, researchers may be only interested in predictions underM1. Similarly,
if researchers are interested in detecting the absence of an effect (e.g., Rouder,
Morey, Speckman, & Pratte, 2007), their main goal in experimental design will be
to obtain strong evidence for M0 if the null is true, rendering predictions under
M0 the natural starting point for their design decisions.

Based on the pilot study data and the ensuing Bayes factor forecast, re-
searchers may also decide to discontinue the study. There are typically two
reasons for discontinuation. First, a study may be abandoned because condi-
tional power analyses show that it would be unlikely to detect an existing effect
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with the available resources (Mehta & Pocock, 2011; Sakaluk, 2016). Here, the
term conditional power refers to the probability of obtaining strong evidence with
an envisioned sample size given the data observed in the pilot. For example,
inspired by Cohen’s (1992) recommendation to conduct studies with at least 80%
power, researchers may decide to abandon a study after the pilot if the Bayes
factor forecast shows a probability of less than 80% to obtain strong evidence
for either hypothesis, even for the largest envisioned sample size. This practice
is akin to futility stopping discussed in the next application example, with the
difference that it occurs earlier in the research process and thus relies on the
idea of planning a compelling study from the start, rather than stopping a study
late in the process when it is almost certain that the desired objectives cannot
be reached. Second, data collection may be discontinued after the pilot study if
the results of the pilot study are already sufficiently convincing. In the clinical
trial literature, this practice is typically called “stopping for efficacy” (Mehta &
Pocock, 2011). The underlying reasoning is that if the evidence obtained from
the pilot study is already sufficiently compelling, it may be wise to concentrate
efforts on the exploration of new hypotheses, rather than on running up the
score for a hypothesis that the present data already strongly support. However,
it should be acknowledged that even if the evidence from the pilot study were
sufficiently compelling to arrive at an early decision about hypotheses, practical
considerations may preclude researchers from stopping the study early. For
example, journal-specific or regulatory requirements might compel them to
continue data collection until a certain minimum sample size has been reached.

It should be emphasized that there is no generic rule for deciding about the
continuation or discontinuation of a study based on the pilot data and interim
BFDA. The interim design analysis merely projects the Bayes factor into the fu-
ture by using the best available information about models and parameters. It is
up to the individual research team to decide how this information will be used
for arriving at design decisions. In practice, the decision will be guided by the
individual utilities that characterize the specific research situation. For example,
different research contexts require different levels of evidence to support claims,
influencing researchers’ individual thresholds for compelling evidence. Addi-
tionally, if the study imposes a considerable burden on participants, it might be
prudent to carefully weigh the costs of continuation against the benefits, whereas
other situations may prompt researchers to continue the study even if the chances
of obtaining compelling evidence are slim. In the following, we will investigate
the effects of different design decisions on the operating characteristics of the
Bayesian internal pilot study design.

5.6.1.2 Effects of Design Decisions in Bayesian Internal Pilot Study Designs

As detailed above, researchers decide if and how to continue with a study after
the pilot study. This decision fundamentally relies on an individual researchers’
cost and benefit analysis that takes into account the current evidence, the results
from the interim design analysis, as well as situational utilities. In the follow-
ing, we will illustrate the consequences of two design decisions in the context of
an independent-samples t-test, and we will demonstrate that these consequences

101



5. Interim Design Analysis Using Bayes Factor Forecasts

Figure 5.4: Consequences of different design decisions in the Bayesian internal
pilot study design. Researchers may abandon the study if the probability to ob-
tain strong evidence (as defined by the Bayes factor thresholds) given the pilot
data (conditional power) is smaller than a certain limit even for the highest sam-
ple size, otherwise continue with the smallest sample size yielding the desired
strength of evidence. Results based on 1,000 Monte Carlo iterations per popula-
tion effect size δ for an independent-sample t-test with a truncated normal prior
on δ underM1, δ ∼ N+(µ = 0, σ = 1).

are in line with researchers’ utilities as expressed in their decision parameters.
Throughout, we will assume that researchers stop for efficiency if compelling
evidence has accrued in the pilot study, and that they stop for a lack of power
if strong evidence cannot be reached with a sufficiently high probability. Addi-
tionally, we will focus on model-averaged predictions. Results for conditional
predictions can be found in our online appendix (https://osf.io/xh2ep/).

Figure 5.4 illustrates the consequences of setting different Bayes factor thresh-
olds to define strong evidence, and of setting different criteria for the desired
conditional power of the study. For example, a researcher may define strong
evidence as a Bayes factor larger than 10 or smaller than 1/10, and the desired
conditional power of the study as 80% (upper left panel). They may then, based
on the interim design analysis after the pilot, select the smallest sample size for
the main study that would yield strong evidence forM0 orM1 with a probabil-
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Figure 5.5: Probability of obtaining strong evidence as defined by the Bayes factor
thresholds given a certain population effect size and a sample size per group in
an independent-samples t-test. Colors indicate whether the probability is larger
(teal) or smaller (red) than the desired power. Plot based on 1,000 Monte Carlo
iterations per population effect size and sample size.

ity of at least 80%, or they may abandon the study if at Nmax the probability of
obtaining strong evidence was still smaller than the desired conditional power.
Figure 5.4 illustrates that the Bayes factor thresholds and the desired conditional
power affect how often the study will be continued after the pilot, how large the
chosen sample size will be, and how often strong evidence will be reached for any
given population effect size. Based on 1,000 simulated studies for each popula-
tion effect size, the figure displays the proportion of studies yielding conclusive
evidence (blue bars) or inconclusive evidence (yellow/red bars). Additionally,
the color saturation indicates the sample size at the point of stopping. This can
be the initial sample size (lightest color) or one of the other four sample sizes
under consideration (darker colors indicate higher sample sizes).

Our initial response to Figure 5.4 was one of disbelief: for some settings the
methodology indicates that a study should be abandoned almost irrespective of
what the pilot study shows. Upon further reflection, however, these results reveal
that one cannot frequently obtain compelling evidence (forM0 and forM1 com-
bined) from a study with the specified maximum sample size. In other words,
the methodology reveals that the demands were unreasonable. More modest de-
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mands yield different results; for instance, as illustrated in the lower right panel
of Figure 5.4, if researchers accept a lower conditional power (here: 60%) together
with a more lenient definition of strong evidence (here: BF < 1/6; BF > 6), then
early stopping for insufficient conditional power is practically eliminated. As can
be seen from Figure 5.5, the reason is that the probability of obtaining strong ev-
idence underM0 is sufficiently high within the given range of sample sizes. On
the downside, for small population effect sizes, the modest requirements may
lead to a situation where the study is continued with the maximum available
sample size, but the final result remains inconclusive (red bars in Figure 5.4).
However, this was a risk the researcher indicated to be willing to take by accept-
ing a 40% chance of obtaining inconclusive evidence conditional on the observed
data. To summarize, simulation results indicate that the operating characteristics
of the design are a direct consequence of the demands researchers specify at the
point of the interim design analysis.

5.6.1.3 Evaluating Bias

An important question regarding the consequences of design decisions is
whether they will bias the study results. Specifically, early termination of in-
auspicious trials might lead to parameter overestimation. Figure 5.6 shows that
if the abandoned studies go unreported, parameter estimates will on average
be biased. The figure depicts meta-analytic estimates based on 1,000 simulated
studies conducted with the Bayesian internal pilot study design for population
effect sizes of 0 ≤ δ ≤ 1. The black points indicate estimates based on all
simulated studies, including the studies that were discontinued after the pilot.
It can be seen that for all conditions the black points lie on the main diagonal,
indicating that the meta-analytic effect size estimates match the population effect
size almost perfectly. Therefore, if all results are reported, the design decisions
do not lead to bias in effect size estimation. In contrast, the red points show
meta-analytic effect size estimates exclusively for studies that were continued
after the pilot or had already obtained sufficiently strong evidence based on the
pilot data. In all but one condition, the red points deviate considerably from the
main diagonal, indicating that a lack of reporting of discontinued studies leads to
biased effect size estimates. The bias is particularly strong for conditions where
studies are likely to be stopped for insufficient conditional power (cf. Figure 5.4),
that is, where many results would not be reported.

The notion that underreporting of studies can bias effect size estimates is
not new and has been extensively described in the meta-analytic literature (e.g.,
E. C. Carter et al., 2019; Maier, Bartoš, & Wagenmakers, 2020). A lack of report-
ing of pilot study data can be viewed as an instance of self-imposed publication
bias on the side of a research team. It is therefore important to stress that al-
though stopping data collection is viable at any time and for any reason within
the Bayesian framework, reporting of collected data and analyses is at the same
time crucial. For this reason, it has been recommended to preregister studies,
including the planned design, such that studies remain detectable for research
synthesis (De Angelis et al., 2004; Nosek et al., 2018).
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Figure 5.6: Effect size estimates based on fixed-effects meta-analysis. Black
points: Estimates based on full results from 1,000 simulated studies. Red points:
Estimates if studies discontinued for insufficient conditional power are excluded.
Selective reporting of studies leads to bias, indicated by points deviating from the
main diagonal (solid grey line).

5.6.1.4 Evaluation Regarding the Specified Desiderata

The case study presented above demonstrates that the Bayesian internal pilot de-
sign fulfills the desiderata for research designs set out at the beginning of this
chapter. The design assists researchers in selecting a sample size that yields con-
clusive evidence with a high probability, while taking resource constraints into
account. Importantly, the design does not require prior knowledge about effect
sizes at the start of the study to determine a suitable sample size. Instead, sample
size determination occurs dynamically based on the acquired knowledge after
the pilot study and takes uncertainty about models and parameters into account.
Unlike external pilot studies that are conducted for the sole purpose of determin-
ing a preliminary effect size estimate, the Bayesian internal pilot study design
does not discard data. Thus, the design fulfills the desiderata outlined at the start
of this chapter. However, it is important to mention that in order to preserve un-
biased effect size estimates all study results need to be reported in full (i.e., even
if the study was discontinued after the pilot phase).

5.6.2 Application 2: Futility Monitoring in Bayesian Sequential Designs

In the clinical trial literature, the term “stopping for futility” refers to the discon-
tinuation of a trial because of its inability to reach the desired objectives (Snapinn
et al., 2006). In a Bayesian sequential hypothesis test, the objective of the test is
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to obtain strong evidence in favor of the null or alternative hypothesis (Stefan,
Schönbrodt, et al., 2022). Typically, Bayesian sequential designs do not include
a futility stopping condition. Consequently, sampling is usually continued until
the maximum sample size is reached, even if the chances of obtaining conclusive
evidence with the available resources are slim. Across many studies, this can lead
to a considerable waste of resources.

Whether compelling evidence can be reached in a sequential max-N design,
depends on the combination of stopping thresholds, resource constraints, and
population effect size (Schönbrodt & Wagenmakers, 2018). Unless detailed a-
priori knowledge about the population effect size exists, it is therefore impossi-
ble to accurately predict whether or not a study will reach its objective. In the
following, we illustrate in a simulated case study how interim BFDAs can be
used to monitor futility in sequential max-N designs and stop data collection if
the probability of reaching a test decision with the available resources is small.
The futility criterion presented in our example can be viewed as a fully Bayesian
version of the predictive power approach that is sometimes applied in clinical
trials (Dmitrienko & Wang, 2006; Kunzmann et al., 2022). We define futility as a
two-sided criterion (Snapinn et al., 2006), that is, an exceedingly small probability
that the study will find compelling evidence for either hypothesis conditional on
the observed data.

5.6.2.1 Case study: A Bayesian Sequential Design with Futility Monitoring

For the purpose of illustration, we describe a case study that employs a sequen-
tial max-N design for a one-sided independent-samples t-test with a minimum
sample size of Nmin = 10, a maximum sample size of Nmax = 100, and nine
intermediate “peeks” at intervals of N = 10 observations per group. At each
intermediate stage, the trial can be stopped if the Bayes factor passes one of the
evidence thresholds that constitute compelling evidence. Here, we define these
thresholds as BF10 < 1/10 and BF10 > 10, following Jeffreys’s (1961) classification
for strong evidence. Additionally, we conduct a Bayes factor forecast at every
intermediate stage using the model-averaged predictions based on the observed
data up to that point. If the probability that the Bayes factor will cross either of
the evidence thresholds within the remaining observations is smaller than 1%,
the trial is stopped for futility. The monitored Bayes factor compares a null hy-
pothesis model of no effect, δ = 0, to a one-sided alternative hypothesis model
with a truncated normal prior on the effect size, δ ∼ N+(µ = 0, σ = 1) (see
Gronau et al., 2020, for prior specification in Bayesian t-tests).

Figure 5.7 shows that a study following the sequential design outlined above
can stop for one of four reasons. It can stop because the Bayes factor reaches
the upper threshold, resulting in a decision for the alternative hypothesis (see
upper right panel). Alternatively, it can stop because the Bayes factor reaches
the lower threshold, resulting in a decision for the null hypothesis (see upper
left panel). Moreover, at any intermediate step in the design, sampling can be
stopped due to futility. This scenario is depicted in the lower left panel of Fig-
ure 5.7. In the depicted example, the model-averaged Bayes factor forecast pre-
dicts that the probability of reaching conclusive evidence for either hypothesis is
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Figure 5.7: Four reasons for stopping in a Bayesian sequential max-N design with
futility monitoring.

0.1% + 0% = 0.1% < 1%, so the study is terminated early without reaching a de-
cision about the hypotheses. The forth reason for stopping is that the maximum
sample size is reached, here Nmax = 100. At this stage, evidence will usually be
inconclusive, unless the observations added in the final stage led the Bayes factor
to cross an evidence threshold. When analyzing the operational characteristics
of a design, it is often sensible to count the latter scenario towards stopping for
strong evidence, since this allows the distinction between stopping conditions
where a test decision can be reached (strong evidence forM0 orM1), and stop-
ping conditions where the evidence remains inconclusive (stopping for futility or
maximum N ).

5.6.2.2 Effects of Futility Stopping

Arguably, one of the main advantages of conducting a Bayesian sequential max-
N design with futility monitoring is that it renders an a-priori design analyses
unnecessary. The design entails that the study will automatically stop once a
decision can be made or once it becomes clear that the study is inauspicious.
However, for the purpose of illustration, it is interesting to analyze the behavior
of a sequential max-N design with futility monitoring under different population
effect sizes. This will allow us to take a closer look at the consequences of in-
troducing a futility threshold, when comparing the results to a more traditional
sequential max-N design.

Figure 5.8 shows the results of a design analysis of the Bayesian sequential
max-N design with futility monitoring as described above based on 1,000 Monte-
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Figure 5.8: Design analysis of the sequential max-N design with futility monitor-
ing (top panel) in comparison to a regular seqential max-N design (bottom panel)
for different effect sizes. Figure displays proportion of trajectories ending with
strong evidence for M0, M1, stopping for futility and reaching Nmax based on
1000 Monte-Carlo iterations.

Carlo iterations. The upper panel depicts the probability of stopping for each of
the four reasons discussed earlier in this chapter, depending on the population
effect size. Stopping for futility mainly occurs for small population effect sizes
where it is difficult to distinguish between the models based on the data. For
larger effect sizes, Bayes factor trajectories typically end at the upper threshold,
yielding strong evidence forM1. Comparing the results of the design analysis for
the futility-monitoring design to the regular Bayesian sequential max-N design in
the bottom panel yields two interesting observations. First, the probability of
Bayes factor trajectories ending at either of the thresholds remains virtually the
same across both designs. This is in line with clinical trial literature suggesting
that futility stopping typically has only a minor effect on power (W. H. Chang &
Chuang-Stein, 2004). Whether this is the case for a specific design depends on the
exact futility threshold. Here the threshold is 1%, meaning that the probability
to stop for futility prematurely is only 1% at any decision point. However, if the
futility threshold is raised to a higher value, say, 10%, it becomes more common
to stop for futility prematurely, thus affecting the ability of the design to yield
strong evidence for either hypothesis. The second interesting observation is that
stopping for futility occurs in a decent proportion of the simulated trajectories de-
spite the relatively strict futility threshold of 1%. In fact, the majority of cases that
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Figure 5.9: Expected sample sizes per group are lower if a futility stopping condi-
tion is introduced into a Bayesian sequential max-N design. The histograms show
that stopping for futility mainly occurs at later stages (i.e., > 70 participants per
group).

would otherwise end at the maximum sample size with inconclusive evidence,
are stopped early for futility. This indicates that the design can provide a sub-
stantial increase in efficiency compared to a regular Bayesian sequential max-N
design.

The top panel of Figure 5.9 displays the differences in expected sample size
between the futility stopping and sequential max-N design. For the effect sizes
where futility stopping takes place, a sizeable reduction in expected sample size
can be observed. For example, for a population effect size of δ = 0.2, the expected
sample size in the t-test is reduced by 10 observations per group through the
introduction of futility monitoring. The bottom panel of Figure 5.9 shows three
sample size distributions for different population effect sizes. In all three cases,
stopping for futility occurs mainly at later stages where remaining resources can
no longer instigate large changes in the Bayes factor that would be needed to lift
it across either of the thresholds.

5.6.2.3 Evaluating Bias

Similar to the Bayesian internal pilot study design, it is interesting to investigate
potential consequences of early stopping on effect size estimation. Figure 5.10
shows meta-analytic estimates based on 1,000 simulated studies conducted in a
Bayesian sequential design with futility monitoring for each of the depicted pop-
ulation effect sizes of 0 ≤ δ ≤ 1. Black points indicate estimates based on all
studies, including studies ending with inconclusive evidence atNmax and studies
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Figure 5.10: Effect size estimates based on fixed-effects meta-analysis. Black
points: Estimates based on full results from 1,000 simulated studies. Red points:
Estimates if studies yielding inconclusive evidence are excluded. Selective re-
porting of studies leads to bias, indicated by points deviating from the main di-
agonal (solid grey line).

stopped early for futility. The estimates lie on the main diagonal, indicating that
the meta-analytic effect size estimates match the population effect size almost
perfectly. This demonstrates that the design does not bias effect size estimates
under full reporting. However, reporting only those studies that yield conclusive
evidence introduces bias into the meta-analytic estimates. In the figure, this can
be seen from the red points that deviate from the main diagonal. Thus, our analy-
ses demonstrate again that full reporting of results remains important to ensure
unbiased effect size estimates in the literature.

5.6.2.4 Evaluation Regarding the Specified Desiderata

The case study presented above demonstrates that the sequential Bayesian max-N
design with futility monitoring fulfills the desiderata for research designs set out
at the beginning. The design aims for conclusive evidence by ensuring that data
collection is continued (within the available resources) until conclusive evidence
for either hypothesis has been obtained. It takes resource constraints seriously,
not only by considering the maximum available resources in the max-N stopping
threshold, but also by stopping once it is clear that the study will not be able to
reach its objectives. By stopping for futility, resources can be saved that would
otherwise be spent in vain trying to reach conclusive evidence. Therefore, the
futility stopping condition leads to a natural compromise between efficiency and
informativeness. However, as for the Bayesian internal pilot study design, it is
crucial that researchers report the full results –even if the design was stopped
early for futility– in order to ensure unbiased meta-analytic effect size estima-
tion. The Bayesian sequential design with futility monitoring does not require
researchers to sacrifice data for the purpose of obtaining preliminary effect size
estimates, and all design decisions are based on the best available information
at the time. The model-averaged futility stopping criterion takes both model and
parameter uncertainty into account, such that decisions about the continuation of
the study are not unduly influenced by the sampling variability. The interim de-
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sign analyses ensure that the design can be adjusted based on new information.
Specifically, the study can be stopped early once sufficient evidence has accrued,
or once the probability of reaching the study objective is exceedingly low. Thus,
overall, the design fulfills the desiderata specified earlier in this chapter.

5.7 Discussion

A fundamental part of experimental design is to find a sample size that strikes a
balance between resource efficiency and the informativeness of the results. Deter-
mining the right balance demands substantial knowledge about the investigated
phenomena – knowledge that is often unavailable before the study is conducted.
It is therefore desirable that knowledge acquired throughout the course of the
study can be dynamically included in sample size planning and that the study
design can be adjusted on the fly if necessary. Here we proposed a method for
interim design analyses based on Bayes factor forecasts (interim BFDA) that en-
ables researchers to flexibly evaluate and adapt their sampling plans throughout
the course of a study. Two simulated case studies demonstrated how interim
BFDA can be applied in the context of internal pilot studies and futility monitor-
ing in sequential Bayesian designs.

The applications presented in this chapter are only two examples for a wide
range of research designs that become possible with interim design analyses. The
Bayesian framework allows for flexible sampling plans that do not require strict
prespecification of stopping rules at the beginning of a study. Therefore, the pre-
sented designs should only be viewed as prototypes of research designs that can
emerge in practice rather than prescriptive frameworks for research design. We
chose the application examples because similar procedures are already in use
(e.g., Leon et al., 2011; Schönbrodt et al., 2017) which gives readers the chance to
connect the new methodology to established designs. However, it is by no means
necessary to adhere to these designs. In practice, researchers are free to perform
interim design analyses at any point during the data collection process and adapt
their research design accordingly. For example, instead of restricting themselves
to a single interim design analysis for sample size determination in the Bayesian
internal pilot study design, researchers could switch to futility monitoring at a
later point in the study if the obtained evidence remains inconclusive. They are
also not strictly bound to the initially specified maximum sample size: If more
resources become available throughout the study, the maximum sample size can
be dynamically increased. Importantly, as our simulation results have demon-
strated, whatever stopping rule is chosen, it remains crucial to fully report the
obtained results in order to ensure unbiased results.

One way to ensure full reporting of results is to integrate dynamic research
design planning into a Registered Report workflow (Chambers, Dienes, McIn-
tosh, Rotshtein, & Willmes, 2015; Stefan, Lengersdorff, & Wagenmakers, 2022).
For example, if the experimental design of an initial pilot study is approved by
reviewers in a stage I report, Bayes factor forecasts can inform sample size plan-
ning for the main study conducted in the second stage of the report, and the
pilot data can be integrated into the final analyses. Another way to document
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design decisions and transparently track the progress of a study is through open
lab notebooks that are updated regularly and provide a public record of the cur-
rent stage of the research project (Crüwell, Stefan, & Evans, 2019). To make data
immediately accessible, researchers can also consider born-open data (Rouder,
2016), where collected data are automatically uploaded into a public repository
during data collection.

One limitation of interim design analyses with Bayes factor forecasts is that
they require an intermediate unblinded analysis of the data. Unblinded (interim)
analyses have been criticized as easy prey for motivational biases, such as hind-
sight bias and confirmation bias (Dutilh, Sarafoglou, & Wagenmakers, 2019; Mac-
Coun & Perlmutter, 2015). Additionally, knowledge about interim results may in-
fluence the research process through experimenter effects (Rosenthal, 1966). One
way to address these shortcomings is to involve an independent team of data
analysts who are responsible for interim design analyses and communicate de-
cisions about continuation of data collection to the experimenters (Dutilh et al.,
2019). This allows for a separation between data analysis and study execution
and may therefore limit motivational and experimenter biases. Alternatively, if
decision rules are determined in advance, interim design analyses can also be
automated, allowing for a similar separation between analyst and experimenter
(Beffara et al., 2018).

The methodology discussed in this chapter relies on Bayes factor forecasts for
interim design analyses. However, it is possible to project other statistics into the
future based on accumulated data. For example, some frequentist approaches
to futility stopping are based on forecasting z-values using the laws of Brow-
nian motion (W. H. Chang & Chuang-Stein, 2004; Lan & Wittes, 1988). In the
Bayesian framework, it would be possible to make predictions about posterior
distributions rather than Bayes factors in interim design analyses. For example,
design decisions could be based on the expected width of the credible interval
that can be used as a measure of certainty about parameter estimates (Kruschke
& Liddell, 2018). Yet another possible target of design analyses are information
measures, such as Shannon information, that can allow researchers to make state-
ments about the expected additional degree of informativeness of the experiment
(Lindley, 1956). At this point, it is important to emphasize that the interpretation
of Bayesian analyses is independent of the stopping rule. Therefore, the target
quantity that is used for interim design analyses does not influence the interpre-
tation of Bayesian quantities calculated for the full sample. However, it is sensible
to choose target quantities in design analyses in a way that they match the overar-
ching goals of the study. For example, if the main goal of the study is hypothesis
testing, it is sensible to align design analyses to this goal and focus on quantities
that are important for hypothesis testing.

Interim BFDAs relieve researchers from the need to formulate expectations
about effect sizes or parameters for the purpose of sample size determination be-
fore data collection has started. However, the Bayesian framework does require
analysts to formulate prior beliefs about parameters in the form of prior distri-
butions. In the terminology of Gelfand and Wang (2002) and Schönbrodt and
Wagenmakers (2018), interim BFDAs render the separate formulation of design
priors obsolete, but still require the specification of analysis priors. One might
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therefore argue that the issue of sparse information is not fully resolved, espe-
cially since the formulated prior distributions may remain influential in the final
Bayesian analysis result (Stefan, Katsimpokis, Gronau, & Wagenmakers, 2022).
However, formulating prior knowledge in analysis priors is less critical for two
reasons. First, if no prior knowledge about parameters exists, sensible results can
be achieved using wide default priors that express the existing lack of knowl-
edge (Consonni et al., 2018). In contrast, in order to obtain meaningful results in
a design analysis, researchers need to commit to more specific predictions. Sec-
ond, even in case of a prior-data conflict, Bayesian updating ensures that analysis
priors will be updated to rational posterior distributions. In contrast, in an a-
priori BFDA, design priors do not get updated. If the beliefs expressed in the
design prior do not align with the population truth, the determined sample size
is doomed to be suboptimal.

In any domain of life, possessing solid prior knowledge about an environ-
ment immensely improves planning and decision making. Research design is no
exception to this rule. However, knowledge about effect sizes prior to data collec-
tion is usually sparse, making it difficult to find efficient and informative designs.
Here, we proposed a methodology that allows researchers to overcome this issue
of sparse knowledge by making possible the dynamic evaluation and on-the-fly
adaptation of sampling plans. We hope that in the future, this increased flexibil-
ity will help researchers to find an optimal way to allocate their resources and
obtain robust research results.
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6

Practical Challenges and Methodological
Flexibility in Prior Elicitation

Abstract

The Bayesian statistical framework requires the specification of prior dis-
tributions, which reflect pre-data knowledge about the relative plausibility
of different parameter values. As prior distributions influence the results of
Bayesian analyses, it is important to specify them with care. Prior elicitation
has frequently been proposed as a principled method for deriving prior dis-
tributions based on expert knowledge. Although prior elicitation provides a
theoretically satisfactory method of specifying prior distributions, there are
several implicit decisions that researchers need to make at different stages
of the elicitation process, each of them constituting important researcher de-
grees of freedom. Here, we discuss some of these decisions and group them
into three categories: decisions about (1) the setup of the prior elicitation;
(2) the core elicitation process; and (3) combination of elicited prior distribu-
tions from different experts. Importantly, different decision paths could result
in greatly varying priors elicited from the same experts. Hence, researchers
who wish to perform prior elicitation are advised to carefully consider each
of the practical decisions before, during, and after the elicitation process. By
explicitly outlining the consequences of these practical decisions, we hope to
raise awareness for methodological flexibility in prior elicitation and provide
researchers with a more structured approach to navigate the decision paths in
prior elicitation. Making the decisions explicit also provides the foundation
for further research that can identify evidence-based best practices that may
eventually reduce the methodologically flexibility in prior elicitation.

This chapter is published as Stefan, A. M., Evans, N. J., & Wagenmakers, E.-J. (2022). Practical
challenges and methodological flexibility in prior elicitation. Psychological Methods, 27(2), 177-197.
https://doi.org/10.1037/met0000354 Also available as PsyArXiv preprint: https://psyarxiv.com/
d42xb/
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6. Practical Challenges and Methodological Flexibility in Prior Elicitation

6.1 Introduction

Prior distributions are an indispensable part of the Bayesian statistical frame-
work. However, opinions differ as to whether priors should be seen as a neces-
sary evil or an attractive feature of Bayesian methods. On the one hand, prior dis-
tributions have been fervently criticized for their perceived inherent subjective-
ness (e.g., Efron 1986; but see Lindley 1986). Even some proponents of Bayesian
methods have expressed concerns that poorly specified prior distributions may
bring an “excellent model [...] under suspicion” (Bayarri & Berger, 2000), and
may undermine the validity of marginal likelihoods as a measure of evidence
(Kass & Raftery, 1995; Liu & Aitkin, 2008). On the other hand, prior distribu-
tions have been proposed as a powerful tool to incorporate existing information
into statistical models (Lindley, 2004; O’Hagan, 2019). By constraining model
predictions to realistic scenarios (Gelman et al., 2017), carefully specified prior
distributions can ensure that statistical models provide an accurate reflection of
substantive theories (Dienes, 2011; Lee & Vanpaemel, 2017; Vanpaemel, 2010).
Consequently, models with carefully specified prior distributions that incorpo-
rate available substantive knowledge can yield more diagnostic and informative
tests of theory (Gronau et al., 2020).

Two essential insights can be distilled from the recurring debates on prior
specification. Firstly, there is no way around prior specification in Bayesian statis-
tics. Regardless of their personal stand on prior distributions, all researchers em-
ploying Bayesian methods must specify them. Secondly, prior distributions can
considerably influence the results of Bayesian model comparisons and parameter
estimation. This makes it necessary to justify the choice of prior distributions in
the context of model specification.

One method to specify prior distributions is through prior elicitation from ex-
perts (e.g., Dias, Morton, & Quigley, 2018). Prior elicitation is a structured inter-
view process designed to transform qualitative probability judgments of subject
experts into quantitative probability distributions. Enriching statistical models
with relevant expert knowledge is often practically desirable because it allows
for realistic predictions and diagnostic tests in the face of sparse data (Stefan et
al., 2019).

Given that data is often costly to obtain or subjected to limited availability,
is not surprising that more and more statisticians consider enriching their statis-
tical models with expert knowledge through prior elicitation from experts. For
example, of the 59 articles published in the journal Bayesian Analysis between
January 2019 and March 2020, 7 articles discuss in detail how results of prior elic-
itation could be used in Bayesian modeling and 9 additional articles at least men-
tion prior elicitation from experts. Prior elicitation is gaining popularity in many
different fields such as economics, medicine, or engineering (for an overview,
see O’Hagan et al., 2006) and is already performed routinely in some areas, for
example in pharmaceutical research (e.g., Guo, Park, & Liu, 2019; Thall & Cook,
2004; Thall, Nguyen, & Zinner, 2017; Ursino et al., 2019). In psychology, there
have been relatively few prior elicitation efforts (for exceptions see Bolsinova,
Hoijtink, Vermeulen, & Béguin, 2017; Gronau et al., 2020; Sarma & Kay, 2020;
Tessler & Goodman, 2019), but given the increasing use of Bayesian methods
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(Andrews & Baguley, 2013; Tendeiro & Kiers, 2019) and the broad support for in-
formed Bayesian methods by Bayesian experts (Aczel et al., 2018), it seems plau-
sible that prior elicitation may also become widely adopted in psychology in the
future.

In this chapter, we examine several practical decisions that researchers need
to make in every prior elicitation procedure. We believe that highlighting these
decisions is important as researchers are often unaware of these decisions and
often make them without a sufficient evidential basis. Over the course of this
chapter, we demonstrate that many of these practical decisions can have a sub-
stantial impact on the results of the prior elicitation procedure, leading to con-
siderable researcher degrees of freedom. We discuss several practical and theo-
retical considerations researchers can make when faced with these decisions, and
give preliminary directions as to how researchers can manage the multiplicity
of results stemming from methodological flexibility in the prior elicitation pro-
cess. The present chapter also motivates further research aimed at establishing
evidence-based gold standards for prior elicitation.

After giving a short explanation of the role of the prior distribution in
Bayesian inference, we will provide a brief introduction to prior elicitation in
the context of subjective Bayesian analyses. In the remainder of the chapter,
we will discuss decisions that need to be taken before, during, and after a prior
elicitation procedure. We will begin by outlining the decisions involving the
choice of experts and parameters for the elicitation. Then, we will discuss deci-
sions about the core interview process, such as which prior elicitation technique
should be used and how the elicitation results should be transformed into a
probability distribution. Finally, we address the question of whether and how
prior distributions elicited from many experts should be combined. Based on the
discussed practical problems of prior elicitation, we derive several preliminary
recommendations for prior elicitation and conclude that transparency and a
broader empirical basis will be necessary to increase the practical usefulness and
methodological rigor of prior elicitation in the future.

6.2 Prior Distributions in Bayesian Inference

Prior distributions are probability distributions that are placed on parameter val-
ues in Bayesian statistical models. The shape of the distribution represents the
relative plausibility of parameter values prior to data collection. Therefore, prior
distributions are typically specified before the data collection takes place.1 The
knowledge incorporated in the prior distribution is updated based on observed
data. Mathematically, this is described by Bayes’ rule as an update from the prior

1But see empirical Bayes approaches that define the prior based on data (e.g.,
Casella, 1985)
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distribution to the posterior distribution:

p(θ | D)︸ ︷︷ ︸
Posterior

= p(θ)︸︷︷︸
Prior

×

Likelihood︷ ︸︸ ︷
p(D | θ)
p(D)︸ ︷︷ ︸

Marginal Likelihood

, (6.1)

where p(θ | D) is the posterior distribution of the parameter given the data D,
p(D | θ) is the likelihood of the data given the parameter values θ, p(θ) is the
prior distribution of the parameter, and p(D) is the marginal likelihood of the
data. The primary focus in Bayesian parameter estimation concerns the posterior
distribution which represents the updated knowledge about a parameter in a
model after seeing the data. As shown in Equation 6.1, the shape of the prior
distribution directly influences the shape of the posterior distribution.

Another key interest in Bayesian inference is to assess the relative support
that the data provide for each of a series of rival models. This can be achieved
by a Bayesian model comparison. In Bayesian model comparisons, the primary
concern is the marginal likelihood of the data p(D) under each model (Mi). The
marginal likelihood can be found by integrating over the parameter space – that
is, all parameter values that are logically possible under the respective model –
and can be interpreted as a measure of the predictive performance of the model,

p(D | Mi) =

∫
p(D | θi,Mi)p(θi | Mi) dθ . (6.2)

As can be seen from Equation 6.2, the prior distribution p(θ |M) plays an
important role in the calculation of the marginal likelihood of a model, where
changes in the prior distribution will result in changes of the marginal likeli-
hood. The ratio of two marginal likelihoods is called a Bayes factor and provides
a measure of relative evidence provided by the data for one model over the other
model (Kass & Raftery, 1995):

BF12 =
p(D | M1)

p(D | M2)
(6.3)

The Bayes factor is a quantity of interest in Bayesian hypothesis testing, where a
model representing the null hypothesis is compared to a model representing the
alternative hypothesis.2 These models are typically nested, such that a parameter
is fixed in the null model and a prior distribution is put on the parameter in the
alternative model (Jeffreys, 1961; Sinharay & Stern, 2002). By definition, the re-
sult of the hypothesis test is sensitive to the prior distribution for the parameter
in the alternative model. Therefore, a careful choice of prior distributions is es-
sential in Bayesian hypothesis testing (Jeffreys, 1939; Tendeiro & Kiers, 2019; van
Ravenzwaaij & Wagenmakers, 2019; Vanpaemel, 2010). Depending on the model
parametrization, priors can be placed on raw values, for example a difference in

2Note that tools other than the Bayes factor also allow comparing models (Evans, 2019), for
example Bayesian leave-one-out cross validation (Gronau & Wagenmakers, 2019), however, in this
chapter we will focus on Bayesian null hypothesis testing with Bayes factors.
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means (Dienes & Mclatchie, 2018), or on standardized parameters, for example a
standardized effect size (Gronau et al., 2020; Rouder et al., 2009).

6.3 Prior Elicitation as a Basis for Subjective Bayesian Analyses

Among Bayesian statisticians, there has been a lively debate about what level
of prior information should be incorporated in the prior distribution (e.g.,
J. O. Berger, 2006; Fienberg, 2006; Goldstein, 2006; Jeffreys, 1963). On the one
hand, “objective” Bayesians aim to find default solutions for common statistical
problems without the assumption of existing prior knowledge. They specify
prior distributions with regard to one or more desirable mathematical proper-
ties, for example maximum entropy (Jaynes, 1982), maximal data information
(Zellner & Min, 1993), invariance under reparametrization (Hartigan, 1964), or
information consistency of the Bayes factor (Ly et al., 2016; for overviews see
Kass & Raftery, 1995, Bayarri et al., 2012, and Consonni et al., 2018). Objective
prior distributions are often used as a default in software packages for Bayesian
inference, e.g., in the BayesFactor R package (Morey & Rouder, 2018) and in JASP
(JASP Team, 2021).

On the other hand, “subjective” Bayesians claim that prior distributions
should be informed by scientific theory (Lee & Vanpaemel, 2017; Vanpaemel,
2010) and prior knowledge about parameters (Goldstein, 2006).3 The underlying
idea is that the prior distribution is an integral part of a Bayesian statistical model
and that quantitative predictions of the statistical model should be consistent
with the expectations of field experts (Gelman et al., 2017). Following this logic,
it is impossible to find a one-size-fits-all default prior distribution (Fienberg,
2006). Instead, custom “informed” prior distributions need to be defined for
specific application problems. The focus of our chapter – prior elicitation – is a
general approach for creating these informed prior distributions based on expert
knowledge. However, we wish to note that our focus on prior elicitation is not
an endorsement of the subjective Bayesian approach over the objective Bayesian
approach, and readers interested in philosophical debates between proponents
of these approaches should, for example, read the informative exchange between
Goldstein (2006), Fienberg (2006), and J. O. Berger (2006).

Figure 6.1 shows an example for the different quantitative predictions of a
default and an informed prior distribution in practice. Specifically, Figure 6.1
displays two probability distributions that can be used as a prior distribution on
the effect size Cohen’s δ in the alternative hypothesis model of a Bayesian one-
sample t-test. The Cauchy prior is an often-used default prior that leads the test
to fulfill the desiderata of predictive matching and information consistency (Ly
et al., 2016; Rouder et al., 2009). The normal prior represents one option for a
moderately informed prior distribution (Gronau et al., 2020). The two prior dis-
tributions are shown in the left panel of Figure 6.1. The right panel of Figure 6.1
shows the likelihood of observing certain t-values under the default prior model
and under the informed prior model, that is, the prior predictive distributions for

3Note that the terms “objective” and “subjective” Bayesian inference do not imply a normative
relationship but are used as descriptive terms for different modeling frameworks.
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Figure 6.1: Two prior distributions on Cohen’s δ in a Bayesian one-sample t-test
and the respective prior predictive distributions for a sample size ofN = 30. Solid
lines refer to the default prior (Cauchy distribution with location parameter µ =
0, scale parameter r =

√
2/2; see Rouder et al., 2009), dotted lines refer to an

informed prior (normal distribution with mean µ = 0.35 and variance σ2 = 0.25;
see Gronau et al., 2020).

both models. As can be seen, the Cauchy prior makes vague predictions, assigns
the highest likelihood to t = 0, and a relatively high likelihood to extreme values.
This might not be aligned with researchers’ predictions who often expect small,
but non-zero, effects (Richard, Bond, & Stokes-Zoota, 2003). Thus, an informed
prior such as the one shown in Figure 6.1 may better represent their current state
of knowledge and make more realistic predictions.

In a Bayesian hypothesis testing setting, the more constrained predictions of
informed prior distributions have the additional advantage that evidence for or
against a model can typically accrue faster than when default priors are used
(e.g., Stefan et al., 2019). This means that researchers are more likely to obtain
strong evidence in favor of either model even when little data are available. In
certain areas of psychology where data collection can be costly and sample sizes
are typically small, this increased diagnosticity can be considered a major advan-
tage of informed prior distributions.

It is important to note that prior specification in Bayesian modeling matters
most when data are scarce. If there are ample data, the data will overwhelm the
prior distribution (Vanpaemel, 2010; Wrinch & Jeffreys, 1919). This means that
posterior distributions derived from different prior distributions will be almost
indistinguishable (note, however, that Bayes factors with different priors under
the alternative model can still be different). The amount of data needed to over-
whelm the prior distribution depends on the level of information contained in the
prior distribution relative to the informativeness of the data. For example, some
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statisticians recommend weakly-informative prior distributions that include just
enough subjective information to regularize and stabilize the model but can be
quickly overwhelmed by the data (Gelman, Jakulin, Pittau, & Su, 2008; Sarma &
Kay, 2020). This shows that “objective” and “subjective” prior distributions can
be considered a continuum rather than a dichotomy. Prior distributions specified
based on prior elicitation efforts from experts can lie anywhere along this contin-
uum depending on the uncertainty of the experts and on the researchers’ decision
regarding the extent to which they want to incorporate the expert knowledge in
their priors.

6.4 Prior Elicitation From Experts

One principled way to specify an informed prior distribution is through prior
elicitation from experts (O’Hagan et al., 2006). In contrast to other methods, for
example prior specification based on the outcomes of previous studies (Boehm
et al., 2018; Verhagen & Wagenmakers, 2014), prior elicitation does not require
existing data and is therefore widely applicable to almost all prior specification
scenarios.

Prior elicitation techniques aim to transform qualitative plausibility judg-
ments of field experts to probability distributions (O’Hagan et al., 2006). A
prior elicitation procedure can best be described as a structured interviewing
process where an interviewer, also called facilitator, guides one or more field
experts through the process of formulating their knowledge about parameters
in a probabilistic form (Garthwaite, Kadane, & O’Hagan, 2005; Winkler, 1967).
Typically, prior elicitations are conducted face-to-face, but online questionnaires
or telephone interviews are possible as well (S. R. Johnson, Tomlinson, Hawker,
Granton, & Feldman, 2010). Several protocols have been developed that structure
the elicitation procedure and intend to minimize cognitive biases, such as the
availability or overconfidence bias or anchoring effects (O’Hagan, 2019). A com-
mon feature of all prior elicitation procedures is that they directly or indirectly
ask experts to define a limited number of summary statistics of the resulting
probability distribution, such as quantiles or a most likely value (O’Hagan &
Oakley, 2004). These summary statistics are then used in a second step to fit
a probability distribution using a minimization algorithm (Morris, Oakley, &
Crowe, 2014). When multiple experts participate in the prior elicitation, the
resulting distributions can be combined into a single prior distribution in a third
step (Albert et al., 2012).

Prior elicitation from experts has been repeatedly proposed as a solution for
prior specification in Bayesian modeling in psychology (Baldwin & Fellingham,
2013; S.-M. Chow & Hoijtink, 2017; Depaoli, 2014; Dienes, 2019; Etz & Vandek-
erckhove, 2018; Lee et al., 2019; Lee & Vanpaemel, 2017). Although Bayesian
inference has only recently gained attention in psychology (Andrews & Baguley,
2013; Tendeiro & Kiers, 2019; Vandekerckhove, Rouder, & Kruschke, 2018), prior
elicitation efforts can already be found across several different psychological dis-
ciplines. For example, Gronau et al. (2020) used prior elicitation in an analysis of
a replication of Strack et al.’s (1988) facial feedback study. Bolsinova et al. (2017)
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Setup of the Prior Elicitation Core Elicitation Process Combination of Priors from 
Different Experts

• For which parameters should prior 
distributions be elicited?

• Who should be the experts in the 
prior elicitation?

• How many experts should be 
invited?

• How much common ground 
should be established between the 
experts before the elicitation?

• Which prior elicitation technique 
should be chosen?

• How should the prior elicitation 
technique be implemented?

• What functional form should be 
used to fit the prior?

• Should experts be allowed to
adjust the prior?

• Should elicited priors be combined 
to one distribution?

• Should experts interact to find a 
consensus distribution?

• Should priors be combined using 
mathematical rules?

Figure 6.2: Overview of outcome-relevant decisions that researchers have to
make in the prior elicitation process that are discussed in this chapter.

used an elicitation procedure to specify priors for the difference in difficulty of
two psychological tests. In clinical applications, Mossman et al. (2015) conducted
a prior elicitation for the base rate of feigning cognitive impairment in the Test
of Memory Malingering, and Al-Awadhi and Garthwaite (1998) elicited priors
for a multivariate normal model on intelligence and memory performance after
head-injuries. Recently, Sarma and Kay (2020) used prior elicitation to formu-
late a Bayesian model of the Balloon Analogous Risk Task (BART) that measures
risk-taking behavior, and Tessler and Goodman (2019) elicited beliefs about the
prevalence of certain features (e.g., being female) in semantic categories.

There are several review articles on prior elicitation techniques (e.g., Garth-
waite et al., 2005; Grigore, Peters, Hyde, & Stein, 2013; S. R. Johnson, Tomlinson,
Hawker, Granton, & Feldman, 2010) as well as two monographs covering prob-
ability elicitation in various research settings (Dias et al., 2018; O’Hagan et al.,
2006). Although we believe that it is beyond the scope of the current chapter to
provide a systematic review of all instances of prior elicitation being used within
psychology, we provide a brief review of some specific examples in our online
supplementary materials (https://osf.io/tbz6n/). In the remainder of this chap-
ter, we will focus on generic practical decisions that researchers have to make in
the process of prior elicitation when the goal is to find suitable priors for Bayesian
parameter estimation or model comparison. We find that although current prior
elicitation protocols are constructed to avoid cognitive bias (O’Hagan, 2019), they
allow for considerable flexibility regarding these practical decisions which can,
in turn, substantially influence the outcome of the elicitation procedure. In the
following sections, we will investigate (1) decisions about the setup of the prior
elicitation procedure; (2) decisions about the core elicitation process; and (3) de-
cisions about the final distribution fitting, and discuss how these decisions can
shape the outcomes of the elicitation process. Figure 6.2 gives an overview of the
decisions that we will address in this chapter.
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6.5 Decisions about the Setup of the Prior Elicitation

Before the core elicitation session can take place, a researcher needs to make sev-
eral basic decisions regarding the setup of the prior elicitation. For example, re-
searchers need to decide for which model parameters they want to elicit prior
distributions. These can be all model parameters, or only a subset of them. Fur-
thermore, the experts for the elicitation need to be selected. Here, decisions have
to be made such as who should be considered an expert, how many experts
should be invited, and to what extent should experts diverge in their theoretical
backgrounds. These decisions that take place before the core elicitation session
are somewhat broader than decisions at later stages of the prior elicitation pro-
cess and their implications on the elicitation results are more difficult to quantify.
However, as will become clear in the next sections, they are equally important
as they contribute to methodological flexibility and interact with decisions made
later in the process.

6.5.1 For Which Parameters Should Prior Distributions Be Elicited?

Parameter selection for prior elicitation is especially challenging in the context
of Bayesian model comparisons; with multiple models in place, a larger number
of parameters needs to be taken into account and prior distributions for similar
parameters in different models can typically not be considered completely inde-
pendent of each other. In psychological research, the most common Bayesian
model comparison is a Bayesian null hypothesis test that compares a null model
and an alternative model (Wagenmakers et al., 2010).4 Null models usually set
the parameter of interest (e.g., a mean in a t-test) to zero or another fixed value
which makes a prior elicitation for this parameter unnecessary. Alternative mod-
els typically assign a prior distribution to the parameter of interest, which makes
a prior elicitation for this parameter possible (Rouder et al., 2009; Sinharay &
Stern, 2002).

Typically, statistical models contain nuisance parameters that are not the focal
quantity of the hypothesis test (R. L. Berger & Boos, 1994). Nuisance parameters
are parameters that are necessary for the specification of the problem, but are not
by themselves subject of scientific interest (Liang & Zeger, 1995). Even subjec-
tive Bayesians typically assign default prior distributions to nuisance parameters
(J. O. Berger, 2006), for example Jeffreys’ prior (p(σ2) = 1/σ2) for the variance
in a t-test (Gronau et al., 2020) Thus, prior elicitation mostly focuses on prior
distributions for the parameters of interest, although it would technically be pos-
sible to elicit priors for nuisance parameters as well (Dienes, 2008, p. 94). There
are two apparent reasons for this unequal treatment of parameter groups. The
most important reason is that priors on nuisance parameters tend not to influ-
ence the conclusions of Bayesian analyses which makes it questionable whether
time and other resources should be dedicated to prior elicitation in these cases
(Chaloner, 1996). Additionally, it is not clear whether experts are able to make

4But note that the Bayesian paradigm allows you to compare any models you can specify (Etz,
Haaf, et al., 2018; Evans & Servant, 2020).

125



6. Practical Challenges and Methodological Flexibility in Prior Elicitation

reliable plausibility judgements for nuisance parameters. This makes it question-
able whether using elicited priors on nuisance parameters would lead to better
models (O’Hagan et al., 2006, p. 35).

There is a specific case in the practice of Bayesian model comparisons where
the feasibility of expert elicitation for parameters of interest may be questionable,
that is, when one model is clearly preferred over another by the (available) ex-
perts. As Garthwaite et al. (2005) state, in general, the objective of prior elicitation
is “to express the expert’s current knowledge in probabilistic form”. However,
when the current knowledge renders the assumptions of one model unlikely, de-
riving a realistic prior distribution for effect size under this model might be dif-
ficult for field experts, as they have to selectively disregard their current knowl-
edge about the low model probability in the elicitation process and focus on the
(however unlikely) scenario that the model assumptions hold. For example, in
Bayesian null hypothesis testing, field experts may entertain strong beliefs in fa-
vor of the null model even though researchers deem it probable that an effect
could exist. In our experience, experts in this case tend to confuse their indi-
vidual small prior model probability for the alternative model with a small ex-
pected effect size. For example, imagine health experts being asked for the most
likely effect size of a new treatment for late stage Alzheimer’s disease. As most
treatments have been shown to be ineffective in earlier studies (Kumar, Singh,
& Ekavali, 2015), it is likely that none of the available experts believes in the ex-
istence of an effect. When pressured to specify a prior distribution under the
alternative model, they are likely to use the heuristic “The effect is unlikely to be
there, so if it exists, it must be very small”. However, we argue that this heuristic
can be misguided because the probability of the existence of an effect (i.e., “The
new treatment is effective”) does not have to be informative about the size of the
effect given that the effect exists (i.e., “The expected health effect given that the
new treatment works”). On a formal level, we expect that the experts run a risk
to induce a correlation between the prior model probability, p(M), and the prior
distribution within the model, p(θ |M), if they assign a low prior probability to
the model. We argue that this might render an unbiased elicitation difficult in
this case.

To conclude, researchers need to carefully consider which prior distributions
should be elicited from experts before the elicitation procedure starts. This de-
cision is important because elicited informative priors might differ substantively
from alternative default solutions. Eliciting prior distributions for all parameters
might not be possible because of time constraints or because experts are likely to
be unable to provide reliable non-biased plausibility assessments. Pre-elicitation
interviews might help to identify what parameters are suitable for elicitation, for
example by asking experts how confident they are with providing plausibility
assessments for parameter values, but there is no evidence as to whether such
interviews can provide reliable results. When elicitation is considered feasible
but difficult for the experts, both expert and facilitator training before the elicita-
tion may help to mitigate biases and enable experts to provide more accurate and
reliable distributions.
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6.5.2 Who Should Be the Experts in a Prior Elicitation?

As stated above, prior elicitation requires the participation of one or more field
experts. But what is an expert? According to Bolger (2018), candidates should
display both substantive and normative expertise. Substantive expertise refers to
the possession of knowledge about the concepts, theories, and state of literature
in the research field in question. Normative expertise required for prior elicita-
tion mainly refers to sufficient familiarity with the most important statistical con-
cepts used for the elicitation, such as expressing uncertainty as probabilities and
understanding the relevant parameters of the statistical model (O’Hagan et al.,
2006, p. 27). Questionnaires such as the ‘Expert-Skills Questionnaire’ (European
Food Safety Authority, 2014) can be used to screen experts before the elicitation
procedure, but the concrete operationalization of the expert definition remains
highly situation-specific and is left to the researcher.

In practice, the number of experts available for prior elicitation is often lim-
ited. In general, the more specialized the field of application is, the fewer field
experts with sufficient substantive knowledge will be available. However, even if
a large number of substantive experts exists, the complexity and parametrization
of the statistical model can diminish the number of suitable experts. For example,
more experts will be comfortable with making probability judgments about raw
parameters (e.g., means) than about standardized parameters or hyperparame-
ters in hierarchical models. The SHELF elicitation framework (O’Hagan & Oak-
ley, 2019) suggests to train experts in making the required probability judgments
before the elicitation procedure starts. However, the maximum duration of these
trainings is limited as most experts’ willingness to participate will depend on the
amount of time they need to commit to the elicitation procedure. For complex
models, it is unlikely that all relevant information can be conveyed within the
short time frame of these training sessions in a way that experts can confidently
use the relevant statistics in the elicitation procedure.

To conclude, we argue that the presence of sufficient normative knowledge
needs to be considered carefully in the selection of experts, as well as practical
factors such as time constraints and available resources (European Food Safety
Authority, 2014). The selection of experts can have considerable implications for
the results of the prior elicitation because different experiences, theoretical con-
victions, levels of normative expertise, and even personality characteristics can
prompt experts to provide different assessments in the prior elicitation process.

6.5.3 The More the Merrier?

The question of availability directly connects to the question of finding the opti-
mal number of participating experts. In the current literature, there is no general
agreement regarding the answer to this question. For example, O’Hagan (2019)
recommends 4–8 experts, Aspinall (2010) recommends 8–15 experts, and Grigore
et al. (2013) recommend 6–12 experts. It is important to note that all of these rec-
ommendations are based on practical experience and theoretical considerations
rather than on experimental evidence.
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Dating back to Kadane (1986), an often-mentioned goal for expert recruitment
is that the expert panel should be representative for the community in the re-
search field. Experts should possess a similar level of expertise while contribut-
ing different perspectives on the topic (Grigore et al., 2013). This has been shown
to be a sensible approach in parameter estimation contexts (e.g., Aspinall, 2010),
where a combined prior distribution from a diverse expert panel can represent
the current uncertainty about a quantity within a field. However, the recruitment
of experts from different schools of thought and the subsequent pooling of the
experts’ elicited priors could be criticized from a model comparison standpoint.
As prior distributions are part of the specification of models, and models formal-
ize substantive theories (Vanpaemel, 2010), lumping together priors from experts
with different individual hypotheses can lead to models that do no longer pre-
cisely represent any single substantive theory. There are two ways to resolve this
issue: Either a high-consensus panel can be recruited, where all experts are likely
to follow the same underlying school of thought, and their prior distributions can
be pooled. Alternatively, a diverse panel can be recruited where only the prior
distributions from similar experts are later combined, so that in the end multiple
models arise that represent the different schools of thought. We will address the
combination of prior distributions later in this chapter.

To conclude, the number and diversity of experts can influence the variability
of prior distributions that result from the process. Researchers can manage this
variability based on the goals of the statistical analysis.

6.5.4 How Much Common Ground Should Be Established Before the
Elicitation?

Even natural high-consensus groups of experts, such as the members of one re-
search team, can come to diverging results in the prior elicitation procedure. For
example, in a Bayesian hypothesis testing framework, experts can disagree as to
whether the alternative hypothesis to test should be one-sided or two-sided – that
is, whether the prior distribution should be truncated – or whether certain values
should be assigned a very low prior probability. Although a certain amount of
variability between elicited distributions is natural and potentially desirable (if
experts have different backgrounds), a subsequent aggregation of qualitatively
different elicited prior distributions can result in a vague final prior distribution,
or even worse, a final prior distribution that provides a poor reflection of individ-
ual experts’ assessments of probability (Estes, 1956; Ratcliff, 1979). This makes it
important to find a balance between unique contributions and a-priori consensus
of experts. A-priori consensus can either be achieved through recruitment only
(as described in the previous section) or through communication between experts
before the elicitation procedure.

Figure 6.3 shows three theoretical scenarios for different levels of consensus
between experts, and how establishing common ground before the elicitation in-
fluences the potential for variability between experts. In the left panel, no com-
munication between experts took place before the prior elicitation. In this sce-
nario, the resulting prior distributions can be highly divergent, including trun-
cated, bimodal, and highly skewed distributions. The middle panel shows a
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Figure 6.3: Hypothetical examples for elicited distributions with different levels
of consensus between experts before the prior elicitation. All distributions are
(truncated) beta distributions. In the middle panel, distributions are truncated
at 0.5 to illustrate a scenario where experts agreed on the sidedness of the hy-
pothesis before the elicitation. The right panel shows distributions where experts
agreed before the elicitation that the most plausible parameter values lay between
0.2 and 0.7.

scenario where experts agree on the direction of the hypothesis prior to elici-
tation such that all distributions are truncated below a certain cutoff value (here:
θ = 0.5). As can be seen, the distributions are still divergent, but only within a
limited range. Many elicitation methods (e.g., Morris et al., 2014) require experts
to define a wide credible interval at the beginning of the elicitation procedure.
The panel on the right shows a scenario where experts had to agree on this range
of most plausible values before the elicitation. We depict the hypothetical sce-
nario that the experts agreed on a range between 0.2 and 0.7. As can be seen,
for all resulting prior distributions, the prior mass is mainly located within the
bounds of the range of plausible parameters, which limits the discrepancy be-
tween the prior distributions.

As a general rule, the more constraints are imposed upon experts by consen-
sus establishing procedures, the less distinctive input can be acquired from each
expert. In the most extreme case, the complete elicitation procedure could be con-
structed as a group task where the immediate output is a single prior distribution
(O’Hagan et al., 2006, p. 186f). However, classic social psychology research sug-
gests that the elicitation results will be more subject to group dynamics as the
amount of group activity within the elicitation procedure increases (European
Food Safety Authority, 2014). For example, group settings might induce experts
to suppress dissent and the consideration of alternative solutions due to phe-
nomenons such as group-think (Janis, 1972) or social conformity (Asch, 1956).
The group elicitation result might also be more influenced by individuals with
certain personality characteristics or a higher attributed seniority (Bolger, 2018;
Gosling, 2018). On the other hand, if an experienced facilitator can counteract
these biases, single experts may profit from a group discussion by acquiring rel-
evant knowledge (Reagan-Cirincione, 1994). Methods to structure group discus-
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sions are discussed later in this chapter.
An alternative to establishing common ground before the elicitation is to treat

experts as separate entities first (as in the left panel of Figure 6.3) and to pool pri-
ors that can reasonably be assumed to represent the same hypothesis in a second
step. In this way, prior elicitation can act as a hypothesis-generating procedure
in which multiple competing hypotheses prevalent in the scientific community
can be extracted and instantiated as statistical models. Approaches such as hi-
erarchical clustering analyses (e.g., Aggarwal & Reddy, 2014) or latent mixture-
model approaches (e.g., Navarro, Griffiths, Steyvers, & Lee, 2006) could be used
to achieve a statistically robust grouping of experts. However, a standard sta-
tistical procedure for grouping experts into clusters of qualitatively similar prior
distributions has not yet been developed.

In conclusion, researchers engaging in prior elicitation must be aware that
the rules they set for communication between the experts influence the resulting
distributions. There is a clear trade-off between harvesting the largest possible
amount of information from each expert (when communication is limited) and
achieving converging results from multiple elicitation procedures (when experts
agree on common ground beforehand). The desirable amount of communication
before the elicitation procedure is likely to be dependent on later steps of the
elicitation process and analyses, for example on whether the elicited distributions
should be pooled or analyzed separately.

6.6 Decisions about the Core Elicitation Process

After nominating the experts, selecting parameters, and setting the rules for com-
munication between the experts, researchers need to shape the core elicitation
process, that is, the details of the interview procedure from which prior distribu-
tions of experts are derived. All common structured elicitation methods are de-
signed with the goal of minimizing noise arising from this interview procedure,
such as interviewer effects or cognitive biases (Hanea, Burgmann, & Hemming,
2018; O’Hagan, 2019). However, many decisions about the elicitation procedure
are still left to the researcher, both on the macro level (i.e., choice of an elicitation
technique) and on the micro level (i.e., choices within an elicitation technique)
and these decisions can influence the outcome of the elicitation process. List-
ing all possible elicitation techniques or providing a comprehensive account of
the multitude of choices within a technique is beyond the scope of this chapter.
Therefore, the next sections will outline these decisions on a general level and
provide several examples to showcase how they could influence the elicitation
results. At the end of the elicitation procedure, a probability distribution needs
to be fitted to the experts’ elicitation results. In the following sections, we there-
fore also investigate how the facilitator’s choice of a distributional family and the
level of expert control over the final distribution can influence elicitation results.

6.6.1 Which Prior Elicitation Technique?

The current literature comprises a large variety of elicitation techniques (see
Garthwaite et al., 2005; Grigore et al., 2013; S. R. Johnson, Tomlinson, Hawker,
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Granton, & Feldman, 2010, for an overview). These range from very general
methods that can be applied to a multitude of models (e.g., Morris et al., 2014)
to very specific methods that are designed for a single model application (e.g.,
Chaloner, Church, Louis, & Matts, 1993).

Typically, prior elicitation techniques aim to assess quantiles of experts’ inher-
ent probability distributions on parameters (Grigore et al., 2013). The methods
differ in the framing of the questions and in the number of elicited quantiles. For
example, in some methods experts are asked to “bet” coins on parameter values
while others ask for quantiles directly, and some methods elicit only 3 quantiles
while others elicit 10 or more (Morris et al., 2014). One of the most popular prior
elicitation techniques is the Bisection Method (Grigore et al., 2013). Here, experts
first specify a value (the median) such that the parameter is equally likely to be
less or greater than this value. Then, experts are told to assume that the param-
eter is, in fact, smaller/larger than the median and the lower/upper quartile are
assessed in the same way as the median (O’Hagan et al., 2006, pp. 100f). In a
similar manner, the Tertile Method asks the experts to specify the median as well
as the 33rd and 66th percentile (Garthwaite & O’Hagan, 2000). In contrast, the
Complementary Intervals (Leal, Wordsworth, Legood, & Blair, 2007) and Probability
Method (Morris et al., 2014) require experts to express their subjective probability
that the parameter lies within certain predefined intervals. The Roulette Method
(S. R. Johnson, Tomlinson, Hawker, Granton, Grosbein, & Feldman, 2010) frames
the elicitation as a betting game. Here, the facilitator gives a number of coins to
the expert which the expert needs to “bet” on several parameter intervals. The
number of coins per interval is then transformed into a probability statement.
Similarly, the Histogram Technique (van Noortwijk, Dekker, Cooke, & Mazzuchi,
1992) asks experts to adjust the bars of a histogram according to their subjective
probability.

Most prior elicitation methods, like the ones mentioned earlier, involve ques-
tions about the model parameters themselves (e.g., Grigore et al., 2013; Winkler,
1980). However, it is also possible to elicit prior distributions indirectly by ask-
ing experts to answer questions about the plausibility of observable data patterns
(Kadane, 1980). For example, the experts could indicate the plausibility of a cer-
tain number of successes in a binomial sample (Winkler, 1967) or the values of
a criterion variable in a linear regression model (Winkler, 1980). The experts’
predictions are then used to reconstruct the prior distribution that most closely
matches these predictions, such as through the marginal likelihood formula in
Equation 6.2. Importantly, indirect elicitation methods are designed to reduce
the cognitive load on experts, thus making the elicitation procedure accessible
for experts with less normative expertise (Bolger, 2018; Kadane, 1980).

However, it is important to note that in addition to the many sources of
methodological flexibility discussed within this chapter, indirect approaches to
prior specification contain several unique limitations. Firstly, these approaches
are even more model specific than those that directly query the parameter val-
ues, as reconstructing the prior distribution depends on the likelihood function
(Winkler, 1980). Secondly, reconstructing unique prior distributions from the
elicited data patterns becomes more difficult with increasing model complexity,
as for models with highly correlated parameters different combinations of prior
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distributions can lead to similar predictions about observable data (Gutenkunst
et al., 2007). This is especially noteworthy since indirect elicitation is often
recommended for complex models for which it might be difficult to recruit
experts with sufficient normative expertise (Kadane, 1980). Note that we base
the examples within this section of the chapter on direct elicitation techniques,
though the general points of discussion (see Figure 6.2) are still applicable to
indirect approaches.

Even though there is some evidence that not all elicitation methods work
equally well in practice (e.g., Morris et al., 2014; Winkler, 1967), only few studies
have directly compared different elicitation methods in terms of their psycho-
metric quality, comprehensibility, or efficiency (Grigore, Peters, Hyde, & Stein,
2016; S. R. Johnson, Tomlinson, Hawker, Granton, & Feldman, 2010; Winkler,
1967). The few existing validation studies suffer from small sample sizes and are
typically conducted in highly specialized application domains so that their gen-
eralizability is questionable (Garthwaite & O’Hagan, 2000; Grigore et al., 2016).
Therefore, little guidance exists for researchers regarding which elicitation tech-
nique they should choose. However, existing research on risk taking and deci-
sion making suggests that it is likely that the choice of the elicitation technique
will have an influence on the functional form and validity of resulting distribu-
tions. For example, betting approaches might diminish overconfidence and thus
result in wider distributions (Ferretti, Guney, Montibeller, & von Winterfeldt,
2016) or experts’ underestimation of sampling variability (Tversky & Kahneman,
1971) might lead to tighter prior distributions in indirect elicitation approaches.
More research is needed, however, to gauge the effects that different elicitation
methods exert on the elicitation results.

6.6.2 Choices Within an Elicitation Technique

Although current protocols (e.g., Gosling, 2018) try to standardize prior elicita-
tion, there are often almost as many “little choices” within an elicitation method
as there are choices between elicitation methods. For example, the MATCH tool
for prior elicitation (Morris et al., 2014) suggests that experts should always pro-
vide a range at the beginning of the elicitation session, that is, a wide credible
interval of their prior distribution. This is often necessary for the purpose of
graphical elicitation when the elicited quantity has to be drawn on an axis, as it
is the case in the Roulette Method or the Histogram Technique. The definition of
the range is not specified clearly by the MATCH authors, so it can either be left
undefined (“Please specify a range of plausible values”) or specified as a 90%,
95%, 99% or any other credible interval. Panel A of Figure 6.4 shows the impact
of this choice on the resulting prior distributions in a Roulette Method elicita-
tion under the assumption that the expert’s coin allocation (see middle panel in
Figure 6.4C) remains unchanged. Arguably, the differences between the distribu-
tions are not large. However, the range specification that is given to the experts
may also interact with their level of confidence, that is, it could encourage experts
to spread their coins more or less widely across the available parameter intervals
(see Figure 6.4C for an example). Panel B of Figure 6.4 shows how this could
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Figure 6.4: Panel A. Three prior distributions fitted to the same betting data in
the Roulette Method based on three different definitions of the prior range. Panel
B. Different prior distributions if prior range interacts with certainty as depicted
in Panel C. Deviations from the certainty assumed in Panel A are depicted by
increasingly lighter colors

. Panel C. Coin allocations depicting increasing certainty. The middle coin
allocation was used in Panel A.

have additional influence on the resulting distributions for two different range
specifications.

Another example regarding variability within an elicitation method is the
number of coins and parameter intervals in the Roulette Method. O’Hagan and
Oakley (2019) recommend 10 to 12 intervals and 20 or 25 coins. The consequences
of this choice can be seen in Figure 6.5. If an individual expert always follows the
strategy to assign one coin to each interval and the remaining coins to the mid-
dle categories, the resulting prior distribution depends heavily on the number
of coins the expert was given. The number of intervals does not influence the
distribution as much, but the difference is still perceivable. Of course, in reality
the expert might react to the changes in the number of coins and the number of
intervals by distributing the coins in a different manner. However, the question
remains how sensitive experts are to these subtle changes in the design of the
elicitation. It also becomes clear from Figure 6.5 that, if an initial credible range is
set, the number of available coins limits the steepness of the resulting prior dis-
tribution. Generally, more excess in the distribution is possible if more coins are
available. Additionally, the choice of certain combinations of coins and intervals
forces experts towards certain distributions. For example, when 25 coins have
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Figure 6.5: Resulting prior distributions for an elicitation method with 10 or 12
intervals and 20 or 25 coins for an individual expert who follows the same strat-
egy: Assign one coin to each interval and the remaining coins to the two middle
intervals.

to be distributed on 10 intervals, a symmetric distribution is not possible. This
may not only be uncomfortable for experts who are no longer able to express
their inherent probabilities properly, but also nudge experts towards formulating
non-symmetric distributions.

In practice, it is difficult to predict the effects of small changes in elicitation
protocols on the resulting prior distributions. However, conjointly, they con-
stitute a high amount of flexibility in the prior elicitation process that has been
largely neglected in the current literature. More research is needed to understand
the implications of these decisions and to reach a consensus about potential best
practices.

6.6.3 What Functional Form Should the Prior Have?

It is important to note that prior elicitation techniques require the facilitator
and/or the expert to make additional assumptions about the elicited distri-
butions. For example, three elicited quantiles such as in the Bisection Method
are not sufficient to fully determine a prior distribution when more than one
distributional family is considered. Figure 6.6 illustrates this by showing three
distributions that share the same quartiles and could therefore be fitted to the
same elicitation results. These distributions do not only differ distinctly in their
shape but also reflect qualitatively different beliefs. For example, whereas θ = 0
is the most likely value in the normal distribution, it is considered very unlikely
in the normal mixture, and while the normal and normal mixture distribution
assign some (low) probability to extreme values, these are logically excluded
under the uniform distribution. The uncertainty about the shape of the distribu-
tion could be partially resolved by obtaining more information from experts (i.e.,
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Figure 6.6: Three distributions with the same quartiles: Normal(0, 0.5), Uniform(-
0.337, 0.337), Normal Mixture (µ1 = −0.337, µ2 = 0.337, σ1 = σ2 = 0.1). Dotted
lines show the location of the quartiles.

elicit more quantiles). However, this comes with other limitations, for example,
a higher cognitive load and a longer duration of the elicitation procedure when
quantiles are elicited separately.

The decision of which distributional family should be used is typically left to
the researcher and, as shown before, can have severe consequences on the shape
of the distribution. Often, the choice of a distributional family is not completely
arbitrary. For example, conjugate priors provide computationally convenient so-
lutions for a multitude of Bayesian models (Fink, 1997) and are therefore often
preferred in practice. However, increasing computational power and modern
MCMC sampling methods (e.g., Evans & Annis, 2019; van Ravenzwaaij, Cassey,
& Brown, 2018) make it possible to use almost every prior distribution, and hence
there are few technical restrictions as to which prior distribution families can be
used. Of course, the chosen prior distribution needs to fulfill basic logical criteria,
for example a prior on variance should be bounded to positive values. However,
these logical criteria often do not greatly restrict the choice of available distribu-
tion families.

The above considerations make it clear that the choice of the distributional
family can impact the fitted elicited distribution. This suggests that participating
experts should be involved as much as possible in the creation of the final dis-
tribution to avoid misrepresentations of experts’ probability assessments. When
different distributions that vastly differ in shape can be fit equally well to the
elicited quantiles, it is unlikely that all of them will accurately represent the ex-
pert’s beliefs. We argue that the facilitator should be aware of these ambiguities
and if possible resolve them by asking additional questions in the elicitation pro-
cess or by letting the expert choose from different fitted distributions.
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6.6.4 Should Experts Be Allowed to Adjust the Prior?

O’Hagan et al. (2006) claim that “feedback encourages an expert to think carefully
about her assessments and [...] it can highlight apparent errors, thus providing
an opportunity for the expert to correct them” (p. 176). While it is a largely un-
contested view that reconciling logical inconsistencies through discussion dur-
ing the elicitation is a reasonable approach (but see Osherson, Shafir, Krantz, &
Smith, 1997), it is much less clear whether the probability distribution that was
fitted to the elicitation results should be discussed with the experts. For example,
the MATCH elicitation tool (Morris et al., 2014) encourages this behavior by in-
tegrating the distribution fit within the elicitation procedure. Several families of
probability distributions are fitted to the elicitation results and experts get the op-
portunity to choose a distributional family. Elicitation results (e.g., quartiles) can
be retrospectively changed if the fitted distribution does not agree to the experts’
probability assessments. More flexible procedures even make it possible to adjust
single parameters of the resulting distribution (Gronau et al., 2020).

On a higher level, the decision of whether or not to let experts adjust the
resulting prior distribution boils down to the question of confidence in the elici-
tation procedure. The more retrospective adjustments are allowed based on the
inspection of the resulting prior distribution, the higher is the chance to override
the outcomes of the carefully planned elicitation procedure by an ad-hoc proba-
bility distribution sketching. On the other hand, adjusting the final distribution
might give experts the opportunity to correct potential errors they made in the
first part of the elicitation. Thus, it remains a choice between the devil and the
deep blue sea.

If a researcher decides to let experts adjust their prior distribution, the ques-
tion remains of how to deal with the fact that two distributions result from the
process. Of course, for the sake of simplicity the researcher can decide to use
the adjusted distribution and to discard the original distribution. However, there
can be instances where it is not clear which distribution should be trusted more,
for example, because the elicitation method was constructed to avoid biases that
can be re-introduced through the adjustment of the distribution. In these cases it
would also be an option to combine the two distributions to arrive at a single dis-
tribution in the end. The next section of this chapter discusses different methods
of combining distributions across experts. Most of these could also be used to
combine distributions elicited with different methods from one expert.

To conclude, elicited prior distributions may change considerably if re-
searchers allow experts to adjust them after the elicitation procedure. It is
unclear how researchers should address the fact that two distributions, an orig-
inal and an adjusted distribution, can result from the elicitation process. This
gives rise to further flexibility in the elicitation process as there are multiple
equally justifiable ways to handle the multiplicity of results.

6.7 (How) Should Prior Distributions Be Combined?

When a prior elicitation procedure is conducted independently with multiple ex-
perts, it results in at least as many prior distributions as there are experts. In
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rare cases, several experts may arrive at almost exactly the same distribution,
but most of the time (especially when experts come from different backgrounds)
there will be some variability in the resulting distributions. As Bayesian models
require only one prior distribution per parameter, the researcher needs to decide
which prior distribution(s) should be used in the final Bayesian modelling step.

We argue that there are two qualitatively different options to deal with the
multiplicity of prior distributions after elicitation. The first option is to handle
all distributions separately, that is, introduce them individually in Bayesian ana-
lyses. We call this option the “No Pooling” option. The second option is to
combine the prior distributions to a single prior distribution that can be used
in Bayesian modelling. This can either be achieved via Behavioral Aggregation,
that is, through interaction between the experts, or via Mathematical Aggrega-
tion, that is, through the application of formal rules (Wilson & Farrow, 2018). In
the following sections, we will detail the consequences and underlying assump-
tions of No Pooling, Behavioral Aggregation, and Mathematical Aggregation.

6.7.1 No Pooling

Although many elicitation frameworks implicitly assume or directly recommend
the pooling of resulting prior distributions (Dias et al., 2018), we argue that it can
also be informative to assess the distributions separately. As mentioned earlier,
expert panels are often compiled with the goal to represent a broad spectrum
of perspectives, experiences, or professional backgrounds (Grigore et al., 2013;
Kadane, 1986). In this case, each expert can be seen as an individual entity rep-
resenting a distinct school of thought. Following this argumentation, pooling
experts would lead to a single prior that comprises different hypotheses, which
might be theoretically hard to justify. Additionally, the combination of prior dis-
tributions of highly diverse experts may result in a very wide prior that provides
little information. Using such a wide prior distribution counteracts one of the ma-
jor goals of prior elicitation: to provide informed prior distributions that, when
integrated into a model, represent a specific theory.

Instead of combining experts’ distributions, researchers can opt to integrate
each expert’s prior distribution separately in the Bayesian analysis workflow.
From a practical perspective, one way to achieve this is a prior sensitivity anal-
ysis, that is, the repeated computation of Bayesian analyses using different prior
distributions. Typically, prior sensitivity analyses are conducted to explore the
dependence of Bayesian analysis results on the choice of the prior distribution
(Vanpaemel, 2010). A common critique of sensitivity analyses is that they be-
come computationally unfeasible when models involve too many parameters
(Bornn, Doucet, & Gottardo, 2010). Conducting a prior sensitivity analysis with
the results from prior elicitation counteracts this critique by providing a limited
number of theoretically justifiable prior distributions for which the sensitivity
of analysis results can be assessed. Another way to integrate multiple result-
ing prior distributions in Bayesian analyses is to compare the resulting “expert
models” to each other in terms of their predictive adequacy (e.g., by computing
Bayes factors between them). If experts are representative for their respective
fields, model comparisons between the expert models can provide additional
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substance to debates between expert communities. Alternatively, researchers
can use Bayesian Model Averaging (e.g., Hoeting et al., 1999) to arrive at a bal-
anced singular Bayesian analysis result that takes all experts into account. Com-
pared to mathematical approaches that directly combine experts’ distributions,
Bayesian Model Averaging has the advantage to provide a data-dependent in-
herent weighting mechanism, that is, all individual expert models are weighted
by their ability to predict the data. However, initial prior model probabilities
have to be determined which can be challenging and provides yet another source
of flexibility (Fragoso, Bertoli, & Louzada, 2018).

6.7.2 Behavioral Aggregation

If communication between experts is possible, an intuitive way of resolving dis-
crepancies in experts’ prior distributions is by finding agreement through discus-
sion. As stated before, group discussions are at risk of being subject to biases
such as group-think (Janis, 1972), social conformity (Asch, 1956), or group polar-
ization (Lamm, 1988; for an overview, see Montibeller & Winterfeldt, 2015). How-
ever, a well-structured group discussion led by an experienced facilitator who is
aware of these biases can outperform the accuracy of individual experts (Reagan-
Cirincione, 1994). Additionally, behavioral aggregation approaches have the ad-
vantage that the resulting distribution is a clear consensus prior on which all
available experts agree. As described later, this is not the case for mathematical
aggregation where the result is an arithmetic combination of the single distribu-
tions and may not represent any expert’s opinion (O’Hagan et al., 2006).

There are several protocols for behavioral aggregation of prior distributions
that try to create a favorable environment in which the benefits of the group can
be used and the risk of bias mitigated. One popular framework is the Delphi
method (Dalkey & Helmer, 1963). In this method, experts first anonymously
share their prior distribution together with a justification, then they update their
beliefs in the light of the other experts’ justifications. This process is repeated
until consensus is reached. The procedure relies on the idea of “better experts
being able to explain their views more cogently” (O’Hagan et al., 2006, p. 189)
and that biases are less prevalent when experts remain anonymous. Several other
protocols, such as the IDEA protocol (Hanea et al., 2018) or the Nominal Group
Technique (Delbecq, Van de Ven, & Gustafson, 1976), are based on the Delphi
method. The SHELF elicitation framework proposes a behavioral aggregation
procedure based on the notion of a “Rational Impartial Observer” (RIO). Here,
the goal of the aggregation is not that experts convince each other of their respec-
tive priors, but that they evaluate their results from the perspective of a neutral
external observer and create a distribution that would reflect this observer’s state
of knowledge (O’Hagan & Oakley, 2019). Another aggregation method by DeG-
root (1974) proposes to let experts assign weights to each other’s distribution, let
a facilitator combine the distributions with a linear combination function, report
the resulting distribution to the experts and let them adjust their weights in an
iterative process.

Even though behavioral aggregation methods provide an intuitively appeal-
ing way to combine experts’ prior distributions, there are several caveats that re-
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searchers have to be aware of. First, we cannot expect any method to completely
extinguish group-related bias from the process. Second, the level to which biases
can be mitigated will depend largely on the moderator skills of the facilitator
(Reagan-Cirincione, 1994). This also means that a biased facilitator can influence
the results of the elicitation effort in their favor (Boyd & Westfall, 1970). Addi-
tionally, if there is considerable disagreement and direct interaction between the
experts, the reached level of consensus will also likely be dependent on the abil-
ity of the facilitator to lead the discussion (Herrera, Herrera-Viedma, & Verdegay,
1996). Third, the choice of the concrete behavioral aggregation method influences
the interpretation of the resulting prior distribution. For example, the result-
ing prior distribution can either be a true consensus prior (such as in the Delphi
method) or a prior that is considered a rational “joint prior” by the experts as
in the SHELF framework (which does not have to imply consensus). Fourth, re-
searchers employing behavioral aggregation methods need to have procedures
in place for the eventuality that no consensus can be reached. O’Hagan et al.
(2006) propose a mathematical aggregation of the remaining prior distributions,
but other options would be possible as well, for example a voting procedure
within the behavioral aggregation or a No Pooling approach for the remaining
prior distributions (in the case that the desired outcome does not have to be a
single prior distribution; see previous section). Therefore, we conclude that the
results of the elicitation procedure as well as their quality (i.e., reliability and
biasedness) and interpretation depend highly on the specifics of the behavioral
aggregation procedure.

6.7.3 Mathematical Aggregation

An alternative to behavioral aggregation approaches is the mathematical aggre-
gation of prior distributions resulting from prior elicitations with multiple ex-
perts. In mathematical aggregation, the prior distribution functions are combined
following a mathematical rule. Unlike behavioral approaches, mathematical ag-
gregation does not suffer from the risk of inducing group biases. However, the
resulting prior distribution may not represent a consensus between experts ei-
ther.

Many mathematical aggregation methods have been proposed and providing
a comprehensive review is beyond the scope of this chapter (for an overview, see
Wilson & Farrow, 2018). Here we discuss three fundamentally different classes
of mathematical aggregation approaches: Linear Pooling, Logarithmic Pooling,
and Supra-Bayesian Pooling (Albert et al., 2012; Genest & Zidek, 1986).

In linear pooling methods, the aggregated prior distribution is equivalent to
a (weighted) average of the individual experts’ distributions (Wilson & Farrow,
2018),

f(θ) =

E∑
i=1

wifi(θ), (6.4)

where wi is the weight given to each expert and fi(θ) is each expert’s individual
prior distribution on the parameter θ, and the weights have to be chosen such

139



6. Practical Challenges and Methodological Flexibility in Prior Elicitation

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

θ

D
en

si
ty

Prior Distributions from 3 Experts

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

θ

D
en

si
ty

Linear Pooling

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

θ

D
en

si
ty

Logarithmic Pooling

Figure 6.7: Left side: Three prior distributions to be combined (f1 =
Normal(−0.5, 0.4), f2 = Normal(0, 1) truncated at 0, f3 = N(1, 0.5)). Right
side: Combination of the distributions via linear pooling and logarithmic pool-
ing. Solid line shows pooling with equal weights, dotted line shows pooling
where the f2 and f3 are weighed 4 times more than f1.

that
∑E
i=1 wi = 1.

In logarithmic pooling methods, the individual experts’ distributions are
combined with a multiplicative mixture instead,

f(θ) = k

E∏
i=1

fi(θ)
wi , (6.5)

where the weights wi are again constrained to sum up to one and the factor k is a
normalizing constant.

A central task for both the linear and the logarithmic pooling method is to de-
termine the weights wi. Clearly, the simplest solution is to choose equal weights.
However, many other methods exist to determine the weights, for example based
on the experts’ performance on calibration questions, based on the importance a
researcher or facilitator assigns to the experts, or based on experts’ ratings of each
others competence (Wilson & Farrow, 2018).

Both the choice of the pooling method and the choice of the weights have
a substantive influence on the resulting prior distribution. Figure 6.7 gives an
impression of how much the resulting prior depends on these choices. Notably,
the resulting distribution in the logarithmic pooling method is always unimodal
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(Rufo, Martı́n, & Pérez, 2012) while the linear pooling method typically results in
multimodal distributions. Additionally, as can be seen in the bottom right panel
of Figure 6.7, the combined prior distribution resulting from logarithmic pooling
is zero for all parameter values for which at least one prior distribution is zero.
On a conceptual level, this can represent the idea that parameter values that have
been logically excluded by one expert should be rejected by all other experts as
well.

Another method to combine prior distributions that differs distinctively
from linear or logarithmic pooling is supra-Bayesian pooling (Albert et al., 2012;
Gelfand, Mallick, & Dey, 1995). Here, the idea is to view the elicitation results
as data which can be used to update beliefs about the parameters of a combined
prior distribution.

For example, assume normal distributions were elicited from three experts
with respect to a parameter θ (see top part of Figure 6.8). Each of these prior
distributions can be described by a mean and a standard deviation, which we
will consider as elicited data xµi and xσi, where i is the index of the expert.5 As-
suming that all experts come from the same population, each expert’s xµi and
xσi should be drawn from common group-level distributions. For example, xµi
could be drawn from a normal distribution with mean parameter φµ and stan-
dard deviation parameter φSD, and xσi could be drawn from a gamma distribu-
tion with scale parameter φs and rate parameter φr whose mean can be described
by φσ = φs/φr. The supra-Bayesian model requires priors on φµ, φSD, φs, and φr
which can be updated using the elicited data. The focal parameters in the model
are φµ, which gives an estimate for the mean of the common prior distribution,
and φσ , which gives an estimate for the standard deviation of the common prior
distribution. Posterior distributions for these parameters can be estimated using
an MCMC sampling algorithm (see middle part of Figure 6.8). An estimate for
the mean and standard deviation of a common prior distribution across experts
can then be computed by determining the expected value of the posterior distri-
butions of φµ and φσ (see dotted lines in the middle of Figure 6.8 and the resulting
common prior distribution on the bottom).

An advantage of the supra-Bayesian approach is that the supra-Bayesian
model can be defined such that resulting common prior distribution comes from
a distributional family that is easy to use later on. For example, in the model
described above, the resulting prior distribution is always a normal distribution
that can be used in a wide range of application contexts. Another advantage
of the supra-Bayesian approach is that it provides the decision maker, that is,
the researcher setting up the Bayesian model, with additional information about
the elicitation process. For example, the width of the posterior distributions of
group-level parameters (e.g., the 95% credible interval of p(φµ |xµ)) can be seen
as a measure of uncertainty about the parameters of the elicited prior distribu-
tion, and the dispersion parameters of the group-level distributions (e.g., φSD)
can be interpreted as a measure of disagreement between experts about the prior

5Note that other outcomes of the elicitation process, for example matching quantiles and proba-
bilities, could also be considered as an input, but this would require a density function to be defined
for these summary statistics.
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Figure 6.8: Updating parameters of a combined prior distribution with supra-
Bayesian pooling. The dotted line in the lowest panel shows an alternative solu-
tion where the the prior on φµ is defined as φµ ∼ N(1, 1).

distribution parameter.
However, the supra-Bayesian approach also has some limitations. The most

pressing of these is arguably the dependence of the resulting prior distribution
parameters on the group-level prior distributions in the supra-Bayesian model.
As typically only few experts (N < 20) participate in the elicitation, only few
data points are collected that could inform the parameters of a shared prior dis-
tribution. Therefore, both the posteriors on the model parameters and the point
estimates of the prior distribution parameters that are derived from them are
highly dependent on the choice of the priors in the supra-Bayesian model. This
can also be seen in the bottom panel of Figure 6.8. Here, two prior distribu-
tions are plotted that rely on the same data and where only one parameter in
the prior on φµ is changed in the supra-Bayesian model (from φµ ∼ N(0, 1) to
φµ ∼ N(1, 1)). Even this comparatively small change in the priors of the supra-
Bayesian model leads to a visible change in the resulting combined distribution.
The supra-Bayesian approach thus shifts the problem of the specification of prior
distributions to a higher level as the question remains how to specify the prior
distributions of the supra-Bayesian model. Another limitation is that the supra-
Bayesian approach implicitly assumes that experts’ knowledge can be reasonably
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represented by a single family of probability distributions (e.g., normal distribu-
tions as in the example above) and that it is not clear whether this assumption can
hold up in practice. More advanced techniques like transdimensional MCMC
methods would theoretically make it possible to find the best-fitting family of
distributions and estimate the parameters of the combined distribution within
each family of distributions at the same time, but given the small sample sizes,
there will still be considerable uncertainty as to which distributional family can
best capture the experts’ knowledge.

As illustrated above, different mathematical aggregation approaches result in
distinctly different prior distributions. It is important to acknowledge this flex-
ibility because it allows decision makers to override experts’ opinions relatively
easily by the choice of the aggregation method. However, different mathematical
aggregation methods follow different underlying logical principles, which can
potentially guide the choice of method in different environments. For example,
logarithmic pooling assumes that one expert can logically exclude parameter val-
ues for the whole resulting prior distribution while linear pooling and supra-
Bayesian pooling do not give one expert this power. Supra-Bayesian pooling,
on the other hand, emphasizes the role of the decision maker much more than
unweighted linear or logarithmic pooling, such that it can be seen as a process
to simply update already existing current knowledge based on expert opinions
instead of creating a “new” prior distribution. Additionally, if a researcher de-
cides to use unequal weights in linear and logarithmic pooling, this typically
implies that the “quality” of experts can be directly measured (e.g., by calibration
questions). In general, the assumptions underlying specific mathematical aggre-
gation methods may be reasonable in some cases, but not be sensible in others.
For example, in a typical hypothesis testing situation, it is questionable whether
the knowledge of experts about the scenario at hand can be estimated from their
knowledge about alternative scenarios and whether it is therefore sensible to use
calibration questions to determine weights for linear or logarithmic pooling. We
therefore argue that when researchers make the decision which mathematical ag-
gregation method they want to use, they need to think carefully about the under-
lying assumptions.

One theme common to all mathematical aggregation approaches discussed in
this section is that they combine the elicitation results on the level of the prior dis-
tribution. An alternative would be to combine elicitation results on the level of
the model using Bayesian Model Averaging, as has been discussed earlier (Hoet-
ing et al., 1999). Conceptually, this approach can be localized between “No Pool-
ing” and “Pooling” methods, as although it results in a single Bayesian analysis
result, experts’ priors are not combined in one model. Bayesian Model Averag-
ing is closely related to linear pooling methods because both methods provide
a linear combination of the elicitation results. However, while the weights can
be determined independent of the data in linear pooling, they are defined as the
Bayesian posterior model probability in Bayesian model averaging (Hinne et al.,
2020). Bayesian Model Averaging is also related to supra-Bayesian pooling as
both methods provide an inherently Bayesian way to combine prior elicitation
results. However, Bayesian Model Averaging does not make assumptions about
relations between the experts’ prior beliefs (e.g., that the priors elicited from ex-
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perts are noisy representations of a common underlying prior distribution).
In sum, the use of mathematical aggregation methods enables researchers to

combine the results of prior elicitations from multiple experts independent of
group processes. However, they also allow for considerable flexibility in deter-
mining the aggregated prior distribution. This flexibility can partly be limited
by the justifiability of aggregation method assumptions in specific research con-
texts. However, we argue that transparency about the aggregation process is nev-
ertheless crucial because even within one aggregation method (e.g., the supra-
Bayesian method), there are still numerous choices to be made that can greatly
influence the outcome of the aggregation process.

6.8 Navigating Practical Decisions in Prior Elicitation

In the previous sections, we demonstrated that considerable methodological flex-
ibility exists in prior elicitation. However, the issue of methodological flexibil-
ity or researcher degrees of freedom is not unique to prior elicitation. Indeed,
researchers are constantly confronted with methodological decisions and con-
ciously navigating these decisions can be seen as part of a researcher’s exper-
tise (Wicherts et al., 2016). Methodological flexibility only becomes problematic
when researchers are not aware that they are making decisions that could influ-
ence their research results, when they cannot make well-informed decisions due
to a lack of evidence, when they do not document their decisions adequately, or
when they are incentivized to abuse the existing flexibility to tweak their research
results (Head, Holman, Lanfear, Kahn, & Jennions, 2015). Here, we mostly con-
centrated on raising awareness for the decisions that are implicit in the process
of prior elicitation and for the potential consequences these decisions can have.
This is a first step to enable researchers to carefully plan the prior elicitation pro-
cess, consider the implications of alternative decisions, and be transparent about
the prior elicitation process. In the following, we will discuss several steps that
could be taken to improve transparency about decisions in the prior elicitation
process, and provide several preliminary recommendations for prior elicitation
in practice (cb. section 6.8.4).

6.8.1 Improving Transparency through Open Science Practices

Similar to regular psychological experiments, we believe that thinking clearly
and being transparent about methodological flexibility can greatly increase the
credibility and methodological rigor of prior elicitation. As issues like publica-
tion bias or cherry picking of results might also arise in prior elicitation (Mu-
nafò et al., 2017), we believe that it would be prudent to consider applying Open
Science practices, such as preregistration, open materials, or open data to prior
elicitation procedures. Even though the application of Open Science practices to
Bayesian modeling has raised some controversy in the past (Lee et al., 2019), there
have been promising developments in this direction (e.g., Crüwell & Evans, 2019;
Crüwell et al., 2019) so we are confident that the application to prior elicitation
would be both beneficial and feasible.
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6.8.2 Sensitivity Analyses

One important lesson from the demonstration of methodological flexibility is
that the outcome of a prior elicitation process cannot be interpreted as the sin-
gle ‘built-in’ prior distribution of an expert. Rather, elicited prior distributions
are also dependent on the prior elicitation process itself, which means that in-
specting multiple potential outcomes can create interesting insights. This means
that existing methods to manage methodological flexibility can also be applied
to prior elicitation. For example, multiverse analyses (Steegen, Tuerlinckx, Gel-
man, & Vanpaemel, 2016) can be used to outline different decision paths and
include them in the data analysis in a principled way. In the same way, prior
sensitivity checks can be applied to test the robustness of important Bayesian
modeling outcomes (e.g., the Bayes factor) to changes in the prior distributions
that could be justifiable based on the elicitation results. However, existing robust-
ness analyses such as these cannot always be used to manage the multiplicity of
elicitation results. For example, not all decisions paths in prior elicitation can be
taken simultaneously (e.g., experts can be selected only once) and re-computing
Bayesian analyses with a multitude of prior distributions may be unfeasible for
computationally intensive modeling problems. If the computational setup allows
for it though, multiverse analyses and prior sensitivity checks can contribute to
demonstrate the robustness of the analyses even beyond the results of the prior
elicitation. For example, alternative prior distributions, such as objective prior
distributions (Consonni et al., 2018), weakly informative prior distributions (Gel-
man et al., 2008), or empirical Bayesian priors (Casella, 1985) could be included
in the analyses. This would not only present a comprehensive image of the im-
pact of prior specification on the analysis outcomes, but also help to bridge the
theoretical disagreements between different factions of Bayesian methodologists.

6.8.3 Striving for Parsimonious Processes

From our discussion of different decisions in prior elicitation as well as from
our literature review it becomes apparent that more decisions have to be made
when the prior elicitation procedure is highly complex. For example, if a re-
searcher decides to include many experts from different backgrounds, this typ-
ically generates a series of follow-up decisions: Should the experts be allowed
to interact? Should the results from different experts be combined? And if yes,
how? A large number of potentially correlated parameters for which the elici-
tation is conducted also contributes to the complexity of the elicitation process
as well as an indirect elicitation method where the elicited quantities are con-
ceptually far away from the parameters of the prior distribution so that deriving
the prior distribution from the elicited quantities is a complex procedure with
multiple steps. Allowing for iterative adjustments of the prior distribution also
leads to several follow-up decisions as has been discussed earlier in this chapter.
Arguably, complex prior elicitation procedures are inherently challenging and
should be adopted with reluctance. Therefore, as a general rule, it seems to be
better to go simple than extravagant if there are no specific circumstances that
require a complex elicitation procedure. Adopting a simple elicitation procedure
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makes the method easier to report, decreases the number of arbitrary decisions,
and therefore makes the process of prior specification more robust to criticism.

6.8.4 Preliminary Practical Recommendations for Prior Elicitation

Throughout this chapter, we have refrained from giving specific recommenda-
tions for prior elicitation from experts in practice. As we have discussed earlier,
there are only few studies that compare different elicitation procedures with the
goal of finding a gold standard (Grigore et al., 2016; Winkler, 1967). As a result, at
the moment recommendations can only be based on theoretically evaluating the
implications of methodological choices. In Table 6.1 we list eight preliminary rec-
ommendations that are based on such considerations and are relatively close to
the issues and implications we have described earlier in this chapter. It goes with-
out saying that readers should interpret these recommendations with appropri-
ate levels of caution, even though similar recommendations can be found in the
literature (e.g., Aspinall, 2010; Dias et al., 2018; O’Hagan, 2019; O’Hagan et al.,
2006). We hope that the recommendations are nonetheless helpful to the reader
because they provide some idea of contexts different choices in prior elicitation
procedures could be commented on, for example in the context of a preregistra-
tion.
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Table 6.1 Preliminary recommendations for prior elicitation in practice

1. Make sure to recruit experts who have sufficient quantitative knowledge to
understand the prior elicitation process.

2. Not all model parameters are equally suitable for prior elicitation. Focus
on the parameters of interest and choose a parametrization that is easy to
understand.

3. Be careful when combining priors from experts with widely different back-
grounds because resulting prior distribution might no longer be theoreti-
cally meaningful.

4. Take measures to mitigate cognitive biases and group dynamics in the prior
elicitation process.

5. Design the prior elicitation method carefully and be aware of the underly-
ing assumptions.

6. Usually it is better to go simple than extravagant. Including many parame-
ters and experts, eliciting quantities are conceptually far away from param-
eters of the prior distributions, and allowing for iterative adjustments of the
elicited priors can complicate the prior elicitation process and increase the
number of arbitrary decisions.

7. Prior elicitation does not result in a unique outcome. Whenever possible,
conduct a sensitivity analysis for decisions made in the prior elicitation pro-
cess (e.g., explore the robustness to different ways to combine elicited pri-
ors).

8. Report prior elicitation procedures transparently and completely.

6.9 Conclusions

Enriching Bayesian analysis models with knowledge of domain experts enables
researchers to make realistic predictions and conduct diagnostic tests of theory
even when little data are available. Therefore, informed Bayesian analyses can be
advantageous in disciplines like clinical psychology, developmental psychology,
or neuroscience, where data collection is often costly or time-consuming. Prior
elicitation has been developed as a principled approach to specify informed prior
distributions that allows researchers to incorporate knowledge of domain experts
into Bayesian models. However, compared to default prior distributions, in-
formed distributions are often considered relatively contentious (Simpson, Rue,
Riebler, Martins, & Sørbye, 2017). Therefore, their specification needs to with-
stand additional scrutiny and, as a consequence, so does the prior elicitation pro-
cess. In this chapter, we discussed several practical challenges that need to be
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addressed in the course of the planning, execution, and evaluation of the prior
elicitation process. In particular, we critically examined the selection of experts
and model parameters for the prior elicitation, the choice of the prior elicitation
technique and the structure of the core interview process, and different ways to
integrate the prior elicitation results from multiple experts. We showed how dif-
ferent equally justifiable elicitation decisions sometimes lead to vastly different
resulting prior distributions.

To date, prior elicitation is an uncommon practice in psychological research.
However, it seems plausible that the use of prior elicitation in psychological re-
search will increase in the future. Examples of prior elicitation can already be
found in diverse areas of psychological research such as social, clinical, and cog-
nitive psychology, or psychological assessment (e.g., Al-Awadhi & Garthwaite,
1998; Bolsinova et al., 2017; Gronau et al., 2020; Tessler & Goodman, 2019). More-
over, many statisticians and quantitative psychologists have recommended us-
ing informed priors and prior elicitation in the social sciences (e.g., Dienes, 2019;
Vanpaemel, 2010). The few instances of prior elicitation in psychological applica-
tions give reason to suspect that psychology researchers are not yet fully aware of
the choices that are made in the elicitation procedure (for some examples, see our
online supplementary materials: https://osf.io/tbz6n/). A thorough discussion
of the potentially outcome-relevant choices made in the elicitation procedure is
often absent, especially when the focus of the research is on a substantial psy-
chological topic rather than on a methodological development. We hope that the
present chapter of this thesis draws researchers’ attention to the importance of
carefully considering these decisions and transparently reporting them in their
research articles.

One reason for the high degree of methodological flexibility in prior elicita-
tion is that little research has been done to find a gold standard. Although many
elicitation techniques have been proposed, only few studies exist that compare
these existing techniques with respect to their feasibility or psychometric qual-
ity (Grigore et al., 2016; Winkler, 1967). Hence, researchers are forced to make
intuitive decisions between different options without the benefit of empirical ev-
idence. Recommendations are typically based on the generalization of applied
research findings, for example from research on cognitive biases or risk taking
(e.g., O’Hagan, 2019), but are rarely based on specific research on prior elicitation
for the purpose of the specification of prior distributions for Bayesian parame-
ter estimation and hypothesis testing. A more thorough investigation of exist-
ing methods could therefore help to establish a consensus about justifiable deci-
sions in prior elicitation and to derive evidence-based recommendations for spe-
cific application scenarios. Prior elicitation procedures bear many resemblances
to other psychological methodologies that aim to assess knowledge, beliefs, or
judgements, for example standard setting in educational tests (Bolsinova et al.,
2017), focus groups (Kitzinger, 1995), requirement elicitation in software projects
(Tiwari, Rathore, & Gupta, 2012), or (semi-)structured interviews (Summerfeldt
& Antony, 2002). Further research on gold standards for prior elicitation methods
could therefore be (among others) informed by evidence-based insights from
these methodologies. A special focus could lie on the evidence-based factors that
have been found to influence the psychometric quality, especially the validity and
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reliability, of these methods.
More research is also needed to compare prior elicitation from experts to other

methods for the specification of informed priors in Bayesian models, such as prior
specification based on previous literature (Ly, Etz, Marsman, & Wagenmakers,
2019; Verhagen & Wagenmakers, 2014). There are some conceptual differences
between these methods, for example, that prior elicitation from experts does not
require comparable existing data, or that prior specification based on previous
literature does not require field experts to understand the parameters of a model.
However, there are arguably many situations in which different methods can be
used to specify informed prior distributions, only one of which is prior elicitation
from experts. There has been no research up to this point that investigates how
these methods relate to each other, for example, which method is more likely to
produce biased predictions, which method produces more informed prior dis-
tributions (on average), or which method is most susceptible to methodological
flexibility.

It is important to note that practical methodological challenges in prior elic-
itation do not discredit the theoretical underpinnings of the subjective Bayesian
approach. The incorporation of prior knowledge remains valuable to make the
predictions of Bayesian models more specific and testable (e.g., Lee & Vanpaemel,
2017). However, when outcome-relevant decisions in the prior elicitation process
remain undocumented, this makes informed Bayesian approaches an easy tar-
get for criticism because no sufficient justification is provided for the prior dis-
tributions. Thus, making decisions in the prior elicitation process transparent,
finding evidence-based practices that can reduce the amount of methodological
flexibility, and developing new methods to deal with the remaining multiplicity
of outcomes in prior elicitation can be key to a constructive advance of the debate
about prior specification in Bayesian methods.
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7

Expert Agreement in Prior Elicitation and its
Effects on Bayesian Inference

Abstract

Bayesian inference requires the specification of prior distributions that
quantify the pre-data uncertainty about parameter values. One way to specify
prior distributions is through prior elicitation, an interview method guiding
field experts through the process of expressing their knowledge in the form
of a probability distribution. However, prior distributions elicited from ex-
perts can be subject to idiosyncrasies of experts and elicitation procedures,
raising the spectre of subjectivity and prejudice. Here, we investigate the ef-
fect of interpersonal variation in elicited prior distributions on the Bayes fac-
tor hypothesis test. We elicited prior distributions from six academic experts
with a background in different fields of psychology and applied the elicited
prior distributions as well as commonly used default priors in a re-analysis
of 1710 studies in psychology. The degree to which the Bayes factors vary
as a function of the different prior distributions is quantified by three mea-
sures of concordance of evidence: We assess whether the prior distributions
change the Bayes factor direction, whether they cause a switch in the category
of evidence strength, and how much influence they have on the value of the
Bayes factor. Our results show that although the Bayes factor is sensitive to
changes in the prior distribution, these changes do not necessarily affect the
qualitative conclusions of a hypothesis test. We hope that these results help
researchers gauge the influence of interpersonal variation in elicited prior dis-
tributions in future psychological studies. Additionally, our sensitivity ana-
lyses can be used as a template for Bayesian robustness analyses that involve
prior elicitation from multiple experts.

This chapter is published as Stefan, A. M., Katsimpokis, D., Gronau Q., & Wagenmakers, E.-J.
(2022). Expert agreement in prior elicitation and its effects on Bayesian inference. Psychonomic Bulletin
& Review, 29, 1776-1794. https://doi.org/10.3758/s13423-022-02074-4 Also available as PsyArXiv
preprint: https://psyarxiv.com/8xkqd/
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7.1 Introduction

The past two decades have seen a rise in popularity of Bayesian methods for
data analysis (Andrews & Baguley, 2013). Pragmatic benefits of a Bayesian anal-
ysis include the ability to quantify evidence for both the null and the alternative
hypothesis, and the ability to monitor the evidence continually as data accumu-
late (e.g., Wagenmakers et al., 2018; Wagenmakers, Morey, & Lee, 2016). Bayesian
methods also allow researchers to analyze data irrespective of the intention with
which these were collected, and yield results that have an intuitive interpreta-
tion (Gigerenzer, 2004; Ly et al., 2020; Smith, 1965). By reducing or eliminating
the computational and mathematical barriers, software programs such as JASP
(JASP Team, 2021) and Stan (Carpenter et al., 2017; Gelman et al., 2014) have fur-
ther supported the broad adoption of Bayesian methods.

A core component of the Bayesian statistical framework are prior distribu-
tions, that is, probability distributions placed on parameters in Bayesian models.
The shape of a prior distribution represents the knowledge about a parameter
before data collection. Specifically, peaked distributions that concentrate most
mass on a small range of parameter values indicate a high amount of prior cer-
tainty, whereas wide distributions that spread their mass across a large range of
parameter values indicate a low amount of prior certainty (Dienes, 2008). Infor-
mation to be incorporated in the prior distribution can be obtained from practical
or theoretical considerations, can be derived from earlier studies (e.g., in the case
of replication studies), or can be elicited from domain experts (Dienes, 2019; Ly
et al., 2019; O’Hagan et al., 2006). It has been shown repeatedly that the results
of Bayesian analyses, and especially Bayes factor hypothesis testing, can be sen-
sitive to the specification of the prior distribution. Researchers should therefore
dedicate special attention to the specification of prior distributions in the model
development process (e.g., J. O. Berger, 1990; Sinharay & Stern, 2002).

A frequently-voiced concern is that the shape of informed prior distributions
is to some extent arbitrary because it relies on the subjective opinions of single re-
searchers or field experts, poorly justified decisions in the prior elicitation proce-
dure, or on the idiosyncrasies of previous studies (Depaoli & van de Schoot, 2017;
Stefan et al., 2020). Practitioners who do not wish to jeopardize the objectivity of
their statistical analyses are therefore often reluctant to incorporate a high level
of prior information into the prior distribution. Instead, they may prefer default
prior distributions that satisfy certain mathematical desiderata and display a high
amount of uncertainty about parameter values (Bayarri et al., 2012; Consonni et
al., 2018; Jaynes, 1968; Kass & Raftery, 1995; Lee & Vanpaemel, 2017). However,
as they are not designed for any particular application domain, default prior dis-
tributions ignore relevant theoretical, practical, and empirical information. For
example, default prior distributions do not incorporate theoretically motivated
constraints on parameter values (Vanpaemel & Lee, 2012), knowledge about com-
mon empirical parameter values from earlier studies (Matzke & Wagenmakers,
2009; Tran, van Maanen, Heathcote, & Matzke, 2020), or knowledge about practi-
cal constraints arising from a specific study design (Dienes, 2019). Therefore, they
run the risk of leading to unrealistic model predictions, and may decrease the di-
agnosticity of Bayesian model comparisons (Lee & Vanpaemel, 2017; Stefan et
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al., 2019). Thus, despite being potentially more susceptible to interpersonal vari-
ation, informed prior distributions have important theoretical advantages over
default prior distributions.

One method to specify informed prior distributions is through prior elicita-
tion from experts (Dias et al., 2018; Mikkola et al., 2021; O’Hagan et al., 2006).
Prior elicitation can be described as an interview procedure where a researcher
guides one or more field experts through the process of expressing their domain
knowledge in a probabilistic form (Garthwaite et al., 2005; Winkler, 1967). The
participating field experts can be researchers themselves or practitioners who
possess relevant empirical insights, such as psychotherapists, doctors, or teachers
(Bolsinova et al., 2017; Gronau et al., 2020; Mossman et al., 2015; Thall & Cook,
2004). Within the past 50 years, a multitude of prior elicitation methods have
been proposed that range from highly model-specific to broadly applicable stan-
dard methods (for overviews, sees Garthwaite et al., 2005; Grigore et al., 2013;
S. R. Johnson, Tomlinson, Hawker, Granton, & Feldman, 2010). A key objective
of prior elicitation methods is to minimize the cognitive biases that can emerge
in probability assessments (Kahneman, 2011; O’Hagan, 2019). Therefore, several
popular elicitation methods apply an indirect approach where experts are not
asked to provide probability statements directly, but are instead asked to bet on
parameter values (S. R. Johnson, Tomlinson, Hawker, Granton, Grosbein, & Feld-
man, 2010) or to assess the plausibility of future data (Kadane, 1980; Winkler,
1967).

Prior distributions obtained from an elicitation effort are particularly open
to concerns of subjectivity. The results of a prior elicitation procedure crucially
depend on the participating experts and their views of the research problem at
hand. Therefore, a common recommendation is to elicit priors from multiple ex-
perts with different backgrounds to explore the interpersonal variability of elic-
itation results (Aspinall, 2010; Chaloner, 1996; Grigore et al., 2013). However,
this advice is rarely heeded in practice. Often enough, priors in psychological
research are elicited from single experts (e.g., Gronau et al., 2020) or directly
combined into a single aggregated prior distribution that incorporates informa-
tion from all experts (e.g., Bolsinova et al., 2017; Mossman et al., 2015). The
variability of elicited prior distributions and its effect on the results of Bayesian
inference are rarely studied explicitly (but see, e.g., Veen, Stoel, Schalken, Mul-
der, & van de Schoot, 2018). We argue that this makes it difficult for substantive
researchers to gauge the effect of the interpersonal variability of elicitation results
on Bayesian inference, which in turn may increase the discomfort that researchers
feel concerning the use of prior elicitation methods in their own research.

In this chapter, we demonstrate the effects of interpersonal variability in prior
distributions using elicited priors from six experts with a background in different
fields of psychology. Specifically, we investigate how the differences between the
elicited prior distributions affect Bayes factor null hypothesis testing. We focus
on Bayes factors because, unlike for posterior distributions (Wrinch & Jeffreys,
1921), the influence of the prior on the Bayes factor does not become negligible
with large amounts of data. To analyze the influence of the prior distributions,
we calculate Bayes factors for 855 t-tests and 855 correlation tests extracted from
psychological literature (Bosco et al., 2015; Wetzels et al., 2011), and provide mea-
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sures for the sensitivity of the Bayes factor to the choice of the prior distributions
for these tests. We believe that making the variability of results explicit for a large
number of independent psychological data sets will help researchers gauge the
influence of expert selection in future psychological studies. Additionally, our
sensitivity analyses can be used as a template for prior sensitivity analyses in the
future, where prior distributions are elicited from several experts.

The chapter is structured as follows. First, we describe the method we used
to elicit the prior distributions. Then, we present the prior distributions that
resulted from our elicitation effort, and discuss their interpersonal differences.
Next, we reanalyze correlation tests and t-tests obtained from two large meta-
analytical databases spanning multiple psychological disciplines (Bosco et al.,
2015; Wetzels et al., 2011). In the Bayes factor hypothesis tests, we use the dif-
ferent elicited prior distributions as well as default priors that are common stan-
dards for the respective hypothesis tests. Our sensitivity analysis focuses on three
questions: (1) “How often do the priors change the direction of the Bayes factor?”,
targeting the issue that different priors can lead to support for different hypothe-
ses, (2) “How often do the priors change the evidence category?”, targeting the
issue that different priors can lead to support that falls into different categories
of evidence strength, and (3) “How much do the priors change the value of the
Bayes factor?”, targeting the issue that different priors lead to quantitative differ-
ences between Bayes factors. We believe these three questions cover the central
aspects that determine the conclusions that researchers draw about hypotheses
based on a Bayes factor hypothesis test, which makes these questions an impor-
tant target for sensitivity analyses.

7.2 Elicitation Method

Six post-doctoral researchers and professors from the University of Amsterdam
participated in the study: Two social psychologists, two cognitive neuroscien-
tists, and two developmental psychologists. The participants were contacted a
few days before the interview and agreed to participate in the study on the ba-
sis of a brief description of the procedure. They did not receive any monetary
compensation for their participation.

The elicitation setup emulated a typical situation in psychological research
where a directional alternative hypothesis is tested and small-to-medium sized
effect sizes can be expected. The elicitation procedure took place in the form of a
semi-structured face-to-face interview.

At the beginning of the interview, participants were informed that the goal
of the elicitation task was to assess their expectations for small-to-medium effect
sizes in their respective field of study. This deviates from a standard prior elic-
itation procedure insofar as that typically, experts would be queried about their
expectations for specific effects in their field of study (e.g., the Facial Feedback
effect in social psychology, see Gronau et al., 2020), and potentially even about a
specific experimental design (Dienes, 2019). Here, we decided for a more general
elicitation target as this allowed us to uncouple our elicitation procedure from an
idiosyncratic research context and establish a minimum level of consent between
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Figure 7.1: Example for eliciting a prior distribution using the Histogram method
in the MATCH tool (Morris et al., 2014).

experts (i.e., experts agree on the existence and direction of the effect, and would
use the same label to describe its size). A minimum level of consent between
experts can be regarded as desirable, as it is unclear whether experts are capable
of formulating unbiased predictions for a theoretical scenario that disagrees with
their convictions (Stefan et al., 2020).

Subsequently, Cohen’s δ and the Pearson correlation coefficient ρ (Cohen,
1988, 1992) were introduced as examples for effect size measures in the context
of the comparison of means and correlation tests, respectively. Participants were
further informed that the purpose of the elicitation procedure was to assess their
expectations for the case that a one-sided alternative hypothesis is true, that is, a
scenario where the effect size is larger than zero. They were told that they would
be able to change their assessments at any time during the course of the interview.

The prior elicitation followed the Histogram Method, where experts commu-
nicate their subjective prior distribution by using the bars of a histogram (van
Noortwijk et al., 1992). The Histogram Method is one of the most frequently
used elicitation approaches and is claimed to be accessible to experts regardless
of their level of statistical knowledge (Bolger, 2018; Grigore et al., 2013). We used
the MATCH software (Morris et al., 2014) in combination with a custom-made
Shiny app to support the elicitation procedure. A screenshot of the MATCH tool
and of the Shiny app can be found in Figure 7.1 and 7.2, respectively. At the
beginning of the Histogram Method, the participants were asked two questions:
(1) “Imagine how general small-to-medium effect sizes in your field would look
like. Which effect size would you expect as the most probable one to be found?”,
(2) “Which range of values would you consider possible?”. Subsequently, the ex-
pert was asked to place virtual chips on the MATCH elicitation grid in a way that
reflects their assessment of the plausibility of the values in the grid. The more
plausible an expert regards a certain range of values, the more chips they place
on that range. The grid consisted of 10 bins of effect size values ranging from 0
to 1, and a maximum of 10 chips could be placed in each bin. Participants were

155



7. Expert Agreement in Prior Elicitation and its Effects on Bayesian Inference

Figure 7.2: Example for adjusting an elicited distribution using the custom-made
Shiny app.

given as much time as they needed to place the chips, and could at any time turn
to the interviewer in case of questions.

After participants had placed their chips, the fitting procedure in the MATCH
tool was used to fit a probability distribution to the results of the elicitation. Fol-
lowing this step, the fitted parameters of the distribution were transferred to a
Shiny app (see Figure 7.2) where participants were able to adjust the parame-
ters of the distribution, if they felt that the fitted distribution did not perfectly
represent their prior beliefs. At participants’ request, a brief explanation of the
meaning of each parameter was provided (e.g., that the standard deviation spec-
ifies the spread of the distribution).

The process was repeated separately for Cohen’s δ and the Pearson correla-
tion coefficient. For the correlation coefficient, the elicited prior distribution took
the form of a beta-distribution with parameters α and β. For Cohen’s δ, partici-
pants were asked to adjust a fitted normal distribution as well as a fitted scaled
and shifted t-distribution because we expected them to be more familiar with
the parameters of the normal distribution, but wanted to provide them with the
added flexibility of the flatter tails of a t-distribution. Since the elicited normal
and t-priors differed only marginally, we will only report our results for the t-
priors in the following. Results for the elicited normal priors can be found in the
online appendix (https://osf.io/vqszj/).
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Table 7.1 Elicited parameters of the beta and t-distribution priors.

Beta prior t-prior

Expert Field α β µ σ ν

1 Social Psychology 0.62 22.44 0.10 0.12 3
2 Social Psychology 5.32 18.58 0.55 0.08 3
3 Cognitive Neuroscience 5.35 15.69 0.60 0.11 13
4 Cognitive Neuroscience 10.70 22.98 0.59 0.11 3
5 Developmental Psychology 3.83 8.76 0.41 0.12 13
6 Developmental Psychology 8.65 12.39 0.31 0.08 9

Note: The Greek letters stand for each parameter: α and β for the alpha and
beta parameters of the beta-distribution; µ for the mean, σ for the scale param-
eter, and ν for the degrees of freedom of the t-distribution.

7.3 Elicited Prior Distributions

The elicited prior distributions are shown in Figure 7.3 and 7.4, respectively, and
the parameters of the elicited distributions can be found in Table 7.1.

For the Pearson correlation coefficient, all experts placed most prior distribu-
tion mass on values smaller than ρ = 0.5. Expert 1 differs markedly from the
other experts by assigning a high probability to correlation coefficients close to
zero. Expert 6 made the most optimistic claims about the correlation coefficient
by placing the peak of their distribution on values around a correlation coeffi-
cient of ρ = 0.4. The elicited priors of all other experts are relatively similar with
peaks around values between 0.2 and 0.3. Compared to the other experts, Expert
5 has a somewhat wider prior distribution that signifies more uncertainty about
the size of a small-to-medium effect size in their field. Note that the assessments
of Experts 2–5 are roughly in agreement with Cohen’s (1988, pp. 79f.) classifica-
tion scheme, according to which Pearson correlation coefficients between ρ = 0.1
and ρ = 0.3 reflect small-to-medium-sized effects.

For Cohen’s δ, experts differed to a similar degree in their elicited prior dis-
tributions. The peaks of the prior distributions ranged from δ = 0.1 (Expert 1)
to δ = 0.6 (Expert 3). Consistent with the elicited priors for the correlation coef-
ficient, Expert 1 expected substantially lower effect sizes than the other experts.
Expert 6 showed the least uncertainty about the parameter (i.e., the most peaked
prior distribution), with 95% percent of the distribution between δ = 0.14 and
δ = 0.48. There was, again, considerable consistency between the elicited prior
distributions of Expert 2–5. For Cohen’s δ, several experts’ prior distributions did
not match Cohen’s classification of a small-to-medium effect size. Cohen classi-
fied δ = 0.2 as a small, and δ = 0.5 as a medium effect size (Cohen, 1988, pp.
25f.), whereas several experts placed considerable weight on effect sizes larger
than δ = 0.5. For example, Experts 2, 3, and 4 all placed more than 70% of their
prior distribution on values larger than δ = 0.5. Therefore, most experts consid-
ered small-to-medium effects to be larger than their normative definition.
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Figure 7.3: Elicited prior distributions for the Pearson correlation coefficient ρ for
all six experts. The colors of the experts’ distributions match the colors used in
later figures.

As can be expected, all elicited prior distributions differ substantially from
the default prior distributions commonly used for Bayesian t-tests and correla-
tion tests (see Figure 7.5). The elicited prior distributions reflect less uncertainty
about parameter values and –apart from Expert 1– none of the experts assigned
considerable prior mass to parameter values close to zero. Therefore, with the
possible exception of Expert 1, the elicited prior distributions can be said to be
more similar to one another than to the default prior distribution.
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Figure 7.4: Elicited t-distribution priors for Cohen’s δ for all six experts. The
colors of the experts’ distributions match the colors used in later figures.

7.4 Reanalyzing Hypothesis Tests from the Psychological Literature

In the following sections, we will reanalyze hypothesis tests extracted from the
psychological literature using the elicited prior distributions. The goal is to show-
case the extent to which the differences between elicited prior distributions can
influence the results of Bayesian hypothesis testing. We will apply the elicited
beta-distribution priors and t-distribution priors to correlation tests and t-tests,
respectively. We will compare the results among the elicited prior distributions as
well as with the results of hypothesis tests using default prior distributions. The
code to reproduce the results can be found in the online supplementary materials
(https://osf.io/vqszj/).

7.4.1 The Bayesian hypothesis testing procedure

In our comparisons, we will focus on Bayes factors as the central outcome of
the Bayesian hypothesis test. The Bayes factor is a measure of relative evidence
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Figure 7.5: Default prior distributions for the one-sided Bayesian correlation test
and t-test. The default prior for the correlation test is a uniform distribution from
0 to 1. The default one-sided prior for the t-test is a positive-only Cauchy dis-
tribution with mode 0 and scale parameter

√
2/2 (mass greater than δ = 1 not

shown here).

provided by the data for one model over another (Kass & Raftery, 1995). For
example, a Bayes factor of BF10 = 6 means that the data are six times more likely
under the alternative hypothesis (M1) than under the null hypothesis (M0).
Bayes factors larger than 1 can be interpreted as evidence in favor of the alterna-
tive hypothesis, while Bayes factors smaller than 1 can be interpreted as evidence
in favor of the null. Mathematically, the Bayes factor is defined as a ratio of two
prior-weighted averaged likelihoods,

BF10 =
p(D | M1)

p(D | M0)
=

∫
p(D | θ1,M1) p(θ1 | M1)dθ1∫
p(D | θ0,M0) p(θ0 | M0)dθ0

, (7.1)

where p(θ1 | M1) and p(θ0 | M0) are the prior distributions under the alternative
and null model, and p(D | θ1,M1) and p(D | θ0,M0) are the likelihood functions
under the alternative and null model, respectively. In Bayesian null hypothesis
testing, underM0, the parameter of interest (e.g., effect size) is typically assigned
a point prior that puts all mass on a null value (ρ = 0 and δ = 0 in our case); for
the nuisance parameters (e.g., the variance) wide default prior distributions are
specified (Ly et al., 2016).1 The null hypothesis therefore represents the idealized
position of a sceptic.

In contrast, under M1, the parameter of interest is assumed to be different
from zero, and the uncertainty about its true value is reflected in a prior distri-
bution. These prior distributions can either be elicited, as presented above, or
they can be specified as defaults designed to meet particular desiderata (e.g., Ba-

1But note that the Bayes factor allows you to compare any models you can specify (Etz, Haaf, et
al., 2018; Evans & Servant, 2020). If there is no analytic solution for solving the integrals, Bayes factors
can be approximated using numerical methods (e.g., Evans & Annis, 2019; Gronau et al., 2017).
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Figure 7.6: Distribution of effect sizes and sample sizes in the two meta-analytic
databases used in this chapter (Bosco et al., 2015; Wetzels et al., 2011).

yarri et al., 2012). As a default prior distribution for the correlation test, we use a
uniform distribution on the correlation coefficient ρ, as recommended by Jeffreys
(1961, pp. 174-179 and 289-292, see also Ly, Marsman, and Wagenmakers (2018)).
For the t-test, our default distribution is a central Cauchy distribution with a
scale parameter of

√
2/2 on effect size Cohen’s δ, as recommended by Morey and

Rouder (2018). Both default prior settings are also implemented in JASP (JASP
Team, 2021). Figure 7.5 displays the default prior distributions. For consistency
with our elicitation procedure, the default prior on δ is positive-only, that is, we
assume that the hypothesized direction for the effect is known.

7.4.2 Meta-analytic databases

We reanalyze hypothesis tests from two large psychological databases. For the
t-test, we compute Bayes factors for the meta-analytic database assembled by
Wetzels et al. (2011). The database contains a total of 855 t-tests reported in 252
articles from the 2007 issues of Psychonomic Bulletin & Review and the Journal of
Experimental Psychology: Learning, Memory, and Cognition. The t-tests include 85
one-sample t-tests, 604 paired samples t-tests, and 166 independent samples t-
tests, with sample sizes ranging from 2 to 212 (per group), and a median sample
size of 24. The sample effect sizes for δ range from d = −4.23 to d = 6.44, with a
median of d = 0.57. The distribution of effect sizes in the Wetzels et al. database
can be seen in the right panel of Figure 7.6.

For the correlation tests, we reanalyze data from a database assembled
by Bosco et al. (2015). The latest version of the database (version 2.08, see
http://www.frankbosco.com/data/CorrelationalEffectSizeBenchmarks.html)
contains a total of 172,492 correlation coefficients extracted from journal articles
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in Personnel Psychology and the Journal of Applied Psychology between the years
1980 and 2010. For practical reasons we use a random subset of 855 correlation
coefficients from this database. These coefficients were extracted based on the
following rules: First, we removed all perfect correlations (r ∈ {−1, 1}) since
these do not typically represent psychologically meaningful relationships. Then,
we removed all correlation coefficients for which the database indicated unequal
sample sizes or non-integer sample sizes for the two measured variables. In a
third step, we removed correlations based on sample sizes smaller than 10 and
larger than 500 for computational purposes. From the remaining data we sam-
pled 855 correlation coefficients, matching the number of coefficients reported
in the Wetzels et al. (2011) database. Correlation coefficients were sampled from
different studies to ensure independence between the correlation coefficients.
The final set of correlation coefficients ranges from r = −0.94 to r = 0.96, with a
median correlation of r = 0.15. The distribution of correlation coefficients in the
Bosco et al. database can be seen in the left panel of Figure 7.6.

7.4.3 Question 1: How often do the priors change the direction of the
Bayes factor?

For many researchers, a key outcome of a Bayesian hypothesis test is the direction
of the Bayes factor: Do the data support the null hypothesis or do they support
the alternative hypothesis? Even though the mere direction of the Bayes factor
should be interpreted with care, especially if the evidence is only weak, the di-
rection of the Bayes factor is generally of great importance when interpreting the
results of an experiment (Jeffreys, 1938, pp. 377-378). Therefore, our first sensi-
tivity analysis concerns the direction of the Bayes factor. If the direction of the
Bayes factor remains the same, regardless of the prior distribution used, the main
conclusion of the hypothesis test is robust against the choice of the prior.

Figure 7.7 shows how often the Bayes factors computed for the different
elicited prior distributions point in the same direction. We defined the agreement
rate as the proportion of tests where both Bayes factors are either larger or
smaller than BF10 = 1. Generally, there is a high agreement between the Bayes
factors for our elicited priors. For most combinations of prior distributions, the
Bayes factor points towards the same hypothesis in over 90% of the conducted
tests. The largest influence of the prior distribution can be observed for the prior
distribution of Expert 1. Here, agreement with the other Bayes factors goes down
to a minimum of 77.5% for the Bosco et al. (2015) data and 87.7% for the Wetzels
et al. (2011) data. As is evident from Figure 7.3 and Figure 7.5, the elicited prior
distributions for Expert 1 differ substantially from those of the other experts,
primarily because Expert 1 assigned a relatively large proportion of prior mass
to values near zero.

Notably, for our sample of expert-elicited prior distributions, most of the time,
Bayes factors using the default prior distribution pointed to the same direction as
Bayes factors based on our elicited priors. Even Expert 1 reached agreement rates
of 79.4% or higher with the default prior. This indicates that for psychological
data, elicited prior distributions need to differ substantially from the default prior
to change the direction of the result of the hypothesis test.
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Figure 7.7: Agreement rates of Bayes factors with regard to the direction of ev-
idence for all combinations of prior distributions. Agreement criterion: Both
Bayes factors are either larger than 1 or smaller than 1.

7.4.4 Question 2: How often do the priors change the evidence cate-
gory?

An important goal of a Bayesian hypothesis test is to measure the strength of
evidence in favor of the null hypothesis versus the alternative hypothesis. The
Bayes factor allows for a continuous quantification of the strength of evidence in
favor of either hypothesis. However, in interpreting the Bayes factor, researchers
often rely on rough heuristic classifications of evidence strength. For example,
according to Jeffreys’ (1961) classification, Bayes factors between 1 and 3 can be
categorized as anecdotal evidence, Bayes factors between 3 and 10 indicate mod-
erate evidence, and Bayes factors above 10 are labeled as strong evidence. Even
though all evidence classification systems are arbitrary to a certain extent, “jump-
ing” across the thresholds in a particular classification system is often perceived
as a qualitative change in the amount of evidence (Tendeiro & Kiers, 2019). In
fact, Robinson (2019) pointed out that it is a strength of Bayesian hypothesis tests
that their results can fall into either of three categories: Evidence for the null hy-
pothesis, evidence for the alternative hypothesis, or inconclusive evidence. What
degree of evidence can be interpreted as convincing evidence depends on the
research field (Schönbrodt & Wagenmakers, 2018). For example, a Bayes factor
larger than 10 or smaller than 1/10 could be interpreted as convincing evidence
in favor ofM1 orM0, respectively, whereas a Bayes factor between these upper
and lower bounds might be interpreted as inconclusive evidence. When investi-
gating the sensitivity of the Bayes factor to the prior distribution, it is therefore
interesting to evaluate how often a certain evidence threshold has been crossed
due to the choice of the prior distribution.

In Figure 7.8, we depict how often Bayes factors crossed an evidence thresh-
old if we applied a different elicited prior distribution or the default prior dis-
tribution. As delineated above, we used evidence thresholds of BF10 = 10 and

163



7. Expert Agreement in Prior Elicitation and its Effects on Bayesian Inference

100% 63.4%

100%

60.1%

96.3%

100%

51.1%

85.6%

89.4%

100%

58.5%

93.2%

97%

91.9%

100%

46.5%

75.7%

79.4%

89.8%

82.5%

100%

66.9%

93.3%

92.9%

83.9%

91.3%

77.5%

100%

Expert1

Expert2

Expert3

Expert4

Expert5

Expert6

Default

Exp
ert

1

Exp
ert

2

Exp
ert

3

Exp
ert

4

Exp
ert

5

Exp
ert

6

Defa
ult

0%

25%

50%

75%

100%
Agreement on Evidence Category

Data: Bosco et al. (2015)

100% 70.3%

100%

69.2%

98%

100%

70.4%

99.2%

98.8%

100%

76.3%

92.4%

90.6%

91.8%

100%

81.6%

86.3%

84.8%

86%

93.9%

100%

86.5%

82.6%

81.8%

82.9%

87.8%

90.2%

100%

Expert1

Expert2

Expert3

Expert4

Expert5

Expert6

Default

Exp
ert

1

Exp
ert

2

Exp
ert

3

Exp
ert

4

Exp
ert

5

Exp
ert

6

Defa
ult

0%

25%

50%

75%

100%
Agreement on Evidence Category

Data: Wetzels et al. (2011)

Figure 7.8: Agreement rates of Bayes factors with regard to the evidence category
for all combinations of prior distributions. Here, strong evidence is defined as
BF10 > 10 or BF10 < 1/10. Bayes factors are considered to possess the same
strength of evidence if both Bayes factors show strong evidence for the same
hypothesis or if both Bayes factors show inconclusive evidence.

BF10 = 1/10 to identify strong evidence in favor ofM1 andM0, respectively (for
results with other thresholds see our online appendix https://osf.io/vqszj/). We
recorded a change in the strength of evidence if one of the Bayes factors would
be classified as strong evidence while the other Bayes factor would be classified
as inconclusive evidence or evidence in favor of the other hypothesis according
to these evidence thresholds.

Overall, we can see that the agreement of Bayes factors with regard to the
evidence category is lower than the agreement with regard to the direction. Al-
though many Bayes factors agree on the strength of evidence in 90% of the tests
or more, several combinations of our elicited prior distributions only yield agree-
ment rates of 80% or less. The agreement rates for Expert 1 are even lower, with
rates as low as 47%. This divergence can again be explained by the large differ-
ence between Expert 1’s prior distribution and the prior distributions of the other
experts. However, with the given data and evidence thresholds, it never occurs
that one Bayes factor shows strong evidence in favor of the alternative hypoth-
esis while the matching Bayes factor shows strong evidence in favor of the null
hypothesis.

In general, evaluating agreement across two cut-points will result in lower
agreement than evaluating agreement across a single cut-point. This provides an
intuitive explanation for the lower agreement rates for the strength of evidence
compared to the direction of Bayes factors.
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7.4.5 Question 3: How much do the priors change the value of the Bayes
factor?

Both the direction and the classification of the Bayes factor are based on a discrete
interpretation of the available evidence. Although useful as a rough heuristic,
many proponents of Bayesian methods prefer to report the exact value of the
Bayes factor, as every discretization leads to a loss of information (e.g., Jeffreys,
1938; van Ravenzwaaij & Wagenmakers, 2019). Below we examine the degree
to which the exact values of the Bayes factor change as a result of adopting a
different prior distribution.

Figure 7.9 and 7.10 display the correspondence of log Bayes factors for all ex-
perts in the two meta-analytic databases. Points falling on the diagonal line signal
perfect correspondence, while points falling below or above the line signal higher
Bayes factors for the expert plotted on the x- or y-axis, respectively. We chose to
show log Bayes factors because they make it possible to display very large Bayes
factors without losing information about smaller Bayes factors. However, it is
necessary to keep in mind that due to the logarithmization even small deviations
from the diagonal signal large absolute differences in Bayes factors if the Bayes
factors are large.2 From the figures, it becomes clear that Bayes factors are not
always larger or smaller for one prior distribution compared to another, but that
the relation differs per study. For example, for some studies, elicited distributions
yield larger Bayes factors than the default prior distributions, and for others vice
versa.

Figure 7.11 shows that the effect size in the sample determines which prior
distribution yields the highest Bayes factor for a study. The sample size has an
additional effect, with larger sample sizes leading to more pronounced differ-
ences between the Bayes factors for different prior distributions.

Panel A of Figure 7.11 shows log Bayes factors in the Bosco et al. (2015)
database for studies with a sample effect size of r = −0.2.3 Since a negative
sample effect size is inconsistent with the directional alternative hypothesis pos-
tulated by the experts, the evidence should point towards the null hypothesis,
that is, the log Bayes factors should be negative.4 It is easy to see that Expert 1’s
prior distribution led to weaker evidence for the null hypothesis than all other
prior distributions. This can be explained by the shape of the prior distribution:
By placing much weight on effect sizes close to zero, the alternative model of
Expert 1 becomes very similar to the null model. Therefore, large sample sizes
are necessary to discriminate between the two models. The strongest evidence
for the null model is obtained by Expert 6. Expert 6’s prior distribution has a
higher mode than all other prior distributions. Negative effect sizes are therefore

2For corresponding figures of raw Bayes factor values, see our online appendix https://osf.io/
vqszj/.

3Correlation coefficients in the Bosco et al. (2015) database are reported with three decimal places.
For Figure 7.11, we used correlation coefficients with one significant decimal place (e.g., r = −0.200).

4In the original study context, a negative effect size may in fact be consistent with the pertinent
alternative model. However, for the sake of demonstration we assume that the alternative model
is defined by the elicited positive-directional prior distributions: this allows us to examine a broad
range of outcomes, both consistent and inconsistent with the direction of the hypothesis.
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Figure 7.9: Correspondence between log Bayes factors for all prior distributions
in the Bosco et al. (2015) database. The diagonal line marks equal values.

highly inconsistent with their alternative model and lead to strong support for
the null model.

Panels B and C of Figure 7.11 show the log Bayes factors for studies in the
Bosco et al. (2015) database with sample effect sizes of r = 0.2 and r = 0.4,
respectively. These correlation coefficients were deemed most likely by Expert 2
and Expert 6, respectively, thus yielding a higher predictive accuracy for these
experts compared to the other experts and the default prior. The Bayes factor
rewards the experts’ predictive accuracy, showing the highest support for the
expert’s model who made the best predictions.

Panel D of Figure 7.11 shows the log Bayes factors for studies with a sample
correlation coefficient of r = 0.6 in the Bosco et al. (2015) database. This effect
size is larger than the 95th percentile of all elicited prior distributions, which
means that none of the experts made accurate predictions. In this case, the de-
fault prior distribution gains advantage over the elicited distributions, since it
assigned considerable mass to very large effect sizes. However, it is important to
note that the prior mass in the default prior distribution is distributed across a
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Figure 7.10: Correspondence between log Bayes factors for all prior distributions
in the Wetzels et al. (2011) database. The diagonal line marks equal values.

wide range of effect sizes. This means that even though the default Bayes factors
outscore the informed Bayes factors in our case, an informed prior distribution
that predicts large effect sizes instead of small-to-medium effect sizes would lead
to even higher Bayes factors than the default distribution. Generally, for large
effect sizes, most Bayes factors are highly compelling regardless of the prior that
was used because, all else being equal, Bayes factors increase monotonically with
increasing effect size.

Our results show that absolute differences between the Bayes factors can be
substantial. For instance, for a correlation of r = 0.3 and a sample size of 260,
Expert 4 has a Bayes factor of 110, 157 in favor of the alternative model, while
Expert 6 shows evidence of 60, 436 in favor of the alternative model. Thus, even
for moderate sample sizes, differences in Bayes factors can easily range in the
thousands. However, for practical purposes the difference is irrelevant: both
Bayes factors display overwhelming evidence in favor of the alternative model.
This also becomes clear from the posterior model probability, which is p(M1 |
D) = 0.999991 for Expert 4 and p(M1 | D) = 0.999984 for Expert 6 (assuming
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Figure 7.11: Variation in log Bayes factors for four different observed effect sizes
(panel A-D) in the Bosco et al. (2015) database depending on different priors
(color coded) and sample sizes.

equal prior model probabilities). It is arguably difficult to picture a scenario in
which these differences in posterior model probability would lead to different
conclusions or instigate different actions in practice. As stated by Jeffreys,

“We do not needK [i.e., BF01] with much accuracy. Its importance
is that if K > 1 the null hypothesis is supported by the observations,
while if K is very small the null hypothesis may be rejected. But it
makes little difference to the null hypothesis whether the odds are 10
to 1 or 100 to 1 against it, and no difference at all whether they are 104

or 104000 to 1; in any case, whatever alternative is most strongly sup-
ported will be set up as the hypothesis for use until further notice.”
(Jeffreys, 1939, Appendix I, p. 357)

For our sample of elicited priors, it rarely happens that one Bayes factor shows
barely any evidence while another Bayes factor shows overwhelming evidence
in one direction. Our analyses indicate that, typically, when differences between
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Figure 7.12: Ratios of Bayes factors of different experts in the Wetzels et al. (2011)
database. Ratios are computed by dividing the Bayes factor of the expert on the
x-axis by the Bayes factor of the expert of the y-axis, e.g., the bottom right panel
shows the distribution of Bayes factor ratios for BFDefault:Expert1.

Bayes factors are large, all Bayes factors are large. This also explains our results in
the previous section where we observed a high agreement between the Bayes fac-
tors with regard to the evidence category, despite of the large differences between
the absolute Bayes factor values.

On a more general account, it should be noted that differences in Bayes fac-
tors do not lend themselves to an intuitive interpretation because the Bayes fac-
tor lacks a unit of measurement. For example, an absolute difference of 49,721
between the Bayes factor of Expert 4 and Expert 6 might seem large, but can-
not be put in perspective unless the values of the Bayes factors involved in the
difference are known. In contrast to differences, ratios of Bayes factors can be
meaningfully interpreted. Due to the principle of transitivity, the ratio between
two Bayes factors, BF10/BF20, is, again, a Bayes factor (BF12; Etz, Haaf, et al.,
2018). For example, the ratio between the Bayes factors of Expert 4 and Expert
6 for a correlation of r = 0.3 and a sample size of 260 is 110, 157/60, 436 = 1.82,
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meaning that the data are roughly twice as likely under Expert 4’s model than
under Expert 6’s model. Thus, even if there is a large absolute difference in Bayes
factors, the difference in the quality of prediction for the rival expert models can
be small. When interpreting the sensitivity of the Bayes factor to the specification
of the prior, it is therefore recommended to analyze the ratios of Bayes factors
rather than the absolute value of the Bayes factor difference.

Figure 7.12 shows the distribution of Bayes factor ratios for different experts in
the Wetzels et al. (2011) dataset.5 From the y-axis in each panel, it becomes clear
that Bayes factor ratios mostly range between 1/3 and 3, and are rarely smaller
than 1/3 or larger than 50, so the predictive accuracy of two expert models is of-
ten similar. Note that the information about absolute size of the focal Bayes factor
BF10 in a hypothesis gets lost when computing the ratio of two Bayes factors, as
the marginal likelihood of the null hypothesis cancels out. For sensitivity of hy-
pothesis testing results, Bayes factor ratios for different experts should therefore
always be presented alongside the raw Bayes factor values, such as in Figure 7.10.

7.5 Discussion

As the saying goes, “there are as many opinions as there are experts” (Roosevelt,
1942). In Bayesian inference, these differences in opinion can become particu-
larly important in the context of prior elicitation from experts. Here, we investi-
gated how the interpersonal variability of elicited prior distributions influences
the results of Bayesian null hypothesis testing on the basis of a large database
of psychological studies. We introduced three different sensitivity analyses and
concluded that the qualitative conclusions of Bayesian hypothesis tests are rarely
affected by the prior distributions, but that the quantitative results can differ sub-
stantially.

The sensitivity of the Bayes factor has often been a subject of discussion in pre-
vious research (e.g., J. O. Berger, 1990; Sinharay & Stern, 2002). However, to our
knowledge, this chapter is the first to provide a structured analysis of the sensi-
tivity of the Bayes factor in the light of prior distributions that were elicited from
psychology experts. Our results give an impression of the extent of interpersonal
variability between elicited prior distributions that can be expected in psycho-
logical research, and we show that the Bayes factor is sensitive to this variability.
However, our results also demonstrate that the use of different elicited prior dis-
tributions does not necessarily change the direction of the Bayes factor or the
category of evidence strength. In fact, for our elicited priors, the majority of qual-
itative test conclusions remained unaffected by the priors. This insight may in-
crease the support for informed Bayesian inference among researchers who were
worried that incidental fluctuations in expert opinions might determine the qual-
itative outcomes of their Bayesian hypothesis tests. However, as we argue below,
it should not be taken as evidence that informed prior distributions will gener-
ally not affect test decisions. This depends on the models being compared, the
available data, and the degree of information of elicited priors.

5A corresponding figure for the Bosco et al. (2015) dataset can be found in our online appendix
on https://osf.io/vqszj/
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Beyond displaying the consequences of interpersonal variability in prior elic-
itation, our analyses can also be used as a guidance for future Bayes factor sen-
sitivity analyses. This chapter demonstrates how prior elicitation can be used to
identify relevant prior distributions, and provides a structured approach for the
succeeding sensitivity analyses. By analyzing the direction and evidence cate-
gory of the Bayes factor, researchers can investigate whether their candidate prior
distributions affect the qualitative conclusions of their Bayesian hypothesis test.
Additionally, researchers can investigate the quantitative differences between the
Bayes factors using the different prior distributions. As we demonstrated in this
chapter, the proposed approach allows researchers to infer from sensitivity ana-
lyses that the Bayes factor is at the same time robust and sensitive to the choice
of the prior distribution. Specifically, qualitative conclusions based on the Bayes
factors can be highly robust against the choice of the prior distribution, while the
absolute value of the Bayes factor is sensitive to the prior distribution.

It is interesting to note that elicited prior distributions do not always lead to
higher Bayes factors than default prior distributions, even though they display
less uncertainty about parameters. Our results show that there are two keys to
understanding the relationship between informed prior distributions and Bayes
factors. First, to yield higher Bayes factors, informed prior distributions need to
increase the discriminability between the models. If the informed prior distribu-
tion mimics the point prior under the null model (as was the case for Expert 1),
the discriminability between the models is low, which leads to a relatively low
strength of evidence. Second, the predictive accuracy of informed prior distri-
butions is rewarded. Specifically, Bayes factors are highest if the effect size in
the sample falls within the range of parameter values that were predicted by the
informed prior. We argue that understanding these relationships is not only cru-
cial for the interpretation of sensitivity analyses, but can also be important for
Bayesian design planning, where researchers determine the sample size of stud-
ies based on the prospective strength of evidence (Stefan et al., 2019). Typically,
larger sample sizes are needed to obtain strong evidence if the compared mod-
els are less discriminable, and smaller sample sizes are required with informed
models where one of the models makes accurate predictions. Of course, this
should not lead researchers to aim solely for design efficiency. It remains impor-
tant that the statistical models reflect theoretical beliefs and make realistic predic-
tions. Therefore, prior specification should always precede sample size planning
in practice.

The variability of prior distributions and their impact on the results of
Bayesian hypothesis tests immediately raise the question whether one prior
distribution can be considered superior to another. Following de Finetti’s sub-
jective notion of probability (de Finetti, 1974), prior distributions can neither be
discussed nor critiqued as they represent the idiosyncratic belief of an individ-
ual. An independent researcher who elicited prior distributions from multiple
experts would therefore have no reason to prefer any elicited prior over another.
However, even though a single prior distribution cannot be evaluated from a
normative standpoint, it can be evaluated regarding its concordance with other
elicited prior distributions. For example, in our study, Expert 1’s priors deviated
substantially from all other experts. This does not necessarily mean that Expert
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1’s prior distribution is any less valid than the other experts’ priors. However,
the divergence can instigate further investigations into reasons for the apparent
disagreement. Possible reasons include that the expert holds minority beliefs or
possesses different information from the other experts, but also that the expert
misunderstood the elicitation procedure or did not participate faithfully. In
practice, it might be necessary to contact the expert again after the elicitation
to obtain this information. Another way to compare prior distributions is by
means of their predictive accuracy in the light of data. This can be achieved by
computing Bayes factors between models using different elicited priors, as was
done in the previous section of this chapter in the context of a sensitivity analysis
(cf. Figure 7.12). As we argue below, this approach should never be used to
cherry-pick priors after the results are known. It can, however, be used to select
experts for future elicitations, or to compute knowledge-based weights for the
aggregation of future elicited priors from the same group of experts (Wilson &
Farrow, 2018).

Even though prior distributions can exert considerable influence on the Bayes
factor value, it is important to note that priors should not be chosen solely be-
cause of their influence on the Bayes factor. Researchers might be tempted to
choose a convenient informed prior after the data are known to increase the evi-
dence obtained from the data. For example, a devious researcher might choose a
prior distribution that peaks on unrealistically high effect sizes or a prior that is
exceedingly wide to obtain spurious evidence in favor of the null model, or define
“oracle priors” (Dienes, 2008), that is, point priors on the maximum likelihood es-
timate in the data, that distort evidence in favor of the alternative model. These
prior specifications no longer represent valid pre-data theoretical assumptions,
and thus prohibit severe tests of theory (Mayo, 1991). We wish to stress that prior
distributions are subject to public critique; researchers who cherry-pick prior dis-
tributions with the sole purpose of skewing the results in their favor will struggle
to defend these prior distributions in the (post)peer-review process. Ultimately,
prior distributions are part of the model specification and subject to the same
scrutiny as, say, the selection of a likelihood function. To avoid the suspicion of
post-hoc theorizing, it is recommendable that researchers specify the prior distri-
butions before the data collection, and record their decisions in a preregistration
(Chambers, 2013; Crüwell & Evans, 2019; Stefan et al., 2020). A prior sensitivity
analysis, as presented in this chapter, can go hand in hand with the preregistra-
tion and further increase the transparency of a study. Similar to a multiverse anal-
ysis (Steegen et al., 2016), computing analysis results for different elicited prior
distributions can bring subjective decisions in the statistical analysis to light and
make researcher degrees of freedom transparent. Thus, prior sensitivity analy-
ses can provide researchers with interesting information about the robustness of
their results and can increase their confidence in their conclusions. It is impor-
tant to note though that the prior distributions included in a sensitivity analysis
should all be justifiable for the specific research context at hand. Prior distri-
butions elicited from field experts for a well-defined research question typically
fulfill this criterion.

Like all other measurement methods, prior elicitation is subject to measure-
ment error (O’Hagan, 2019; Stefan et al., 2020). Therefore, differences between
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experts can both be a result of their different theoretical convictions of the ex-
perts and measurement fluctuations. To date, little research has been conducted
to assess the amount of measurement error in prior elicitation. In our study, we
decided to use one of the most common prior elicitation methods (Morris et al.,
2014), and gave experts the opportunity to adjust the elicited prior distributions.
It is important to be aware that these methodological decisions in the prior elic-
itation procedure might have influenced the elicited prior distributions (Stefan
et al., 2020). However, our results indicate that small differences in elicited prior
distributions barely play a role in Bayesian inference. Therefore, Bayes factors can
be considered robust against small measurement inaccuracies in the prior elicita-
tion process. However, they are not robust to large, potentially systematic biases.
This emphasizes the importance of well-validated prior elicitation methods that
minimize potential cognitive biases (Kahneman, 2011; O’Hagan, 2019; Tversky &
Kahneman, 1983). It is beyond the scope of the current study to investigate the
validity of different prior elicitation methods, but we believe that this can be a
valuable avenue for further research.

The prior elicitation effort reported in this chapter is special in several ways.
Rather than conducting a prior elicitation for a specific effect or research design,
we asked experts to provide their assessments for generic small-to-medium effect
sizes in their field that are larger than zero. This allowed us to include experts
from different research fields and establish a minimum level of consent between
the participating experts. However, it also means that the elicited prior distri-
butions are influenced less by substantive theory than they may be in a typical
prior elicitation context. Moreover, the lack of experimental context means that
experts’ beliefs were unrestricted by any particular operationalization. It is pos-
sible that experts would display more certainty and less disagreement if prior
distributions were elicited for a specific psychological effect or for a particular
research design. Another noteworthy aspect of our elicitation effort is that we
elicited beliefs for standardized effect size coefficients, rather than, for example,
raw differences in group means. Of course, this is partly due to the fact that we
did not refer to a specific experimental context. However, we believe that eliciting
beliefs about standardized parameters generally has several advantages. Since
individual studies and meta-analyses mostly report standardized effect sizes, it
will arguably be easier for experts to include this knowledge into their priors.
Additionally, standardized parameters might steer the experts’ focus towards
general theory and scientific evidence, rather than intuitions about a particular
experimental context. Thus, prior distributions elicited for standardized param-
eters might be more connected with theory and less influenced by measurement
tools. However, the influence of standardization on prior elicitation results is still
an open empirical question.

The results in this chapter are subject to several limitations. First, all results
of the sensitivity analyses are dependent on the databases and statistical tests
that were used. We carefully selected the databases to be representative for psy-
chological research and the two hypothesis tests we investigated are among the
most frequently used tests in psychology (Bosco et al., 2015; Wetzels et al., 2011).
However, different dataset compendia or hypothesis tests might yield different
levels of Bayes factor sensitivity. Therefore, the effects of interpersonal variability
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in prior distributions demonstrated in this chapter should always be interpreted
in the context of the current application scenario. Second, we only elicited prior
distributions from six experts. Although this number of experts is within the rec-
ommended range for domain-specific prior elicitation efforts (Grigore et al., 2013;
O’Hagan, 2019)6 and can be considered a realistic sample size for practical appli-
cations, it is possible that more variability would have been observed if more
experts had participated in the elicitation effort. Future studies could therefore
extend our analyses to more experts, different research questions, and statistical
models. In this context, it should also be stressed that despite the generality of
our elicitation question, the idiosyncratic prior distributions of six experts from
a single university should not be mechanically applied as universal “informed
default” priors for psychological science. In our opinion, establishing such “in-
formed default” priors for a well-defined research field is possible, but requires a
broader empirical base (for an example, see McKinney, Stefan, & Gronau, 2021).
Third, this chapter focuses solely on Bayes factors. Although Bayes factors are
frequently used in practice (van Doorn et al., 2021), some experts prefer other
Bayesian model evaluation methods or focus on posterior inference (Evans, 2019;
Gelman, Meng, & Stern, 1996; Kruschke, 2011; Vehtari, Gelman, & Gabry, 2017).
These alternative methods are also influenced by the prior distributions on pa-
rameters. It would therefore be interesting to investigate the influence of differ-
ences in elicited prior distributions on these methods as well.

The fact that the results of a statistical analyses depend on the statistical mod-
els, has long been known as “Jeffreys’s platitude” (Jeffreys, 1961). By includ-
ing different knowledge about prior parameters in Bayesian model comparisons,
researchers change the involved models, and therefore pose different statistical
questions that prompt different statistical answers. It is therefore not a weak-
ness, but a strength of Bayes factors to be sensitive to the specification of the
prior distribution. Here we demonstrated that the extent to which the statisti-
cal answer differs, depends on the differences in the questions asked. Modest
differences in elicited expert knowledge are still visible in the statistical results,
but rarely change the qualitative conclusions of the model comparison. Concerns
that idiosyncrasies between experts might jeopardize the objectivity of their sta-
tistical analyses are easily overstated. We hope that this insight will lead more
researchers to embrace informed Bayesian inference with elicited prior distribu-
tions in the future.

6Note that these recommendations are based on experiences of individuals with lots of experience
as facilitators of prior elicitation efforts, but lack a broader empirical basis.
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8

Big Little Lies: A Compendium and Simulation
of p-Hacking Strategies

Abstract

In many research fields, the widespread use of questionable research prac-
tices has jeopardized the credibility of scientific results. One of the most
prominent questionable research practices is p-hacking. Typically, p-hacking
is defined as a compound of strategies targeted at rendering non-significant
hypothesis testing results significant. However, a comprehensive overview
of these p-hacking strategies is missing, and current meta-scientific research
often ignores the heterogeneity of strategies. Here, we compile a list of twelve
p-hacking strategies based on an extensive literature review, identify factors
that control their level of severity, and demonstrate their impact on false-
positive rates using simulation studies. We also use our simulation results
to evaluate several approaches that have been proposed to mitigate the influ-
ence of questionable research practices. Our results show that investigating
p-hacking at the level of strategies can provide a better understanding of the
process of p-hacking, as well as a broader basis for developing effective coun-
termeasures. By making our analyses available through a Shiny app and R
package, we facilitate future meta-scientific research aimed at investigating
the ramifications of p-hacking across multiple strategies, and we hope to start
a broader discussion about different manifestations of p-hacking in practice.

This chapter is published as a preprint: Stefan, A. M. & Schönbrodt, F. D. (2022). Big little lies:
A compendium and simulation of p-hacking strategies. https://psyarxiv.com/xy2dk/
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8.1 Introduction

In an academic system that promotes a “publish or perish” culture, researchers
are incentivized to exploit degrees of freedom in their design, analysis, and re-
porting practices to obtain publishable outcomes (M. Bakker et al., 2012). In many
empirical research fields, the widespread use of such questionable research prac-
tices has damaged the credibility of research results (Banks, Rogelberg, Woznyj,
Landis, & Rupp, 2016; Gall, Ioannidis, & Maniadis, 2017; Gopalakrishna et al.,
2022; John et al., 2012). Ranging in the gray area between good practice and out-
right scientific misconduct, questionable research practices are often difficult to
detect, and researchers are often not fully aware of their consequences (Motulsky,
2015; Simmons et al., 2011; Ulrich & Miller, 2015).

One of the most prominent questionable research practices is p-hacking (John
et al., 2012; Simonsohn et al., 2014a). Researchers engage in p-hacking in the
context of frequentist hypothesis testing, where the p-value determines the test
decision. If the p-value is below a certain threshold α, it is labeled “significant”,
and the null hypothesis can be rejected. In this chapter, we define p-hacking
broadly as any measure that a researcher applies to render a previously non-
significant p-value significant.

p-hacking was first described by Adriaan De Groot (1956/2014) as a prob-
lem of multiple testing and selective reporting. The term “p-hacking” appeared
shortly after the onset of the replication crisis (Simmons, Nelson, & Simonsohn,
2013; Simonsohn et al., 2014a), and the practice has since been discussed as one
of the driving factors of false-positive results in the social sciences and beyond
(Brodeur, Cook, & Heyes, 2020; Bruns & Ioannidis, 2016; Head et al., 2015). Es-
sentially, p-hacking exploits the problem of multiplicity, that is, α-error accumu-
lation due to multiple testing (Hoffmann et al., 2021). Specifically, the probability
to make at least one false-positive test decision increases as more hypothesis tests
are conducted (Armitage et al., 1969; Dunnett, 1955). When researchers engage
in p-hacking, they conduct multiple hypothesis tests without correcting for the
α-error accumulation, and report only significant results from the group of tests.
This practice dramatically increases the percentage of false-positive results in the
published literature (Abdol & Wicherts, 2021).

The current literature typically depicts p-hacking as an inherently atheoretical
and incentive-driven procedure (e.g., Andrade, 2021; Head et al., 2015; Wagen-
makers, Wetzels, Borsboom, van der Maas, & Kievit, 2012). When engaging in
p-hacking, researchers are assumed to explore different data analysis options in a
trial and error fashion, fishing for “publishable” statistically significant findings
with little regard to the theoretical underpinnings of their research. This iterative
testing procedure only ends once the researcher has obtained their desired result
or has run out of creativity or patience (Rubin, 2017).

It should be emphasized that not every researcher engaging in p-hacking is
fully aware of its ramifications (Gelman & Loken, 2019; Motulsky, 2015). There
are many degrees of freedom in statistical analyses, and usually, there is more
than one right way through the proverbial garden of forking paths (Silberzahn et
al., 2018). This arbitrariness constitutes an ideal breeding ground for biases and
motivated reasoning that can provide researchers with subjectively convincing
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arguments to justify their analytic choices in hindsight. Therefore, p-hacking is
not necessarily an intentional attempt at gaming the system, but can also be a
product of human fallibility (Veldkamp, 2017).

To mitigate p-hacking, it is of essence to raise awareness for degrees of free-
dom in the design, analysis, and reporting of statistical analyses that can be ex-
ploited for the purpose of rendering non-significant results significant (Wicherts
et al., 2016). In fact, p-hacking is often defined by example as a vague compound
of strategies, where each strategy utilizes a different aspect of analytical flexibil-
ity to push the p-value below the significance threshold. For example, Simonsohn
et al. (2014a, p. 670) write “a researcher may run a regression with and without
outliers, with and without a covariate, with one and then another dependent
variable, and then only report the significant analyses in this chapter.” Other
articles use different examples for p-hacking strategies, with a varying degree of
detail and overlap between the listed strategies (e.g., Head et al., 2015; Motulsky,
2015). Simulation studies that demonstrate the impact of p-hacking then usually
focus on a small subset of these strategies, making conclusions in a pars-pro-toto
manner (e.g., Abdol & Wicherts, 2021; M. Bakker et al., 2012; Bruns & Ioannidis,
2016; E. C. Carter et al., 2019; van Aert, Wicherts, & van Assen, 2016). Thus, while
many authors have warned researchers of dangers of certain p-hacking strategies,
a comprehensive overview of these strategies that evaluates the severity of their
consequences is currently missing.

We believe that a compilation and thorough description of p-hacking strate-
gies and their ramifications can be beneficial for several purposes. First, it will
enable researchers to identify possible sources for p-hacking more easily and to
target them with appropriate measures. This is particularly true for p-hacking
strategies that have been rarely mentioned in the literature, and might therefore
still pass underneath the radar despite concerted efforts to mitigate questionable
research practices. Second, a demonstration of the distinctive impact of a range
of p-hacking strategies will be useful for future simulation studies that model
p-hacking behavior. We believe that simulation studies can be more realistic by
incorporating a variety of p-hacking strategies instead of extrapolating from a
few select strategies. Since the severity of p-hacking differs per strategy, it is
also recommendable that methods for p-hacking detection should be tested for
their sensitivity based on a combination of different p-hacking strategies. For
this purpose, it will be useful to have access to a compendium of computational
descriptions of p-hacking strategies. Lastly, meta-scientific research will benefit
from a better overview of p-hacking strategies, among others, to formulate more
specific questions in surveys on questionable research practices. The past years
have shown a surge of survey and interview based research on scientific prac-
tices, with a particular focus on the prevalence of misconduct and malpractice
(Fanelli, 2009; Gopalakrishna et al., 2022; John et al., 2012; Pupovac & Fanelli,
2015). We believe that when assessing the prevalence of p-hacking in a field, it is
beneficial to consider a wide range of strategies since different fields may vary in
their susceptibility to different p-hacking strategies.

In this chapter, we provide a closer look at various p-hacking strategies and
investigate their distinctive impact on the credibility of research results. Based
on extensive literature research, we compile an overview of twelve p-hacking
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strategies, and identify factors that control their level of severity. For each of
the strategies, we provide a small simulation study that demonstrates the in-
crease in false-positive findings as a result of applying the p-hacking strategy to
a commonly used hypothesis test. Additionally, we illustrate through simula-
tion how effects of different p-hacking strategies can accumulate when they are
iteratively applied to the same data set. To facilitate the re-use of our simulation
environment for research and educational purposes, we also provide an R pack-
age and a Shiny web-application that can be used to explore additional simulation
conditions. Finally, we use the results of our simulation studies to critically ex-
amine the usefulness of different methods that have been proposed to mitigate
the detrimental effects of p-hacking.

We would like to note that throughout this chapter we will frequently de-
scribe undesirable actions of researchers using phrases that suggest intention.
This is purely for the purpose of better readability, and does not imply that all
researchers engaging in p-hacking are knowingly deceptive. Although we be-
lieve that p-hacking is still common in many fields, we do not intend to make
claims about the proportion of researchers engaging in p-hacking against better
knowledge. Moreover, we would like to stress that this thesis chapter should in
no way be interpreted as an instruction manual for “successful” p-hacking. We
sincerely hope that our simulation results vividly illustrate the adverse effects of
p-hacking and will therefore discourage readers from engaging in questionable
research practices.

8.2 p-Hacking and Other Questionable Research Practices

Before diving into the specifics of different p-hacking strategies, it is important
to differentiate p-hacking from other questionable research practices. In the lit-
erature, p-hacking is often mentioned together with HARKing (Kerr, 1998) and
publication bias (Rothstein, Suton, & Borenstein, 2006).

8.2.1 HARKing

HARKing is an acronym that stands for “hypothesizing after the results are
known”. The term was coined by Kerr (1998) and describes the practice of pre-
senting post-hoc hypotheses in the introduction of an academic paper as if they
had been formulated before seeing the data. According to Mills (1993), HARKing
can be subsumed under opportunistic malpractices, since the researcher is in-
different with regard to the tested hypotheses, and bends the storyline of their
paper to fit the data. In contrast, p-hacking would be described as procrustean
practice, that is “making the data fit the hypothesis”.1 Here, a researcher is
setting out to find proof for a hypothesis, and performs changes in the analysis
pipeline to obtain the desired result. Thus, although p-hacking and HARKing
both involve computing multiple statistical tests, the verbal target hypothesis
typically remains constant with p-hacking, whereas it changes with HARKing.

1The term procrustean stems from Greek mythology, where Procrustes, an infamous robber, made
his victims fit the length of his iron bed by stretching them or cutting off their legs.
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The demarcation between p-hacking and HARKing is not always clear. For
example, the practice of computing hypothesis tests with multiple dependent
variables is often seen as an instance of p-hacking (e.g., Simonsohn, Nelson, &
Simmons, 2014b; van Aert et al., 2016), but can also be viewed as HARKing, de-
pending on the degree of conceptual difference between the measured variables.
Similarly, re-calculating a hypothesis test in different sub-groups (e.g., described
in Hahn, Williamson, Hutton, Garner, & Flynn, 2000) can also be conceptualized
as HARKing or p-hacking, depending on whether a significant result is presented
as an a-priori moderation hypothesis, or as support for a more general subgroup-
independent hypothesis that a researcher favors. In practice, extreme forms of
p-hacking may often be considered as HARKing, as a justification for uncommon
analysis options may require additional post-hoc hypothesizing. For this rea-
son, as well as due to the fact that p-hacking and HARKing both increase false
positive rates, we will include borderline cases in our compendium of p-hacking
strategies, and leave the choice of terminology to the reader.

8.2.2 Publication Bias

The term publication bias describes a situation where the published scientific liter-
ature in a field is unrepresentative of the population of completed studies (Roth-
stein et al., 2006, p. 1). Typically, publication bias is portrayed as being exerted
by journal editors and reviewers who function as gatekeepers for scientific pub-
lication, and favor significant over non-significant results for publication (Last,
2001; Marks-Anglin & Chen, 2020). However, there is evidence that publication
bias can also be self-imposed by scientists who decide against submitting reports
containing non-significant results (Olson, 2002; Thornton & Lee, 2000).

Self-imposed publication bias bears many similarities to p-hacking, as both
practices concern selective reporting of significant results. Some authors even
consider selective reporting of studies based on statistical significance part of p-
hacking strategies (Ulrich & Miller, 2015).

Here, we limit our definition of p-hacking to measures applied to a single
dataset. Additionally, we distinguish between p-hacking strategies that researchers
use to exploit the problem of multiplicity with the goal of obtaining significant
results, and reporting strategies that researchers use to decide which test results
they make public. Specifically, several authors have suggested that researchers
may conduct analyses in batches (e.g., five analyses, each with a different outlier
detection method), and then use a p-value dependent choice rule to decide which
analysis to report (e.g., “report the smallest p-value”; Simonsohn et al., 2014a; Ul-
rich & Miller, 2015). Here, we decided to treat these reporting strategies indepen-
dent of p-hacking strategies. Our rationale is that each p-hacking strategy (with
the exception of optional stopping) can be combined with one of several different
reporting strategies, but the reporting strategy does not influence the “success”
rate of p-hacking, that is, whether a non-significant result could be turned signifi-
cant. For example, if multiple outlier detection methods are tried out (see below),
the success of the p-hacking attempt is only determined by whether at least one of
the methods returns a significant p-value. If more than one significant result was
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obtained, the p-hacking attempt was successful, regardless of which p-value the
researcher chooses to report.

8.3 A Compendium of p-Hacking Strategies

In the following part of this chapter, we will present twelve p-hacking strate-
gies that we compiled based on an extensive literature review. For each strategy,
we will provide a detailed description based on published literature as well as a
small simulation study investigating the effects of the respective p-hacking strat-
egy on the rate of false positive results.

It is important to note that our list of p-hacking strategies should not be
viewed as exhaustive. In the same way that it is impossible to map out all
degrees of freedom that exist in all methods of data analysis in the quantitative
sciences, it is an impossible endeavor to list all questionable research practices
that misuse this flexibility. Fields that involve highly specialized data prepro-
cessing pipelines, such as EEG or eye-tracking research, may also be subject to
highly specialized forms of p-hacking that are not typically considered in the
literature (B. T. Carter & Luke, 2020; Paul, Govaart, & Schettino, 2021). This
may also be true for fields that employ highly sophisticated statistical analysis
techniques, such as cognitive modeling (Lee et al., 2019).

In this chapter, we will focus on p-hacking strategies that have been repeat-
edly mentioned in the statistical and meta-science literature. They are not field-
specific and can be applied to a wide range of research designs and hypothesis
testing scenarios. In our simulations, we will demonstrate their ramifications us-
ing the example of t-tests and (univariate) linear regressions, giving preference
to the t-test whenever possible.2 We use these statistical testing procedures for
two reasons: First, t-tests and regression analyses are among the most widely
used hypothesis testing procedures in the social sciences and beyond (Bosco et
al., 2015; Wetzels et al., 2011). Second, they have typically been used in previ-
ous simulation studies to demonstrate the effects of p-hacking, so our simulation
results can be directly compared to existing similar simulation studies (e.g., Si-
monsohn et al., 2014a; Ulrich & Miller, 2015). It is important to bear in mind that
while the listed p-hacking strategies could also be applied to more complex statis-
tical procedures, their effects on false positive rates may differ for these analyses.
Our simulation results should therefore only be interpreted with respect to the
analyses used therein.

All of our simulations will be conducted assuming a significance threshold
of α = 0.05 and a true effect size of zero in the population. Simulations of type
I error rates will use 3000 iterations of the Monte-Carlo sampling procedure for
each simulation condition, based on 1000 iterations for each of three simulated
reporting strategies. For each p-hacking strategy, we will simulate outcomes for
sample sizes of N ∈ {30, 50, 100, 300} per group. Additionally, we will vary
several parameters that can influence the aggressiveness of p-hacking. For the
sake of brevity, we will restrict simulations reported in this chapter to only few

2Some p-hacking strategies can only be applied to statistical tests with continuous predictors. In
these cases, we demonstrate their effects using regression analyses.
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conditions per p-hacking strategy that show the bandwidth of impact for what
we consider plausible levels of p-hacking aggressiveness.

Our judgement of plausibility is based on the assumption that researchers do
not automate p-hacking procedures (e.g., loop through a number of covariates
using a script), that the research context imposes natural limits on the number of
plausible analysis pipelines (e.g., subgroup effects that can be theoretically mo-
tivated post-hoc), and that the researcher’s knowledge about different analysis
pathways is limited (e.g., researchers are familiar with only a few outlier detec-
tion methods). However, in different research fields, different levels of p-hacking
aggressiveness may be plausible. To make it simple for the reader to explore such
settings in simulations, we provide an interactive Shiny app (https://shiny.psy
.lmu.de/felix/ShinyPHack/), as well as an R package (available through GitHub
via https://github.com/astefan1/phacking compendium). Code to reproduce
the simulations conducted in this chapter can be found in an associated OSF
repository https://osf.io/5nbkc/ as well as on Github. An overview table listing
all twelve p-hacking strategies together with the reported simulation conditions
can be found the appendix of this chapter (cf. section 8.A).

8.3.1 Strategy 1: Selective Reporting of the Dependent Variable

Selective reporting of significant results from a series of hypothesis tests with
different dependent variables is one of the most frequently cited examples for
p-hacking (e.g., Bruns & Ioannidis, 2016; Head et al., 2015; Kraemer, 2013; Motul-
sky, 2015; Simonsohn et al., 2014a; Tannock, 1996; Wicherts et al., 2016). There is
substantive evidence that a large part of researchers has engaged in this ques-
tionable research practice. Specifically, with more than 60%, selective report-
ing of the dependent variable was the questionable research practice with the
highest admission rate, and also received the highest defensibility rating in John,
Loewenstein, and Prelec’s (2012) survey on questionable research practices. Ad-
ditionally, an analysis of Cochrane reviews found a major change in outcome
variables compared to a previously submitted protocol for 46.8% of the publica-
tions (Silagy, Middleton, & Hopewell, 2002), and a review of randomized trials
in Denmark found that 50% of efficacy and 65% of harm outcomes per trial were
incompletely reported (A.-W. Chan, Hróbjartsson, Haahr, Gøtzsche, & Altman,
2004). This suggests that selective reporting of dependent variables is a common
practice, even in fields with high standards for study preregistration.

Starting with Simmons, Nelson, and Simonsohn’s (2011) seminal paper criti-
cizing false-positive results in psychology, selective reporting of dependent vari-
ables has been a preferred target for simulations of p-hacking. In an exchange of
papers discussing the potential of publication bias correction methods to account
for p-hacking, Simonsohn et al. (2014b), Ulrich and Miller (2015), and van Aert
et al. (2016) provided simulations of selective outcome reporting in t-tests with
up to 32 dependent variables. Bishop and Thompson’s (2016) simulation stressed
the effect of correlation between dependent variables on the severity of p-hacking
and introduces the term “ghost variables” for dependent variables that are not
reported in the main study. M. Bakker et al. (2012) simulated selective report-
ing of the dependent variable in combination with other questionable research
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Figure 8.1: Impact of selective reporting of the dependent variable on false pos-
itive rates in a t-test. Number of dependent variables indicates how many hy-
pothesis tests were conducted (at maximum) to obtain a significant result. The
solid grey line shows the nominal α-level of 5%.

practices to illustrate how researchers game the scientific publication system. All
above-mentioned simulations focused on comparisons between two groups, us-
ing independent-sample t-tests.

Our simulation below provides an impression of the severity of the p-hacking
strategy. We varied the number of dependent variables, k ∈ {3, 5, 10}, as well as
the correlation between the dependent variables, r ∈ {0, 0.3, 0.8}, for p-hacking
applied to a t-test. As shown in Figure 8.1, false positive rates increase up to
roughly 40% for ten uncorrelated dependent variables. Severity of p-hacking de-
creases with higher correlations and fewer dependent variables. Sample size does
not appear to be a protective factor towards the p-hacking strategy.

8.3.2 Strategy 2: Selective Reporting of the Independent Variable

Selective reporting is not restricted to dependent variables. The rate of false-
positive results can also be increased by selectively reporting significant hypoth-
esis testing results for several independent variables (X.-P. Chen, 2011; Leamer,
1983; Wicherts et al., 2016). In the literature, this p-hacking strategy is often
characterized as comparing multiple experimental conditions to a control condi-
tion and selectively reporting results from significant comparisons (Lakens, 2015;
Simmons et al., 2011; van Aert et al., 2016). Consequently, simulations of the
p-hacking strategy have focused on the t-test where a control group is kept con-
stant, and multiple experimental groups are compared to the control group (Lak-
ens, 2015; van Aert et al., 2016). Interestingly, selective reporting of the indepen-
dent variable is mentioned considerably less often than selective reporting of the
dependent variable in the literature. In the survey on questionable research prac-
tices by John et al. (2012), 27.7% of researchers admitted to “failing to report all of
a study’s conditions” – roughly half of the admittance rate for selective reporting
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Figure 8.2: Impact of selective reporting of the independent variable on false pos-
itive rates in a t-test. Number of independent variables indicates how many hy-
pothesis tests were conducted (at maximum) to obtain a significant result. The
solid grey line shows the nominal α-level of 5%.

of the dependent variable. This suggests that the prevalence for cherry-picking
independent variables may be smaller than for dependent variables. One expla-
nation may be the increased effort of adding participants to experimental groups
versus adding an additional observation for each participant.

In line with previous research, we used a t-test to illustrate the severity of the
p-hacking strategy in our simulations. We varied the number of of experimen-
tal conditions (i.e., independent variables) with k ∈ {3, 5, 10}, and the correlation
between them with r ∈ {0, 0.3, 0.8}. As shown in Figure 8.2, p-hacking severity in
terms of false-positive results increases with an increasing number of experimen-
tal conditions, as well as with a decreasing correlation between conditions. In
general, selective reporting of the independent variable leads to somewhat lower
type I error rates that selective reporting of the dependent variable. Sample size
does not appear to be a protective factor towards the p-hacking strategy.

8.3.3 Strategy 3: Optional Stopping

Optional stopping, also often referred to as “data peeking”, occurs when a re-
searcher repeatedly computes a hypothesis test as data accumulate, and stops
collecting data once a significant result has been obtained or a maximum sam-
ple size has been reached (Armitage et al., 1969). It is one of the most frequently
mentioned p-hacking strategies in the literature (e.g., Bruns & Ioannidis, 2016;
Head et al., 2015; Masicampo & Lalande, 2012; Motulsky, 2015; O’Boyle, Banks,
& Gonzalez-Mulé, 2017; Pocock, Hughes, & Lee, 1987; Ulrich & Miller, 2015), and
has an admittance rate of 15.6% in John, Loewenstein, and Prelec’s (2012) survey.
Optional stopping differs from other p-hacking strategies in that it actively in-
fluences the data collection process. Whereas other p-hacking strategies assume
that the researcher selectively analyzes variables or observations in an existing
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data set, optional stopping leads to an expansion of an initial data set, while data
preprocessing and analysis pipelines remain constant.

The severity of optional stopping depends on the number of peeks a re-
searcher takes at the data, as well as on the number of observations that are
added between two peeks. Theoretically, if a researcher had infinite resources,
they would be guaranteed to obtain a significant result eventually (Armitage et
al., 1969). However, in practice, researchers are subject to constraints of time,
money, and patience, that will influence their sampling strategy. Existing sim-
ulation studies suggest that there is little agreement on how often researchers
would be willing to peek at their data. Some simulation studies assumed that
researchers peek at their data only a few times. For example, Simmons et al.
(2011) and Simonsohn et al. (2014b) simulated a single increase in sample size
from N = 20 to N = 30 if the initial result was not significant. M. Bakker et
al. (2012) also simulated an increase of ten participants, but combined optional
stopping with two other p-hacking strategies in their simulations. Hartgerink,
van Aert, Nuijten, Wicherts, and van Assen (2016) simulated a optional stopping
as a process with three stages, where sample size was increased by 1/3 of the
initial sample size in each stage. In contrast, simulations by Lakens (2015) and
Armitage et al. (1969) assumed that researchers check the results of the hypoth-
esis testing procedure after every participant, up to a maximum sample size of
N = 100 and N = 1000, respectively.

In our simulation, we fixed the initial sample size at Nmin = 5, and
varied the step size, that is, the number of observations collected in one
batch, with k ∈ {1, 5, 10, 50}. We also varied the maximum sample size as
Nmax ∈ {30, 50, 100, 300} to be consistent with the sample sizes simulated for
other p-hacking strategies. If the step size was larger than the difference between
minimum and maximum sample size, we simulated two peeks: one at the
minimum and one at the maximum sample size. All conditions were simulated
for a t-test, and observations were added to both groups at a time. Figure 8.3
shows the result of the simulation. It becomes clear from Panel (A) that a higher
maximum sample size and a smaller step size increase the risk of obtaining
a false positive result. This means that more interim peeks at the results, as
depicted in Panel (B), lead to higher false positive rates. If a researcher decides to
check the results after every single participant, false positive rates are especially
elevated, even if the maximum sample size is only small. This shows that
optional stopping can even have a large impact if resource constraints prohibit
researchers from collecting large sample sizes.

8.3.4 Strategy 4: Outlier Exclusion

One of the most common examples for p-hacking is “data trimming”, the selec-
tive exclusion of data points (e.g., Gadbury & Allison, 2012; Head et al., 2015;
Masicampo & Lalande, 2012; Motulsky, 2015; O’Boyle et al., 2017; Simonsohn et
al., 2014a; Ulrich & Miller, 2015; Wicherts et al., 2016). Typically, the justification
provided for excluding these data points is that they can be considered outliers,
that is, they are markedly different from other data values (Aguinis, Gottfredson,
& Joo, 2013). p-Hacking based on outlier exclusion exploits the ambiguity sur-
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Figure 8.3: Impact of optional stopping on false positive rates in a t-test. The
solid grey line shows the nominal α-level of 5%. Panel A. False positive rates
dependent on step size and maximum sample size. Step size indicates how many
participants were added in a batch. Minimum sample size is fixed to N = 5.
Panel B. False positive rates dependent on number of peeks. Number of peeks is
determined by step size and maximum sample size.

rounding the definition of outlier values, as well as the methodological flexibility
surrounding outlier handling (Aguinis et al., 2013; M. Bakker & Wicherts, 2014b).
Over time, many outlier detection methods have been developed, ranging from
visual inspection of data plots to investigation of distance measures or variable
influence metrics. In a literature review, Aguinis et al. (2013) listed 39 different
outlier identification techniques, each of them bearing the potential for additional
analytical flexibility through, for example, different cut-off specifications.

Empirical evidence suggests that many authors are vague when it comes to
reporting outlier detection methods, or even fail to mention outlier exclusion al-
together. M. Bakker and Wicherts (2014a) showed that discrepancies in degrees
of freedom and sample size were common in articles that did not report outlier
exclusions, suggesting a failure to report data exclusion or missingness. Other
literature reviews lament a general vagueness in reporting of outlier handling
strategies, for example, it is often unclear whether cut-off values were selected
in advance (Aguinis et al., 2013; M. Bakker & Wicherts, 2014b). Deciding to “ex-
clude data points after looking at the impact of doing so on the results” was also
a questionable research strategy with a high admission rate in John, Loewenstein,
and Prelec’s (2012) survey, as well as in a survey among criminology researchers
by Chin, Pickett, Vazire, and Holcombe (2021), with 38.2% and 24%, respectively.

Many modern outlier detection techniques are geared towards regression
analyses. Therefore, it is interesting to see that simulations of p-hacking through
outlier exclusion have so far only targeted t-tests. Simonsohn et al. (2014b) sim-
ulated a scenario where researchers selectively drop values that are at least two
standard deviations away from the group mean – either for one of the groups
or for both. M. Bakker et al. (2012) used the same definition of outliers in their
simulation of a combined p-hacking strategy. In a larger simulation study on the
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impact of outlier removal on hypothesis testing results, M. Bakker and Wicherts
(2014a) defined “subjective” removal of outliers as choosing a threshold of 2, 2.5,
or 3 standard deviations, depending on the statistical significance of the hypoth-
esis test. They found increased type I error rates of up to 45%, most prominently
when the data were simulated from a skewed population distribution.

In our simulation of p-hacking through outlier exclusion, we investigated the
consequences on type I error rates based on a regression analysis. The underlying
idea is that if researchers are knowledgeable about outlier identification methods,
they can exploit more degrees of freedom in a regression analysis than in a t-test.
Our simulation comprises a total of 12 outlier detection techniques. For single-
variable detection techniques, our simulation method is similar to Simonsohn et
al. (2014b). We determine outliers both in the predictor (x) and in the outcome
variable (y), and successively delete observations where x is an outlier, y is an
outlier, or x and y are outliers. For each outlier detection technique, we addi-
tionally simulate subjective threshold setting similar to M. Bakker and Wicherts
(2014a). For example, for the standard deviation method, we assume that a re-
searcher would start with a threshold of two standard deviations and increase
the threshold successively by 0.5 standard deviations until no more extreme data
points are available. Note that we simulate outlier removal as a single-step pro-
cedure (Wilcox, 2012). That is, outlier detection methods are applied only once
to a dataset and detected outliers are removed – the reduced dataset is not re-
evaluated with regard to potential outliers. In our simulation study, we assume
that researchers differ in their knowledge about outlier detection techniques. We
implemented this by drawing k ∈ {3, 5, 12} techniques at random from the total
number of outlier detection techniques in each iteration of the simulation. With
the simulation functions in the R package and Shiny app, readers can explore the
effect of p-hacking with specific outlier detection methods, similar to simulations
by M. Bakker and Wicherts (2014a) and Simonsohn et al. (2014b). Our simulation
study assumes that both variables involved in the regression analysis are nor-
mally distributed. Therefore, the observed increase in false positive rates can be
attributed only to p-hacking and not to a violation of statistical assumptions. We
provide an overview of all outlier detection techniques and a detailed description
of our simulation method for each technique in the appendix of this chapter (cf.
section 8.B).

Figure 8.4 shows the results of our simulation study. If all 12 simulated outlier
detection strategies are applied successively, the probability of obtaining a signif-
icant result rises up to almost 30%, but even for few outlier detection methods,
type I error rates are high. Sample size appears to be a slightly protective fac-
tor against the p-hacking strategy, with larger sample sizes yielding lower false
positive rates if only a small number of outlier detection methods is applied.

8.3.5 Strategy 5: Controlling for Covariates

The importance of controlling for confounding variables has often been pointed
out in the literature (e.g., Rohrer, 2018). However, controlling for covariates also
constitutes a major source of analytic flexibility (Kerr, 1998; Simonsohn et al.,
2014a). Many authors have cautioned that this analytic flexibility might be ex-
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Figure 8.4: Impact of outlier exclusion on false positive rates in a univariate re-
gression. The x-axis shows the number of outlier detection methods that were
applied. For each outlier detection method at least three hypothesis tests were
conducted (excluding outliers in x, y, and x and y). The solid grey line shows the
nominal α-level of 5%.

ploited by researchers who decide to include covariates in their model based on
statistical significance (e.g., Baum & Bromiley, 2019; Head et al., 2015; Kraemer,
2013; Simonsohn et al., 2014b; Ulrich & Miller, 2015; Wicherts et al., 2016).

There is substantive empirical evidence for p-hacking using covariate selec-
tion. In a comparison of doctoral dissertations and published journal articles
describing the same studies, O’Boyle et al. (2017) found that several authors had
included additional boundary conditions in their hypotheses in the journal article
that led to an increase in significant results (e.g., “X relates to Y [ if Z is controlled
for ]”). Additionally, Simonsohn et al. (2014a) compared articles reporting ana-
lyses exclusively with a covariate to articles reporting analyses with and without
the covariate. They found a left-skewed p-curve in the first case and a right-
skewed p-curve in the latter, indicating that articles reporting analyses only with
covariates might have hidden additional non-significant results. Finally, in a sur-
vey by Chin et al. (2021), 32% of respondents admitted to dropping covariates
selectively based on p-values.

Existing simulation studies of p-hacking with covariates either focused on re-
gression analyses in observational data, where covariates are introduced as addi-
tional predictors (Bruns & Ioannidis, 2016; Ingre, 2017), or on ANCOVAs testing
whether the means of an experimental and control group differ after controlling
for covariates (Simmons et al., 2011). Here, we take a similar approach to Sim-
mons et al. (2011) by extending a t-test with continuous covariates. We varied
the number of covariates with k ∈ {3, 5, 10}, as well as the correlation between
the covariates, rZ ∈ {0, 0.3, 0.8} and the correlation between the covariates and
the dependent variable, rZY ∈ {0, 0.3}. The p-hacking strategy was implemented
as follows: First, the test was computed without covariates. Then, all covariates
were added separately to the model (i.e., Y ∼ X + Zj for j ∈ 1, ..., k), and in a
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Figure 8.5: Impact of controlling for covariates in a t-test to fish for significant
results. Plot shows false positive rates depend on the number of covariates, cor-
relation between covariates (rZ), correlation between covariates and dependent
variable (rZY ), and sample size. The solid grey line shows the nominal α-level of
5%.

third step, the covariates were added sequentially to a model in decreasing or-
der according to their correlation with the dependent variable in the sample (i.e.,
Y ∼ X+Z1 +...+Zk). For example, for three covariates, this simulated p-hacking
strategy leads to five tests that are computed in addition to the original hypothe-
sis test. We decided not to compute models with all combinations of covariates,
as this would lead to a combinatorial explosion that would require researchers to
use automation for exploring all analysis pathways.

Figure 8.5 shows that the correlation between the covariates and the depen-
dent variable has a strong effect on the impact of p-hacking on false positive rates.
p-hacking effects are stronger if the covariates correlate with the dependent vari-
able. Specifically, both the number of covariates and the correlation between co-
variates only show a strong effect on false positive rates in the right panel of the
figure. Additionally, sample size appears to be a slightly protective factor, in that
false positive rates for N = 30 are somewhat higher than for larger sample sizes.

8.3.6 Strategy 6: Scale Redefinition

In the social sciences, constructs are often measured indirectly through question-
naires or behavioral tasks. Researchers constantly develop new measurement
tools and scales, and even for existing measures, there is often a high degree
of flexibility in the computation of construct scores (Elson, Mohseni, Breuer,
Scharkow, & Quandt, 2014; Rosenbusch, Wanders, & Pit, 2020). There are
growing concerns that sub-standard measurement methods might undermine
the trustworthiness of research results, culminating in warnings about a mea-
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surement crisis (Parsons, 2020). Interestingly, despite these concerns about
measurement quality and flexibility, tinkering with measurement scales has
been relatively rarely mentioned explicitly as a p-hacking strategy (Ingre, 2017;
O’Boyle et al., 2017; Ulrich & Miller, 2015).

Existing research indicates that scale redefinition may have a substantive im-
pact on statistical significance. For example, Elson et al. (2014) investigated differ-
ent analysis procedures for measuring aggressive behavior with the Competitive
Reaction Time Task and found large differences in p-values and effect sizes if dif-
ferent scoring rules were used. In a simulation study, Ulrich and Miller (2015) in-
vestigated the opportunistic computing of composite scores as a p-hacking strat-
egy. They assumed that researchers might compute composite scores from a
number of correlated dependent variables by merging the variables that indi-
vidually yield the smallest p-values, and found strongly right-skewed p-curves
as a result. Ingre (2017) simulated the use of different variations of scales for two
predictors in five regression models, and observed false positive rates of up to
97% based on the exploitation of the resulting multiplicity.

In contrast to Ulrich and Miller (2015), we believe that the most common case
of p-hacking based on scale redefinition might not be the haphazard computation
of composite scores from multiple outcome variables, but the deletion of deviat-
ing items from measurement scales targeted at increasing internal consistency.
This notion is supported by the fact that SPSS (IBM, 2020), a statistical software
package commonly used in the social sciences, offers the popular option to auto-
matically recalculate reliability coefficients for each item if the item was deleted
from the score. We believe that this option encourages researchers to recompute
their analyses with scales that are redefined to exclude seemingly ill-fitting items.

In our simulations, we implemented the resulting p-hacking strategy as fol-
lows: In a regression analysis, the p-value is first computed with the mean score
of a scale as a predictor. Then, m items are successively removed based on their
influence on Cronbach’s alpha. At each step, the hypothesis test is recomputed
both with the reduced scale and with the deleted item as a predictor (the lat-
ter could be justified post-hoc by the notion that the excluded item measured a
different construct than the rest of the scale). We varied the number of original
items with k ∈ {5, 10}, the correlation between the items, r ∈ {0.3, 0.7}, the max-
imum number of items that were deleted from the scale m ∈ {1, 3, 7}, and the
sample size. Notably, our simulation strategy optimizes both the internal consis-
tency of the scale and the p-value. Technically, it could therefore be considered
a combination of “measurement hacking” and p-hacking. However, given the
strong incentives for high internal consistency, it is difficult to imagine a “pure”
p-hacking strategy.

Figure 8.6 shows the results of our simulations. False positive rates are higher
if the correlation between the items on the scale is small. The number items in the
scale only influences the severity of the p-hacking strategy insofar as more items
can be deleted from longer scales, leading to a larger number of hidden hypoth-
esis tests. False positive rates increase drastically as more items are removed.
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Figure 8.6: Impact of scale redefinition on false positive rates. The number of
computed hypothesis tests increases with the number of items that are excluded
from the scale. The solid grey line shows the nominal α-level of 5%.

8.3.7 Strategy 7: Variable Transformation

Opportunistic variable transformation is closely related to the p-hacking strategy
of scale redefinition. Transforming a variable, for example by computing its log-
arithm or reciprocal, changes the underlying measurement scale. However, for
variable transformation, the measured variable does not need to be computed
as a composite score. For linear models, variable transformations of the depen-
dent variable are often recommended to meet the model’s normality assumption
(Box & Cox, 1964). A transformation of the independent variable in regression
models is also sometimes recommended for the sake of working with a simple
functional form in transformed variables, rather than a more complicated one on
the original scale (Box & Tidwell, 1962).

Opportunistic variable transformation has been identified by several sources
as a p-hacking strategy (e.g., Baum & Bromiley, 2019; Gadbury & Allison, 2012;
Motulsky, 2015). For example, Wicherts et al. (2016) mention variable transfor-
mations conducted to approach normality as a degree of freedom in the analysis
phase, and Wagenmakers et al. (2012) criticize Bem’s (2011) notorious “feeling the
future” study for exploiting arbitrary transformations of response times. How-
ever, so far, we have not found a simulation studies investigating opportunistic
variable transformation in the context of p-hacking.

In our simulation of variable transformation as a p-hacking strategy, we per-
formed a regression analysis and used a logarithmic, reciprocal, and square root
transformation on the dependent variable, the predictor variable, or both. Both
variables in the simulation were drawn from a normal distribution. Therefore, all
transformations on the dependent variable violated the normality assumption of
the regression model.
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Figure 8.7: Opportunistic variable transformation as a p-hacking strategy. The
plot shows false positive rates when the predictor (X), the dependent variable
(Y) or both were transformed using a logarithmic, reciprocal, and square root
transformation. The solid grey line shows the nominal α-level of 5%.

Figure 8.7 shows the results of the simulation. The rate of false positive re-
sults increases to more than 25% for all three transformation conditions which
can be viewed as a substantive overall increase. Interestingly, it seems to be in-
consequential whether only the predictor or the outcome variable, or both were
transformed. The results indicate that sample size is a slightly protective factor,
with an increase of roughly five percentage points in false positive rates between
N = 30 and N = 300.

8.3.8 Strategy 8: Discretizing Variables

In statistical tests reported in published research, inherently continuous variables
are often discretized into categories. For example, political orientation may be
split into Democrat-leaning and Republican-leaning, participants may be split
into old and young according to their age, or the duration of risk exposure may
be split into long and short (Gelman & Loken, 2019; Ingre, 2017). The selection
of cut-off values is at the researchers’ discretion and constitutes a major source
of analytic flexibility. Several authors have warned that this analytic flexibility
could be misused for p-hacking (e.g., Gelman & Loken, 2019; Ingre, 2017; Mills,
1993; Tannock, 1996).

Ingre (2017) demonstrated the effect of discretization in a p-hacking simu-
lation study based on research on night work on breast cancer in women. He
adjusted for age using ten different specifications of the age variable, from con-
tinuous, to quantile splits, to 5-year chunks with different reference ages. Addi-
tionally, he operationalized exposure to night work as a dichotomous variable,
using eight different splitting mechanisms of a continuous predictor indicating
the number of years worked in night shifts. Despite the large number of hypoth-
esis tests, the results indicated only a small increase in false positive rate.
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Figure 8.8: False positive rates following the selection of one out of four predictor
discretization methods based on p-value significance. The solid grey line shows
the nominal α-level of 5%.

In our simulation, we applied three mechanisms to discretize a continuous
variable: We used a median split, resulting in two groups, a tertile split, result-
ing in three groups, and a cut-the-middle split, where the middle category is
removed after a tertile split to emulate a comparison of extreme groups. With re-
gard to statistical testing procedures, this results in a regression analysis (for the
continuous predictor), two t-tests (for the median split and the cut the middle
strategy), and an ANOVA (for the tertile split) that are conducted to determine
the relationship between two variables. Figure 8.8 shows that independent of
sample size, false positive rates are elevated by approximately five percentage
points compared to the original α-level.

8.3.9 Strategy 9: Exploiting Alternative Hypothesis Tests

A single conceptual hypothesis can often be represented by multiple statistical
models. Particularly when dealing with complex models, researchers typically
have much freedom in adding or relaxing auxiliary assumptions, or changing
the parametrization of the model (Crüwell et al., 2019). This flexibility trans-
lates to model comparisons and hypothesis tests where multiple hypotheses are
involved. Even for run-off-the-mill hypothesis tests, there usually exist several
alternative options that restrict or relax distributional assumptions. Since these
alternative hypothesis testing options do not always agree in their test decisions,
they may be exploited in the context of p-hacking. For example, in her state-
ment on p-hacking in power pose research, Dana Carney (2016) reported having
applied both a Pearson chi-squared and a likelihood ratio test, and selectively
reported only the significant test.

The practice of exploring different statistical modeling and hypothesis testing
options has been mentioned several times as a p-hacking strategy in the literature
(e.g., Baum & Bromiley, 2019; Motulsky, 2015). Often, it is presented alongside
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other analytical options, such as sub-group analyses, controlling for covariates,
or choosing dependent variables (Ingre, 2017; Wicherts et al., 2016). Here, we
chose to separate it from these strategies because using an alternative statistical
hypothesis test does not necessitate adding, removing, or changing any of the
involved variables.

We demonstrate the consequences of exploiting alternative hypothesis tests
by simulating a scenario where a researcher switches between parametric and
non-parametric versions of the same test. We believe that this scenario is par-
ticularly interesting to investigate since many statistical textbooks present these
tests as epistemically equivalent and recommend a data-driven approach based
on assumption checking for choosing between parametric and non-parametric
tests (e.g., Witte & Witte, 2017). This legitimization of data-driven test selection
could lead to a perceived vindication of p-hacking for this scenario in practice.
However, our simulation results show that opportunistic hypothesis test switch-
ing can lead to elevated false positive rates.

In our simulation study, we implemented the p-hacking strategy by conduct-
ing an independent-samples t-test, a Welch test, a Wilcoxon test, and a Yuen test
with four different trimming parameters, c ∈ {0.1, 0.15, 0.2, 0.25}, on the same
data set (Wilcox, 2012). Data were sampled from normal distributions with equal
variances, such that the assumptions of the t-test were fulfilled in the popula-
tion. Our results show that the false positive rate lies at 7% for all sample sizes,
and is therefore slightly increased compared to the nominal α level. While this
p-hacking effect can be considered fairly small, it is important to note that larger
effects can be expected for non-normal data or more complex models with more
degrees of freedom.

8.3.10 Strategy 10: Favorable Imputation

In empirical research, missing data are often unavoidable. There are many pos-
sible options of dealing with missing data, the most fundamental decision being
whether missing data should be deleted or replaced by plausible values – a tech-
nique also known as imputation. If a researcher decides to impute missing data,
they can choose from a plethora of imputation methods, all leading to slightly
different replacement values that can influence the results of statistical hypothe-
sis tests (Nießl, Herrmann, Wiedemann, Casalicchio, & Boulesteix, 2021).

Failing to fully disclose the handling of missing variables and the method
used for imputation is considered a questionable research practice (B. Bakker,
Jaidka, Dörr, Fasching, & Lelkes, 2021), and deciding for a favorable imputation
method based on statistical significance constitutes a p-hacking strategy (Agui-
nis, Ramani, & Alabduljader, 2018; Wicherts et al., 2016). Meta-scientific evi-
dence suggests that authors rarely provide a satisfactory justification for their
chosen method for handling missing values (Crede & Harms, 2019; Sterne et al.,
2009). Surveys on ethical research conduct among communication scientists and
criminologists indicate that slightly less than 10% of researchers have hidden im-
putation methods from research reports (B. Bakker et al., 2021; Chin et al., 2021).

We simulate p-hacking through favorable imputation using a total of ten
different methods for handling missing variables. A full list of imputation
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Figure 8.9: False positive rates following the favorable imputation of missing
values. ρmissing indicates the proportion of missing values in the sample. The
solid grey line shows the nominal α-level of 5%.

methods used in our simulation can be found in the appendix of this chapter (cf.
section 8.C). Similar to our simulation of p-hacking through outlier exclusion,
we assume that researchers are typically familiar with only a limited number of
imputation methods. For this reason, we draw a random sample of k ∈ {3, 5, 10}
techniques from the total number of imputation methods in each iteration.
Additionally, we vary the proportion of data missing completely at random as
ρ ∈ {0.05, 0.2}. Our simulation is based on a regression analysis since many
modern imputation methods are designed for regression models (van Buuren
& Groothuis-Oudshoorn, 2011). Readers interested in exploring the effect of
p-hacking with specific imputation methods can consult our R package and Shiny
app.

As shown in Figure 8.9, the proportion of missing data has a substantive
influence on the p-hacking severity. This is likely due to the fact that imputa-
tion methods judge the plausibility of parameter values based on trends in the
data, and replacing large quantities of missing data with trend-conform values
can make weak trends appear stronger. Interestingly, the number of imputation
methods hardly plays a role if the proportion of missing values is small. How-
ever, even for small quantities of missing data, false positive rates were slightly
elevated under the influence of p-hacking.

8.3.11 Strategy 11: Subgroup Analyses

In social science studies, there is a multitude of potential reasons for restricting
the sample to certain groups of participants. For example, participants may be
excluded for failing attention checks, having missing values on core variables, or
giving answers indicating that their data may be contaminated (e.g., being color-
blind in a Stroop task). Additionally, researchers may decide to include only
certain sub-groups in their sample, for example, elderly people, voters of a cer-
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Figure 8.10: False positive rates following subgroup analyses, assuming that a t-
test is reconducted in both subgroups of one or more binary grouping variables.
The solid grey line shows the nominal α-level of 5%.

tain party, or people diagnosed with a certain disorder. Ideally, these decisions
are determined a-priori and justified by theory. However, there is anecdotal evi-
dence that researchers frequently re-adjust their inclusion criteria after seeing the
data, and only publish analyses based on a subgroup of observations. In meta-
scientific articles, researchers have often noticed that the same research teams
used different participant inclusion rules for testing closely related hypotheses
(e.g., Gelman & Loken, 2019; Ingre, 2017; Wagenmakers et al., 2012). In their
comparison of Cochrane reviews to their published protocols, Silagy et al. (2002)
found that 34% of the reviews had made major changes to participant inclusion
criteria. If inclusion criteria are changed based on the statistical significance of
core hypothesis tests and the additional tests remain unreported, this practice
constitutes a form of p-hacking (Hahn et al., 2000; Ingre, 2017; Tannock, 1996).

Here, we simulate this p-hacking strategy using a t-test and k ∈ {1, 3, 5} bi-
nary grouping variables. Group membership is determined at chance for every
participant, such that group sizes can differ. We believe that unequal group sizes
are realistic in practice since participant recruitment would usually not balance
out incidental grouping variables. We assume that the t-test is originally con-
ducted on the whole sample and subsequently on both sub-groups of a grouping
variable. This mimics a scenario where researchers would claim the existence of
an effect in a certain sub-group, for example women or older adults, if a signifi-
cant result was found.

Figure 8.10 shows the simulation results. The rate of false positive results
starts at slightly above 10% if only one grouping variable is exploited, and rises
quickly as the number of grouping variables increases. False positive rates are
virtually independent of sample size, showing that larger sample sizes are not a
protective factor against this p-hacking strategy.

197



8. Big Little Lies: A Compendium and Simulation of p-Hacking Strategies

8.3.12 Strategy 12: Incorrect Rounding

In a research environment where rewards are coupled to significant findings, ob-
taining a p-value of 0.0499 or 0.0501 can become a difference between success or
failure. Therefore, if p-values are close to a significance threshold, researchers
may be tempted to round them down and claim a significant finding. Several
authors have recognized this as a p-hacking strategy (e.g., Hartgerink et al., 2016;
Head et al., 2015; Leggett, Thomas, Loetscher, & Nicholls, 2013).

Incorrect rounding differs from other p-hacking strategies in that it is possible
to find direct evidence for it in the literature by recalculating p-values from test
statistics. For example, Leggett et al. (2013) extracted p-values from psychology
literature between 1965 and 2005, and found that 36 out of 93 p-values reported
as exactly p=0.05 were in fact larger. Hartgerink et al. (2016) conducted a similar
analysis on a sample of 2470 p-values reported as exactly p=0.05 and concluded
that 67.45% of the p-values were incorrectly rounded down towards significance.
Of course, these results are contingent on the assumption that test statistics were
reported correctly. However, if both test statistic and p-value are intentionally
misreported, it should be questioned if this should still be considered a ques-
tionable research practice or if it should be counted as outright fraud. In John,
Loewenstein, and Prelec’s (2012) survey, 22% of respondents admitted to “round-
ing off” p-values. This indicates that although opportunity is be scarce (after all,
a p-value needs to fall within a narrow rounding margin), a considerable number
of researchers engage in this p-hacking strategy.

Since the distribution of p-values under the null hypothesis is known, it is
possible to determine the impact of incorrect rounding on the rate of false pos-
itive results analytically. The effect depends on the rounding level, that is, the
largest p-value that a researcher would be willing to round down to statistical
significance. For example, if the nominal α level is 0.05, researchers might round
down values smaller than 0.051 or 0.06. Consequently, the effective type I error
rate would rise to 0.051 or 0.06, respectively. While this effect might seem mi-
nuscule by itself, it can be exacerbated by additional concealed multiple testing.
For example, if five independent hypothesis tests are conducted, the family-wise
α-error rate would rise from α = 0.226 for p < 0.05 to α = 0.230 for p < 0.051
and α = 0.266 for p < 0.06.

8.4 p-Hacking Strategies: Intermediate Summary

The previous section described twelve p-hacking strategies and their respective
impact on the type I error rates. Figure 8.11 compares the severity of the p-
hacking strategies based on our simulation results.3 It can be seen that the vari-
ability of p-hacking severity is typically very high within the p-hacking strategies.
This variability is due to the level of aggressiveness with which the p-hacking
strategy is applied, as well as due to the data structure it is applied to (e.g., cor-
relations between variables). As mentioned earlier, our simulations are based on

3In case of incorrect rounding, the depicted false positive rates are the analytic examples provided
in the text.
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Figure 8.11: Overview of p-hacking severity in terms of false positive rates for
different all p-hacking strategies discussed in this chapter.

subjective plausibility assessments as well as on conventions from earlier sim-
ulation studies. This means that the variability in p-hacking severity depicted
in Figure 8.11 is contingent on these assumptions. If researchers are willing to
exploit a p-hacking strategy to its limits, much higher false positive rates are pos-
sible. We allow readers to explore these settings in our interactive Shiny app as
well as through our R package for p-hacking simulations.

Figure 8.11 also makes it clear that even if only a single p-hacking strategy is
applied to the data, false positive rates can already increase drastically. However,
judging from the fact that authors typically list more than one p-hacking strat-
egy in their articles (e.g., Motulsky, 2015; Simonsohn et al., 2014a; Wicherts et al.,
2016), it seems to be consensus in the meta-scientific community that researchers
often combine multiple p-hacking strategies when foraging their data for signifi-
cant results. For this reason, the following section will investigate the combined
severity of several p-hacking strategies by showcasing two simulated p-hacking
“workflows”.

8.5 Combined Application of p-Hacking Strategies

If researchers intentionally exploit degrees of freedom in their data analysis to
obtain significant results, they are likely to switch to a different p-hacking strat-
egy after unsuccessfully trying a few tweaks within one strategy (M. Bakker et
al., 2012). This behavior can be simulated as a p-hacking “workflow” where dif-
ferent strategies are lined up after one another. Depending on a researcher’s level
of ambition or patience, the number of strategies and the degree of aggressive-
ness within each strategy will differ. Generally, p-hacking severity increases with
the number of strategies and the aggressiveness used within each strategy. How-
ever, since all strategies are applied to the same data set, the incremental effect of
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Figure 8.12: Two scenarios for p-hacking “workflows” and their effect on false
positive rates. Panel A. p-hacking workflow in a t-test. Panel B. p-hacking work-
flow in a regression analysis. p-hacking strategies are applied sequentially; at
each stage, incorrect rounding with a rounding level of p < 0.051 is applied in
addition. The solid grey line shows the nominal α-level of 5%.

each additional strategy can be smaller than the effect of the p-hacking strategy if
applied alone.

There are countless scenarios for p-hacking workflows that can be simulated.
Here, we showcase only two scenarios using the p-hacking strategies described
above. Figure 8.12 shows the simulation results. Both scenarios start with the
original (planned) hypothesis test, and apply four p-hacking strategies succes-
sively. The figure depicts the increasing false positive rate with each additional
step. We assumed a medium level of aggressiveness (compared to our earlier
simulations) in each strategy, and conducted a Monte Carlo simulation with 5000
iterations on a sample size of N = 100 (per group). Scenario A depicts p-hacking
strategies applied to a t-test. The scenario assumes that a researcher first applies
three alternative hypothesis tests (strategy 9), then tries out five dependent vari-
ables correlated at r = 0.6 (strategy 1), as well as three covariates correlated at
r = 0.3 with each other and the (primary) dependent variable (strategy 5), and
finally decides to restrict the sample based on three binary grouping variables
(strategy 11). Scenario B depicts p-hacking strategies applied to a regression anal-
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ysis. The scenario assumes that a researcher first imputes missing data (10% of
the total sample) using five random imputation methods (strategy 10). If this
does not yield a significant result, missing cases are deleted, and the researcher
proceeds to repeating the regression analysis while applying different transfor-
mations to the predictor and outcome variable (strategy 7). Then, the dependent
variable (psychological scale consisting of five items) is redefined by successively
deleting up to three items from the score (strategy 6), and finally, three random
outlier detection methods are applied, and the test is repeated without the out-
liers (strategy 4). In both strategies, we assumed that researchers apply incorrect
rounding (strategy 12) at every stage of the p-hacking process. In the t-test sce-
nario, this was responsible for 3.2% of false-positive results, and in case of the
regression scenario for 2.3%.

For the regression scenario, the combination of p-hacking strategies indeed
led to a higher rate of false positive results than any single p-hacking strategy.
However, it is also visible that the incremental effect of each additional strategy
decreases. For example, if used as a singular strategy at the same level of aggres-
siveness, the outlier exclusion strategy would have led to a type I error rate of
12%, that is, an increase of 7 percentage points compared to the original α-level
(see Figure 8.4). In contrast, in the combined scenario, it only led to an increase
of 3.9 percentage points. False positive rates in the t-test scenario remained be-
low the maximum false positive rates observed in the simulations of individual
strategies. However, this is due to the fact that none of the strategies was fully
exploited.

8.6 Ambitious p-Hacking: The Influence of Reporting Strategies

Since p-hacking is based on selecting analyses to report among multiple tests,
it is often interpreted as self-imposed publication bias (Ulrich & Miller, 2015).
Most authors assume that researchers p-hack until they obtain a significant result
and then cease conducting additional tests (e.g., Simonsohn et al., 2014a). How-
ever, other authors think that it is plausible that researchers conduct hypothesis
tests in batches, for example, compute hypothesis tests for k dependent variables,
and decide which p-value they want to report in a second step (Ulrich & Miller,
2015; van Aert et al., 2016). Here, we will call this procedure ambitious p-hacking.
Importantly, ambitious p-hacking does not drive false positive results above the
type I error rate observed in regular p-hacking. However, it allows researchers to
select their preferred p-value among a larger group of p-values, thus affecting the
p-value distribution across multiple p-hacked hypothesis tests or studies.

Based on simulation studies by van Aert et al. (2016) and Ulrich and Miller
(2015) we distinguish between two reporting strategies in ambitious p-hacking:
Reporting the smallest p-value and reporting the smallest significant p-value. When
reporting the smallest p-value, researchers always report the smallest p-value out
of a batch of hypothesis tests independent of statistical significance. When re-
porting the smallest significant p-value, researchers report the smallest p-value
among all significant p-values in a batch, but revert to the p-value of the original
(planned) test if none of the computed tests achieved statistical significance.
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Figure 8.13: Distribution of p-values under three different reporting strategies
based on the p-hacking strategy “selective reporting of the dependent variable”:
Reporting the first significant, smallest significant, or smallest p-value out of a
batch of tests. Left side shows full p-value distribution, right side shows p-curves
(Simonsohn et al., 2014b). One dependent variable indicates no p-hacking, p-
hacking aggressiveness increases with the number of dependent variables. Sim-
ulation with N = 50, ρDV = 0.3.
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Figure 8.13 shows the effect of different p-value reporting strategies for the
p-hacking strategy “selective reporting of the dependent variable” (strategy 1).
As can be seen from the panels on the left side of the figure, more aggressive p-
hacking leads to a higher concentration of p-values below the significance thresh-
old. Without p-hacking (here: one dependent variable), the p-value distribution
is uniform for a null-effect. With increasing p-hacking aggressiveness (here: 3, 5,
or 10 dependent variables), the p-value distribution concentrates around smaller
p-values. For any given level of p-hacking aggressiveness, the proportion of sig-
nificant p-values is the same across reporting strategies. However, the reporting
strategy influences the overall shape of the p-value distribution: If the smallest
significant p-value is reported, the overall p-value distribution is very similar to
the distribution arising from stopping after the first significant p-value depicted
in the upper panel. If the smallest p-value is reported independent of statistical
significance, the overall p-value distribution becomes skewed towards smaller p-
values. The panels on the right side of Figure 8.13 zoom in on small p-values us-
ing the p-curve method (Simonsohn et al., 2014b). Here, the range from p = 0 to p
= 0.1 is divided into ten equally sized intervals, and the percentage of simulated
p-values falling into the interval is recorded. Without p-hacking, each interval
should theoretically contain 1% of p-values (see horizontal dashed line). Depend-
ing on the reporting strategy, the p-curve becomes left-skewed (smallest, smallest
significant) or right-skewed (first significant) for significant p-values. Note that
the exact shape of the p-curve is also dependent on the simulated environment,
in particular the dependency between the conducted tests (here, influenced by
the correlation between dependent variables).

8.7 Evaluating Potential Solutions to the Problem of p-Hacking

In the past sections, we have described the influence of different p-hacking strate-
gies on the type I error rates as well as on the distribution of p-values using sim-
ulation studies and a classification of different p-hacking strategies. In the fol-
lowing, we want to use these results to evaluate the potential of several solutions
that have been proposed to counter the issue p-hacking and increase research
credibility.

8.7.1 Larger Sample Sizes

In the wake of the replication crisis, many authors have called for larger sam-
ple sizes (e.g., Button et al., 2013; Fraley & Vazire, 2014; Sassenberg & Ditrich,
2019). As a reaction, several academic journals introduced recommendations for
minimum sample sizes or made power analyses a prerequisite for publication.
Larger sample size increase statistical power, that is, the probability of finding
an existing effect. However, our simulations show that larger sample sizes alone
rarely protect against p-hacking. If a researcher is willing to hack a data set, they
will likely be successful despite the large sample size. This is important to know
because it suggests that even in an environment with high statistical power, re-
searchers need to look out for signs of questionable research practices and cannot
rely on a “fail-proof” N.
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In practice, requirements for large sample sizes may affect incentives for p-
hacking in several ways. Due to resource constraints, re-conducting large studies
for the sake of obtaining significant results in a second sample may become im-
possible for many researchers. On the one hand, this could encourage researchers
to report null results. This might be due to the fact that null results based on large
sample sizes are more likely to indicate evidence for a null effect, or because
they believe that throwing away large amounts of data would have a more detri-
mental effect on their career than publishing null results (perhaps contradicting
their own earlier findings). On the other hand, not being able to re-conduct a
study may increase researchers’ willingness to p-hack the available data set more
aggressively since trying out more statistical tests would imply less effort than
collecting additional data in publishable quantities. Which of these motivations
prevails is difficult to say up-front and could pose an interesting question for
further empirical investigation.

8.7.2 Redefine Statistical Significance

Faced with the high proportion of false positive results in the social science lit-
erature, a group of 72 researchers proposed to lower the default threshold for
statistical significance from α = 0.05 to α = 0.005 (Benjamin et al., 2018). In the
absence of questionable research practices this change in standards decreases the
maximum false positive rate by a factor of ten. Is the same true in the presence of
p-hacking?

Figure 8.14 shows the highest false positive rates obtained for each p-hacking
strategy in the simulations reported earlier (black line) together with the highest
false positive rates obtained from p-hacking for p < 0.005 (green line). As such,
the figure represents a worst-case scenario: It shows the highest false positive
rates that can be observed with “reasonably” aggressive p-hacking (as defined
in our simulations) for both significance thresholds. As can be seen, the highest
observed false positive rates drop substantively after redefining the α-level. But
do they decrease at the same rate as would be expected in an ideal scenario with-
out questionable research practices? The dashed grey line in the figure represents
a ten-fold decrease compared to the false positive rates obtained with a thresh-
old of α = 0.05. If decreasing the significance level led to the same decrease in
false positive rates in the absence and presence of p-hacking, false positive rates
in the presence of p-hacking should decrease from the height of the solid black
line to the height of the dashed grey line. As can be seen, false positive rates
for p-hacking at p < 0.005 are higher than the dashed grey line. This indicates
that p-hacking can partially reverse the beneficial effects of lowering the signif-
icance threshold on type I error rates. However, even in the presence of strong
p-hacking, as depicted in the figure, false positive rates for the reduced signif-
icance level are rarely much larger than the traditionally envisioned maximum
false positive rate of α = 0.05. Only variable transformation (strategy 7) and
favorable imputation (strategy 10) lead to considerably increased false positive
rates above α = 0.05. Thus, while the beneficial effect of redefining statistical
significance may not be as strong in the presence as in the absence of p-hacking,
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Figure 8.14: Highest false positive rates based on simulation conditions reported
earlier for all p-hacking strategies for significance levels of α = 0.05 and α = 0.005.
Solid grey lines indicate nominal α levels, dashed grey line indicates ten-fold
reduction in false positive rates compared to “standard” p-hacking for p < 0.05.

it can still substantively decrease the success rate of p-hacking, and therefore po-
tentially render it less attractive.

8.7.3 Abandon p-Values in Favor of Effect Size Measures

As a response to ubiquitous criticism of null hypothesis significance testing, sev-
eral groups of methodologists have called for abandoning p-values in favor of al-
ternative statistical approaches. One of these approaches centers around replac-
ing frequentist hypothesis testing with effect size estimation (Cumming, 2014).
Effect sizes are measures of quantities of interest such as mean differences, cor-
relations, or odds ratios. Commonly, effect sizes are reported as unit-free stan-
dardized measures that allow comparisons of effects across different experimen-
tal contexts. Examples for standardized effect size measures include Cohen’s δ,
Pearson’s correlation coefficient ρ, or the partial η2 for ANOVAs (Cohen, 1988).

Our simulations did not directly test whether “effect size hacking” is possi-
ble, and it is out of scope of this manuscript to provide a detailed discussion
of whether researchers would be incentivized to use similar procrustean prac-
tices as the ones described in our p-hacking compendium to tinker with effect
size estimates. However, we can evaluate the effect of p-hacking strategies as
described above on the distribution of effect sizes. Figure 8.15 illustrates the in-
fluence of selecting among k ∈ {3, 5, 10} uncorrelated dependent variables in
a two-sided t-test on effect sizes, if the first significant result is reported. The
panels on the left side show the distributions of Cohen’s d with and without
p-hacking for two sample sizes, N ∈ {50, 300}. Without p-hacking, effect sizes
are distributed in a symmetric and uni-modal distribution around zero that de-
creases in width for larger sample sizes. With increasingly aggressive p-hacking,
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Figure 8.15: Distribution of effect sizes for p-hacked and original (non-p-hacked)
analyses for two sample sizes N ∈ {50, 300}. p-hacking is based on selective re-
porting of the dependent variable; first significant p-value is reported. Simulation
with ρDV = 0.

two additional peaks appear at non-zero effect sizes. These belong to hypothesis
tests where p-hacking was successful. As can be seen on the right side of Fig-
ure 8.15, the effect of p-hacking on the coefficient of determination R2 shows a
similar trend, where original p-values peak around zero and effect sizes are bi-
ased towards larger values if p-hacking took place. With larger sample sizes, the
observed bias shrinks, and effect sizes move towards zero again. Note that the
exact distribution of effect sizes depends on the reporting strategy. Effect size
distributions for other reporting strategies can be found in our online appendix
(https://osf.io/5nbkc/).

To summarize, inflated effect sizes are a mathematical consequence of p-
hacking that is more pronounced in small samples. Hence, effect sizes are
overestimated under the presence of p-hacking. For increasing sample sizes and
a true null effect, the p-hacked effect sizes move towards zero, such that in the
limits the influence of p-hacking disappears. Therefore, a focus on effect sizes
helps in situations where sample sizes are large, because despite the significant
test result it becomes clear that the effect size is minuscule. However, especially
in the presence of a significant hypothesis testing result, it seems likely that
researchers may overinterpret the practical relevance even for minuscule effects.
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Figure 8.16: Distribution of Bayes factors for p-hacked and original (non-p-
hacked) analyses for two sample sizes N ∈ {50, 100}. p-hacking is based on
selective reporting of the dependent variable; first significant p-value is reported.
Simulation with ρDV = 0; Bayes factors computed with default priors following
Morey and Rouder (2018).

8.7.4 Abandon p-Values in Favor of Bayes Factors

While some researchers promote focussing on effect sizes, others advocate for
changing the statistical hypothesis testing framework. Frequentist hypothe-
sis testing has been criticized for numerous issues, its fallibility for p-hacking
only being one of them (Wagenmakers, 2007). Therefore, a growing number of
methodologists argues in favor of switching to the Bayesian statistical framework
for data analysis to improve statistical inferences (Wagenmakers et al., 2018).
The quantity of interest in Bayesian hypothesis testing is the Bayes factor. It is a
relative measure of evidence and compares the likelihood of observing the data
under the null and alternative hypothesis. Bayes factors larger than one indicate
evidence in favor of the alternative hypothesis, Bayes factors smaller than one
indicate evidence in favor of the null hypothesis (Etz & Vandekerckhove, 2018).

Same as with effect sizes, it is outside the scope of this chapter to discuss po-
tential strategies for Bayes factor hacking and whether switching from frequentist
to Bayesian hypothesis testing would change researchers’ incentives. However,
we can evaluate the influence of p-hacking on Bayes factors in the light of our
simulation results. In an earlier simulation study, Simonsohn (2014) argued that
p-hacking strategies can also affect Bayesian inference. Our own results generally
support this notion. Figure 8.16 displays the distribution of Bayes factors under
the null in a two-sided t-test under different levels of p-hacking severity and for
two sample sizes, N ∈ {50, 300}. We assume that the first significant p-value is
reported. It can be seen that the original Bayes factors concentrate around 1/5 or
1/10 for the two sample size conditions, respectively, if no p-hacking is applied,
thus correctly indicating evidence for the null hypothesis. For p-hacked tests in
the small sample size condition, p-hacked Bayes factors tend to show weak ev-
idence for the alternative hypothesis. In the large sample size condition, even
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p-hacked Bayes factors largely show (albeit weak) evidence in favor of the null.
Note that the exact distribution of Bayes factors depends on the reporting strat-
egy. Importantly, under the “report the smallest p-value” strategy, the Bayes fac-
tor distribution is no longer bimodal under the presence of p-hacking, but it is still
biased towards larger Bayes factors. Bayes factor distributions for all reporting
strategies can be found in our online appendix (https://osf.io/5nbkc/).

Taken together, our results indicate that Bayes factors are not immune to p-
hacking, in that they will overstate the evidence for the alternative hypothesis
even for large sample sizes if p-hacking was successful. However, importantly,
for large sample sizes even hacked Bayes factors eventually correctly indicate ev-
idence for the null hypothesis, thus mitigating the p-hacking effect. If confronted
with disagreeing results from frequentist and Bayesian hypothesis testing, we be-
lieve that researchers may at least interpret findings with great care. In our view,
the same should be true (but perhaps to a lesser extent) if results of the Bayesian
test were inconclusive, as it often happens for small sample sizes. Therefore,
the suggestion to report “a B for every p” (Dienes & Mclatchie, 2018) seems like
useful advice even for researchers preferring the frequentist approach for episte-
mological reasons.

8.7.5 Correct for p-Hacking

As long as incentives in science do not change, many researchers argue that p-
hacking will continue to stay a problem (M. Bakker et al., 2012). Therefore, anal-
ogous to publication bias correction methods, reliable p-hacking detection and
correction methods could help scientists to interpret potentially p-hacked find-
ings with more caution and correct for biased estimates. In the past, several
methods have been applied for p-hacking detection, such as p-curve (Bruns &
Ioannidis, 2016; Simonsohn et al., 2014b), the Caliper test (Gerber & Malhotra,
2008; Hartgerink et al., 2016), Fisher’s method (Hartgerink, 2017), or excess test
statistics (Brodeur et al., 2020).

In our view, current p-hacking detection and correction methods suffer from
two shortcomings. First, it is impossible to make inferences about p-hacking in a
single study. All p-hacking correction methods developed so far rely on the close
investigation of an empirical p-value distribution. This requires the existence of
multiple p-values stemming from the same population distribution (e.g., a null ef-
fect). However, especially for novel findings, no comparable findings might exist,
and therefore also no empirical distribution. Moreover, even if many hypothesis
tests exist, p-hacking detection methods can only make inferences about whether
p-hacking is present or absent across all tests. Therefore, finding evidence for
p-hacking in a body of literature may decrease researchers’ confidence in a re-
search field, but it does not imply that any specific study result was p-hacked.
Second, p-hacking detection and correction methods do not take the diversity of
p-hacking and reporting strategies into account. As we discussed earlier, differ-
ent reporting strategies can lead to different p-value distributions across multiple
hypothesis tests (see Figure 8.13). Not all of these reporting strategies lead to a
right-skewed distribution of p-values below p = 0.05, as is assumed by many cur-
rent p-hacking detection methods. This indicates that specific types of p-hacking
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would not be detected by current methods. Moreover, in practice, p-hacking in a
research field can hardly be assumed to be an all-or-none issue. It is unlikely that
all researchers p-hack their data, and even if they do, they are unlikely to use the
same p-hacking strategies at the same level of aggressiveness combined with the
same reporting strategies. Therefore, it must be assumed that the resulting distri-
bution of p-values emerges as a mixture of different p-hacking strategies, which
makes correcting for a bias caused by p-hacking difficult, if not to say, nearly
impossible.

8.7.6 Preregistration and Registered Reports

At the basis of p-hacking lies the exploitation of undisclosed analytic flexibility
in scientific data analysis. In the past years, it has been a cornerstone of the sci-
entific reform movement to promote publication formats that allow readers to
distinguish between planned and exploratory analyses. Among these publica-
tion formats, the main focus has been on preregistration and registered reports
(Nosek et al., 2018; Nosek & Lindsey, 2018). A preregistration is a time-stamped
document in which researchers describe their hypotheses, methods, and analyses
prior to data collection and/or data analysis (van ’t Veer & Giner-Sorolla, 2016).
Registered reports incorporate preregistration in the publication process: In a first
stage, authors submit the information contained in a preregistration to a journal
in the form of a scientific report. Based on peer reviews, this stage 1 report can ob-
tain in principle acceptance, meaning that the journal commits to publishing the
study results independent of whether they support the hypotheses or not. Once
the authors have collected their data and conducted all preregistered analyses,
they can submit a full scientific paper to the journal that will be published pro-
vided that the authors followed their outlaid research agenda (Chambers, 2013).

The goal of preregistration and registered reports is to provide transparency
about the research process and to re-align incentives to increase the trustworthi-
ness of scientific results (Chambers et al., 2015). Whether this endeavor can be
successful crucially depends on whether the preregistration can effectively con-
strain the number of analysis options. Our simulation results demonstrate that
vague preregistrations that do not consider all degrees of freedom in data pre-
processing and analysis pipelines leave the door wide open to p-hacking. For
example, a preregistration may describe a planned regression analysis, but fail to
report outlier exclusion and missing value handling procedures. This means that
a researcher is now technically free to use the corresponding p-hacking strate-
gies without being detected in the process. We hope that our compendium of p-
hacking strategies will in the future provide a useful tool to investigate whether
important degrees of freedom have been fixed in preregistrations. A strict solu-
tion without any degrees of freedom left would be the preregistration of the final
analysis script.

Interestingly, several meta-scientific studies have found that researchers of-
ten deviate from preregistrations without mentioning it in their manuscripts (A.-
W. Chan et al., 2004; Silagy et al., 2002). This can indicate that researchers find it
difficult to specify their research plan precisely before conducting a study, and fill
up the resulting room of flexibility, which can – intentionally or unintenionally
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– lead to p-hacking. However, the advantage of a precise preregistration is that
readers can compare conducted analyses with a preregistration, and notice devi-
ations, even if they were not reported in a paper. Based on the severity of these
deviations, they may revise their opinion about the credibility of the research
results.

8.8 Discussion and Conclusions

In the wake of the replication crisis, detecting and preventing questionable re-
search practices has become a major concern for many researchers. Among all
questionable research practices, p-hacking has been at the center of attention.
However, definitions of p-hacking have been surprisingly vague, and the severity
of different p-hacking strategies has never been explored in detail. In this chap-
ter, we compiled a list of 12 p-hacking strategies targeted at common statistical
testing scenarios that have been mentioned in the literature. We investigated the
severity of each of these strategies for different levels of p-hacking aggressive-
ness using simulation studies. Then, we used the results of these simulations
to provide a preliminary evaluation of the effect of several commonly suggested
measures for improving statistical inferences and the trustworthiness of research
results.

With regard to the different p-hacking strategies, we found that even with a
single strategy, false positive rates can typically be raised to at least 30% from the
typical 5% threshold with “reasonable effort”, that is, without assuming that re-
searchers automate data mining procedures. Interestingly, some p-hacking strate-
gies that have received comparatively little attention in the existing literature,
such as variable transformation (strategy 7) or favorable imputation (strategy 10),
showed the most severe effects on error rates in our simulations. Apart from
the aggressiveness of p-hacking itself, our simulations showed that across all
strategies, the severity of p-hacking also depends on the environment in which p-
hacking takes place, for example, the correlation structure in the data. We believe
that this is an important factor to consider in future investigations of p-hacking
severity as well as in the context of the development of p-hacking detection and
correction methods.

In our simulation framework, we demonstrated that it can be useful to sep-
arate p-hacking strategies from reporting strategies. In the literature, there has
been some disagreement on whether researchers report the first significant p-
value or conduct several tests at the same time and report, for example, the small-
est or smallest significant p-value (Simonsohn et al., 2014a; Ulrich & Miller, 2015;
van Aert et al., 2016). However, these reporting strategies have always been
viewed as integral to p-hacking strategies. By viewing p-hacking as a group of
strategies to obtain statistical significance, it becomes clear that reporting strate-
gies should be viewed as separate from p-hacking strategies. False positive rates
are purely determined by the aggressiveness of the p-hacking strategy employed,
but reporting strategies have an additional effect on the resulting p-value distri-
bution. In our view, this means that authors developing new methods to in-
vestigate p-hacking should always be clear on whether they target p-hacking or
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reporting strategies.
With regard to potential solutions to the problem of p-hacking, we found that

reporting Bayes factors in addition to p-values may be the best option to enable
a critical evaluation of research results. For large sample sizes, reporting effect
size estimates may also lead readers to question significant results, since these
will typically be paired with small effect size estimates in the case of p-hacking.
Interestingly, larger sample sizes alone are not enough to reduce the “success
rate” of p-hacking attempts. Reducing the threshold for statistical significance,
however, also leads to a substantive decline in false-positive rates. Publication
models aiming at preventing p-hacking, specifically preregistration and regis-
tered reports, can effectively contribute to reducing the prevalence of p-hacking.
However, based on our simulations, it became clear that loopholes in preregis-
trations, that is, degrees of freedom that are not fixed, can render preregistrations
ineffective towards severe p-hacking with the remaining strategies. We also con-
sidered p-hacking detection and correction methods as a potential solution for
the case that p-hacking cannot be successfully prevented. However, due to the
multitude of different strategies and the heterogeneity of research scenarios, it
seems unlikely that a reliable detection mechanism can be developed in the near
future.

It is important to note that all simulation results regarding p-hacking sever-
ity in this chapter depend on our specific implementation of p-hacking strate-
gies, as well as on our subjective assessment of plausible p-hacking aggressive-
ness. While there are several surveys that allow inferences about the preva-
lence of certain p-hacking strategies (e.g., Gopalakrishna et al., 2022; John et al.,
2012), none of these surveys has investigated the aggressiveness with which re-
searchers employ these strategies. It is also unclear how many strategies re-
searchers would typically use at a time, or whether certain fields of research
are more fallible to some strategies than to others. These are still open empir-
ical questions that we hope will be investigated in the future. Our simulation
conditions are therefore merely representations of our individual assessments of
plausible effort. Whether or not they are realistic may be determined by future
empirical studies. We encourage readers who disagree with our simulation set-
tings to explore other conditions using our Shiny app (https://shiny.psy.lmu.de/
felix/ShinyPHack/) or our R package, and to adapt the code that we provided
(https://github.com/astefan1/phacking compendium). We believe that starting
a debate about what p-hacking realistically looks like in practice will eventually
improve our approaches towards p-hacking prevention.

Gazing into the abyss of p-hacking may be daunting, but in our view, it is a
prerequisite for developing effective countermeasures. The increased awareness
for p-hacking in general has already led to many improvements in statistics ed-
ucation, publication practices, and research design. By framing p-hacking as a
compound of strategies, we hope that actions can become even more targeted
in the future. Our compendium and simulation of p-hacking strategies can be
viewed as a first step in this direction.
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8.A Overview of p-Hacking Strategies and Simulation Conditions

Strategy Description Simulation
conditions

phackR function

(1) Selective
reporting:
Dependent
variable

Use different
variables as outcome
variables, report only
significant tests

Number of
dependent variables:
k ∈ {3, 5, 10}
Correlation between
dependent variables:
r ∈ {0, 0.3, 0.8}

sim.multDVhack()

(2) Selective
reporting:
Independent
variable

Compare different
experimental
conditions to a
control condition,
report only
significant tests

Number of
experimental
conditions:
k ∈ {3, 5, 10}
Correlation between
variables:
r ∈ {0, 0.3, 0.8}

sim.multIVhack()

(3) Optional
stopping

Conduct
intermediate
significance tests
during data
collection, stop data
collection when
p < α

Minimum sample
size: Nmin ∈ {5}
Maximum sample
size: Nmax ∈
{30, 50, 100, 300}
Step size:
k ∈ {1, 5, 10, 50}

sim.optstop()

(4) Outlier
exclusion

Ad-hoc exclusion of
extreme values to
achieve statistical
significance

Number of outlier
detection methods:
k ∈ {3, 5, 12}

sim.outHack()

(5) Controlling
for
covariates

Run analyses
with/without
covariates, report
only significant tests

Number of
covariates:
k ∈ {3, 5, 10}
Correlation between
covariates:
rZ ∈ {0, 0.3, 0.8}
Correlation between
covariates and
dependent variable:
rZY ∈ {0, 0.3}

sim.covhack()

(6) Scale
redefinition

Selectively add/drop
items from
composite scores to
achieve statistical
significance

Number of items in
the score: k ∈ {5, 10}
Maximum number of
items deleted:
m ∈ {1, 3, 7}
Correlation of items:
r ∈ {0.3, 0.7}

sim.compscoreHack()

(7) Variable
transformation

Transform variables
in a statistical
analysis to achieve
statistical
significance

Variables to
transform: predictor
(x), outcome (y),
predictor and
outcome (x, y)

sim.varTransHack()
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(8) Discretizing
variables

Split continuous
variables into
multiple categories
using arbitrary cutoff
values to achieve
statistical
significance

– (only sample size
varied)

sim.cutoffHack()

(9) Exploiting
alternative
hypothesis
tests

Use alternative
hypothesis tests to
achieve statistical
significance

– (only sample size
varied)

sim.statAnalysisHack()

(10) Favorable
imputation

Use different
imputation methods
to achieve statistical
significance

Proportion of
missing values:
ρ ∈ {0.05, 0.2}
Number of
imputation methods:
k ∈ {3, 5, 10}

sim.impHack()

(11) Subgroup
analyses

Run analysis in
different participant
subgroups, report
only significant tests

Number of binary
subgroup variables:
k ∈ {1, 3, 5}

sim.subgroupHack()

(12) Incorrect
rounding

Round p-value down
to the significance
level

Largest p-value
rounded down:
pmax ∈ {0.051, 0.6}

sim.roundhack()

Note. Sample size is varied in all simulation conditions with N ∈ {30, 50, 100, 300}.
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8.B Overview of Outlier Detection Techniques

Detection technique p-Hacking simulation
(1) Boxplot Define single-variable outliers using

graphics::boxplot().
(2) Stem-and-leaf plot Define single-variable outliers

aplpack::stemleaf() function.
(3) Standard deviation Define single-variable outliers as x standard

deviations above or below the mean. Starting
with a threshold of x = 2 standard deviations, the
threshold is increased in increments of 0.5, until
no more extreme values exist in the original
sample.

(4) Percentage Define single-variable outliers as the highest or
lowest x percent of the values. Starting from a
threshold of 1/N (smallest empirical quantile),
the threshold is increased in increments of 0.05 to
1/20, i.e., 5%.

(5) Studentized
residuals

Define outliers as values with high studentized
residuals following from the regression y x. If
the largest absolute residual value is smaller than
2, the three largest residuals are marked as
outliers. If the largest absolute residual value is
larger than 2, the cut-off threshold is increased in
increments of 0.5.

(6) Standardized
residuals

Same outlier definition as in (5), just with
standardized residuals.

(7) DFBETA Define outliers as values with the three highest
DFBETA-influence measures according to
stats::dfbeta().

(8) DFFITS Define outliers as values wih absolute DFFIT
values larger than 2

√
2/n, using the

stats::dffits() function.
(9) Cook’s distance Define values with a Cook’s distance larger than

the median of an F distribution with p = 2 and
N − p degrees of freedom, or larger than 1 as
outliers, using stats::cooks.distance().

(10) Mahalanobis
distance

Define outliers as values with a robust
Mahalanobis distance larger than
Md2 > χ2(0.98, 2) using
mvoutlier::uni.plot().

(11) Leverage values Define outliers as values with a leverage measure
larger than 3 2

n
using stats::hatvalues().

(12) Covariance ratio Define outliers with a covariance ratio different
from 1 as outliers using
stats::influence.measures().

Note. Numbers of outlier detection techniques are referenced in function arguments in the
phackR package.
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8.C Overview of Imputation Techniques

Imputation
technique

p-Hacking simulation

(1) No imputation Pairwise deletion of missing values (default
setting in stats::lm().

(2) Mean imputation Replace missing values by the mean of the
variable.

(3) Median imputation Replace missing values by the median of the
variable.

(4) Mode imputation Replace missing values by the mode of the
variable.

(5) Predictive mean
matching

Impute missing values using the "pmm" method
from the mice package.

(6) Weighted predictive
mean matching

Impute missing values using the "midastouch"
method from the mice package.

(7) Sample from
observed values

Impute missing values using the "sample"
method from the mice package.

(8) Bayesian linear
regression

Impute missing values using the "norm" method
from the mice package.

(9) Linear regression
ignoring model error

Impute missing values using the "norm.nob"
method from the mice package.

(10) Linear regression
predicted values

Impute missing values using the
"norm.predict" method from the mice
package.

Note. Numbers of imputation techniques are referenced in function arguments in the
phackR package.
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9

A Two–Stage Bayesian Sequential
Assessment of Exploratory Hypotheses

Abstract

Separating confirmatory and exploratory analyses is vital for ensuring the
credibility of research results. Here, we present a two-stage Bayesian sequen-
tial procedure that combines a maximum of exploratory freedom in the first
stage with a strictly confirmatory regimen in the second stage. It allows for
flexible sampling schemes and a statistically coherent carry-over of informa-
tion from the exploratory to the confirmatory stage. We believe that this pro-
cedure will facilitate preregistration as well as the formulation of precise hy-
potheses in the field of psychology and can be integrated elegantly into the
registered report publishing framework. We demonstrate the methodology
with a simulated application example from the field of social neuroscience.

This chapter is published as Stefan, A. M., Lengersdorff, L. L., & Wagenmakers, E.-J. (in
press). A two-stage Bayesian sequential assessment of exploratory hypotheses. Collabra:Psychology,
8(1), 40350. https://doi.org/10.1525/collabra.40350 Also available as a PsyArXiv preprint https://
psyarxiv.com/qwuyf
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9. A Two–Stage Bayesian Sequential Assessment of Exploratory
Hypotheses

9.1 Introduction

A transparent distinction between exploratory and confirmatory analyses is vital
for ensuring the credibility of research results (Wagenmakers et al., 2012). New
publication formats, such as Registered Reports and Exploratory Reports, as well
as the ascent of preregistration in the social sciences are founded on this premise
(Chambers, 2013; McIntosh, 2017; Nosek & Lindsey, 2018). However, many re-
searchers are still hesitant to commit to a single analysis pipeline in the form of
a preregistration before seeing the data. This is particularly the case in disci-
plines such as neuroscience, where elaborate data preprocessing procedures and
complex data structures make it challenging to decide on the most appropriate
analysis method a priori (Poldrack et al., 2017).

Here we present a two-stage Bayesian sequential procedure that combines a
maximum of exploratory freedom in the first stage with a strictly confirmatory
regimen in the second stage, while allowing for flexible sampling schemes and a
statistically coherent carry-over of information. This procedure may benefit re-
searchers who are faced with the dilemma on whether (a) to shoot from the hip
by running a confirmatory study with inadequate planning, risking severe de-
viations from the preregistration plan (Sarafoglou, Hoogeveen, & Wagenmakers,
2022), or (b) to sacrifice resources to an initial exploratory study that does not
allow for hypothetico-deductive inference (Jebb, Parrigon, & Woo, 2017).

9.2 The Two-Stage Bayesian Sequential Procedure

Figure 9.1 illustrates the two-stage sequential Bayesian process. At the first stage,
researchers can explore a variety of different analysis plans, including alternative
preprocessing techniques, statistical models and hypotheses, outcome variables,
and participant inclusion criteria. Researchers are able to do this as data roll
in, sequentially updating the knowledge about competing models or hypothe-
ses (Schönbrodt et al., 2017). In the exploratory stage, there is only a single rule:
“anything goes”. For example, in neuroscience, researchers may test the same
conceptual hypothesis using different voxel-based definitions of a brain region
(Poldrack, 2007), or different methods to select electrode channels in EEG analy-
ses (Alotaiby, Abd El-Samie, Alshebeili, & Ahmad, 2015). The exploratory stage
can be stopped as soon as the researcher has identified a hypothesis and asso-
ciated analysis method that is deemed sufficiently promising for a strictly con-
firmatory test. At this freely chosen point in time (i.e., T1 in Figure 9.1), the re-
searcher enters the confirmatory part of the study.

The second, confirmatory, stage starts by preregistering the exact analysis
pipeline that was selected based on the exploratory analyses. Preregistration is
now straightforward since the researcher already has analysis scripts detailing
the exact analysis procedure that are based on the acquired knowledge of data
structures from the first stage. The goal of the confirmatory stage is to test the
concrete hypothesis extracted from the exploratory stage. The hypothesis test can
be conducted in a sequential manner again, where the researcher stops data col-
lection as soon as sufficient evidence has been obtained for the null or alternative
hypothesis, or a maximum sample size has been reached (e.g., Stefan et al., 2019).
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Figure 9.1: The two-stage sequential Bayesian procedure. In the exploratory
phase, sampling continues until a promising analysis method has been selected
(T1). In the confirmatory phase the selected hypothesis is put to the test. Sam-
pling stops once sufficient evidence has accrued for the alternative hypothesis
(T2a) or for the null hypothesis (T2c), or until resources are depleted (T2b).

Evidence is quantified by means of the Bayes factor, with Bayes factors larger
than one indicating evidence for the alternative hypothesis and evidence smaller
than one indicating evidence for the null hypothesis (Jeffreys, 1961; Rouder et al.,
2018).

Notably, the Bayesian approach allows the coherent carry-over of information
from the exploratory to the confirmatory stage. Following the principle “today’s
posterior is tomorrow’s prior” (Lindley, 1972, p. 2), information from the ex-
ploratory stage can be used to formulate prior distributions on all model param-
eters in the confirmatory stage. This can be viewed as enriching the hypothesis
based on prior knowledge, or putting probabilistic constraints on the parameter
space to make the models more informative (Lee & Vanpaemel, 2017). The easi-
est way to do this is to use the posterior distributions from the exploratory stage
as priors for the confirmatory stage (Ly et al., 2019; Verhagen & Wagenmakers,
2014). However, researchers who worry that their exploratory results may be
overoptimistic may adopt a more cautionary approach and discount the infor-
mation from the first stage to some degree – for instance by using power priors
(M.-H. Chen, Ibrahim, & Shao, 2000) or by incorporating knowledge about the re-
sults from the alternative, less promising analyses; doing so will shrink the prior
distribution for the confirmatory stage toward the null value.

The confirmatory stage can result in three qualitatively distinct outcomes: The
exploratory results from the first stage are supported, as indicated by compelling
evidence in favor of the alternative hypothesis (e.g., T2a in Figure 9.1); the ex-
ploratory results are disconfirmed, as indicated by compelling evidence in favor
of the null hypothesis (e.g., T2c in Figure 9.1), or the data remain ambiguous with
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regard to the tested hypotheses (e.g., T2b in Figure 9.1). The latter outcome can
occur when resource constraints prohibit the continuation of data collection and
true parameter values fall somewhere in between the values postulated in the
null and alternative model.

9.3 Neural Correlates of Perspective Taking: A Simulated Application
Example

In the following, we briefly illustrate the practical use of the two-stage Bayesian
sequential procedure with a simulated application example from the field of so-
cial neuroscience. The simulation code and a detailed documentation can be
found on https://osf.io/z3ckm/.

A group of fictitious researchers conduct a functional MRI study in which
participants complete a task measuring the neural correlates of perspective tak-
ing (C. Lamm, Rütgen, & Wagner, 2019; Schurz, Radua, Aichhorn, Richlan, &
Perner, 2014). The participants complete this task under two different conditions.
In one condition, they are subjected to some treatment that should increase their
perspective taking abilities. In the other condition, this treatment is absent.1 The
goal of the study is to determine whether the treatment causes a change in task-
related activation in the right parietal cortex.

Based on previous findings, researchers expect that the effect of interest
should be localized in one of the ten subareas of the right parietal cortex de-
scribed in the brain atlas by Mars et al. (2011), see Figure 2A. However, due to
the novelty of the treatment, they are uncertain which exact subarea might be
affected. Moreover, they are not sure of the size of the region of interest (ROI)
they should use in their analysis. For each subarea, the brain atlas offers four
different size definitions, but the researchers have no prior knowledge about
which definition might be the best one. Thus, in total there are 40 different
possible definitions of the ROI to choose from, and the researchers are struggling
to preregister the specific ROI that they wish to use in their analysis. To overcome
this difficulty, the researchers follow the Bayesian two-stage design, using the
following decision strategies:

• In the exploratory phase, the researchers monitor the Bayesian hypothesis
test for each ROI. They decide to measure at least ten participants, and then
stop the exploratory phase as soon as one of the ROIs results in a Bayes
factor larger than 10. Then, they choose this ROI for their confirmatory
study, and preregister it accordingly. If no ROI definition results in a BF
larger than 10 after 30 participants, the researchers cancel the study without
a confirmatory phase.

• In the confirmatory phase, the researchers first measure ten participants,
and then monitor the Bayes factors until one of three events occurs that
cause the study to be discontinued: Either they observe a BF larger than
100, which they consider compelling evidence for an effect of the treatment

1We remain deliberately vague about the exact nature of the task and the treatment to emphasize
that this scenario is completely fictional.
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on brain activity; or they observe a BF smaller than 1/10, which they con-
sider enough evidence that the treatment has no substantial effect on brain
activity after all; or they run out of time and financial resources for the
study.

We simulated 100 runs of the described two-stage procedure for two different sce-
narios. The simulation code and figures depicting all of these runs can be found
on https://osf.io/z3ckm/. In the first scenario, there was a sphere of increased
activity due to the treatment in one of the specified ROIs (radius = 4mm, MNI
coordinates: x = 56, y = -34, z = 38, cf. Figure 2A). In 79 of the simulated runs, the
researchers ended up with substantial evidence in favor of the treatment effect
in the confirmatory phase (cf. Figure 2B). In 14 runs, the researchers identified a
promising ROI in the exploratory phase, but then obtained strong evidence for
a null effect in the confirmatory phase. Finally, seven runs yielded inconclusive
evidence. In the second simulation scenario, the treatment had no effect on brain
activity in any of the ROIs. In 45 of the runs, the study was stopped after the
exploratory phase, because no ROI reached a BF > 10. Of the remaining runs, 51
runs resulted in strong evidence for the null hypothesis (cf. Figure 2C), only one
run resulted in strong evidence for the alternative hypothesis, and 3 runs resulted
in inconclusive evidence in the confirmatory phase.

In summary, the two-stage procedure appears to be a practical research
method in this fictitious application example. In most cases where there really is
a treatment effect, the exploratory stage allows the researchers to quickly specify
the most appropriate ROI, and then find convincing evidence for the effect in
the confirmatory stage, using no more resources than necessary. Despite its high
degree of flexibility, the procedure also nearly never leads the researchers to
erroneously claim the existence of an effect if a true effect is absent. Although
it can happen by random chance that the researchers identify an apparently
promising ROI in the exploratory phase, this spurious result would rarely
achieve a convincing level of evidence in the confirmatory phase. It is illustrative
to contrast this with the situation that would arise if the researchers would forego
the confirmatory phase, and base their conclusions solely on the results of their
exploratory analyses. Then, the large number of researcher degrees of freedom
would surely lead to a high false-positive rate (54% of cases in our example, if BF
> 10 is used as a threshold). We would like to emphasize, though, that the error
rates we report here are specific to the simulation scenario we used. Additional
research will be needed to discern how often the two-stage procedure leads to
the correct decision in different situations.
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Figure 9.2: The simulated application example. A: View of the right hemisphere
of the brain. Marked in different colors are the ten subareas of the right parietal
cortex as described by Mars et al. (2011). For each of these ten subareas, there
exist four different size definitions (not depicted here), resulting in a total of 40
different possible regions of interest for analysis. The black circle marks the po-
sition and size of the sphere of activation as used in the simulation study. B and
C: Example trajectories of Bayes factors obtained in the simulated application
example, with B) a true effect of the treatment present, and C) no effect present.
In the exploratory phase (left part of each plot), researchers monitor the Bayes
factors for each of the different ROIs. After a minimum of ten participants, the
researchers stop the exploratory phase as soon as one ROI has given a Bayes fac-
tor larger than 10 in favor of their hypothesis. In the confirmatory phase (right
part of each plot), the researchers sequentially test their research hypothesis us-
ing the ROI definition identified in the exploratory phase. The researchers sam-
ple participants until they achieve a Bayes factor larger than 100 (as depicted in
B), which they consider compelling evidence for their hypothesis; or until they
achieve a Bayes factor smaller than 1/10 (as depicted in C), which they consider
enough evidence against their hypothesis; or until they run out of resources (not
depicted here).
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9.4 Discussion

The two-stage Bayesian sequential procedure offers multiple advantages: (1) The
proposed procedure facilitates the specification of precise hypotheses and their
translation to statistical models; (2) Analyses in the confirmatory stage can be
fixed to the precise setup that was piloted in the exploratory stage, making pre-
registration straightforward and potentially reducing the risk of unplanned de-
viations; (3) The Bayesian framework allows for a seamless integration of knowl-
edge obtained from exploratory analyses into the confirmatory trial; (4) The sam-
pling plan is flexible and efficient. Sequential testing has repeatedly been shown
to be about 50% more efficient than conducting fixed-N trials with the same
power (Schnuerch & Erdfelder, 2020; Schönbrodt et al., 2017), and the Bayesian
approach allows for ad-hoc adjustments of the sampling plan, for example to re-
act to changes in available resources (Rouder, 2014); (5) Overconfidence based on
exploratory results leads to decreased predictive accuracy of the alternative hy-
pothesis in the confirmatory stage and is naturally penalized in the Bayes factor.
This means that researchers are motivated to formulate realistic expectations and
be conscious about their modeling choices.

Conceptually, the Bayesian two-stage design is similar to a classic pilot-study
design where an exploratory pilot phase can be used to gain experience with
the materials, procedure, and data environment, for the purpose of subsequently
conducting a confirmatory trial (Leon et al., 2011). However, the proposed two-
stage design possesses two important features that distinguish it from classic pi-
lot study designs. First, data collection in both stages is conducted in a sequential
manner, leading to substantial efficiency benefits compared to traditional pilot
study designs where sample sizes (at least in the confirmatory stage) are typi-
cally fixed in advance (Schönbrodt et al., 2017). Second, data are not discarded
after the pilot study, but instead used to enrich the tested hypotheses in the con-
firmatory phase in a mathematically coherent manner that takes the uncertainty
about population parameters into account. This does not only make the confir-
matory tests more specific, but can also increase their efficiency with regard to
expected sample sizes (Stefan et al., 2019).

In our view, the two-stage sequential Bayesian procedure is particularly well-
suited for publication in the Registered Report format (Chambers, 2013). The first
stage of the Registered Report can serve as a platform to transparently report the
analysis results conducted in the exploratory phase and to determine the exact
analysis path for the confirmatory phase in consultation with the reviewers. In
the second stage of the Registered Report, the confirmatory phase can be exe-
cuted and reported. Thus, the procedure of Registered Reports closely mirrors
the two-stage Bayesian sequential design. However, may also be beneficial to
publish the two stages of the design separately, particularly if exploratory analy-
ses or the derived experimental design are sufficiently complex to make an inde-
pendent contribution to the literature. In this case, the first stage can, for example,
follow the format of an exploratory report (McIntosh, 2017) or of a study protocol
submission, as it is common for clinical trials (T. Li et al., 2017).

It is important to note that the Bayesian sequential two-stage procedure does
not relieve researchers of their due diligence. Although “anything goes” in the
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exploratory stage, it is still important to distinguish exploratory from confirma-
tory results. If analyses are optimized for unambiguous hypothesis testing results
in the exploratory stage, parameter estimates resulting from these analyses might
be inflated (Simonsohn, 2014). Moreover, researchers need to be careful to avoid
the double-use of data: The prior distribution formulated based on exploratory
data should not be re-used to analyze the same exploratory data (or a combined
data set). Lastly, the prior distribution under the alternative hypothesis should
not be adjusted if the evidence in the first stage pointed towards the null hy-
pothesis (Jeffreys, 1961). This is due to the fact that under a true null effect the
posterior under the alternative model will mimic the null model, which makes
the models virtually indistinguishable in the confirmatory stage. Additionally,
researchers need to be aware in this case that if their inferential goals changed to
confirming a null result based on initial evidence for the null model, the criteria
for selecting an analysis pathway based on the exploratory results may change as
well. For example, while they might find it worthwhile to focus on a subgroup of
participants in which an effect seems to be strongest to demonstrate the existence
of a phenomenon, they might find that confirming the absence of said effect in
the whole population might be more interesting.

In general, researchers need to carefully consider their analysis choices and re-
flect on their theoretical implications. For example, simply choosing the analysis
pathway yielding the strongest evidence in the exploratory phase may not yield
the most severe test of a substantive theory. Additionally, every specific analysis
pathway may limit the external validity of the study by restricting the general-
izability to a specific context and procedure (H. Lin, Werner, & Inzlicht, 2021).
It also needs to be considered that if the posterior from exploratory analyses is
used as a prior, the tested alternative hypothesis in the confirmatory stage is an
informed version of the alternative hypothesis tested in the exploratory stage, so
the hypothesis tests in the two stages answer slightly different research questions
(Etz, Haaf, et al., 2018).

Overall, we believe that the two-stage Bayesian sequential assessment of
exploratory hypotheses addresses several methodological concerns. It facil-
itates preregistration, takes resource constraints seriously, elegantly connects
exploratory and confirmatory aspects of research, motivates researchers to care-
fully consider their analytic choices, and allows researchers to quantify evidence
in favor and against their focal hypothesis. We hope that the procedure will
be a valuable addition to the methodological toolbox of many social science
researchers.
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Discussion and Future Directions

10.1 Building the Bricks of Science

The undisputed goal of science is to create knowledge. Scientific knowledge
can be conceptualized as a corpus of established claims that are regarded as
veridical by the scientific community (Peirce, 1878). In a famous opinion piece,
B. K. Forscher (1963) compared scientific claims to bricks that build an edifice and
scientists to the architects of the building. If science is conducted carefully, each
brick is solid and the bricks are diligently assembled according to plan to make
up a stable building. However, in a far-sighted criticism, Forscher accused re-
searchers of losing sight of the higher-level goal, demoting themselves to the role
of brick-makers, and cluttering the land with piles of slipshod bricks. Forscher’s
message crucially resonates with more recent criticism brought forward in the
context of the crisis of confidence in psychological research (Pashler & Wagen-
makers, 2012). Confronted with an avalanche of failed replications, incidents
of fraud, errors detected in data analyses, and overwhelming evidence for the
widespread use of questionable research practices, many researchers in psychol-
ogy realized that a culture of empty productivity and hunting for “sexy” results
had set the very foundations of the field crumbling (John et al., 2012; Levelt Com-
mittee, Noort Committee, & Drenth Committee, 2012; The Open Science Collabo-
ration, 2015). A growing number of researchers are therefore calling for scientific
reforms and a change in academic culture (van Ravenzwaaij et al., 2022).

A core theme emerging from the proposals for scientific reform is to slow
down the scientific process, to change incentives such that carefully planned and
executed, theory-driven research is preferred over sloppy studies that present
shiny but poorly substantiated results (Frith, 2020). The idea is that progress
in science is eventually achieved faster and more sustainably if every study on
the way meets the highest quality standards, even if conducting each study on
its own takes more effort. This immediately gives rise to the question: What is
high-quality research? And how much effort should researchers invest into a
single study? Or, using Forscher’s analogy, how can we manufacture solid bricks
without getting caught up in mere brick-making, and how can we make sure that
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they will eventually fit together to make up an edifice? As can be seen from the
explosion of meta-scientific literature in the past years, as well as from the heated
debates between different groups of scientific reformers, there are many answers
to these questions (Field, 2022).

This dissertation entitled “Bayesian Power” focused on three aspects that can
contribute to making the building blocks of psychological science more solid us-
ing the power of Bayesian designs. Part I proposed avenues for good research
design, with an emphasis on quantitative studies evaluated in the Bayesian sta-
tistical framework. It attempted to answer the underlying question: How should
researchers invest their resources to obtain as much information as possible? The
chapters demonstrated the use of design analyses for balancing the efficiency and
informativeness of studies, as well as the use of Bayesian sequential designs for
obtaining compelling evidence with minimal sample sizes.

Part II investigated how substantive knowledge of field experts can be used
to make statistical model comparisons more informative. Model comparisons
are used to draw inferences about competing scientific hypotheses based on col-
lected data. If models are enriched with expert knowledge, the tested hypotheses
become more specific and the diagnostic value of data can increase. The goal of
Part II was to showcase the diversity of methods that exist for turning experts’
plausibility judgments into probability distributions, and to investigate how dif-
ferences in experts’ judgments can influence inferences about hypotheses.

Part III of this dissertation took a closer look at questionable research practices
that endanger the credibility of study results and evaluated approaches to miti-
gate them. Specifically, it demonstrated how p-hacking can lead to an inflation
of false-positive results in the literature, and proposed a Bayesian procedure to
facilitate study preregistration and mitigate analytic flexibility.

In the following, I will discuss findings from the three parts of this dissertation
in turn, and provide directions for future research.

10.2 Part I: Research Design in the Bayesian Age

Going back to Forscher’s (1963) analogy, a crucial ingredient for constructing a
stable building is an architectural plan. A good architectural plan takes the needs
of the client, the specifics of the building site, and the available resources into
account (Collins, 2022). In science, the importance of research planning can be
compared to the importance of an architectural plan (Winer, 1962). Good research
planning is guided by clear objectives that are determined by the epistemologi-
cal goals of the research team. For example, the goal of a study can be to find
evidence for a hypothesis, to estimate the magnitude of an effect, or to support
decision-making in practical applications. Good research planning also takes the
available resources as well as the specifics of the data-generating process into
account (Cohen, 1988; Hunter & Hoff, 1967).

Part I of this dissertation discussed research planning in the context of
Bayesian hypothesis testing. The main focus was on two topics: Bayes Factor
Design Analysis (BFDA), a Bayesian method for sample size planning, and se-
quential Bayes Factor designs, that is, sequential hypothesis testing using Bayes
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factors. Both methodologies center around the goal of obtaining compelling evi-
dence for or against the existence of a psychological effect. In the following, I will
discuss the practical relevance as well as several challenges in the application of
these methodologies, and provide suggestions for future developments.

10.2.1 Bayes Factor Design Analysis

Traditionally, the goal of sample size planning has been to find the smallest sam-
ple size that controls the probability of making a false-positive or false-negative
decision about the existence of an effect in question (Cohen, 1988). However,
with the surge of Bayesian hypothesis testing, the focus has shifted from error
control to obtaining strong evidence for a scientific hypothesis (Wagenmakers
et al., 2018). This means that statistical power analysis, the traditional method
for sample size determination, is no longer an appropriate tool in the Bayesian
statistical framework. Chapter 2 of this dissertation therefore introduced an al-
ternative Bayesian method of sample size determination: Bayes Factor Design
Analysis (BFDA). For fixed-N designs, the main goal of a BFDA is to determine a
sample size that yields compelling evidence with a high probability. For sequen-
tial designs, the main goal is to obtain predictions about the sample size that can
be expected.

10.2.1.1 Reducing the Computational Burden

Being based on Monte-Carlo simulations, BFDA is in principle a versatile method
that can be easily adapted to many different hypothesis testing scenarios. The
methodology has, among others, been applied to t-tests, ANOVAs, correlation
tests, AB tests, multilevel regression models, and latent growth curve models
(Field et al., 2020; Schönbrodt & Stefan, 2018; Stefan & von Oertzen, 2019; Va-
sishth, Yadav, Schad, & Nicenboim, 2022, see also Chapter 3). However, the
simulation-based methodology comes with a major difficulty: It requires sub-
stantial computational resources. The Bayes factor needs to be recomputed many
hundred times to obtain reliable predictions. When it comes to complex mod-
els where the computation of the Bayes factor itself relies on sampling-based
methods (e.g., Gronau et al., 2017), the computational burden easily becomes un-
tenable, even for modern multi-core computers.

There are several possible ways to solve the issue of computational burden in
the future. One approach is to increase the speed of Bayes factor computation,
for example by migrating code to compiled programming languages (Aruoba &
Fernández-Villaverde, 2014) or using efficient algorithms (Evans & Annis, 2019).
A second approach is to make the BFDA Monte-Carlo algorithm more efficient,
for example by carrying over intermediate results between updating Bayes fac-
tor computations, or by avoiding unnecessary recomputations (Collin, 2022). A
third approach is to develop analytical solutions to BFDA for common hypoth-
esis tests. For fixed-N designs, this implies deriving the probability distribution
of Bayes factors conditional on a data generating process and sample size (Trotta,
2007). For sequential Bayesian designs, it means finding the first-passage time
distribution of the Bayes factor conditional on a data generating process and the
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decision thresholds (Wald, 1945). Analytical solutions would speed up compu-
tations enormously because they would render costly simulations unnecessary.
However, analytical solutions do not exist for all cases. Additionally, even if ana-
lytical solutions exist, their derivation is mathematically complex, and solutions
cannot easily be generalized to new tests. Thus, it is only sensible to develop an-
alytical solutions for commonly used tests. Finally, it is also possible to replace
exact computations of Bayes factors, likelihoods, or variance terms with suitable
approximations (Bartoš & Wagenmakers, 2022; T. F. Chan, Golub, & Leveque,
1983; Tsou & Royall, 1995). Approximations can substantively speed up compu-
tation, but come with the disadvantage of rendering the BFDA results inexact.
It is left to the individual researcher to weigh the costs of lost accuracy and the
benefits of computational speed for any given research scenario.

10.2.1.2 Beyond Bayes Factors

All chapters of this dissertation that discussed research planning in the Bayesian
statistical framework (cf. Chapter 2, 3, 4, and 5) focused exclusively on Bayesian
hypothesis testing with Bayes factors. However, as Irving John Good famously
claimed, there are “46656 varieties of Bayesians” (Good, 1971, p. 1413). In fact,
many Bayesians prefer not to use Bayes factors, and particularly dislike Bayesian
null hypothesis testing (Gelman & Shalizi, 2013; Tendeiro & Kiers, 2019). Instead,
they focus on interpreting the posterior distribution or use different methods of
measuring predictive accuracy (Kruschke & Liddell, 2018; Vehtari et al., 2017).
However, it is important to note that none of the approaches towards Bayesian
statistics relieves researchers of sample size planning.

The Monte-Carlo simulation methodology of Bayes factor design analysis can
be relatively easily extended to all different flavors of Bayesian statistics. In any
case, data can be simulated under a certain data generating process and the quan-
tity of interest can be calculated for the simulated datasets. The operating char-
acteristics of the design can then be determined by analyzing the distribution of
the quantity of interest, no matter whether this is the Bayes factor, the width of
the posterior distribution, the overlap of the credible interval with a region of
practical interest, or the WAIC (Kruschke & Liddell, 2018; Vehtari et al., 2017).
However, the challenge in sample size determination is to find suitable criteria
for design informativeness. For example, what are acceptable error probabilities
for the ROPE procedure? What is a sufficient width of the credible interval? The
answer to these questions of course depends on the specific research context, but
proponents of each respective Bayesian method can possibly offer some general
guidance.

10.2.1.3 Is Bigger Always Better?

The past years have seen an increase in so-called “big-team science” (Coles, Ham-
lin, Sullivan, Parker, & Altschul, 2022). Flagship projects, such as the Psycholog-
ical Science Accelerator (Moshontz et al., 2018), the ManyBabies Consortium (The
ManyBabies Consortium et al., 2020) or the Reproducibility Project: Cancer Biology
(Errington, Denis, Perfito, Iorns, & Nosek, 2021; Errington, Mathur, et al., 2021),
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have brought together hundreds of researchers to collaborate on current scien-
tific issues. The potential advantages of these large-scale collaborations are clear:
If many brilliant minds bundle their energy, scientific questions may be solved
quicker. If many labs contribute resources, even expensive research can be per-
formed. If many institutions from all over the world participate, the observed
participant populations will be more diverse.

The perspective of research planning provides a more critical view on these
large-scale collaborations. The different chapters of this dissertation repeatedly
emphasized the importance of balancing efficiency and informativeness in re-
search designs. Big-team science projects can clearly be highly informative: With
many thousands of observations, it is often possible to obtain overwhelming evi-
dence in favor of hypotheses, and even tiny effects can be detected. However, as
I have argued throughout this dissertation, it is important not to lose sight of the
costs associated with the gain in information. Large-scale collaboration projects
require an incredible coordination effort from project organizers at all stages of
the research process (P. S. Forscher et al., 2020; Moshontz, Ebersole, Weston, &
Klein, 2021). They often take multiple years to finish, and they require consider-
able amounts of funding (Errington, Denis, et al., 2021). If the scientific question
could have been answered using less resources, large-scale collaborations can
constitute a considerable waste of resources. Before starting a large-scale collabo-
ration, it is therefore important to carefully weigh these costs against the potential
gain in information.

Design analyses can support the process of determining whether a project re-
quires big-team science. A first step is to clearly define the epistemological goal of
the study: Is the goal to establish the existence of an effect? Is it to determine the
heterogeneity of an effect? Is it to find specific moderators of an effect? Is it to ob-
tain a precise estimate of a specific quantity? All these different goals necessitate
different statistical approaches, and may change the measures of informativeness
of a study. For example, if the research question can be answered with a hypoth-
esis test, the Bayes factor may be a good measure of informativeness; if the goal is
effect size estimation, the width of the posterior distribution may instead be the
main quantity of interest. The following step is to specify the desired evidential
goals with regard to the measure of informativeness. For example, the evidential
goal may be specified as obtaining a Bayes factor of at least 10 forM0 orM1. At
this point, a design analysis can give an idea of the sample size that would be
necessary to reach the evidential goal with a high probability (cf. Chapters 2, 3,
4, and 5). Large sample sizes may be necessary if the tested models are complex
or difficult to distinguish, if a small effect size needs to be reliably detected, or
if cultural or experimental moderators are tested. However, not every situation
requires huge sample sizes – especially not from the start, since sequential sam-
pling schemes make it possible to stepwise increase the number of observations
until the evidential goal has been hit (cf. Chapters 4 and 5).

In the future, it will be interesting to see to what extent considerations of
study costs will shape the debate about big-team science. The current drive to
turn large-scale collaborative projects into standard scientific practice may even-
tually turn out to be an overcompensation of the underpowered, untrustworthy
research of the past (Ebersole, 2019; Wagenmakers, Sarafoglou, & Aczel, 2022).
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Using Forscher’s (1963) analogy, there is little value in building big bricks unless
they can be incorporated into a building. Researchers planning large-scale collab-
orative projects should therefore always ask themselves how their research can
be integrated into the broader research context, how future research can build on
their findings, and why it is sensible to invest the available resources into one big
study rather than several smaller-scale studies.

10.2.1.4 Change of Plans

In Chapter 5 of this dissertation we took the step from a one-time a-priori de-
sign analysis to a more continuous approach of design monitoring. The prac-
tical relevance of this step should not be underestimated. Going from a single
a-priori power analysis to multiple interim design analyses requires radical re-
thinking in research planning. At the moment, research planning is highly ritual-
ized (Gigerenzer, 2004): Researchers select a sample size, use a power analysis or
a more ad-hoc method as a justification in preregistrations, and then often devi-
ate from their indicated plans (Claesen, Gomes, Tuerlinckx, & Vanpaemel, 2021).
Neither the issue of scarce prior knowledge nor resource constraints are typically
explicitly addressed (Toth et al., 2021). The value of the power analysis there-
fore often becomes reduced to signaling good-will, getting a check mark on the
preregistration, and appeasing peer reviewers.

Interim design analyses present an attractive alternative to the status quo. Ul-
timately, they can make research planning more useful and precise by allowing
researchers to update sampling plans and collect exactly as much data as neces-
sary. However, they also demand more flexibility and effort in the research pro-
cess. First of all, repeated design analyses throughout a study require researchers
to pause the data collection process at several intermediate checkpoints. This
means that the data collection process needs to be supervised more thoroughly
than it is currently often the case. Additionally, researchers need to make sure
that the data collection process allows them to flexibly respond to the interim de-
sign analysis results. For example, this may require planning the study in multi-
ple phases from the start, and keeping close contact to research assistants who or-
ganize participant recruitment. Modern project management methods may help
researchers to set up an efficient, but still flexible data collection process (Abra-
hamsson, Salo, Ronkainen, & Warsta, 2017).

Research design monitoring may also eventually lead to larger-scale transfor-
mations in the research process. Specifically, data-based interim design analyses
will often require researchers to collect more data than optimistic a-priori power
analyses. This leads to the practical question: What should researchers do if an
interim design analysis signals that the study will unlikely yield conclusive re-
sults with the available resources? In practice, there are two options: Stop the
study with inconclusive evidence (either at the interim checkpoint or at the max-
imum sample size), or try to obtain more resources. It is interesting to think these
two scenarios through on an institutional level. If resources are insufficient to
obtain strong evidence, data still need to be published to avoid bias in the litera-
ture (cf. Chapter 5). However, what is the best way to publish these preliminary
data and results? If the study was conducted in the registered report framework,
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the journal will still have an obligation to publish the results (Chambers et al.,
2015). However, what should be done with other studies that were discontinued
due to a lack of resources, perhaps even at small sample sizes? One option is
to publish the data in the form of a micropublication (Clark, Ciccarese, & Goble,
2014; Raciti, Yook, Harris, Schedl, & Sternberg, 2018). This ensures that the data
remain discoverable long-term, that they are documented sufficiently to be re-
usable, and that the study rationale is reported together with the data. If authors
already preregistered the study, publishing it as a micropublication would not
come at high effort since hypotheses and analysis strategy had already been for-
mulated. Moreover, micropublications would be incentivized by the prospects of
obtaining a citable publication. If more studies are discontinued due to resource
constraints, this could therefore lead to an overall increase in micropublications.

The second scenario is that researchers try to obtain more resources if interim
analyses show that the available resources are insufficient. Here, the ensuing
question is: Where will these resources come from? One option is, of course, that
researchers decide to bundle their resources on fewer studies. However, some-
times there is a firm resource limit within a lab for a study, for example because
a local participant population has been exhausted. In this case, researchers may
search for collaboration partners for data collection at a different location. In this
way, large-scale collaborative projects may grow organically (Coles et al., 2022).
Interestingly, the search for collaboration partners may guide resource allocation
on a larger scale: Researchers may be more willing to invest their resources into a
collaborative project if they believe that its results contribute to advancing the re-
search field. Thus, to use Forscher’s (1963) analogy again, building stable bricks
in science may also eventually contribute to a stable building.

10.2.2 Sequential Bayes Factor Designs

Research efficiency can be defined as the amount of information obtained per
unit of cost (Hunter & Hoff, 1967). When planning research designs, resource
efficiency is one of the main goals. Sequential hypothesis testing is known to be
more resource efficient than comparable fixed-N procedures (Schnuerch & Erd-
felder, 2020; Schönbrodt et al., 2017; Wald & Wolfowitz, 1948) and it has been
recommended for use in psychological research throughout this dissertation (cf.
Chapter 2, 4, 5, and 9). However, sequential hypothesis testing has only rarely
been applied in psychological research so far. In the following, I will discuss sev-
eral challenges in the adoption of sequential designs in psychological research, as
well as potential avenues for future developments in sequential research designs.

10.2.2.1 Unblinded Analysis

One of the most common caveats mentioned with regard to sequential designs
is that they require unblinded interim analyses (Beffara Bret, Beffara Bret, & Nal-
borczyk, 2021; S.-C. Chow & Chang, 2008). At every step of the sequential pro-
cess, the analyst needs to obtain access to the raw data, perform all necessary
data cleaning steps, and conduct the focal analysis that determines whether the
stopping criterion has been fulfilled. Usually it is impossible to perform all data
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cleaning and analysis steps without full knowledge of experimental conditions.
This gives rise to several potential biases. Specifically, data cleaning steps such as
encoding, preprocessing, variable transformation, outlier handling, or checking
of inclusion criteria may be performed in an ad-hoc manner driven by the de-
sire to quickly reach stopping criteria and to obtain clear-cut results (Beffara Bret
et al., 2021; Wicherts et al., 2016). Additionally, if researchers also act as exper-
imenters, their expectations based on interim results may bias subsequent data
collection (Elsey, Filmer, & Stemerding, 2021). When conducting sequential ana-
lyses, it is important to minimize these biases.

There are different ways to ensure that interim analyses in sequential designs
are not affected by biases. First, it is sensible to preregister analyses before the
start of data collection (Nosek et al., 2018). Specifically, a preregistration can ide-
ally list detailed instructions for the data cleaning process, such that no ad-hoc
decisions are necessary. However, since participant behavior and data artifacts
are often unpredictable, some researchers may find it difficult to settle on an ex-
act process (cf. Chapter 9). An alternative procedure is to document the decision
process throughout data collection and upload the time-stamped analyses to a
public repository (Crüwell et al., 2019; Lee et al., 2019). This ensures that the pro-
cess is transparent and makes retrospective adjustments visible. A second way
to prevent biases in interim analyses is to engage an independent data analyst
who has no stakes in the substantive outcomes of the experiment (S.-C. Chow &
Chang, 2008). The independent analyst can be an individual or a part of a data
monitoring committee that also tracks ethical aspects of data collection, as it is
often used in clinical trials (Friedman & DeMets, 1981). The advantage of sepa-
rating (interim) data analysis from study execution is that researchers can be fully
blinded regarding the interim results, such that expectation effects in data collec-
tion are effectively prevented (MacCoun & Perlmutter, 2015). However, repeated
analyses may in themselves elicit confirmatory tendencies with analysts starting
to root for a certain outcome. This can be remedied by the third pathway towards
bias minimization: Instead of employing a human data analyst, interim statistical
evaluations may be performed by a machine in an automated fashion. Clearly,
this option requires the strictest prior specification of interim analyses, so it may
not be feasible for all scenarios. However, if interim analyses can be precisely
specified, automated interim evaluations do not only effectively prevent biases,
but also make the sequential procedure highly efficient. For example, if auto-
mated interim analyses are connected with online data collection, sampling can
be automatically stopped once sufficient evidence has been reached (Beffara Bret
et al., 2021). To this point, automated analyses require substantive programming
expertise. However, automated sequential analyses could in the future be inte-
grated into popular online survey and experimentation software.

10.2.2.2 Promoting Sequential Designs

Paywalled scientific publications, performance metrics valuing quantity over
quality, and excessive marketing of research findings can be viewed as symp-
toms of a neoliberal culture in science (Mirowski, 2018). They were also main
drivers for the deleterious research practices that eventually led to the crisis of
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confidence (Pashler & Wagenmakers, 2012). It can therefore be expected that
researchers in psychology and other disciplines are skeptical of any practice that
might further increase the economization of science.

Discussions of sequential hypothesis testing often prominently feature the
economic advantages of sequential designs. This dissertation is no exception.
Chapters 2, 4, and 5 described the benefits of sequential Bayes factor designs in
terms of “saved resources”, “increased efficiency”, and “lowered costs”. It is true
that sequential designs are preferable compared to fixed-N designs because of
their efficiency. However, the heavy reliance on arguments of cost-efficiency may
conjure the impression that proponents of sequential methods are guided purely
by capitalist ideals. Given the well grounded skepticism against neoliberal prac-
tices in science, it would therefore not be surprising if attempts to popularize
sequential hypothesis testing were sometimes met with feelings of reactance. To
foster the adoption of sequential methods in psychology, it is thus important to
convey that sequential hypothesis tests do not sacrifice quality for quantity, and
that the increase in efficiency is beneficial for all stakeholders.

Additional to the prevalent skepticism against the economization of research,
there are other factors that may impede the adoption of sequential Bayes factor
tests in psychology research. These factors include a lack of statistical training,
missing infrastructure, and the reluctance to change habits. Same as other scien-
tific reform proposals, sequential testing will need to overcome these obstacles
to gain traction in psychology research. Initiatives promoting the adoption of
sequential designs in psychology research can take other successful reform pro-
posals as a blueprint. For example, preregistration was barely existent in psy-
chology research ten years ago, but is now a common practice (Nosek & Lindsey,
2018). This was achieved through a mix of top-down leadership, incentivization,
advertisement campaigns, education initiatives, and tool development (Nosek et
al., 2018). The adoption of sequential designs could be fostered through similar
strategies.

In the first instance, it is important to create awareness. Some steps have al-
ready been taken in this direction, for example through several tutorial articles
and other educational resources (Beffara Bret et al., 2021; Elsey et al., 2021; Mani
et al., 2020). For further visibility, it may be helpful to incorporate sequential ana-
lyses in flagship research projects, and to provide special publishing platforms,
such as special issues, for research featuring sequential designs. Infrastructural
support may play a larger role for the introduction of sequential testing than
for other scientific innovations. There are many aspects of the sequential test-
ing process that could be supported with suitable tools, starting from statistical
software for design analysis, automation of interim analyses, or utility analyses
of stopping criteria, and ending with collaborative and managerial tools, such as
platforms to find collaborators for blind analyses or enhanced lab space organi-
zation methods. Taken together, these tools would not only allow for a smooth
sequential testing process, but also contribute to preventing experimenter biases.
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10.2.2.3 Sequential Testing as Optimal Foraging

All chapters of this dissertation that discussed sequential designs focused on se-
quential hypothesis testing within one study (cf. Chapter 2, 4, 5, and 9). Go-
ing back to Forscher’s (1963) analogy, this means that we studied how to make
solid bricks, rather than how to build a stable building. However, I believe that
sequential designs can also be extended to a macro-perspective on the level of
research agendas. Specifically, every research agenda can be thought of as a par-
tially sequential process where a series of experiments contributes to expanding
the knowledge in a certain research area. At every stage of the execution of the
research agenda researchers are confronted with the choice between different ex-
periments. Some of these experiments may be ongoing, while others have not
started yet. The question is: How should available resources be invested, such
that the overall gain in knowledge can be maximized?

Conceptually, this question is reminiscent of the concept of optimal foraging
(Pyke, Pulliam, & Charnov, 1977). Stemming from biology, optimal foraging
originally described evolutionary adaptive strategies for searching provisions or
food that maximize an animal’s fitness (McNamara & Houston, 1985). Later, the
concept has been applied to many other domains such as learning, memory, and
public safety (Hills, Jones, & Todd, 2012; Kamil, 1983; Sorg, Wood, Groff, & Rat-
cliffe, 2017). Using mathematical models, optimal foraging theory determines
under what conditions it is sensible to stop exploiting one area for resources, and
move on to the next (Charnov, 1976). It is fairly straightforward to apply this
idea to research agendas. Here, exploitation refers to the continuation of a study
whereas exploration refers to commencing a new study. Foraging efficiency can
be conceptualized as the amount of information gained per tested participant.
Put simply, an efficient pathway for exploration in science can therefore be de-
scribed as maximizing the amount of information gained per participant across
multiple studies.

Chapter 5 of this dissertation proposed one way of measuring the expected
gain of information from continuing with a study. The same framework can
be applied to a potential new study by specifying a maximum amount of un-
certainty about parameters and models. The ideal time point to switch can be
found by comparing the information value of both studies, while taking switch-
ing costs, such as a lag in recruitment or lab space reorganization, into account.
Finding a common unit of measurement for the switching costs and information
value may not be trivial, but once it has been achieved, it will be possible to ap-
ply established models from optimal foraging theory to find the best pathway for
exploration in a research area.

10.3 Part II: Eliciting Priors for Informative Model Comparisons

Part II of this dissertation discussed the topic of prior specification in the Bayesian
statistical framework. Specifically, it explored the methodological and interper-
sonal variability that influences the specification of informed prior distributions
from expert knowledge. As Chapters 2 and 7 demonstrated, informed prior dis-
tributions can make Bayesian model comparisons more diagnostic by tailoring
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them to a specific research context. In the following, I will discuss the relevance
of human rationality for prior elicitation and describe how informed model com-
parisons can be integrated into the broader objectives of scientific reform.

10.3.1 The Human Factor

For the purpose of incorporating expert knowledge into Bayesian models, it
would be preferable if experts were rational Bayesian agents. If this was the case,
we could assume that the experts processed external information in an optimal
Bayesian way (Griffiths & Tenenbaum, 2011). If a prior elicitation method pos-
sesses good measurement properties, the elicited prior distributions could then
be interpreted as a rational account of the information available to the expert
before data collection. However, it is an ongoing debate in cognitive psychol-
ogy whether humans process external stimuli in an optimal Bayesian fashion
(Marcus & Davis, 2013; Tauber, Navarro, Perfors, & Steyvers, 2017). Indeed, the
psychological literature suggests that the human mind is fallible towards many
biases (Kahneman, 2011). This gives rise to the question: To what extent should
elicited prior distributions still be used if experts are irrational?

In the Bayesian statistical framework, the prior distribution expresses subjec-
tive beliefs before seeing the data. It is generally not required that these beliefs
are accurate, unbiased, or well-informed, as long as the analyst is willing to up-
date them in a rational and consistent manner (Etz & Vandekerckhove, 2018).
If beliefs expressed in the prior distribution are biased, the Bayesian updating
procedure will eventually shift them towards the true value. Thus, as long as
elicited priors are updated in a coherent manner, they can be used in Bayesian
modeling without jeopardizing the validity of the Bayesian procedure. However,
if elicited priors are ill-informed, they will not contribute to making model com-
parisons more diagnostic, as it was intended (cf. Chapter 7). Especially with little
data, model predictions will rely on the expert’s prior assessments. If these as-
sessments are biased, model predictions will be biased, too. Using elicited prior
distributions is therefore always a game of trust: Prior elicitation is only sensible
if an experimenter believes that an expert can contribute valuable insights despite
ubiquitous biases. Thus, while the experimenter may not believe that the expert
is in fact a rational Bayesian agent, they need to trust them to make plausibility
assessments in the right ballpark that will eventually improve the predictive ac-
curacy of the models compared to a default solution. Whether this will be the
case comes down to expert recruiting.

10.3.2 Sparse Data Environments

As Chapter 2, 4, and 7 of this dissertation have demonstrated, informed prior
distributions can increase the diagnosticity of Bayesian model comparisons. This
is advantageous because it means that less data is required to reach conclusions
about the tested hypotheses. The increase in efficiency is relevant for all disci-
plines in psychology research, but may have particularly strong implications for
fields where data is limited. Psychology research has rightfully been criticized
for conducting small-N studies, and many scientific reformers have called for
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an increase in sample sizes (Etz & Vandekerckhove, 2016; Fraley & Vazire, 2014;
Schweizer & Furley, 2016). However, this neglects research areas where the par-
ticipant pool is naturally restricted. For example, only few cases of a specific
disorder may be known, only few people may experience a certain life event of
interest, or participants may be required to have a very specific skill set. Depend-
ing on the research question, it is not always possible to increase measurement
accuracy by increasing the number of measurement occasions on an individual
level. Thus, highly diagnostic statistical tests may be the only way to draw com-
pelling quantitative inferences about these participant populations.

In the extreme case where only a few data points or even no data at all can
be collected, prior elicitation can serve as a form of surrogate data collection. A
compelling example of this practice was given by Aspinall (2010) who described
a case study where prior elicitation was used to estimate the strength of small
old earth dams in the UK. Obtaining data on the stability directly was unfeasible,
as multiple dams would have needed to be destroyed and rebuilt. Therefore, a
group of experts reviewed all available proximate information, and their elicited
prior distributions were combined to obtain an informed estimate. Similar ap-
plications can be thought of in psychology. For example, behavior in extreme or
life-threatening situations may be predicted, or outcomes of treatment regimens
for individual psychiatric patients. In these cases, experimental interventions
may be unethical or even impossible, such that expert consensus constitutes the
best available source of information. From a broader perspective, this provides
an interesting view on research design: When the informativeness of a study is
limited by the data environment, it is the task of the researcher to find the most
suitable source of information within those limits. Small-N studies, investiga-
tions of expert consensus, or in-depth case studies may provide the best available
evidence and should not be immediately dismissed for being underpowered. To
use Forscher’s (1963) analogy, when building a house, it is necessary to make
the best use of the available materials. If building big bricks is not an option, a
stable building may still erected from small, carefully assembled bricks. Expert
elicitation can be a crucial ingredient of these small bricks of science.

10.3.3 Building Better Theories

In the wake of the replication crisis, psychological science has been criticized for
weak theory building (Oberauer & Lewandowsky, 2019; Szollosi et al., 2020). The
proposed remedy has been to convert verbal theories into mathematical models
that explicitly describe the hypothesized psychological dynamics (van Rooij &
Blokpoel, 2020). Prior elicitation from experts can make a valuable contribution
to the specification of mathematical models in psychology. Specifically, a good
model makes realistic predictions about data. Substantive experts possess an
abundance of practical experience that guides their expectations about plausible
data structures. Through prior elicitation, this experience can be incorporated
into mathematical models, such that the predictive space of the model is con-
strained to realistic values (Lee & Vanpaemel, 2017). For example, Schad, Be-
tancourt, and Vasishth (2020) described an iterative procedure to investigate if a
specified model is consistent with domain expertise. They used experts’ knowl-
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edge about word reading times to find reasonable priors that lead to realistic
model predictions. Here, prior elicitation happened indirectly by adjusting pri-
ors based on simulated data. However, experts’ theoretical assumptions can also
be directly baked into the prior distribution. For example, Vanpaemel and Lee
(2012) used prior distributions to specify the assumption that in category learn-
ing people optimally allocate their attention across different psychological di-
mensions.

Prior elicitation from experts can also more indirectly contribute to better
theory-building. As described in Chapters 6 and 7, prior elicitation can reveal
important theoretical disagreement between experts. For example, experts might
disagree about the direction of an effect, about the size of an effect, or about the
chance of an event happening (Aspinall, 2010). If this disagreement is exam-
ined further, it might reveal a different understanding of the literature, of model
parameters, or of psychological processes. If the prior elicitation procedure is
constructed as a group task, for example, using the Delphi method or the IDEA
protocol (Dalkey & Helmer, 1963; Hanea et al., 2018), points of disagreement may
be further explored in a group discussion. Notably, the goal does not need to be to
arrive at a unified understanding. Instead, it is also possible to derive conflicting
theories that can subsequently be tested using empirical data. Thus, prior elici-
tation from experts can not only contribute to making individual theories more
specific, but also to widening the range of theories that are considered.

10.3.4 Towards Citizen Science

Practitioners such as nurses, teachers, or mechanics possess a wealth of prac-
tical knowledge. However, their knowledge rarely finds its way into scientific
theory. This disconnect between science and practice has often been criticized
(Irwin, 1995). One of the goals of the scientific reform movement is to make sci-
entific knowledge accessible to the general public and to encourage public par-
ticipation in science (Burdette & Gehan, 1970; Hecker et al., 2018). The hope is
that this may not only help to tackle the scientist-practitioner gap, but also foster
innovation and theory-building in science. Prior elicitation from experts can be
viewed as a step towards a better integration of practitioner knowledge with psy-
chological theory. Substantive experts in prior elicitation do not need to be aca-
demics. Given the right prior elicitation method, plausibility judgments can also
be recorded from experts with little statistical knowledge (Bolger, 2018). Thus,
prior elicitation makes fruitful collaborations between scientists and practition-
ers possible.

At the moment, many researchers shy away from prior elicitation because
they fear that the increase in diagnosticity may not be worth the elevated effort.
However, prior elicitation does not need to happen in a vacuum, and researchers
may benefit in more than one way from collaborating with field experts. Be-
yond the core prior elicitation process, prior elicitation sessions can also provide
a unique opportunity to obtain insights into experts’ personal experiences. To
capture these insights, expert elicitation methods may for example be combined
with qualitative research tools such as interviews or focus groups (Dettweiler,
Lauterbach, Becker, & Simon, 2017). Results from these qualitative paradigms
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could, for example, inspire new research questions, sharpen psychological the-
ory, or provide important context for knowledge dissemination. Over the course
of several studies, this may lead to a repeated cycle of mutual knowledge ex-
change that will benefit researchers and practical experts alike.

10.4 Part III: Eliminating Questionable Research Practices

When talking about informativeness and efficiency of psychology research, it is
almost inevitable to discuss one of the most salient causes of research waste:
Questionable research practices. The widespread use of questionable research
practices has not only damaged the credibility of many scientific fields. It has
also led to an enormous waste of time, money, and energy on research agendas
that were built on false positive findings. To reestablish trust in psychological
science, it is therefore important to devise effective countermeasures to combat
questionable research practices. Part III of this dissertation was dedicated to this
endeavor. Chapter 8 raised awareness for the different forms of p-hacking and
discussed several approaches to mitigate it. Chapter 9 proposed a new Bayesian
study design that facilitates preregistration using a two-stage process. In the fol-
lowing, I will discuss the importance of quality control for studies and method-
ologies, as well as the wider implications of questionable research practices on
research efficiency.

10.4.1 The Reviewer’s Curse

Peer review is a hallmark of the scientific process. A designated task of peer re-
viewers is to check whether a manuscript fulfills scientific standards. Research
articles that have “passed peer review” are viewed as trustworthy in the eyes of
scientists, journalists, and the public alike (Fleerackers, Riedlinger, Moorhead,
Ahmed, & Alperin, 2022). Consequently, it only seems reasonable to assume
that peer review should act as a bulwark against questionable research practices.
However, peer review has often been criticized for failing to fulfill this purpose
(Bohannon, 2013; Heesen & Bright, 2021). As surveys on the prevalence of ques-
tionable research practices demonstrate, peer review is – if at all – an inadequate
gatekeeper for the integrity of science (Gopalakrishna et al., 2022). One reason for
this is that detecting questionable research practices is challenging. For example,
as discussed in Chapter 8, there is no reliable method for detecting p-hacking
based on a single study. Therefore, even if peer reviewers strongly suspect that p-
hacking took place, they usually cannot provide unequivocal evidence to support
their claims. Additionally, being already overwhelmed by the number of review-
ing requests, peer reviewers can typically only spend a very limited amount of
time on a review (Yankauer, 1990). Thus, the question arises how peer reviewers
can be supported in critically evaluating the quality of a scientific manuscript.

To improve the quality of peer review, a first impulse may be to provide re-
viewers with additional checklists or rating scales to assess certain aspects of
a manuscript. There is preliminary evidence that rating scales may increase
the depth of reviews (Hicks, Fraser, Desai, & Klemmer, 2015), but it is unclear
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whether they can support peer reviewers in detecting questionable research prac-
tices. A disadvantage of checklists is that they foster dichotomous evaluations.
For example, in recent years, more and more journals have awarded badges to
manuscripts for fulfilling open science criteria with the goal of incentivizing good
research practices (Kidwell et al., 2016). However, in practice, manuscripts can
typically pass the relevant checks by only superficially complying with open sci-
ence standards (Kansa, 2014). This shows that reviewers need to deeply interact
with the materials to be able to provide reliable assessments.

Usually, time is the limiting factor in how deeply peer reviewers can interact
with the submitted manuscript and materials. Therefore, practices to improve
peer review may be targeted at decreasing the required reviewing time while
keeping the level of acuity intact. Many recent meta-scientific studies have shown
that crucial information on the study protocol, preregistrations, or statistical ana-
lyses is often inadequately documented or difficult to come by (Claesen et al.,
2021; Crüwell et al., 2022; Errington, Denis, et al., 2021; Lee et al., 2019). Thus,
for a reviewer it might often be unfeasible to fully assess all aspects of the study.
There are several ways to address this issue. First of all, the onus of making
the documentation accessible must be put on researchers rather than reviewers.
Researchers need to be trained to provide well-documented code and materi-
als with their manuscript that make it easy for reviewers to evaluate the study
(Epskamp, 2019). Ideally, the submitted materials could be reviewed for com-
pleteness by editorial offices at submission, such that reviewers do not need to
chase down authors for additional information. Of course, even if materials are
well-documented and accessible, the effort of evaluating the entire project may
be above the capabilities of a single reviewer. Practices such as statistical review,
code review, or theory review (Gore, Jones, & Thompson, 1992; Nüst & Eglen,
2021; van Rooij & Baggio, 2021) can split up the work between multiple spe-
cialized reviewers that each focus on a specific aspect of the manuscript. Thus,
manuscripts can be reviewed in depth without putting too much burden on a
single reviewer.

10.4.2 Rigorous Reforms

Since the beginning of the replication crisis in psychology, many ideas for scien-
tific reform have been proposed. The proposed methodologies and practices tar-
get diverse goals such as mitigating p-hacking, increasing transparency, fostering
replicability, avoiding analysis errors, or enabling the re-use of scientific data and
materials. Using Forscher’s (1963) architecture analogy again, scientific reform
proposals mirror innovations in construction technology. A new design of bricks
or a different recipe for mortar may make a building more stable, but should
not be implemented at large scale without thorough testing. The same is true
for innovations in scientific practice. In science, same as in any other profession,
evidence-based approaches should be preferred over uncorroborated methods.
Several authors have therefore called for a thorough meta-scientific investigation
of widely-promoted research practices (Devezer, Navarro, Vandekerckhove, &
Ozge Buzbas, 2021; Suls, Rothman, & Davidson, 2022).
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There are several pathways to evaluating the effects of specific reform pro-
posals. The classical approach is based on empirical field studies, such as ran-
domized controlled trials, AB-tests, and longitudinal observational studies. For
example, Blanco-Perez and Brodeur (2020) evaluated the effectiveness of editor
statements against publication bias in health economics in an intervention study
and found them to decrease the proportion of reported significant hypothesis
testing results. Similarly, Rowhani-Farid, Aldcroft, and Barnett (2020) conducted
a randomized controlled trial on the effectiveness of badges for data sharing in a
medical journal, but did not find a significant increase in the odds of data sharing.
Clearly, field studies are advantageous due to their high ecological validity. How-
ever, they are also resource-intensive and may require interventions that have
immediate consequences for a large number of studies. One alternative is to use
formalized theoretical approaches (Devezer et al., 2021). Here, the goal is to com-
putationally model certain aspects of the scientific process and to determine the
possible effects of interventions from a theoretical standpoint. For example, sim-
ulation studies such as the ones performed in Chapter 8 belong to this category.
The advantage of formalization is that otherwise vague concepts can be sharp-
ened, and that effects of interventions can be predicted without having to disrupt
the real-world scientific process. The downside is that the quality of evidence
depends on the veracity of model assumptions. Thus, theoretical results may
need to be connected to empirical studies. A third pathway for evaluating reform
proposals presents itself in the form of meta-scientific laboratory studies. Here,
scientist participants can be confronted with realistic stimuli and scenarios from
the scientific workflow in a controlled environment. For example, stimuli could
consist of reviewer comments, paper abstracts, or statistical analysis results. In
laboratory studies, the effect of reform proposals can be simulated through ex-
perimental interventions. Conclusions may not be as ecologically valid as field
studies, but the behavior of scientists in a laboratory setting may still be indica-
tive of their real-world behavior. Additionally, laboratory studies are much less
resource-intensive than field studies. Interestingly, the meta-scientific commu-
nity has made little use of laboratory experiments so far. However, in the future,
they might provide an important contribution to putting reform proposals on a
broader evidential basis.

10.4.3 Research Waste Repositories

As the simulations in Chapter 8 demonstrated, questionable research practices
such as p-hacking can have enormous impact on the rate of false positive results
in the academic literature. Not only single studies, but whole subfields of psy-
chological science have lost their credibility as a result of p-hacking, HARKing,
and publication bias (Pashler & Wagenmakers, 2012). Across all quantitative ex-
perimental psychology research, there are thousands of potentially unreplicable,
biased, and irreproducible studies. Taken together, they amount to an enormous
amount of research waste (Chalmers & Glasziou, 2009). This raises the question:
How should the scientific community treat these studies?

At the moment, even scientific reformers largely trust in the self-correcting
ability of science (Bishop, 2018). The shared hope seems to be that eventually ev-

242



10.4. Part III: Eliminating Questionable Research Practices

idence from failed replications will convince the public that previously supported
effects were a fluke, and that, by and by, solid, preregistered, theory-driven re-
search will overwhelm the sloppy studies of the past. However, the process of
self-correction has historically proven to be slow, and may sometimes not hap-
pen at all (Ioannidis, 2012). There is a palpable risk that scientific myths are per-
petuated, that failed replications are overlooked, or that new research uncritically
builds on false-positive findings. This suggests that the current “watch and wait”
strategy may not be sufficient.

A more satisfactory solution to the problem of p-hacked studies may con-
sist of three stages: In a first stage, information about the quality of evidence
in a research field can be collected. Here, the goal is to establish consensus
about the state of the literature. For example, distributions of sample sizes or
effect sizes, analyses of publication bias, first-hand information from authors,
or (un)successful replications may provide information on the overall evidence
strength and the potential presence of questionable research practices in the field.
At the moment, these pieces of information are typically collected individually,
but they are rarely connected, for example, in the form of a database. A database
would also allow researchers to link, annotate, and discuss the available informa-
tion. Over time, this can lead to an emerging consensus about research findings
as well as to new research ideas. In a second stage, it is important to consider
what part of existing research in the area can be re-used in follow-up research.
Some cynics may simply want to purge p-hacked studies from the record, but
even biased evidence may still be of some use. As long as no fraud has taken
place, the collected data is still “real” and may be re-used to investigate new
theories, as long as statistical methods are used that are insensitive to the data
collection procedure (Szollosi et al., 2020). Additionally, similar to the process
suggested in Chapter 9, existing studies may inform procedures and prior dis-
tributions in new, preregistered studies. Thus, even if a scientific field is riddled
with questionable research practices, it is still prudent to try and salvage as much
information from it as possible. The third stage of dealing with the crumbling
foundations of a scientific field can subsequently consist of growing and rebuild-
ing the corpus of evidence using state-of-the-art theories and methods. Ideally,
these new studies are then standing on stable feet because they are only building
on the well-established parts of the existing literature. Moreover, they could im-
mediately be added to the database and thus update the state of evidence in the
field. Similar to initiatives such as the Cochrane library (Higgins et al., 2019), the
database of studies may be used by scientists and practitioners alike to obtain an
overview of the evidence in a field and put new studies into context.

10.4.4 Research Reuse and Recycling

Inefficiencies and waste in science extend beyond questionable research practices
and suboptimal sample size planning in single studies. At a higher level, in-
formation gets lost because research outputs are unfindable or inaccessible. For
example, studies may be buried behind paywalls or in unindexed monographs,
data may only be saved on personal hard drives, crucial documentation may be
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missing, or stimulus material may have been displaced. Recovering the lost in-
formation can be expensive and may be altogether unfeasible.

In the past years, many promising initiatives have been launched to increase
the findability and accessibility of research. Perhaps most prominently, the
Open Science Framework (https://www.cos.io) provides a platform to trans-
parently share code, data, and research materials. Preprint servers such as arXiv
(https://arxiv.org/) or PsyArXiv (https://psyarxiv.com/) enable researchers to
share open access versions of their manuscripts. Preregistration platforms allow
searching for registered trials that might have remained unpublished (Ingre,
2017; Miller, Korn, & Ross, 2015). However, not only scientific file hosting ser-
vices, but also commonly shared terms and notations can facilitate the exchange
of information between different research groups. For example, default technical
specifications for behavioral data and ontologies for theoretical concepts that
have recently been developed can provide a shared language for communicating
research results (Buchanan et al., 2021; Renear & Palmer, 2009).

The described infrastructure is an important prerequisite for the re-use of
research outputs. Science is inherently collaborative and benefits from the ex-
change of information between researchers. New research questions can often be
answered using existing data, and new knowledge can be obtained from com-
bining published research results. Therefore, responsible research does not stop
at using efficient designs and abstaining from questionable research practices. It
also includes allowing other researchers to build on one’s work and making it
available for scientific scrutiny. In the end, it will not be a single researcher’s
methodological knowledge, but the combined effort of the scientific community
that spurs efficiency and informativeness in science.

10.5 Build Science Back Better

Famous modern architect Eileen Grey is often quoted to have said: “To create,
one must first question everything” (Adam, 1987). The aphorism refers to the
radical rethinking in design and architecture at the beginning of the 20th century
where visionary designers reimagined furniture and buildings from first prin-
ciples. However, it also applies in many ways to the current transformations
in psychological science. In the wake of the credibility crisis, many psycholo-
gists realized that they needed to question even well-established findings, if they
wanted the field as a whole to progress. It became clear that to put psychological
science back on solid foundations, scientific methodologies and practices would
need to be radically changed.

The goal of this dissertation was to contribute to this overall modernization
of psychological research methodology. Based on the Bayesian statistical frame-
work, it reenvisioned the process of sample size planning with a focus on the
principles of efficiency and informativeness. It promoted the use of sequential
Bayesian designs and of prior elicitation for model specification. Lastly, it reeval-
uated methodologies for p-hacking prevention. Taken together, the proposed
practices allow researchers to plan and execute studies that are tailored to their
specific research questions, use resources efficiently, and maximize information
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gain.
At the beginning of this chapter, Forscher’s analogy of bricks and buildings

was introduced. While the goal of a researcher should be to erect a stable struc-
ture of knowledge, not even the most solid building can be expected to last for-
ever. Indeed, the history of science provides ample evidence that science cannot
progress without continually questioning itself. Overcoming old rituals, embrac-
ing new methodologies, and reassessing evidence are an essential part of the
scientific process. Thus, although changes in research paradigms and method-
ologies may be experienced as disruptive, they are necessary for building science
back better.
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Nederlandse Samenvatting

Dit proefschrift onderzoekt nieuwe mogelijkheden om de informativiteit en ef-
ficiëntie van onderzoek in de psychologische wetenschap te vergroten. Het legt
de nadruk op Bayesiaanse statistische methoden en schetst hoe onderzoeksde-
signs kunnen profiteren van de specifieke kenmerken van Bayesiaanse statistiek.
Bovendien verbreedt dit proefschrift het traditionele perspectief op onderzoeks-
informativiteit naar de kwantificering van evidentie, informatieve modelverge-
lijkingen, en de beperking van analytische flexibiliteit.

Deel I: Onderzoeksdesign in het Bayesiaanse Eeuw

Het eerste deel van dit proefschrift onderzoekt statistische onderzoeksplanning
door de lens van de Bayesiaanse methodologie. Hoofdstuk 2 presenteert Bayes
Factor Design Analysis (BFDA), een simulatie-gebaseerde methodologie voor het
bepalen van de steekproefgrootte bij Bayesiaanse hypothesetests. Het hoofdstuk
brengt verschillende doelstellingen voor het bepalen van de steekproefgroot-
tevoor Bayesiaanse designs met een sequentiële en vastesteekproefgroottes in
kaart. Bovendien illustreert het hoofdstuk hoe het gebruik van geı̈nformeerde
a-priori-verdelingen het aantal observaties kan verminderen dat nodig is om
een bepaalde sterkte van evidentie te verkrijgen. Het hoofdstuk biedt ook een
gebruiksvriendelijk webgebaseerd programma dat onderzoekers in staat stelt
om BFDA’s voor t-toetsen uit te voeren.

BFDA is vrij rekenintensief en moet meerdere malen worden herberekend bij
het vinden van een geschikt design. Hoofdstuk 3 tracht de computationele last
van BFDA in de context van Latent Growth Curve Models (LGCM’s) te vermin-
deren. Dit gebeurt door het toepassen van het concept van Power Equivalence in
LGCM’s op Bayesiaanse methoden. LGCM’s worden gebruikt om trends te on-
derzoeken over de loop van meerdere longitudinale meetmomenten. Statistieke
onderzoeksplanning stelt onderzoekers in staat het optimale compromis te vin-
den tussen het aantal meetmomenten en de totale duur van het onderzoek. Het
hoofdstuk laat zien hoe Power Equivalence kan worden gebruikt om groepen

293



Nederlandse Samenvatting

van onderzoeksdesigns met dezelfde werkingskarakteristieken. Daardoor wordt
de herberekening van BFDA’s voor deze groepen overbodig te vinden.

Hoofdstuk 4 past de BFDA-methodologie toe om verschillen in efficiëntie te
onderzoeken tussen twee methoden voor sequentiële hypothesetests: de Sequen-
tial Probability Ratio Test (SPRT) en de Sequential Bayes Factor Test (SBFT). In
recent gepubliceerde werken op het gebied van psychologische methoden is be-
toogd dat de SPRT gemiddeld lagere steekproefgroottes oplevert dan de SBFT.
In dit hoofdstuk betoog ik dat deze vergelijkingen de efficiëntievoordelen van de
SPRT overdreven hebben, en dat de verschillen tussen de procedures afhangen
van graduele verschillen in modelspecificaties. Het hoofdstuk toont zelfs aan dat
de twee testprocedures voldoend gelijk zijn om als twee instanties van dezelfde
overkoepelende testfamilie te gelden. Als gevolg hiervan geeft het hoofdstuk
praktische aanwijzingen over hoe onderzoekers een evenwicht kunnen vinden
tussen testefficiëntie, robuustheid tegen modelmisspecificatie en onzekerheids-
kwantificering bij het ontwerpen van sequentiële hypothesetests binnen de over-
koepelende testfamilie.

Hoofdstuk 5 breidt het concept van designanalyses, zoals BFDA, uit van a-
priori naar tussentijdse designanalyses. Tussentijdse designanalyses maken het
mogelijk om het probleem van schaarse a-priori informatie in de onderzoeks-
planning op te lossen en stellen onderzoekers in staat om op een flexibele ma-
nier steekproefgroottes in Bayesiaanse sequentiële ontwerpen aan te passen in
de loop van een studie. Twee gesimuleerde toepassingsvoorbeelden illustreren
het gebruik van tussentijdse designanalyses in de context van pilotstudiedesigns
en designs met de mogelijkheid van vroege stopzetting. De voorbeelden bren-
gen verschillende beslissingen in kaart die onderzoekers kunnen nemen op basis
van de tussentijdse designanalyses. Deze beslissingen kunnen de resulterende
werkingskarakteristieken van de studiedesigns beinvloeden.

Deel II: Prior Elicitation voor Informatieve Modelvergelijkingen

Meerdere hoofdstukken in Deel I van dit proefschrift tonen aan dat geı̈nformeerde
a-priori-verdelingen de efficiëntie en informativiteit van Bayesiaanse hypothe-
setesten kunnen verhogen. Het tweede deel van het proefschrift gaat dieper
in op de specificatie van geı̈nformeerde a-priori-verdelingen op basis van de
kennis van experts (Prior Elicitation). Hoofdstuk 6 beschrijft het grote aantal
beslissingen die onderzoekers moeten nemen in het proces van Prior Elicitation,
beginnend met de selectie van experts en modelparameters voor elicitatie, over-
gaand naar verschillende interviewtechnieken en eindigend met alternatieve
manieren om informatie van verschillende experts te combineren. Meerdere
analyses illustreren het potentiële effect van deze methodologische beslissingen
op de resultaten van de Prior Elicitation. Het doel van dit hoofdstuk is om
onderzoekers bewust te maken van de analytische flexibiliteit die aanwezig
is in Prior Elicitation en te helpen bij het navigeren door de methodologische
beslissingen in Prior Elicitation.

Hoofdstuk 7 evalueert de invloed van de selectie van experts op de a-priori-
verdelingen en daardoor op de geı̈nformeerde Bayesiaanse modelvergelijkingen
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in meer detail. In een eerste stap wordt de interpersoonlijke variabiliteit van a-
priori-verdelingen geëvalueerd. De verdelingen worden aangeleverd door zes
onderzoekers uit verschillende deelgebieden van de psychologie. In een tweede
stap worden de verdelingen toegepast in een heranalyse van 1710 studies in de
psychologie. De resultaten van de heranalyse worden vervolgens onderworpen
aan een sensitiviteitsanalyse met betrekking tot drie criteria die de kwalitatieve
en kwantitatieve conclusies van de hypothesetesten meten. Het hoofdstuk le-
vert twee belangrijke bijdragen: Vanuit een inhoudelijke perspectief tonen de
heranalyses aan dat Bayesiaanse hypothesetesten gevoelig zijn voor de a-priori-
verdeling, maar dat het gebruik van verschillende verdelingen zelden de kwa-
litatieve resultaten verandert. Vanuit een methodologisch perspectief bieden de
sensitiviteitsanalyses een voorbeeld voor Bayesiaanse robuustheidsanalyses met
verschillende geı̈nformeerde a-priori-verdelingen.

Deel III: De Uitbanning van Questionable Research Practices

Het derde deel van dit proefschrift verkent de informativiteit van experimenten
meer in het algemeen in de context van goede onderzoekspraktijken. Hoofd-
stuk 8 laat zien hoe psychologische studies hun wetenschappelijke waarde
kunnen verliezen als onderzoekers dubieuze onderzoekspraktijken (Questiona-
ble Research Practices) gebruiken. Het hoofdstuk geeft een uitgebreid overzicht
van p-hacking strategieën en onderzoekt aan de hand van simulatiestudies hoe
elk van de strategieën de kans op het verkrijgen van vals-positieve resultaten
beı̈nvloedt. De simulatieresultaten worden vervolgens gebruikt voor een eerste
metawetenschappelijke evaluatie van verschillende mogelijke oplossingen voor
het p-hacking probleem. Onder de onderzochte mogelijke oplossingen springt
het rapporteren van Bayes factoren naast p-waarden eruit als een haalbare optie,
die een kritische herevaluatie van onderzoeksresultaten mogelijk maakt.

Preregistratie is een van de meest gebruikte tegenmaatregelen tegen p-
hacking en andere Questionable Research Practices. De metawetenschappelijke
evaluatie in Hoofdstuk 8 geeft aan dat, om een doeltreffende bescherming tegen
p-hacking te bieden, preregistraties alle vrijheidsgraden van de onderzoeker
nauwgezet moeten beperken. Onderzoekers hebben echter vaak moeite om
hun analyses precies te specificeren voordat ze de data hebben gezien. Hoofd-
stuk 9 stelt daarom een Bayesiaans tweefasendesign voor waarbij een voorlopige
dataset in een eerste fase wordt onderzocht totdat de onderzoeker een bevre-
digende analysepijplijn heeft gevonden die vooraf kan worden geregistreerd,
en waarbij de analyseresultaten in een tweede fase aan een bevestigingstest
worden onderworpen. Belangrijk is dat de voorgestelde opzet een overdracht
van informatie tussen de twee fasen mogelijk maakt via de a-priori-verdeling,
waardoor geı̈nformeerde modelvergelijkingen in de tweede fase mogelijk wor-
den. Bovendien is het ontwerp zeer efficiënt omdat het sequentiële tests in beide
fasen mogelijk maakt. Het in hoofdstuk 9 gepresenteerde ontwerp combineert
daarom verschillende nieuwe ontwerpelementen die in eerdere hoofdstukken
zijn beschreven.
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