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ABSTRACT

Context. Recent observations with the Atacama Large Millimeter Array (ALMA) have shown that the large dust aggregates observed
at millimeter wavelengths settle to the midplane into a remarkably thin layer. This sets strong limits on the strength of the turbulence
and other gas motions in these disks.
Aims. We intend to find out if the geometric thinness of these layers is evidence against the vertical shear instability (VSI) operating
in these disks. We aim to verify if a dust layer consisting of large enough dust aggregates could remain geometrically thin enough to be
consistent with the latest observations of these dust layers, even if the disk is unstable to the VSI. If this is falsified, then the observed
flatness of these dust layers proves that these disks are stable against the VSI, even out to the large radii at which these dust layers are
observed.
Methods. We performed hydrodynamic simulations of a protoplanetary disk with a locally isothermal equation of state, and let the VSI
fully develop. We sprinkled dust particles with a given grain size at random positions near the midplane and followed their motion as
they got stirred up by the VSI, assuming no feedback onto the gas. We repeated the experiment for different grain sizes and determined
for which grain size the layer becomes thin enough to be consistent with ALMA observations. We then verified if, with these grain
sizes, it is still possible (given the constraints of dust opacity and gravitational stability) to generate a moderately optically thick layer
at millimeter wavelengths, as observations appear to indicate.
Results. We found that even very large dust aggregates with Stokes numbers close to unity get stirred up to relatively large heights
above the midplane by the VSI, which is in conflict with the observed geometric thinness. For grains so large that the Stokes number
exceeds unity, the layer can be made to remain thin, but we show that it is hard to make dust layers optically thick at ALMA wavelengths
(e.g., τ1.3 mm ≳ 1) with such large dust aggregates.
Conclusions. We conclude that protoplanetary disks with geometrically thin midplane dust layers cannot be VSI unstable, at least not
down to the disk midplane. Explanations for the inhibition of the VSI out to several hundreds of au include a high dust-to-gas ratio of
the midplane layer, a modest background turbulence, and/or a reduced dust-to-gas ratio of the small dust grains that are responsible for
the radiative cooling of the disk. A reduction of small grains by a factor of between 10 and 100 is sufficient to quench the VSI. Such a
reduction is plausible in dust growth models, and still consistent with observations at optical and infrared wavelengths.

Key words. protoplanetary disks – accretion, accretion disks

1. Introduction

According to canonical theory, the evolution of protoplane-
tary disks is thought to be driven by a combination of viscous
evolution and photoevaporation (e.g., Clarke et al. 2001). The
viscosity in such disks is thought to be caused by turbulence
produced by the magnetorotational instability (MRI). While the
MRI is inhibited in very dense regions of the disk (the so-called
dead zones), it may still be operational in the hot inner regions
(r ≪ 1 au), in the irradiated surface layers, and in the weakly
ionized outer regions (r ≫ 1 au) of the disk (e.g., Dzyurkevich
et al. 2013).

However, in recent years the turbulent viscous disk theory
for the outer regions of protoplanetary disks has been called
into question. Using radiative transfer modeling of the Ata-
cama Large Millimeter Array (ALMA) image of HL Tau, Pinte
et al. (2016) infer that the turbulence in that disk must be weak
(α ≲ 10−3). Direct measurements of the turbulent line width

in CO 2-1 with ALMA show mostly upper limits to the turbu-
lent velocities of ≲10% of the local sound speed (e.g., Flaherty
et al. 2020). While these velocity upper limits are still consistent
with turbulent α values of up to 10−2, and marginally consistent
with MRI-turbulent disks (Flock et al. 2017), these and other
measurements have stimulated the exploration of the possible
consequences of the absence of MRI turbulence in protoplane-
tary disks and, consequently, the possibility that these disks may
be much less turbulent than previously thought.

The implications of very low turbulent α values for proto-
planetary disks are numerous. For instance, Bae et al. (2017)
show that in low-α disks a single planet can produce multiple
rings. Indeed, Zhang et al. (2018) demonstrate that a protoplan-
etary disk model with very low α and a single embedded planet
can reproduce the observed many-ringed structure of the disk
around AS 209 remarkably well (see, however Ziampras et al.
2020). Low turbulent velocities also have strong implications for
dust growth, gap formation, planet migration, and many other
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things. The reason why, until not long ago, turbulent α values of
≲10−3 were not seriously considered by scientists in the field is
that most stars with protoplanetary disks are observed to undergo
substantial gas accretion. This requires α values in excess of
about 10−3 (e.g. Hartmann et al. 1998). However, wind-driven
accretion may provide a solution to this dilemma (e.g., Ferreira
& Pelletier 1995; Tabone et al. 2021; Martel & Lesur 2022).

In the absence of the MRI, a protoplanetary disk can be prone
to other, non-magnetohydrodynamic instabilities that cause tur-
bulence or turbulence-like velocity fluctuations (e.g., Pfeil &
Klahr 2019). Of particular importance in the outer regions of
the protoplanetary disk is the vertical shear instability (VSI, e.g.
Nelson et al. 2013; Stoll & Kley 2014, 2016; Flores-Rivera et al.
2020). This instability, when fully developed, produces upward
and downward vertical streams of gas that slowly oscillate.
These oscillations form a radially propagating wave (Svanberg
et al. 2022). When viewed as a kind of turbulence, it is highly
anisotropic, with turbulent “eddies” being radially narrow, but
vertically extended sheets of gas moving either up or down. This
“turbulence” is only weakly effective as a replacement of MRI
turbulence for the radial transport of angular momentum, with
values on the order of αVSI,radial ∼ 10−4 (Stoll & Kley 2014).
However, due to the strong upward and downward motions of
the gas, crossing the midplane, with velocities in the range of
5–20% of the isothermal sound speed, the effect of the VSI on
the dust population of the disk is very pronounced (Stoll & Kley
2016; Flock et al. 2017; Lin 2019; Lehmann & Lin 2022). Even
large dust particles can be stirred up to high elevations above the
midplane.

From the observational side, however, there is now increas-
ing evidence that many, if not most, protoplanetary disks contain
a layer of large dust aggregates at the midplane that contains a
substantial amount of dust mass and is geometrically extremely
flat, i.e., having a very small scale height. The first evidence
came from the ALMA image of the disk around HL Tau, where
radiative transfer modeling put an upper limit on the vertical
scale height of the dust layer of 1 au at a radius of 100 au (Pinte
et al. 2016). The high resolution ALMA images of the DSHARP
campaign (Andrews et al. 2018) also suggest very flat geome-
tries of the dust layers seen at λ = 1.3 mm wavelengths. Detailed
radiative transfer analysis of the DSHARP observations of
HD 163296 shows that the dust in the inner ring of that source
(at r ≃ 67 au) appears to be vertically extended almost to the gas
pressure scale height, but the outer ring (at r ≃ 100 au) appears
to be less than 10% of the gas pressure scale height, i.e., highly
settled (Doi & Kataoka 2021).

To get better constraints on the vertical extent (geometric
thickness) of the midplane dust layers of protoplanetary disks,
dedicated observing campaigns with ALMA for nearly-edge-on
disks are required. The first such campaign already yielded indi-
cations of strong settling of large grains (Villenave et al. 2020).
But when the disk of Oph 163131 was reobserved with ALMA
by Villenave et al. (2022), the vertical scale height of the dust
layer could be constrained to be less than 0.5 au at a radius of
100 au, which is about 7% of the gas pressure scale height at that
radius. From these observations, and under some assumptions of
the grain size, these authors derive an upper limit of α ≲ 10−5 on
the turbulence.

However, if the VSI is operational in these outer disk regions,
one might expect that the dust layer should be much more ver-
tically extended, due to the high efficiency of the vertical dust
stirring of the VSI. The purpose of this paper is to quantify this.

The grain sizes are not perfectly known, nor is the gas disk
density. We address the question whether the grains could be so

large that they remain in a thin layer in spite of the VSI. And if
not, what could be the reason that the VSI is not operational in
this disk.

The paper is structured as follows: We start with an analysis
of the stirring-up of particles in Sect. 2. In Sect. 3, we explain
why St ≫ 1 particles are not a probable explanation for the thin
dust layers. We propose a natural explanation for the absence
of VSI in protoplanetary disks in Sect. 4, and we finish with a
discussion and conclusions.

2. Stirring up of large dust aggregates by the VSI

In this paper we wish to find out if the presence of the VSI in the
outer regions of a protoplanetary disk, such as the one around
Oph 163131, would inevitably lead to the big-grain dust layer
observed with ALMA to be more geometrically extended than
observed. This would then be clear evidence that the VSI does
not operate in that disk.

The effect of the VSI on dust particles in the disk was studied
by several papers (e.g., Lorén-Aguilar & Bate 2015; Stoll & Kley
2016; Flock et al. 2017; Lehmann & Lin 2022). The models we
present in this section are not fundamentally different from those
earlier papers. However, we explore the parameters and compare
the results to the observational constraints.

2.1. Conveyor-belt estimate of vertical mixing efficiency of the
VSI

A simple estimate of the height above the midplane that a dust
aggregate can be lifted by the VSI would be the following.
Assume that the VSI consists of long-lived vertical upward and
downward moving slabs of gas, acting as vertical conveyor belts
for the dust. As a dust aggregate gets dragged upward, the verti-
cal component of gravity increases linearly with z, leading to a
vertical settling of the aggregate with respect to the upward mov-
ing gas. The maximum height that the dust aggregate can reach is
the height z at which the vertical settling speed equals minus the
vertical gas speed. The settling speed of a particle with Stokes
number St ≪ 1 at a height z above the midplane is

vsett = −StΩKz . (1)

By setting vsett + vz,VSI = 0, with vz,VSI the typical vertical gas
velocities of the VSI, we obtain the maximum elevation above
the midplane that an aggregate can obtain:

zmax =
hp |vz,VSI|

St cs
, (2)

where hp is the pressure scale height of the gas (see Appendix A)
and cs is the isothermal sound speed of the gas. For typical ver-
tical velocities of the VSI of |vz,VSI| ∼ 0.1 cs, a dust aggregate of
St = 0.1 can be stirred up, according to this simple estimate, to
about one gas pressure scale height. If Eq. (2) gives values larger
than hp, the estimate is no longer accurate, and we limit it to hp
for convenience.

In practice the mean elevation
√
⟨z2⟩ of the dust aggregate

will be smaller than this value, because the VSI motions are not
stationary (see Fig. 3). But this estimate does explain why the
VSI can stir even large dust aggregates (St ≃ 1) very far away
from the midplane.

The conveyor-belt estimate can be compared to the more
traditional settling-mixing equilibrium (see Appendix H).
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Fig. 1. Vertical gas velocity vz in the disk model at time t = 300 Porb(r0), where Porb(r0) is the orbital period at r = r0. The coordinates are the
natural spherical coordinates of the numerical hydrodynamic model: On the horizontal axis the natural logarithm of the spherical radius r in units
of r0. On the vertical axis the polar angle π/2 − θ. Blue is upward and red is downward. The gray dotted lines show the gas pressure scale height.
The blue dots are the initial locations of the particles, where only every 25th of the 2000 particles is shown. The purple box represents the zoom-in
view shown in Fig. 4.
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Fig. 2. Same as Fig. 1, but now in natural (linear cylindrical) coordinates.

2.2. Particle motion model

A more accurate estimation of how dust aggregates are stirred
up from the midplane by the VSI is to compute their detailed
motion within a hydrodynamic model of the VSI. We employ
the PLUTO code (Mignone et al. 2007) for this. The setup of the
disk follows the fiducial model of Appendix A.

We assume the disk to be perfectly locally isothermal and
inviscid, which we expect to maximize the VSI activity. Given
that the VSI establishes itself primarily in the radial and verti-
cal coordinates, we model it in 2D using spherical coordinates
r and θ. The radial coordinate r has 882 grid points logarithmi-
cally spaced between 0.2 r0 and 5 r0, where r0 = 100 au is the
reference radius. The vertical coordinate θ (where θ = π/2 is
the equatorial plane) has 160 grid points linearly spaced between
π/2 − 0.3 and π/2 + 0.3, which corresponds to 20 cells per scale
height at r = r0. This is enough to resolve the large-scale struc-
ture of the VSI (Manger et al. 2020). At r = r0 the range in θ
corresponds to ±4 hp, dropping to ±2.7 hp at r = 5 r0. The tem-
perature is fixed in time, and depends on radius r as T ∝ rq with
q = −1/2. It is chosen such that at r = r0 the gas pressure scale
height is hp(r0) = 0.0732 r0.

We compute the gas dynamics without accounting for dust
dynamics. Once the VSI is fully developed, after about 300 orbits

at r = r0, we extract 200 time snapshots, 0.1 orbits apart in time.
The vertical gas motions in the first of these snapshots is shown
in Fig. 1 for the entire radial and vertical range of the model. The
same is again plotted in Fig. 2 in natural (linear cylindrical) coor-
dinates, which gives a better view of the proportions. In Fig. 3
the vertical gas velocity at the location r = r0 and z = 0 is shown
as a function of time, to show how the VSI motions oscillate with
a period of a few local orbits.

For these 20 orbits we now follow, as a post-processing step,
the motion of N = 2000 large dust particles that have been ran-
domly placed between 0.75 r0 and 1.6 r0 radially, and between
−0.001 r0 and +0.001 r0 vertically. The particle velocities are
initialized as being equal to the local Kepler velocity. The par-
ticles all have the same St0, meaning that if they were placed
at r = r0 and z = 0, they would have Stokes number St = St0.
At each time step, for each particle, we recompute St based on
the local conditions, consistent with keeping the grain size con-
stant. The equations of motion of the particles include the force
of gravity as well as the friction with the gas. We implement
the numerical integration of these equations in a Python pro-
gram. The particles do not have dynamical feedback onto the
gas, allowing the gas hydrodynamics to be precomputed, and
the dust particle dynamics to be computed in post-processing
mode.
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Fig. 3. For the fiducial model shown in Figs. 1 and 2, the vertical gas
velocity vz at r = r0 and z = 0 in units of the local isothermal sound
speed as a function of time in units of orbits after the 300th orbit.

Given that the particles, in spite their comparatively large
size (of the order of ∼millimeter), are much smaller than the
mean free path of the gas molecules, the friction force is the
simple Epstein drag law. At each time step the local gas temper-
ature, density and velocity are linearly interpolated in time and
space from the precalculated 200 snapshots from the hydrody-
namic simulation, using the RegularGridInterpolator function of
the SciPy library.

In Fig. 4, the results of the model are shown for St0 = 0.01,
St0 = 0.1, St0 = 1, and St0 = 10, after 2.5 orbits at radius r0. This
short time is enough to achieve approximately the typical heights
above and below the midplane that the particles acquire, and this
does not change much in time after that. The conveyor-belt esti-
mate of the height zmax above the midplane that the particles are
stirred (Eq. (2)) appears to be a reasonably good estimate, as can
be seen by comparing the vertical locations of the particles with
the light-blue dashed lines in the figure.

It is evident that the St0 = 0.01 particles are stirred up to
one gas pressure scale height. This is entirely due to the VSI,
and not due to any α-diffusion, which is not included in the
model. For St0 = 0.1, which is typically the highest Stokes num-
ber expected in dust coagulation models in the outer disk regions
(Drazkowska et al. 2021), the dust particles are still stirred up to
a substantial fraction of the gas pressure scale height. Even for
St0 = 1 the particles get up to a height z/R ∼ 0.005, which is
about 7% of the gas pressure scale height, which is marginally
consistent with the upper limit obtained for Oph 163131. If we
go to St0 = 10, the particles remain close to the midplane, pro-
ducing a thin layer well within the vertical geometric thinness
of the observed dust layer of Oph 163131. However, as is shown
in Sect. 3, it is unlikely that the particles in this dust layer have
St0 ≳ 1.

To see this more quantitatively, we compute the root-mean-
square of the z/r ratio of the particles

√
⟨(z/r)2⟩ as a function

of time since insertion. This is a measure of the vertical extent
of the dust layer. The results are shown in Fig. 5-left. As can
be seen, for St0 ≥ 0.1 the particles quickly reach a steady-state
vertical extent, which is smaller for larger values of St0.

For St0 = 1 the radial drift of the particles becomes so fast
that after 17 orbits the first particles leave the grid of the model
at the inner edge. The calculation is then halted.

In general it should be noted that the rapid radial drift of large
dust particles is a long-standing problem in the interpretation of

millimeter wave observations of protoplanetary disks (Birnstiel
et al. 2009). One explanation could be that the gas disks are
so massive, that even millimeter particles in the outer regions
of protoplanetary disks do not drift at excessive speeds (Powell
et al. 2017). Another explanation is that radial drift of these par-
ticles is inhibited by dust trapping in one or more local pressure
maxima (Pinilla et al. 2012). This would imply that the dust we
observe with ALMA in the outer regions of protoplanetary disks
(r ≳ 20 au) is either trapped in vortices or in rings. Both fea-
tures are indeed observed with ALMA in numerous disks (e.g.,
van der Marel et al. 2013; Dong et al. 2018; ALMA-Partnership
2015; Huang et al. 2018) and thus lend support to this picture.
This means that the very flat dust midplane layers, if they consist
of a series of concentric rings, could very well be made up of
large dust particles, without experiencing the strong radial drift
that the particles in our model undergo.

In principle this means that our models should be repeated
for the case of disks with radial pressure bumps. However, since
the origin of these pressure bumps is not yet clear, this would
introduce a series of new and unconstrained model parameters.
Also, a variety of additional phenomena could occur in these
traps (e.g., Carrera et al. 2021; Lehmann & Lin 2022). So for
this paper we limit ourselves to disks without pressure traps.

2.3. Dynamics of dust modeled as a fluid

The dust motion can also be modeled directly within the
hydrodynamics model. For this we employ the Fargo3D code1

(Benitez-Llambay & Masset 2016), which has dust dynamics
built in (Krapp & Benitez-Llambay 2020). Like before, we
assume a locally isothermal equation of state, maximizing the
VSI activity. The dust is treated as a pressureless fluid, which
feels friction with the gas. In the standard setup of Fargo3D, the
gas feels the opposite force from the dust. However, to make the
comparison with the results of Sect. 2.2, we switch this feed-
back off. It is known that for high metallicity Z the VSI can be
hampered simply by the mass of the dust (Schäfer et al. 2020;
Lehmann & Lin 2022), which would be one possible explanation
for the razor-thin dust disks seen in ALMA. But in this section
we assume that this effect is not taking place. The background
viscosity is set to α = 10−6.

The results for the case of St0 = 0.1 are shown in Fig. 6.
The dust has been allowed to settle from the very beginning of
the simulation over the entire modeling time. Throughout this
time frame, the pattern of the dust remains corrugated. It is very
comparable to the results of Sect. 2.2. The main difference is that
in the dust-fluid approach the vertical width of the corrugated
dust “layer” is thicker than in the particle approach of Sect. 2.2.
This is due to numerical diffussivity.

Next, we put the result of this model into the RADMC-3D2

radiative transfer code and compute the images at an inclina-
tion of 84◦, at a wavelength of λ = 1300µm. The big grains
were assumed to have a radius of 100µm, and we used the cor-
responding opacity for them (see Appendix B). The results are
shown in Fig. 7. The corrugated geometry of the dust “layer”
is clearly seen. To stress the effect this has on identifying any
potential radial gaps in the dust layer, we artificially added a gap
between 87 au and 98 au and a slight reduction of the density
between 3.5 au and 60 au according to the model of Villenave
et al. (2022) for Oph 163131. This was done a-posteriori: the

1 http://fargo.in2p3.fr
2 https://www.ita.uni-heidelberg.de/~dullemond/
software/radmc-3d/

A105, page 4 of 17

http://fargo.in2p3.fr
https://www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d/
https://www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d/


C. P. Dullemond et al.: Razor-thin dust layers: Limits on the vertical shear instability

0.16

0.08

0.00

0.08

0.16

z/
r 0

St0 = 0.01 St0 = 0.1

0.2 0.1 0.0 0.1 0.2
(R r0)/r0

0.16

0.08

0.00

0.08

0.16

z/
r 0

St0 = 1

0.2 0.1 0.0 0.1 0.2
(R r0)/r0

St0 = 10

0.4

0.2

0.0

0.2

0.4

v z
/c

s

Fig. 4. Snapshots of the location of the particles (blue dots) 2.5 orbits after they were inserted at the midplane into the fully developed VSI
hydrodynamic model, for four values of St0. The coordinates are the cylindrical radius R in units of, and relative to, r0, and the cylindrical vertical
height z above the midplane in units of r0. The background image shows the vertical gas velocity vz, where blue is upward and red is downward,
in the same color scale as in Fig. 1. The gray dotted lines show the gas pressure scale height for comparison. The lightblue dashed lines are the
conveyor-belt estimate of the maximum vertical height of the dust particles, Eq. (2) with an upper cap at z = hp (which is why the dashed and
dotted lines overlap for St0 = 0.01).
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Fig. 5. Mean values of the particles as a function of time since their insertion into the hydrodynamics model. Left: the root-mean-square of the z/r
ratio of the particles. Right: the mean of the radius to initial radius ratio (r(t)/r(t = 0)), as a measure of how strongly the particles have radially
drifted inward since the time of insertion. For the St0 = 1 case the computation was halted after 17 orbits, when the first particles left the inner orbit
of the model.

big-grain dust density from the hydrodynamic model of Fargo3D
was multiplied by a radial function that reduces the density by a
factor of 0.1 between 87 and 98 au and by 0.5 inward of 60 au.
After that, it was inserted into the RADMC-3D code. As seen
in Fig. 7, these features are not recognizable due to the strong
vertical waves. These images are not convolved with the ALMA
beam, as they merely serve as an illustration. For the case of Oph
163131, Villenave et al. (2022) show that the spatial resolution of
ALMA easily suffices to rule out that the dust layer is as strongly
corrugated as in Fig. 7.

To highlight the difference between the VSI model and an
equivalent model with a flat midplane layer, we show in Fig. 8 the
comparison between these cases, for several inclinations. Again,
no beam convolution is applied. Although the disk around Oph
163131 is used as a basis for these models, they are not meant to
directly fit Oph 163131, but instead to illustrate the typical pro-
toplanetary disk case (hence the different inclinations shown).
It is clearly seen that at high inclinations, the VSI models look
very different from the flat models, at scales easily resolvable
with ALMA for objects at typical distances of about 100 pc.
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The white dashed lines mark one gas pressure scale height above/below the midplane.
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Also shown is the case where the big dust grains are vertically
smeared out in a Gaussian layer with a vertical thickness half
that of the gas (hbig = 0.5 hp). This mimicks the case when the
vertical dust transport by the VSI would be treated as a vertical
turbulent mixing instead of an actual advective transport. This
case looks also substantially different from the VSI case. But it
will depend on the distance of the object and the ALMA base-
lines whether they can be distinguished. The differences become
less clear at lower inclinations, because the models only differ in
vertical direction and are the same in radial direction.

A caveat of these synthetic images of the VSI-stirred dust
disk is that we have inserted only a single grain size. If we
assume that the large grains follow a size distribution of a cer-
tain width, then the strong wiggles seen in the image get smeared
out. The degree of smearing-out depends on the width of the size
distribution. But it would not affect the conclusions of this paper.

This simulation confirms the results of Sect. 2.2 that even
particles with a rather high Stokes number of St0 = 0.1 are
stirred up to a substantial fraction of the gas pressure scale
height, easily measureable with ALMA, and clearly in contrast
with for instance the ALMA observations of Oph 163131.

As in the models of Sect. 2.2, the corrugated pattern of the
dust layer is not static. It follows the time-dependent variations
of the VSI velocity profile, where upward gas motions turn into
downward motions and vice versa over time scales of a few
local orbits. The model also confirms that the dust is not “ver-
tically mixed” as in the simple vertical mixing-settling model
of Dubrulle et al. (1995), Dullemond & Dominik (2004b) and
Fromang & Nelson (2009). Instead, the corrugated structure of
the dust is maintained, and the vertical extent is better described
by the “conveyor-belt model” of Sect. 2.1.

2.4. Conclusion of this section

In this section we have shown that with a VSI operating in the
disk, even particles with a Stokes number close to unity get
stirred up to high elevations above the midplane, of the order
of the gas pressure scale height. This is in conflict with ALMA
observations of several protoplanetary disks, most strikingly the
disk around Oph 163131 (Villenave et al. 2022).

However, for St0 ≫ 1 the midplane dust layer indeed
becomes very geometrically thin, even in a disk in which the
VSI is operating. So we need to rule out that these particles could
have St0 ≫ 1, which is the topic of Sect. 3.

Once we ruled it out, we had to investigate how the VSI could
be suppressed in the outer regions of protoplanetary disks. This
is explored in Sect. 4.

3. The case against the midplane dust layer
consisting of St≫ 1 particles

As Sect. 2 showed, the geometric thinness of the midplane
dust aggretate layers in protoplanetary disks can most easily be
explained by particles that have St ≳ 1, since they remain in
a thin layer in spite of a possible VSI operating in the back-
ground. However, the dust rings seen in ALMA observations at
λ = 1.3 mm tend to have optical depths larger than about 0.3
at that wavelength (Dullemond et al. 2018). For Oph 163131 in
particular, Villenave et al. (2022) find with their radiative trans-
fer modeling that the midplane dust layer is partially optically
thick.

We demonstrate in this section that having both St ≳ 1 and
τ1.3 mm ≳ 0.3 requires a vertically integrated dust-to-gas ratio
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Fig. 9. Dust opacity at λ = 1.3 mm as a function of grain size in units
of cm2 per gram of dust. Solid line: total opacity κtot

1.3 mm; dashed line:
effective scattering opacity κscat,eff

1.3 mm; dotted line: Eq. (3) for Qλ = 1.6.

of at least Z ≳ 0.08, but likely Z ≳ 0.16. This value increases
linearly with increasing St and τ1.3 mm.

To arrive at this, we start with the dust opacity model
described in Appendix B. In Fig. 9 the λ = 1.3 mm opacity as
a function of grain size for this dust model is shown. Clearly the
opacity κ1.3 mm is a strong function of the grain size a. It has a
maximum value of 44.6 cm2 g−1 at a grain size of a = 0.28 mm.
For a → 0 the asymptotic value is κ1.3mm → 1.65 cm2 g−1. For
a→ ∞we can express κλ in terms of the geometric opacity κgeom

defined as the geometric cross section πa2 divided by the grain
mass:

κλ = Qλκgeom =
3
4

Qλ
ρsa
, (3)

where ρs is the mean material density of the dust aggregate,
and Qλ is the ratio of the opacity to the geometric opacity
(van de Hulst 1957, 1981). For a ≳ 1 mm, Eq. (3) provides a good
fit to the real opacity for a constant Qλ = 1.6. We note, however,
that this equation can be used for all values of a, in which case
Qλ will depend on a and drop well below unity for a ≪ λ/2π.

If we define the surface density of the big dust grains as Σbig,
then the optical depth of the big dust grain layer becomes

τλ,big = Σbigκλ =
3
4
ΣbigQλ
ρsa

, (4)

where a is the radius of the big dust grains.
Next, let us compute, for the big dust grains, the Stokes num-

ber St. For the outer regions of the protoplanetary disk we can
assume that we are firmly in the Epstein friction regime, so that
we can write (Birnstiel et al. 2010):

Stbig =
πρsa
2Σg
, (5)

where Σg is the surface density of the gas. We can combine
Eqs. (4), (5) and eliminate ρsa, to obtain

Zbig ≡
Σbig

Σg
=

8
3π

Stbigτλ,big

Qλ
. (6)
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In the dust opacity model of Appendix B, for λ = 1.3 mm, the
maximum value of Qλ is 3.0, which is only reached in a narrow
range of grain radii (see Fig. 9). For most values of a, Qλ ≲ 1.6.
This means that if both Stbig ≳ 1 and τλ,big ≳ 0.3, then Eq. (6)
shows that Zbig ≳ 0.08 · · · 0.16, i.e., the “metallicity” must be
extremely high.

The question is then: is this a realistic scenario? Can the
geometrically thin, but optically marginally thick (τ ≳ 0.3) dust
rings seen in many protoplanetary disks (and most strikingly
seen in Oph 163131) be rings of dust particles with Stbig ≳ 1 and
Zbig ≳ 0.16, or even Stbig ≫ 1 and Zbig ≫ 1, with a dynamics
similar to the rings of Saturn? This scenario is completely differ-
ent from the standard picture of dust dynamics in protoplanetary
disks, which assume Stbig ≪ 1 and Zbig ≪ 1.

Although we cannot rule it out, we consider this scenario
unlikely. The conditions derived in this section are the minimal
conditions required. To be more comfortably within the limits,
one would need Zbig/Stbig ≫ 0.16, leading, for Stbig ≳ 1, to very
large values of Zbig.

Using this constraint, we are then forced to consider mech-
anisms quenching the VSI entirely in order to understand the
geometrical thinness of the dust rings. One way would be to load
so much mass worth of dust in this midplane layer, that the gas
is no longer able to lift it up from the midplane. As was shown
by Lin (2019), Schäfer et al. (2020) and Lehmann & Lin (2022),
the VSI is suppressed if the vertically integrated dust-to-gas ratio
(“metallicity”) of the big grains exceeds about Z ≳ 0.02 · · · 0.05.
Another way is to increase the cooling time scale, which is a
natural consequence of grain growth (Fukuhara et al. 2021).

4. Inhibiting the VSI through depletion of small
dust grains by grain growth

4.1. Importance of the cooling efficiency for the VSI

The VSI operates in disks which have, to good approximation, a
locally isothermal equation of state. That is, at any given position
(rcyl, z, ϕ) in the disk the temperature of the gas Tg(rcyl, z, ϕ) is
fixed and does not vary in time. The justification for this is that in
the outer regions of protoplanetary disks, the thermal household
is determined by a balance between irradiation from the cen-
tral star and thermal radiative cooling by the dust. The radiative
cooling time scale trad

cool for any perturbation of this equilibrium is
short compared to the orbital time scale.

However, the cooling time is not completely negligibly small
compared to the orbital time scale. As we shall show, only
a moderate amount of dust coagulation is enough to increase
the cooling time (or more accurately, the relaxation time; see
Appendix D) beyond the limit where the VSI is stopped.

It was shown by Lin & Youdin (2015) that if the thermal
relaxation is not fast enough, the vertical entropy gradient acts
as a strongly stabilizing force against the VSI. They derive the
following upper limit on the radiative relaxation time trelax:

trelax <
|q|
γ − 1

1
ΩK

hp

r
, (7)

where q is the powerlaw index of the midplane temperature pro-
file of the disk Tmid ∝ rq, and γ is the usual adiabatic index of
the gas, which for the outer disk regions is γ = 5/3 because the
rotational and vibrational modes of H2 are not excited at those
temperatures. For our fiducial disk model (Appendix A) we have
q = −1/2, and at r = r0 = 100 au we have hp/r = 0.0732. So

we obtain trelax < 0.055/ΩK as the upper limit on the thermal
relaxation time for VSI to be operational.

Where in the protoplanetary disk this condition is met, and
where not, was, among other things, explored by Pfeil & Klahr
(2019). They found that the VSI is typically operational for radii
rcyl ≳ 10 au, which are the regions of protoplanetary disks that
have been resolved with ALMA, and where these geometrically
thin dust layers are detected.

(Fukuhara et al. 2021) explore how dust evolution can change
this, and they found that the coagulation of dust grains can
increase the relaxation time scale and act against the VSI. A sim-
ilar conclusion for the Zombie Vortex Instability was found by
Barranco et al. (2018).

4.2. Gas cooling via small dust grain emission

In this section we revisit the question of the cooling efficiency,
and estimate trelax in a simplified, yet robust way, including
realistic dust opacities and the effect of dust depletion due to
coagulation. We mimick the effect of coagulation by a simple
conversion factor X ∈ [0, 1] that says that a fraction X of the
small grains has been converted into big grains that are not par-
ticipating in the radiative cooling of the gas (these are probably
the grains we observe with ALMA), while only a fraction (1−X)
of the small grains remain to radiatively cool the gas. In essence,
we make the simplifying assumption that the dust consists of
only two components: small submicron dust grains that are well-
mixed with the gas, and are solely responsible for the radiative
cooling, and big millimeter-size grains that tend to settle to the
midplane unless they are stirred up by the gas.

In the outer regions of a protoplanetary disk, the gas near
the disk midplane is cold: Tmid ≲ 70 K. This means that the gas
has very few emission lines, and no continuum, by which it can
radiatively cool: typically only the rotational transitions of CO
and its isotopologs, and maybe a few more complex molecules.
Effectively this means that the gas is unable to radiatively cool
by itself. It can only cool by transmitting its thermal energy to
the available dust grains in the gas, which then can radiate away
this energy.

In the midplane regions of the disk, the thermal coupling of
gas and dust through collisions of gas molecules with the dust
particles, is relatively efficient, though not perfect. The gas-dust
thermal coupling time scale is estimated in Appendix F, but first
we assume that the gas and dust thermally equilibrate fast enough
that we can set Tg = Tsmall, i.e., the gas temperature equals the
small-grain dust temperature.

We ignore the effect of the large-dust-aggregates midplane
layer, and focus only on the gas and the small dust grains floating
in the gas. We assume that these small dust grains are well-mixed
with the gas in vertical direction, so that the dust-to-gas ratio for
these small dust grains is vertically constant.

Under these conditions, the fastest cooling happens in the
optically thin regime, because the dust opacity is independent of
the dust density (the amount of dust per unit volume of the disk).

The rate of thermal emission of the small dust grains per unit
volume of the disk is:

qcool,small = 4πρd

∫ ∞

0
κabs
ν,smallBν(Tsmall)dν, (8)

where ρd is the volume mass density of the small dust grains,
κabs
ν,small is their absorption opacity as a function of frequency ν,

and Bν(Tsmall) is the Planck function at the dust temperature
Tsmall. It is convenient to express this in terms of the Planck mean
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opacity κP(Tsmall) defined as

κP(Tsmall) =

∫ ∞
0 κ

abs
ν,smallBν(Tsmall)dν∫ ∞

0 Bν(Tsmall)dν

=
π

σSBT 4
small

∫ ∞

0
κabs
ν,smallBν(Tsmall)dν,

(9)

with σSB the Stefan-Boltzmann constant. We can then express
qcool,small as

qcool,small = 4ρsmallκP(Tsmall)σSB T 4
small . (10)

In Appendix C we give a convenient approximate expression for
κP(Tsmall).

The thermal energy in the dust per unit volume of the
disk is:

eth,small = cV,small ρsmall Tsmall, (11)

with cV,small the specific thermal heat capacity of the dust,
cV,small ≲ 107 erg g−1 K−1 (Draine & Li 2001). The thermal
energy in the gas per unit volume of the disk is:

eth,g = cV,g ρg Tg, (12)

with the specific thermal heat capacity of the gas given by

cV,g =
kB

(γ − 1)µmu
, (13)

where kB is the Boltzmann constant, µ ≃ 2.3 is the mean molec-
ular weight of the gas in units of the atomic unit mass mu, and γ
is the ratio of specific heats. The total thermal energy density is
the sum of the two

eth = eth,g + eth,small . (14)

For a small-grain dust-to-gas ratio smaller than or equal to 0.01
we can safely approximate this as eth = eth,g. The optically thin
radiative cooling time is then

trad
cool,thin =

eth,g

qcool,small
, (15)

assuming Tsmall = Tg = Tmid. In the optically thin limit this then
becomes

trad
cool,thin =

cV,g

4σSBκP(T )
ρg

ρsmall

1
T 3 . (16)

However, what we need for the analysis of the VSI is the
relaxation time, which is shown in Appendix D, to be

trad
relax,thin =

1
4 + b

trad
cool,thin, (17)

where

b =
d ln κP(T )

d ln T
≃ 1.7, (18)

where the 1.7 is valid for the opacity model of Eq. (C.3) of
Appendix C.

So far we have not included optical depth effects, and have
therefore considered the most VSI-friendly scenario. Optical
depth effects can only increase the relaxation time, not shorten
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Fig. 10. Relaxation time (Eq. (19)) of the disk in units of the Kepler time
Ω−1

K for three small-grain dust-to-gas ratios: Normal (Zsmall = 10−2),
depleted by a factor of 10−1 (Zsmall = 10−3) and depleted by a fac-
tor of 10−2 (Zsmall = 10−4). Dotted lines: optically thin approximation
(Eq. (17)). Solid lines: including optical depth effects. In dashed black:
upper limit to the relaxation time (Eq. (7)) for which VSI is opera-
tional is shown. The disk and stellar parameters are those of the star
Oph 163131 (the fiducial model of Appendix A).

it. We are primarily interested in the regions that are spatially
resolvable with ALMA, meaning we are interested in r ≳ 10 au.
The optical depth of the disk to its own radiation is moderate to
low in these outer regions. Optical depth effects are therefore not
expected to play a large role in these regions. But it is not a major
effort to include them. In Appendix E we discuss the relaxation
time scale in the optically thick regime, and write it as trad

cool,thick
given by Eq. (E.1).

Finally, we have to account for the time it takes to trans-
fer heat between the gas and the dust, tdg. This will play a big
role for disks around bright stars such as Herbig Ae/Be stars,
where it will be the limiting factor of the radiative the cooling.
In Appendix F we give an expression for tdg.

We estimate the combined cooling time scale to be the sum
of all three time scales3:

trelax = trad
relax,thin + trad

relax,thick + tdg, (19)

which gives a smooth transition between regions, and ensures
that the limiting factor determines the actual relaxation time.

In Fig. 10, this relaxation time is shown for the fiducial
disk model of Appendix A, for small-grain dust-to-gas ratios of
Zsmall = 10−2 (no depletion, i.e., X = 0), for Zsmall = 10−3 (a fac-
tor of 10 depletion of small dust grains, i.e., X = 0.9), and for
Zsmall = 10−4 (a factor of 100 depletion of small dust grains, i.e.,
X = 0.99). The dotted lines represent trad

relax,thin + tdg, i.e., without
optical depth effects.

In Fig. 11, the same is shown for a 10 times lower disk mass,
both in dust and in gas. Because of the lower optical depth, the
solid curves are now closer to the optically thin estimates.

One can see that for both the fiducial model and for the
10× lower mass disk, ΩK trelax is well below unity, justifying the
locally isothermal appoximation for most applications. However,
for the VSI to be operational, the relaxation time has to be below
the limit given in Eq. (7), shown with the thick dashed line in
Figs. 10 and 11.

3 A python tool to compute the relaxation time scale is available at
https://github.com/dullemond/ppdiskcoolcalc
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Fig. 11. As Fig. 10, but now for 10× lower mass as the fiducial model,
both in dust and gas.
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Fig. 12. As Fig. 10, but now for a disk around a Herbig Ae star with
M = 2.4 M⊙ and L = 50 L⊙.

For the fiducial model, with small-grain dust-to-gas ratio
of 10−2, the thermal relaxation time scale is everywhere below
this limit, meaning that the disk is prone to the VSI every-
where. However, if dust coagulation converts, say, 90% of the
small grains into large dust aggregates (a depletion of 10−1, or
X = 0.9), leading to a small-grain dust-to-gas ratio of Zsmall =
10−2(1−X) = 10−3, then theΩK trelax is above the threshold value
for r ≳ 50 au. If coagulation converts 99% of the small grains (a
depletion of 10−2, or X = 0.99), then the curve is everywhere
well above the threshold, and the entire disk is VSI-stable.

If we redo our analysis for a brighter star, say a Herbig Ae
star, then the disk will be warmer due to the stronger irradia-
tion. This will lower the cooling times and thus make the disk
more susceptible to the VSI. We show the resulting cooling time
scales for a Herbig Ae star of M = 2.4 M⊙ and L = 50 L⊙, with
otherwise the same disk parameters, in Fig. 12. Indeed, the cool-
ing time for a normal dust-to-gas ratio is substantially shorter. A
depletion of small grains of a factor of 10 is not sufficient, but a
factor of 100 will, again, make the disk stable against the VSI in
most of the disk.

A depletion of small dust grain by a factor of 10 or even
100 due to coagulation is not extreme. The fact that most proto-
planetary disks look “fat” (geometrically vertically extended) in
optical and near-infrared observations is not evidence of a lack
of coagulation. In Appendix G we quantify this by computing

the optical appearance of our fiducial disk at a wavelength of
λ = 0.8µm for various degrees of small-grain depletion. These
images show that the typical appearance of the disk, with its two
bright layers separated by a dark lane, is retained even at large
degrees of depletion. The required amount of dust coagulation to
inhibit the VSI is therefore within the observational constraints.

5. Discussion

5.1. Earlier work on the stirring of large grains by the VSI

The extreme effectiveness of the VSI to stir up even large dust
aggregates to high elevations above the midplane is not a new
result, and has been noted by several previous authors. Flock
et al. (2017, 2020) presented detailed 3D radiation hydrodynam-
ical models of protoplanetary disks with dust particle dynamics.
They show that 0.1 mm and 1 mm dust grains achieve greater
elevations above the midplane than expected from isotropic tur-
bulence. Similar conclusions were also made by Lehmann & Lin
(2022), who show the dependency of this effect on Stokes num-
ber St0 and vertically integrated dust-to-gas ratio Zbig, although
they focus on smaller values of the Stokes number than we
explore in this paper. However, we put this into context with
recent observational evidence of the extreme vertical geometri-
cal thinness of the big-grain dust layers in (most?) protoplanetary
disks.

5.2. Effect of dust traps

The fact that our models are for disks without dust traps lim-
its the applicability of the results. If the large dust grains in the
outer regions of protoplanetary disks remain at those large dis-
tances because they are trapped, then it is rather natural to get
Zbig ≫ 0.01 in these traps because all the dust elsewhere will
radially drift into these traps, enhancing Z there. As argued by
Lin (2019) and Lehmann & Lin (2022), this then could naturally
push Zbig ≳ 0.02 · · · 0.05 which, according to their simulations,
strongly suppresses the VSI.

The fact that the upper limit of Zbig,VS I for the VSI lies around
the same value as the lower limit of Zbig,S I for streaming instabil-
ity (Carrera et al. 2017-04) leads to an interesting speculation. It
was shown by Stammler et al. (2019), using an argument related
to that of Sect. 3, that Zbig,S I coincides with an optical depth at
millimeter wavelengths of order unity, as appears to be observed
in ALMA observations. They argue that dust traps attract more
and more dust, until Zbig reaches Zbig,S I , at which point Zbig sta-
bilizes: Any further dust added to the trap will be converted into
planetesimals by the streaming instability, keeping Zbig = Zbig,S I .
If Zbig,S I > Zbig,VS I , then this self-regulating system naturally
keeps the disk VSI-stable. This could be another natural expla-
nation for the lack of VSI, but this requires more detailed study
of the combined VSI+SI, as in Schäfer et al. (2020). So at this
point, this is merely a speculative idea.

5.3. Effect of small but non-zero background turbulence

It was noted by Nelson et al. (2013) that the VSI is also damped
if the viscosity parameter of the disk α ≳ 4 × 10−4, i.e., typically
when the disk is turbulent due to the magnetorotational instabil-
ity (MRI). While MRI turbulence will also stir up large grains
away from the midplane, it is far less effective than the VSI. And
so, somewhat paradoxically, the existence of weak, but no-zero,
turbulence might, by inhibiting the VSI, allow large grains to
settle to a thinner layer than is the case for a non-turbulent disk.

A105, page 10 of 17



C. P. Dullemond et al.: Razor-thin dust layers: Limits on the vertical shear instability

5.4. 3D effects

Since our models are 2D in (r, z), we cannot treat any potential
non-axisymmetric modes, such as the formation of long-lived
vortices (Lehmann & Lin 2022). The main effect of the VSI
acts in the (r, z) directions, however, and is not dependent on
the ϕ-direction. Any 3D effects on the large-scale may affect
the observational appearance of the disk, but will likely not
affect our conclusion that the flat disks seen with ALMA are
incompatible with the VSI.

5.5. Small-scale modes

The VSI may operate on smaller scales than we can model with
our global models, for example, via the parametric instability
mechanism described by Cui & Latter (2022). This can have
consequences for the dust dynamics and dust growth. If the
VSI operates on the large scales as explored in this paper, the
observational consequences will be dominated by these large-
scale motions, even if smaller-scale motions are superposed on
them. However, as shown in (Cui & Latter 2022), the small-scale
motions excited by the larger ones act as an energy sink to the
large-scale motions. The long-term saturation state of the large-
scale VSI modes may therefore depend on the very small-scale
motions that require super-high spatial resolution to resolve. (Cui
& Latter 2022) cite a resolution of 300 grid cells per scale height,
which is out of reach for global simulations. These considera-
tions show that it remains to be explored to which degree the
VSI or any other instabilities are inhibited if a protoplanetary
disk is observed to have a very flat midplane dust layer, and what
this means for the implied conditions in the disk.

5.6. Uncertainties in the thermal relaxation time

Our estimates of the thermal relaxation time suffer from some
uncertainties. First, they are very sensitive to the disk tempera-
ture profile T (r). This is because radiative cooling goes as ∝T 4.
But in practice this sensitivity is not so severe, because any
uncertainty in the irradiation qheat ∝ L∗ of the disk only enters
the temperature as T ∝ q1/4

heat ∝ L1/4
∗ . It does show, however, that

for disks around Herbig Ae stars the relaxation times are smaller
than for T Tauri stars.

A much more critical uncertainty is the dust opacity at long
wavelengths. The popular Bell & Lin (1994) opacity represents
a relatively low estimate, lower than what we use in this paper.
This opacity model was used by Lin & Youdin (2015) and
Pfeil & Klahr (2019) for their relaxation time estimates, which
leads to less favorable conditions for the VSI than our estimates.
Malygin et al. (2017) use the opacity model of Semenov et al.
(2003), which is, for Tmid < 100 K, very similar to that of Bell &
Lin (1994). The factor of ∼1.5 difference can mostly by explained
by the use of a different dust-to-gas ratio, so that the dust opaci-
ties are more or less the same. In contrast, Fukuhara et al. (2021)
use a simple analytic opacity model (see Ivezic et al. 1997),
which is higher than what we use in this paper, and leads to more
favorable conditions for the VSI than our estimates (although this
effect is limited by the dust-gas coupling time scale that becomes
the limiting factor). The comparison of these opacities is shown
in Fig. C.1. The opacity at the far-infrared and submillimeter of
the dust in protoplanetary disks is notoriously uncertain, and the
real opacity is likely somewhere between these two extremes.

Another major uncertainty is the dust-to-gas ratio. In our
analysis we kept this constant at a value of Z = 0.01, although
we allowed coagulation to convert the small grain population

(responsible for the radiative cooling) into a big grain population
(responsible for the dust observed with ALMA). However, these
big grains can radially drift, leading to a reduction of the dust-
to-gas ratio in the outer regions. However, since the big grains
do not contribute to the cooling, this does not affect our analy-
sis. What matters is only the small grain abundance Zsmall. Dust
coagulation can reduce Zsmall. What subsequently happens to Zbig
is irrelevant for the estimation of trelax.

5.7. Non-flat rings

It should be noted that there are observed protoplanetary disks
for which one or more of the rings do not appear to be geometri-
cally very thin. For instance, Doi & Kataoka (2021) conclude,
after detailed radiative transfer modeling, that the inner dust
ring of HD 163296 is, in fact, likely to be vertically extended
to about a gas pressure scale height. One interpretation of this
could be that in this ring the cooling rate is, in fact, not suffi-
ciently reduced by grain growth, so that the VSI is operational.
From Fig. 12 it can be seen that for a small-grain depletion some-
where around 3× 10−2, the inner disk regions remain unstable to
the VSI while the outer disk regions stabilize against the VSI,
which might explain why the inner ring of HD 163296 is ver-
tically more extended than the outer one. A similar point was
made by Fukuhara et al. (2021). The disk of HD 163296 is fairly
dim at those wavelengths (Garufi et al. 2022), which does seem
to point to substantial small-grain depletion.

6. Conclusions

In this paper we show that the geometrically very thin mid-
plane layers of dust observed in many protoplanetary disks,
most strikingly shown in a recent paper by Villenave et al.
(2022), are evidence that the VSI is not operational in these
outer disk regions. Dust particles with dimensionless stopping
times St ≲ 1 would be stirred up by the VSI to a substantial
fraction of the gas pressure scale height, even for large particles
with St ≃ 0.1 − 1. Only for even larger particles, with St ≳ 1,
does the dust layer remain largely unaffected by the VSI. But
we show that to have such a layer being marginally optically
thick (τ ≳ 0.3) at ALMA wavelengths, as seems to be the case
for many such rings, this requires a vertically integrated dust-
to-gas ratio Zbig ≳ 0.08 · · · 0.16, which we consider an unlikely
scenario.

Damping or inhibiting the VSI in the outer regions of a pro-
toplanetary disk can be due to an enhanced vertically integrated
dust-to-gas ratio of Zbig ≳ 0.02 · · · 0.04, as shown by Lin (2019)
and Lehmann & Lin (2022), or due to a modest background
turbulence (Nelson et al. 2013).

We show that another possible explanation is that dust coag-
ulation has converted more than 90% of the small grains in
the disk into big grains (likely the ones that make up the mid-
plane dust layer). In that case, the gas cannot cool fast enough
through the thermal emission of the small grains, and the VSI
is inhibited, as shown by Lin & Youdin (2015). Small-grain dust
depletion of more than 90% by coagulation (X = 0.9) is rea-
sonable during the life time of these disks (Tanaka et al. 2005;
Dullemond & Dominik 2005; Birnstiel et al. 2010), and remains
consistent with the SEDs of these disks (Dullemond & Dominik
2004a).

Our conjecture is thus that protoplanetary disks that show
geometrically thin disks in ALMA observations are stable
against the VSI.
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Appendix A: Fiducial disk model

To be able to make estimates of the numbers for this paper, we
choose as standard star the star Oph 163131, for which we take the
parameters from the paper Villenave et al. (2022): M∗ = 1.2 M⊙,
R∗ = 1.7 R⊙, T∗ = 4500 K, which leads to L∗ ≃ L⊙. As an esti-
mate of the disk midplane temperature we use a simple flaring
disk estimate:

Tmid(r) =
 1

2φL∗
4πr2σSB

1/4

, (A.1)

where φ is the flaring irradiation angle (radiative incidence
angle), which we take, somewhat arbitrarily, as φ = 0.05. Usu-
ally this value gives temperatures that are reasonably consistent
with observational measurements. From this midplane tempera-
ture the gas pressure scale height hP(r) can be computed through
hp = cs/ΩK , with cs =

√
kBTmid/µmu the isothermal sound speed

and ΩK =
√

GM∗/r3 the Kepler frequency. The disk is flaring
with d ln(hp/r)d ln(r) = 0.25.

We choose as reference radius r0 = 100 au. With the above
parameters, the temperature at this reference radius is 16 K,
and the gas pressure scale height is hp(r0)/r0 = 0.0732. The
radial distribution of gas and dust mass are assumed to follow
a powerlaw

Σg(r) = Σg,100

( r
100 au

)−1
, (A.2)

Σsmall(r) = Σsmall,100

( r
100 au

)−1
, (A.3)

Σbig(r) = Σbig,100

( r
100 au

)−1
, (A.4)

where g stands for gas, small for small grains and big for big
grains. The normalization factors Σx,100 can be expressed in
terms of the disk mass

Mx = 2π
∫ rout

rin

Σx(r)rdr,

= 7 × 10−5 Σx,100

( rout

au
−

rin

au

)
M⊙ .

(A.5)

For the direct comparison to Oph 163131, we take rin = 10 au,
rout = 120 au, for which we obtain

Mx = 7.78 × 10−3 Σx,100 M⊙ . (A.6)

For the fiducial disk model we choose Mg = 0.01 M⊙, i.e.,
Σg,100 = 1.29 g/cm2.

For the simulations of the VSI we take rout = 500 au (keeping
Σg,100 fixed), to ensure that around r = r0 there are no boundary
effects.

The initial vertical structure of the gas at the start of the
hydrodynamic simulation is set up as follows. We use the equi-
librium state derived in Nelson et al. (2013) with p = −2.25 and
q = −0.5 such that Σ ∝ 1/R. The velocity field is seeded with
noise with an amplitude of 1% local cs to kickstart the VSI.

Appendix B: Dust opacity model

Both the small dust grains that are suspended in the gas and the
large dust grains that make up the midplane layer seen by ALMA
are assumed to consist of the same refractory material: 0.87 mass
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Fig. B.1. Dust grain opacity model used for this study. Shown here is
the opacity as a function of wavelength for three grain sizes in units
of cm2 per gram of dust. Solid line: total effective opacity κtot

ν = κ
abs
ν +

κscat,eff
ν ; dashed line: effective scattering opacity κscat,eff

ν = (1 − gν)κscat
ν .

The dotted line represents the simple κλ = 3π/2ρsλ opacity model of
Ivezic et al. (1997) in the vanishingly small grain size limit.

fraction of pyroxene with 70% magnesium, and 0.13 mass frac-
tion of amorphous carbon. This is the DIANA standard mixture
(Woitke et al. 2016). In addition we add a mantel of water ice
such that the water ice contributes 20% of the total mass (Pät-
zold et al. 2016). This reduces the mass fractions of pyroxene
and carbon to 0.696 and 0.104, respectively. We assume a poros-
ity of p =0.25. The material density of a dust grain made up of
this material is ρs = 1.48 g/cm3.

To compute the opacities we use the publicly available code
optool4 (Dominik et al. 2021). We use the “Distribution of Hol-
low Spheres (DHS)” method (Min et al. 2005) with fmax = 0.8.
The opacities for different grain sizes are shown in Fig. B.1.
Whereever we plot or use the scattering opacity, we use the
effective scattering opacity given by

κscat,eff
ν = (1 − gν) κscat

ν , (B.1)

where gν is the scattering anisotropy coefficient. The factor
(1 − gν) is a simple way to account for anisotropy (Min et al.
2009). This effective scattering opacity gives a better estimate of
the importance of scattering compared to absorption, because it
weighs strongly forward scattering (gν → 1) less than isotropic
scattering (gν → 0).

Also plotted in Fig. B.1, for comparison, is a simple analytic
dust opacity model proposed by Ivezic et al. (1997), in the limit
of vanishingly small grain size. This model, and the version for
finite grain sizes (κλ = (πa2/m) min(1, 2πa/λ), where m is the
grain mass and a the grain radius), is often used in the literature
because of its simplicity. It is also used in Fukuhara et al. (2021)
to estimate the thermal relaxation time scale in protoplanetary
disks.

Appendix C: Rosseland and Planck mean opacity
of the small dust grains

For the opacity model of Appendix B we compute here the
Rosseland and Planck mean opacities. The Planck mean opac-
ity was already defined in the main text (Eq. (9)). The Rosseland

4 https://github.com/cdominik/optool
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Fig. C.1. Small dust grain mean opacities as a function of temperature for three grain sizes. Left: Rosseland mean. Right: Planck mean. In the left
panel the often-used opacity of Bell & Lin (1994) is plotted for comparison, which is used by Lin & Youdin (2015), Pfeil & Klahr (2019) and many
other works. Malygin et al. (2017) use the dust opacity model of Semenov et al. (2003), which is, however, very similar to that of Bell & Lin (1994)
in this temperature range. Also for comparison, the top two curves in each panel show the mean opacity for the simple κλ = 3π/2ρsλ small-grain
opacity model used by Fukuhara et al. (2021), for our value of the material density ρs = 1.48 g cm−3 (Simple) and their value of ρs = 1.00 g cm−3

(SimpleF).

mean opacity is defined as

κR(Tsmall) =

∫ ∞
0 (∂Bν(Tsmall)/∂T )dν∫ ∞

0 (∂Bν(Tsmall)/∂T )/κtot
ν,smalldν

, (C.1)

where

κtot
ν,small = κ

abs
ν,small + κ

scat,eff
ν,small , (C.2)

where the effective scattering opacity κscat,eff
ν,small is defined as in

Eq. (B.1).
The resulting mean opacities are shown in Fig. C.1. As one

can see, for small enough grains and small enough temperatures,
the Planck mean opacity of the dust can be well approximated
for T ≲ 100 K and a ≲ 10 µm by the following fitting formula:

κfit
P (T ) =

( T
2.0 K

)1.7 cm2

g
, (C.3)

where g is to be interpreted as gram of small-grain dust. The
symbol K is the unit of Kelvin. Likewise the Rosseland mean
opacity can be approximated as

κfit
R (T ) =

( T
2.6 K

)1.7 cm2

g
, (C.4)

For comparison, the dusty part of the Bell & Lin (1994) opacity
is κR,BellLin(T ) = 2 × 10−2 (T/K)2 cm2/g ≃ (T/7.07 K)2 cm2/g,
where we assume a dust-to-gas ratio of 0.01. The equivalent
Planck-mean opacity for Bell & Lin would be κP,BellLin(T ) =
(T/4.58 K)2 cm2/g. This means that our opacity model is more
favorable to the onset of the VSI than the Bell & Lin opacity,
implying that in our analysis we need to reduce the small-grain
dust more strongly than the analysis done by Lin & Youdin
(2015) and Pfeil & Klahr (2019) to suppress the VSI.

The primary reason why our opacity model exceeds that of
Bell & Lin is the amorphous carbon mixed into the composition,
which is responsible for the “antenna effect”, which strongly
enhances the long-wavelength opacity. If the carbon would be,
instead, in the form of organics, this effect would not be seen.

The 25% porosity also increases the opacity a bit. If we use pure
pyroxene without porosity, our opacity would exceed that of Bell
& Lin by only 18%, which is well within the uncertainty of the
dust-to-gas ratio we used to convert the Bell & Lin total opacity
to a dust-only opacity. We refer to Woitke et al. (2016) for details
on the role of carbon.

Appendix D: Thermal relaxation time scale: The
optically thin case

The thermal relaxation time scale is not identical to the cool-
ing time scale. The radiative cooling time scale trad

cool is given
by Eq. (15), assuming Tsmall = Tg = Tmid, eth = eth,g, ρd ≪ ρg,
and qcool = qcool,small. In the optically thin limit this becomes
Eq. (16). This is the time scale of cooling if the heating were
to be suddenly switched off.

However, the condition of Lin & Youdin (2015) was derived
for Newtonian cooling (linear in temperature), not for radiative
cooling (proportional to T 4). This means that for the VSI we
require the thermal relaxation time, which is the time scale on
which a small deviation δT from thermal equilibrium would
exponentially decay (Malygin et al. 2017; Pfeil & Klahr 2019).
Local thermodynamic equilibrium implies qcool = qheat, where
qheat is, in our case, the irradiation of the disk by the star. The
time-dependent equation for the thermal energy in an optically
thin disk is then

deth,g(T )
dt

= qheat − qcool(T ) . (D.1)

Defining the equilibrium temperature as T0, we can add a small
perturbation δT and Taylor-expand Eq. (D.1) to first order:

eth,g

T0

dδT
dt
≃ −

(
∂qcool

∂T

)
δT , (D.2)

where we used eth,g ∝ T (Eq. (12)) and the condition for thermal
equilibrium (qcool(T0) = qheat). The cooling rate, in the optically
thin limit, is proportional to qcool = qcool,small ∝ κP(T ) T 4. If the
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opacity follows a powerlaw κP ∝ T b, which in our case (see
appendix C) would be b = 1.7, then we can write(
∂qcool,small

∂T

)
T=T0

= (4 + b)
qcool,small(T0)

T0
. (D.3)

Eq. (D.2) can then be written as

dδT
dt
≃ −

δT
trad
relax,thin

, (D.4)

with the thermal relaxation time given by

trad
relax,thin =

1
4 + b

trad
cool,thin, (D.5)

where trad
cool,thin is given by Eq. (16).

Appendix E: Thermal relaxation time scale: The
optically thick case

For the optically thick case we follow Lin & Youdin (2015), who
derived the relaxation time scale of a spatial radial temperature
fluctuation δT (r, t) ∝ eikx x with x = r − r0 for the radius r0 where
the stability analysis is done, and kx is the spatial frequency of
the wavelike fluctuation. The disk is assumed to be completely
optically thick in vertical direction, and the radial radiative diffu-
sion between the cooler and warmer part of the wave is assumed
to dominate over the vertical radiative cooling. Lin & Youdin
(2015) show that in that case, the relaxation time is given by

trad
relax,thick =

1
ηk2

x
, (E.1)

with

η =
16σS BT 3

3κR(T )ρsmallρgcV,g
. (E.2)

The strongest optical depth effect (i.e., the largest value of
trad
relax,thick) is found for the smallest realistic value of kx, corre-

sponding to the largest realistic length scale of the VSI mode.
We set kx = 2π/hp as an estimate of this largest length scale. The
optically thick and thin limits can be combined by adding the
time scales together:

trad
relax = trad

relax,thin + trad
relax,thick . (E.3)

Appendix F: Thermal coupling of dust and gas

The rate of heat transfer between dust and gas is computed by
assuming perfect thermal accomodation of a gas molecule after
it hits a dust particle. This leads to a rate of heat transfer per unit
surface area of a dust particle of

q̃dg = ρg C̄H (Tg − Tsmall), (F.1)

where Tg is the gas temperature, Tsmall the temperature of the
dust particle, ρg the gas density, and C̄H the heat exchange
coefficient given by

C̄H =
1
γ − 1

√
kBTg

2πµmu

kB

µmu
. (F.2)
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Fig. F.1. Ratio of the dust-gas thermal coupling time scale (Eq. F.4) to
the optically thin radiative relaxation time scale (Eq. D.5) at the mid-
plane of the fiducial disk as a function of radial coordinate in the disk,
for a small-grain size of 0.1µm. The three curves are the three models
presented in this paper.

The rate of heat transfer per unit volume of the disk is then

qdg(Tsmall,Tg) = ρd ρg
sd

md
C̄H (Tg − Tsmall), (F.3)

with sd = 4πa2 is the surface area of a spherical dust grain of
radius a, which we set to a = 0.1µm, and md =

4π
3 ρsa3 is its

mass, where we set ρs = 1.48 g/cm3 (see Appendix B). To com-
pute the time scale for heat exchange between the gas and the
dust, relative to the heat content of the gas, we compute

tdg =
eth,g(Tg)

qdg(0,Tg)
, (F.4)

where eth,g(Tg) is the thermal energy in the gas, given by
Eq. (12). In this equation we set Tsmall → 0 because we are com-
puting a time scale (which, for Tsmall = Tg would be infinite), not
the actual heat exchange.

We can plot the ratio of tdg/trad
relax,thin, where trad

relax,thin is given
by Eq. (D.5). The result is shown in Fig. F.1 for the fiducial
model, the 10× less massive disk, and the Herbig Ae star model.

For the fiducial model with Mdisk = 10−2M⊙, the value of
tdg/trad

relax,thin is consistently below unity, meaning that the dust-
gas thermal coupling is not the limiting factor of the cooling
rate. However, for the less massive disk, the dust-gas coupling
time scale starts to dominate, meaning that for such low mass
disks the dust-gas coupling makes it easier to stabilize the disk
against the VSI. For the Herbig Ae star model, the dust-gas cou-
pling time scale dominates over the thermal relaxation time in
the optically thin limit, but (as seen in Fig. 12), when optical
depth effects start to play a role, the thermal relaxation time
again dominates over the dust-gas thermal coupling time.

The inclusion of the dust-gas thermal coupling time is partic-
ularly important for the Herbig Ae star case. Without including
it, the curves in Fig. 12 would be much lower (more favorable for
the VSI).

Appendix G: Optical appearance of a disk with
strong depletion of small grains

A concern with the depletion of small grains to inhibit the VSI
is that too much depletion would affect the appearance of the
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Fig. G.1. Appearance of the fiducial disk model at λ = 0.8µm for four values of the coagulation parameter X = 0, 0.9, 0.99 and 0.999 (left to
right), corresponding to a small-grain-depletion factor of 1, 0.1, 0.01 and 0.001. Top panels: inclination of i = 60. Bottom panels: inclination of
i = 85. All images have the same logarithmic color scale spanning 3 factors of ten.

disk as seen in scattered light in the optical and near-infrared.
At these wavelengths the stellar light scatters off the small dust
grains in the surface layers of the disk, and the disk appears on
the sky with a distinct “hamburger” shape, with light seen on
two sides of a dark lane. If, however, the small grains are too
strongly depleted, then this shape becomes flatter or disappears
altogether. The question is: does a depletion factor of 0.1 or 0.01,
required to inhibit the VSI, leave enough small grains in the disk
to appear on the sky with this “hamburger” shape?

To find out, we run four radiative transfer models with
RADMC-3D, all based on the fiducial disk model of appendix A,
but with X = 0, 0.9, 0.99 and 0.999 (i.e., small-grain depletion
factors of 1, 0.1, 0.01 and 0.001), and render images of them
at λ = 0.8µm and inclinations i = 60 and i = 85. The star is
removed from the images. Both the small grains and the big
grains are included in the model. For the big grain opacity at
this wavelength, the extreme forward-peaked part of the scatter-
ing phase function is “chopped” within 10 degrees. This is a way
to keep the Monte Carlo radiative transfer well-behaved with-
out the need for an extremely high number of photon packages
(see the manuals of RADMC-3D and of optool). The results are
shown in Fig. G.1.

It is clear that for all depletion factors the disk still appears
in its characteristic shape with top and bottom bright layers sep-
arated by a dark lane. For stronger depletion of small grains
the dark lane becomes narrower, as expected. For X = 0.99 and
X = 0.999 the disk becomes vertically sufficiently optically thin
that some of the starlight, after being scattered off the surface
dust, reaches the midplane layer of large dust grains, which is
visible in the images, albeit at very low brightness.

Of course, this also depends on the disk mass. And not all
disks look alike. It therefore requires a case-by-case analysis.
But overall we can conclude that the explanation of inhibiting
the VSI by grain growth is not inconsistent with the typical
appearance of protoplanetary disks at visual and near-infrared
wavelengths.

Appendix H: Comparison to a simple
settling-mixing equilibrium

It is instructive to compare the results of the particle motions
to a simple vertical settling-mixing calculation such as those of
Dubrulle et al. (1995), Dullemond & Dominik (2004b) and Fro-
mang & Nelson (2009). The measured radial and vertical α of
our model, using the method of Stoll et al. (2017), are shown
in Fig. H.1. It is evident that the turbulent motions of the VSI
are highly anisotropic. The vertical turbulence parameter αmix
is about 1700 times larger than the radial turbulence parame-
ter αacc. For the vertical mixing-settling calculation we use αmix.
According to Birnstiel et al. (2010), their Eq. (51), the geometric
thickness Hbig of the big grain dust layer can then be estimated
as

Hbig ≃ hp min
(
1,

√
αmix

min(St, 1/2)(1 + St2)

)
, (H.1)

where the outer min() operator is because Hbig is defined
such that it cannot exceed hp. For αmix ≃ 0.17 and St ≪ 1,
Eq. (H.1) reduces to Hbig ≃ hp min(1, αmix/St), and the dust
will be almost as vertically extended as the gas (Hbig ≃ hp),
which is indeed what we find. For St ≫ 1, Eq. (H.1) reduces
to Hbig ≃ hp

√
2αmix/St. This matches the conveyor-belt estimate

from Section 2.1 if we set |vz,VSI|/cs =
√

2αmix. However, from
Fig. 3 we know that the typical values of |vz,VSI|/cs are of the
order of 0.1, while the measured value of

√
2αmix from the sim-

ulation is about 0.58. It shows the limitations of these simple
estimates.
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Fig. H.1. Measured turbulent radial-azimuthal viscosity and vertical mixing α coefficient, using the method of Stoll et al. (2017). Left: The viscous
α. Right: The vertical mixing α as a function of z in units of the pressure scale height at four radii (in units of r0).
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