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Abstract

This study investigated the recently reported association between alcohol depen-

dence and accelerated ageing and the potential effects of abstinence and relapse on

DNA methylation status using Levine's epigenetic clock to estimate DNA methylation

age in two independent cohorts. The first sample comprised 88 (15 female) detoxi-

fied patients with alcohol use disorder (AUD) and 32 (5 female) healthy control

(CON) subjects (NCT02615977), and the second included 69 (10 female) AUD

patients that were followed up for 12months with respect to relapse (n= 38,

4 female) and abstinence (n= 31, 6 female) (NCT01679145). To account for the

different aspects of ageing captured by various clocks, we performed additional

analyses of the first-generation Horvath clock and next-generation Zhang clock. To

account for the genetic liability of AUD and its potential influence on DNA methyla-

tion, we calculated a polygenic risk score for alcohol dependence. We found that

ageing was accelerated by 3.64 years in AUD patients compared with the CON group

according to Levine's DNAm PhenoAge. Furthermore, in a second longitudinal sam-

ple, we found that abstaining AUD patients displayed a decrease in DNAm PhenoAge

by 3.1 years, but we found an over proportional increase by 2.7 years in those who

relapsed. Polygenic risk did not affect epigenetic ageing within our sample. These

results confirm the age acceleration associated with AUD and provide the first

evidence for a recovery of this effect upon abstinence from alcohol.

K E YWORD S

ageing, alcohol use disorder, epigenetic clock, relapse

1 | INTRODUCTION

All multicellular organisms undergo an ageing process that is charac-

terized by the gradual deterioration of biological functions, which is

referred to as biological ageing in contrast to chronological ageingTristan Zindler and Helge Frieling contributed equally.
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(corresponding to the time since birth).1 There are different options to

assess biological ageing and its molecular and cellular correlates, for

example, cell cycle arrest,2 telomere length in leukocytes,3 secretion

of specific factors and cytokines,4 all providing important insights into

the cellular signs of ageing. However, biomarkers used to measure

cellular senescence are often unspecific and might fail to address the

multi-level aspects of ageing. Epigenetic clocks provide a further valu-

able tool for monitoring the ageing process, because they result from

changes in the organism at different levels. Deoxyribonucleic acid

methylation (DNAm) clocks are comprehensive statistical models that

use methylation levels at several specific cytosine and guanine dinu-

cleotides (CpG) sites to calculate epigenetic age. There are two funda-

mental approaches to the methodology of DNAm clocks: The first

aims to predict the chronological age of an individual as accurately as

possible from DNAm (chronological DNAm clocks), whereas the sec-

ond calculates biological age using other known indicators of biologi-

cal ageing in addition to chronological age (biological DNAm clocks).5

The term ‘biological aging’ will subsequently be used with respect to

DNA methylation estimates. Hence, aspects of ageing independent

from methylation signals will not be covered by these estimates.

While the molecular details of DNAm clocks are not well understood,

they nonetheless enable investigations of the biological ageing pro-

cess, which also reflects a person's health and wellbeing.6

Alcohol use disorder (AUD) is a chronic debilitating disorder asso-

ciated with a reduced life expectancy due to an increased risk of mor-

tality, limited treatment options and a poorly defined

pathophysiology.7 Chronic exposure to alcohol over the lifespan has

undisputed detrimental effects on health and well-being.8 It can there-

fore be assumed that AUD has an impact on the ageing process as

measured with DNAm clocks. Research on the pathophysiology of

AUD has revealed various effects of genes and their functional path-

ways on the development, maintenance and treatment of alcohol

dependence.9 Changes in methylation state (known as epigenetic

marks) are an important mechanistic link between specific genes and

the behaviours that drive the course of the disease.7

The first evidence of an association between epigenetic ageing

and AUD came from Rosen and colleagues10 who explored the effect

of excessive alcohol consumption on age acceleration, including DNA

methylation levels in whole blood and tissue samples from five inde-

pendent cohorts of AUD subjects and controls (CON) using a chrono-

logical DNAm clock (Horvath clock11). Only two of the five datasets

(blood and liver tissue) showed accelerated ageing, highlighting the

need for further investigations on the mechanisms of the ageing pro-

cess in AUD. A subsequent study from the same group demonstrated

age acceleration by 2.2 years in AUD patients compared with CON

using Levine's DNAm PhenoAge,12 a biological DNAm clock; the

effect was greater in individuals with more severe AUD-associated

phenotypes such as elevated liver transaminases and a higher number

of heavy drinking days.

To this end, the present study examined the relationship between

AUD and biological ageing in two independent cohorts. We first used

the same basic methodologic approach as Luo et al.13 to analyse the

discrepancy between true chronological age and biological age

measured with Levine's DNAm PhenoAge, as well as chronological

DNAm age measured with the Horvath clock and Zhang's age predic-

tor as a next-generation statistical DNAm model. There have been no

studies to date on the long-term effects of relapse and potential bene-

fits of abstinence on biological ageing. The study by Luo et al. had a

cross-sectional design,13 and the results did not specify whether dif-

ferences in DNA methylation levels and epigenetic age acceleration

are predisposing factors for addiction or if they are consequences of

long-term alcohol use. To examine this interplay of genetic and envi-

ronmental factors, we used methylation data from two time points

(baseline and 12-month follow-up) previously published by our group9

to examine how alcohol exposure and epigenetic ageing interact and

whether the absence of chronic, heavy alcohol consumption in absti-

nent AUD patients affects the deviation between true chronological

age and biological age measured with Levine's DNAm PhenoAge.

The complex interplay between genetic and environmental fac-

tors poses an additional challenge to investigate epigenetic processes.

Several genetic variants from recent Genome-Wide Association Stud-

ies (GWAS) have been associated with epigenetic age acceleration, for

example TERT (the catalytic subunit of telomerase),14 DHX57

(an ATP-dependent RNA helicase) or MLST8 (a subunit of both

mTORC1 and mTORC2 complexes),15 however, without reference to

AUD. It is recognized that AUD is highly polygenic. We therefore

aimed to investigate in an additional exploratory approach how a

polygenic risk score (PRS) for alcohol dependence derived from a large

genome-wide association study assessing alcohol dependence and

problematic alcohol use (PAU)16 affects epigenetic age acceleration.

2 | MATERIAL AND METHODS

2.1 | Subjects

All subjects were recruited between 2012 and 2020 as part of a

larger study (ClinicalTrials.gov identifiers: NCT01679145 and

NCT02615977) investigating behavioural, genetic and neuroimaging

alterations associated with reward-based learning in AUD over two

funding periods. Thus, this study comprised two independent AUD

cohorts from funding period 1 (DSCase@BaseVSLong) and funding period

2 (DSCaseVSCon). In addition, a healthy CON group was recruited in

which subjects were matched with the AUD patients of DSCaseVSCon

with respect to smoking status and several socio-economic variables

(Data S1). Whole epigenome data for DSCase@BaseVSLong (changes in

methylation levels over time) have been previously analysed and pub-

lished by our group9 (Data S2A and S2B). Briefly, whole-genome

methylation patterns of individual CpG sites over time did not differ

between abstinent and relapsing patients. However, there was a neg-

ative association between global mean methylation at the 12-month

follow-up and alcohol consumption within our sample. All patients ful-

filled the diagnostic criteria for alcohol dependence according to Inter-

national Classification of Disease-10 and Diagnostic and Statistical

Manual of Mental Disorders, Fourth Edition (DSM-IV) text revision17

for a minimum of 3 years. Patients with history of current or past

2 of 9 ZINDLER ET AL.

 13691600, 2022, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/adb.13198 by U

va U
niversiteitsbibliotheek, W

iley O
nline L

ibrary on [03/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



substance use disorder (except alcohol and nicotine dependence),

other major psychiatric disorders (as assessed using the computer-

based Composite International Diagnostic Interview)18,19 or neurologic

disease were excluded. All subjects were free of psychotropic medica-

tion known to interact with the central nervous system for at least four

half-lives (including illegal drugs and detoxification treatments as

determined by a urine test). Patients were enrolled in the study shortly

after detoxification (3–21 days) in both funding periods. Patients in

DSCase@BaseVSLong were followed up for 12months with the Alcohol

Timeline Followback method.20 Relapse during this period was defined

as consumption of 60 or 40 g of alcohol on any occasion for males and

females, respectively, according to World Health Organization21

criteria of current high-risk versus low-risk consumption. Individual

assessment included alcohol breath tests to validate self-reports. For

DSCaseVSCon, methylation data were available from baseline and

2-week follow-up assessments only. Smoking status was assessed with

the Fagerström Test for Cigarette Dependence.22 AUD patients and

CON subjects were matched according to smoking status.

2.2 | Genotype QC and imputation

The genotype QC and imputation was performed using Rapid

Imputation for COnsortias PIpeLIne (RICOPILI) GWAS pipeline.23 The

subjects and SNPs passed the QC if the following parameters were

satisfied: SNP missingness < 0.05 (before sample removal); subject

missingness < 0.02; autosomal heterozygosity deviation (jF hetj < 0.2);

SNP missingness < 0.02 (after sample removal); difference in SNP

missingness between cases and controls < 0.02; and SNP Hardy–

Weinberg equilibrium (p > 10e�6 in controls or p < 10e�10 in cases).

Three population outliers were excluded by visually selecting a thresh-

old from 2D plots of principal components 1 and 2 from a principal

component analysis (PCA, see Figure S6). One subject failed the

above missingsness filter, resulting in n= 185 subjects. For related-

ness testing, 65 828 autosomal SNPs which were left after linkage dis-

equilibrium (LD) pruning (r2 > 0.02) with minor allele frequency (MAF)

> 0.05 were used. No pairs of subjects with an estimated proportion

of IBD (PIHAT) > 0.2 were identified.

The genotype imputation was conducted using the pre-phasing/

imputation stepwise approach implemented in Eagle (https://

alkesgroup.broadinstitute.org/Eagle/)/MINIMAC3 (https://genome.

sph.umich.edu/wiki/Minimac) with variable chunk size of 132 genomic

chunks and default parameters. The imputation reference set con-

sisted of 54 330 phased haplotypes with 36 678 882 variants from

the publicly available Haplotype Reference Consortium (HRC) refer-

ence (https://ega-archive.org/datasets/EGAD00001002729).

2.3 | Quantification of DNA methylation level
and QC

Data preprocessing for both datasets was performed using the

respective default functions of the The Chip Analysis Methylation

(ChAMP) pipeline,24 mainly applying the default settings in the

ChAMP functions. This includes the conversion of raw iDat files into

beta values as well as the following six preprocessing steps that were

performed as recommended by the authors of ChAMP: (1) Filter for

probes with detection p value (default > 0.01). (2) Filter out probes

with <3 beads in at least 5% of samples per probe. In this process,

sample's failed probes' ratio above a threshold of 0.1 is regarded as

failed measurements; in the DSCaseVSCon, one sample was excluded in

this preprocessing step. (3) Filter out all non-CpG probes contained in

the dataset. (4) Filter out all SNP-related probes. (4) Filter out all

multi-hit probes. (5) Filter out all probes located in chromosome X

and Y.

Based on our previous experience with batch effects that can

lower data quality and yield false positives, we used 2-week follow-up

measurements as systematic twofold data of all subjects in

DSCaseVSCon with a stratified randomized distribution of the samples.

All samples were analysed with the Illumina Infinum Human Methyl-

ationEPIC BeadChip (Illumina, San Diego, CA, USA).

As the 2-week age difference is negligible for the research ques-

tion at hand and because there is no systematic difference in

predicted age between the two measurements (tLevine[119]= 0.01,

p = 0.99; Cohen's d= 0.00), the measurements were used as mea-

surement repetitions and subsequently averaged for each subject in

order to reduce measurement errors and to exclude systematic batch

effects. One sample was excluded during QC due to showing a high

fraction of failed probes. As there was no repeat measurement, the

subject was completely excluded.

In order to meet the requirements for DNAm clock calculations,

averaged samples were normalized for type I and II probe differences

using the beta mixture quantile normalization (BMIQ) method.25 As

previously reported,9 data for the first funding period

(DSCase@BaseVSLong) had no measurement repetitions, and significant

batch effects for sample plate, chip and row were corrected using

ComBat from the sva package26 without target variables after normal-

izing the data by BMIQ as for DSCaseVSCon. Additionally, a significant

batch effect between DSCase@BaseVSLong and DSCaseVSCon was adjusted

with ComBat using only AUD patients from DSCaseVSCon as a refer-

ence group again without target variables.

2.4 | Calculating DNAm age

We evaluated DNAm age using three different statistical models: the

chronological Horvath clock comprising 344 CpG sites11; the biologi-

cal Levine's DNAm PhenoAge DNAm clock model comprising

513 CpGs in 505 genes12; and Zhang's age predictor comprising a

best linear unbiased prediction model based on 319 607 CpGs.27

While the Horvath clock was developed for Illumina 27K and 450K

arrays and not for the EPIC arrays used in the present study, Levine's

DNAm PhenoAge and Zhang's age predictor were developed for EPIC

array data. CpG sites not measured due to the based array or missing

due to exclusion were imputed for the Horvath clock and Levine's

DNAm PhenoAge. While 27 (7.6%) CpG sites were missing from the

ZINDLER ET AL. 3 of 9
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Horvath clock specific instructions from the Horvath work group were

applied, 12 (2.3%) missing CpG sites for Levine's DNAm PhenoAge

were imputed using the mean methylation. Zhang's age predictor does

not need imputation due to its high number of predictors. For the cal-

culation of the Horvath clock and Levine's DNAm PhenoAge, the

implementation in the Bioconductor package Methylclock28 was used;

for Zhang's age, original code provided by the author was utilized. We

then calculated the difference between actual age and age predicted

with the DNAm clock models (Δ). Pearson's product–moment correla-

tions between these values were positive, significant, and very large

for all three DNAm clocks (Table 1), supporting the assumption of suf-

ficient sample quality and correct sample preprocessing.

2.5 | Calculating the PRS

For calculating the PRS, we used the summary statistics of the

phenotypes AUD (cases/controls: 57 564/256 395) and PAU

(n = 435 563) from a recent genome-wide association study from

Zhou et al.16 Both the summary statistics were LD clumped (dis-

carding variants within 500 kb of and in r2 ≥ 0.1 with another more

significant marker), resulting in 120 446 (in AUD) and 235 621

(in PAU) SNPs, used for scoring. Specifically, we multiply the effect

size from the training data set with the number of risk alleles on each

SNP, summing up over each individual to have a whole-genome PRS

in PLINK v1.90b4.1.29 A p value threshold of p= 1 representing the

composite additive effect of all SNPs was applied, historically show-

ing the strongest scoring results in psychiatric disorders.30 In Data

S7, we additionally show results for more stringent p value thresh-

olds (p = 0.05 and p= 0.001).

2.6 | Single SNP analyses

For exploratory analyses only, we intended to assess the impact of

ADH1B (rs1229984) and ALDH2 (rs671) on our epigenetic clocks.

Both genetic variants have so far shown the strongest and most repli-

cated association with alcohol dependence. However, due to the small

sample size, the low frequency of risk alleles (MAF= 0.01) did not

allow for further analyses. For replication purpose, we analysed the

candidate SNP rs916264 in APOL2, previously shown to be associ-

ated with epigenetic age acceleration by Luo and colleagues.13

2.7 | Statistical analysis

All statistical analyses were performed in the R (4.1.1) environment

and Bioconductor (3.13) framework. To evaluate differences between

AUD and CON groups in terms of the deviation between DNAm age

determined with the Horvath clock, Levine's DNAm PhenoAge and

Zhang's age predictor and true chronological age (Δ),27 we carried out

analysis of variance (ANOVA) for the DSCaseVSCon dataset with group

and age as independent and dependent variables, respectively. As in

the study of Luo et al.,13 we added sex as a covariate and corrected

for immune cell counts obtained using the ‘champ.refbase’ function
of the ChAMP Package in Bioconductor.24 In a second step due to the

high collinearity of the cell distribution, the variance inflation factors

(VIFs) of the independent variables were calculated, and highly corre-

lated predictors were removed accordingly.

To explore genes associated with CpGs of Levine's DNAm

PhenoAge Δ, we calculated Pearson's product–moment correlations

between each of the CpG sites included in the model and Δ. For this

step, a false discovery rate (FDR) < 0.05 was defined as significant.

We then calculated correlations between predicted DNAm PhenoAge

and liver function indices (gamma-glutamyltransferase [γ-GT], aspar-

tate aminotransferase [AST], alanine aminotransferase [ALT]). We also

revisited previously published data of our DSCase@BaseVSLong cohort9

to investigate the possible development of/intergroup differences in

Levine's DNAm PhenoAge over a 12-month period (which had not

been previously examined) with a mixed linear model to predict

Levine's clock Δ, with relapsers/abstainers, sex and immune cell

counts as covariates over time. Again, VIF was checked for high collin-

earity and collinear predictors were removed accordingly.

As for the analyses of DSCaseVSCon, we calculated Pearson's

product–moment correlations between each of the CpG sites

included in the Levine's DNAm PhenoAge model and Δ, with FDR <

0.05 defined as significant.

Association between the PRS (see methods above) and pheno-

types (AUD and PAU) was tested using logistic regression and

adjusted for population stratification (using PC's as covariates 1–5) in

DSCaseVSCon (n= 116, 85 cases/31controls, DSCase@BaseVSLong was

excluded due to missing controls). The explained variance was esti-

mated with Nagelkerke's R2 (NKr2) by comparing scores generated

from a full model (containing covariates and PRS) and a reduced

model (covariates only).

Variance in Levine's DNAm PhenoAge Δ explained by PRS for

AUD and PAU was then tested using linear regression analysis in

DSCaseVSCon and DSCase@BaseVSLong (n= 185). Similar to previous anal-

ysis, the analysis was also corrected for population stratification

using PCs (1 to 5). The beta coefficients and adjusted R2 were

estimated.

Association between the SNP rs916264 in APOL2 and Levine's

DNAm PhenoAge Δ was tested using PLINK (v1.90b4.1) based linear

regression analysis. The analysis was adjusted for population

stratification using PCs (1 to 5) in DSCaseVSCon and DSCase@BaseVSLong

(n= 171 subjects, 14 subjects had to be excluded due to missing

genotype, MAF= 0.19).

TABLE 1 Pearsons product–moment correlations between
biological age and DNAm clock predictions

DNAm clock r DSCase@BaseVSLong rDDSCaseVSCon

Horvath clock 0.66** 0.84**

Levines DNAm PhenoAge 0.56** 0.81**

Zhangs age predictor 0.78** 0.95**

Abbreviation: DNAm, DNA methylation.

*p < 0.05.

**p < 0.01.

4 of 9 ZINDLER ET AL.
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3 | RESULTS

ANOVA for differences between AUD and CON groups in the

DSCaseVSCon with regard to age Δ did not show a significant effect for

Horvath's DNAm clock (F(1, 112)= 0.43, p= 0.51; η2 [partial]= 0.00)

(Data S3A). The analysis for Zhang's age predictor yielded comparable

results (F[1, 112]= 0.40, p= 0.53; η2 [partial]= 0.00) (Data S3B).

However, Levine's DNAm PhenoAge showed a significant medium

size effect (F[1, 112]= 11.10, p= 0.00; η2 [partial]= 0.09) (Figure 1A,

B and Table 2). AUD patients showed a mean (±SD) accelerated age-

ing of 2.94 (±5.69) years compared with their chronological age

whereas in CON subjects, and the mean (±SD) Δ was �0.66 (5.7)

years, yielding a mean difference of 3.6 years between the two

groups.

Pearson's product–moment correlations in the DSCaseVSCon rev-

ealed four CpG sites with an FDR-corrected significant influence of Δ

(Data S4): cg05851163 located in the 50 untranslated region of the

dermatan sulphate epimerase-like (DSEL) gene (r= 0.36, 95% confi-

dence interval [CI]: 0.20–0.51, t[118]= 4.25, pFDR < 0.05);

cg23668631 located in the TSS1500 shore of the calcium/calmodulin

dependent protein kinase kinase 1 (CAMKK1) gene (r=�0.35, 95%

CI: �0.50 to �0.18, t[118]=�4.03, pFDR < 0.05); cg18468844 located

in the TSS1500 OpenSea of the platelet-activating factor receptor

(PTAFR) gene (r=�0.35, 95% CI: �0.49 to �0.18, t[118]=�4.00,

pFDR < 0.05); and cg01211097 located in the TSS1500 shore of the

ubiquitin-specific peptidase 10 (USP10) gene (r=�0.34, 95% CI:

�0.49 to �0.17, t[118]=�3.87, p < 0.05). On the other hand,

Pearson's product–moment correlations between predicted Levine's

DNAm PhenoAge and liver function indices were nonsignificant

(γ-GT: r=�0.01, t[114]=�0.06, p= 0.95; AST: r= 0.07, t[114]=

0.70, p= 0.49; and ALT: r=�0.04, t[114]=�0.41, p= 0.68).

The mixed linear model analysis of DSCase@BaseVSLong to predict

the change in Levine's DNAm PhenoAge Δ over time showed a high

total explanatory power (conditional R2= 0.86) with a significant

interaction effect between time and group (β= 3.65, t[126]= 2.98, p

< 0.01). While relapsers exhibited accelerated ageing by a mean (±SD)

of 2.69 (±7.49) years during the 12-month period, abstainers were by

a mean (±SD) of 4.79 (7.72) years below their expected chronological

age (Figure 2 and Table 3). Pearson's product–moment correlation

analysis of DSCase@BaseVSLong revealed only one CpG site—

cg09809672 located in the TSS1500 shore of the ectodysplasin; a

receptor associated death domain (EDARADD) gene—that was signifi-

cantly associated with Δ after FDR correction (r= 0.35, 95% CI: 0.19

to 0.49, t[130]= 4.24, pFDR < 0.05) (Data S5).

The calculated PRS did show a significant association with

alcohol dependence at p-value threshold p= 1.0 for both AUD

(NKr2 = 0.0497, p= 0.0457) and PAU (NKr2 = 0.1138, p= 0.0022).

For p-value thresholds p= 0.05 and p= 0.001, see Data S7.

There was no significant association between PRS and Levine's

DNAm PhenoAge Δ. There was also no significant association

between the SNP rs916264 in APOL2 and Levine's DNAm

PhenoAge Δ.

4 | DISCUSSION

Only two studies to date have investigated epigenetic age accelera-

tion in patients with AUD.10,13 Our results confirm the earlier finding

that AUD is associated with accelerated ageing, albeit to an even

greater extent than previously reported (4.7 vs. 2.2 years). However,

we are the first to report the potentially recovering effects of long-

term abstinence from alcohol and the potential influence of polygenic

risk on epigenetic ageing.

In this study, we investigated epigenetic ageing in two patient

cohorts. Results from DSCaseVSCon supported those of Luo et al.,13

revealing a difference between AUD patients and CON subjects in

terms of the discrepancy between epigenetic age and true

F IGURE 1 (A) Boxplot of Levines DNAm PhenoAge Δ in alcohol
use disorder (AUD) patients and control (CON) subjects for
DSCaseVSCon. (B) Scatterplot of Levines DNAm PhenoAge versus true
chronological age (Δ) for DSCaseVSCon
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chronological age. In line with the previous findings, differences in age

acceleration were detected with Levine's DNAm PhenoAge only and

not with chronological DNAm clocks (Horvath clock and Zhang's age

predictor). This is expected given the variations in methodologic

approaches for the two types of DNAm clocks. Chronological clocks

are designed to predict true chronological age in very large heteroge-

neous samples5; possible biological markers are not included, as these

large training samples include people with preexisting conditions, and

therefore, only CpG sites that change uniformly over time indepen-

dent of environmental influences are considered. Also, Zhang estimate

is tailored to estimate chronological age as precisely as possible and

explicitly not to be affected by mortality nor cell composition in ideal

case. In contrast, biological DNAm clocks (including Levine's clock)

favour the inclusion of CpGs that are altered in response to environ-

mental factors. Thus, our results support the previous assertion13 that

significant results can only be expected for DNAm clocks measuring

biological age. Contrary to the results of Luo et al., we found no asso-

ciation between liver transaminases and predicted Levine DNAm

PhenoAge, which underscores the fact that the molecular mechanisms

of epigenetic clocks are complex and poorly understood.

Our second cohort of relapsing and abstaining patients

(DSCase@BaseVSLong) yielded conflicting findings. The difference in

predicted age Δ of 7.5 years between relapsers and abstainers from

baseline to the 12-month follow-up was highly significant, indicating

that abstinence from alcohol has beneficial effects on biological age-

ing in AUD patients. However, our results did not show an absolute

positive age difference between predicted and actual age at baseline;

an absolute age deviation only became apparent for relapsing patients

at the 12-month follow-up. A possible reason for these unexpected

results is the lower quality of measurements in the DSCase@BaseVSLong

sample compared with the repeated measurements for DSCaseVSCon,

which allowed necessary corrections and is also reflected in the lower

correlations between the Horvath clock or Zhang's age predictor and

true chronological age (Table 1). Given this limitation of our study,

replication of our results is necessary. Another limitation is that in

DSCaseVSCon and at baseline in DSCase@BaseVSLong, all AUD patients had

been detoxified from alcohol for at least 3 but up to 21 days before

measurements. Moreover, all patients had abstained from alcohol for

at least 30 days until the first relapse and had had AUD (according to

DSM-IV criteria) for a minimum of 3 years before enrollment. Given

the clinical course of abstainers in DSCase@BaseVSLong over the

12-month period, we suspect that the actual epigenetic age difference

between actively drinking AUD patients and CON subjects is even

greater than what was shown by our analysis. It would therefore be

highly valuable to repeat these experiments with active drinkers prior

to their detoxification.

Previous studies have reported associations between epigenetic

ageing and leading causes of death and disease burden.31 The con-

sumption of alcohol is linked to epigenetic changes that may contrib-

ute to these long-term consequences.32,33 Several candidate genes

associated with AUD were identified in a large-scale epigenome-wide

TABLE 2 DSCaseVSCon—Levines DNAm PhenoAge Δ analysis of variance

Parameter Sum of squares df Mean square F p Partial η2 VIF

AUD/CON 304.76 1 304.76 11.10 0.00 0.09 1.05

Sex 0.97 1 0.97 0.04 0.85 0.00 1.15

CD8T 49.28 1 49.28 1.79 0.18 0.02 1.09

CD4T 586.62 1 586.62 21.36 0.00 0.16 1.21

NK cells 20.55 1 20.55 0.75 0.39 0.01 1.13

B cells 35.18 1 35.18 1.28 0.26 0.01 1.19

Monocytes 55.78 1 55.78 2.03 0.16 0.02 1.27

Residuals 3075.67 112.00 27.46

Note: Granulocytes were removed as predictor due to excessive collinearity with the other predictors. Variance inflation factors (VIFs) of the remaining

predictors <1.5.

Abbreviations: AUD, alcohol use disorder patients; B cells, B lymphocytes; CD8T, CD8+ cytotoxic T lymphocytes; CD4T, CD4+ cytotoxic T lymphocytes;

CON, control subjects; DNAm, DNA methylation; NK, natural killer.

F IGURE 2 Interaction diagram for abstainers and relapsers in
DSCase@BaseVSLong (M=mean). Differences in Levines DNAm
PhenoAge Δ at baseline and at the 12-month follow-up were

observed
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study using a cross-tissue/cross-phenotype approach.34 Our explor-

atory investigation of the (epi)genetic background of age deviations in

AUD with a series of correlations for every individual CpG in the

Levine DNAm PhenoAge model identified significant and large effects

for CpG sites associated with four genes—namely, DSEL, CAMKK1,

PTAFR and USP10.

Polygenic risk is a potential indicator of genetic liability in AUD;

thus, we intended to explore its effect on the epigenetic ageing pro-

cess. Both PRS scores based on Zhou et al.16 showed a significant

association with alcohol dependence. However, we did not find an

effect of the PRS on age acceleration, an exploratory single SNP ana-

lyses of ADH1B (rs1229984) and ALDH2 (rs671) on our epigenetic

clocks failed due to the low number of risk alleles. We could also not

replicate the previously reported association of epigenetic ageing with

APOL2 (rs916264).13 With respect to sample size and construction of

the Levine DNAm PhenoAge,12 which has been designed with a certain

robustness against genetic influences, a zero-finding is comprehensible.

However, with respect to the fact that the interplay between genetic

variables and epigenetic ageing remains poorly understood,35 we

suggest to apply the same approach in a bigger sample.

In the DSCase@BaseVSLong, we identified one CpG associated with

accelerated epigenetic ageing in relapsers compared with abstainers

located in the shore of the EDARADD gene. As we limited the correla-

tion analyses to differences in age acceleration detected using Levine

clock CpG sites, it is not surprising that the genes with the highest

correlations are related to metabolic functions and cell regeneration.

While these analyses are limited by the number of CpGs included in

the Levine DNAm PhenoAge model, the significant CpG sites or their

associated genes are of interest for subsequent investigations on the

(epi)genetic background of accelerated ageing in AUD. Given the lim-

ited size of our two cohorts, our results should be considered as pre-

liminary. In the genome-wide association study carried out by Luo

et al., a single nucleotide polymorphism in the apolipoprotein L2

(APOL2) gene was implicated in accelerated epigenetic ageing.13 How-

ever, the study had a cross-sectional design and did not consider the

effects of long-term abstinence and relapse. On the other hand,

tissue-specific associations between alcohol dependence and epige-

netic age were observed with the Horvath and Hannum clocks,10

although these are considered less effective in reflecting environmen-

tal influences on the ageing process.

In summary, DNAm clocks serve as valuable biomarkers of

biological ageing. It will be interesting to define subgroups of AUD

patients that are more prone to epigenetic age acceleration or more

responsive to the positive effects of abstinence. Genetic determi-

nants are one of many possible confounders for associations with

changes in transaminases and other tissue-specific effects. Subse-

quently, the complex interplay between genetic and environmental

factors poses an additional challenge to interpret the data and

determine causal relationships.

Epigenetic measures of ageing have potential utility in clinical

settings as a complement to gold-standard methods for disease

assessment and management.31 For example, our results may be

used in clinical practice to motivate patients with AUD to take the

difficult path of long-term sobriety and associated alcohol withdrawal,

as it can lead to measurable biological recovery. Finally, DNAm clocks

may provide novel targets for pharmaceutical interventions,

as demonstrated in other disease such as bipolar disorder36 and

schizophrenia.37
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TABLE 3 DSCase@BaseVSLong—Levines DNAm PhenoAge Δ mixed linear model

Parameter Coefficient 95% CI t df p Std. coef. Fit VIF

(Intercept) 15.66 7.17 24.16 3.65 126 0.00 0.03

Group �0.53 �4.39 3.33 �0.27 126 0.79 �0.06 1.13

Time �1.92 �3.69 �0.15 �2.15 126 0.03 �0.22 2.49

Sex �6.59 �11.79 �1.40 �2.51 126 0.01 �0.27 1.02

CD8T �12.42 �44.19 19.34 �0.77 126 0.44 �0.04 1.89

CD4T �14.56 �43.54 14.42 �0.99 126 0.32 �0.07 3.71

NK cells �21.02 �47.67 5.63 �1.56 126 0.12 �0.06 1.17

B cells �138.09 �189.70 �86.48 �5.30 126 0.00 �0.28 2.26

Monocytes �9.80 �43.01 23.41 �0.58 126 0.56 �0.03 1.62

Group� time 3.65 1.23 6.07 2.98 126 0.00 0.43 2.69

R2 (conditional) 0.86

R2 (marginal) 0.21

Note: Granulocytes were removed as predictor due to excessive collinearity with the other predictors.

Abbreviations: B cells, B lymphocytes; CD8T, CD8+ cytotoxic T lymphocytes; CD4T, CD4+ cytotoxic T lymphocytes; CI, confidence interval; DNAm, DNA

methylation; NK, natural killer; Std. coef., standardized coefficient; VIF, variance inflation factor of the remaining predictors <1.5.
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