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ARTICLE OPEN

Comparing models of learning and relearning in large-scale
cognitive training data sets
Aakriti Kumar1, Aaron S. Benjamin2, Andrew Heathcote3 and Mark Steyvers 1✉

Practice in real-world settings exhibits many idiosyncracies of scheduling and duration that can only be roughly approximated by
laboratory research. Here we investigate 39,157 individuals’ performance on two cognitive games on the Lumosity platform over a
span of 5 years. The large-scale nature of the data allows us to observe highly varied lengths of uncontrolled interruptions to
practice and offers a unique view of learning in naturalistic settings. We enlist a suite of models that grow in the complexity of the
mechanisms they postulate and conclude that long-term naturalistic learning is best described with a combination of long-term
skill and task-set preparedness. We focus additionally on the nature and speed of relearning after breaks in practice and conclude
that those components must operate interactively to produce the rapid relearning that is evident even at exceptionally long delays
(over 2 years). Naturalistic learning over long time spans provides a strong test for the robustness of theoretical accounts of
learning, and should be more broadly used in the learning sciences.

npj Science of Learning            (2022) 7:24 ; https://doi.org/10.1038/s41539-022-00142-x

INTRODUCTION
Acquiring substantial skills or knowledge takes consistent and
ongoing practice. Real-world skill-building and learning is an
activity that is distributed over time in complicated ways. Some of
the earliest systematic studies of learning revealed that spacing
practice events in time enhances long-term performance1,2; those
results have been confirmed hundreds of times, including in large-
scale studies3, meta-analysis4, and in translational environments
like a school classroom5.
Yet laboratory studies of learning have important limita-

tions6,7. The typical cognitive experiment is careful to control for
the many factors that complicate learning, including variability
and gaps in regularly scheduled spacing. This characteristic
makes such experiments incomplete models for understanding
the full complexity of learning schedules. A student is rarely on a
systematic schedule when studying for an exam. They determine
when they study and for how long they study. Their learning
schedule must accord with other obligations, and will be
influenced by circadian variables that affect sleep and attention.
All of this is to say a comprehensive theory of spacing and
learning should be accommodating of schedules that are less
regimented than the ones implemented in the controlled
conditions of the laboratory8. Here we examine learning and
retention in an online-training platform, Lumosity, to capture
real-world constraints on learning schedules and also to examine
learning over extended time spans that are rarely considered by
lab experiments.
The goal of this article is twofold. First, we use the performance

data within two games in Lumosity to characterize aspects of
learning that appear in naturalistic learning data but are mostly
absent in laboratory studies of learning. Second, we introduce a
hierarchy of simple models of learning and demonstrate through
applications to this data set that a successful model of learning
must include mechanisms for skill learning, task-set preparedness,
and forgetting to apply to the time scales relevant for the variety
of conditions in which learning takes place. Most importantly, we

identify a critical component that such models must possess in
order to fully account for relearning over multiple sessions: an
interaction between long-term skill learning and short-term task-
set preparedness.
Ceding control over learning to the learner introduces novel

aspects to performance data and poses challenges to typical
theoretical approaches. Some of these characteristics can be
seen in the learning functions shown in the left panels of Fig. 1,
which are drawn from the data set we introduce here. Unlike
traditional learning curves, it is clear that there are massive gains
within short periods of time (a single session of practice) and also
extreme gaps in practice that offset those gains. Rendering these
plots in terms of gameplays rather than chronological time, as is
done in the right panels, reveals more traditionally appreciated
aspects of learning curves—that performance rises with practice,
and that it does so in a negatively accelerating manner—but
obscures the true patterns of learning and forgetting apparent in
the left panels.
Because practice is under the control of the learner and

dependent on their idiosyncratic schedules, group effects reveal
expected but important regularities in distributions of practice.
Figure 2 shows the distribution of elapsed time between
consecutive sessions in the data set used here. The peaks at
multiples of 24 h show that individuals practice at regular
intervals spaced days apart. A weekly cycle is also evident in
the distinct peaks at 7 day intervals. Finally, the relatively low
probability for the troughs between the peaks indicates that users
practice at roughly consistent times of day. Users space practice
sessions with great variability, often on the order of days, but
sometimes over weeks and even months. A theory of learning
that cannot accommodate learning that takes place over these
wide time scales that characterize real-world learning must be
considered incomplete.
Learners schedule practice systematically, with an eye towards

making efficient use of their limited time. Research on
metacognitive control over learning reveals that self-control is
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highly beneficial for rote verbal learning6,9,10, spatial learning11,
motor learning12, and category and causal learning13. Natur-
alistic data sets contain valuable information about self-
scheduling behaviour and could be compared to experimental
studies with control groups to assess the efficacy of naturalistic
metacognitive behaviour.
Long-term learning functions reveal two timescales of learn-

ing14. Within each session, gains in performance are rapid: note,
for example, that the three subjects in Fig. 1 exhibit gains within
the first session of practice that account for 50-70% of asymptotic
performance. Across sessions, gains are slow but steady; these can
be most easily seen in the right panels. Finally, between sessions,
losses are evident but rapidly recovered. These three features are
the key desiderata of models of naturalistic long-term learning.

An important point of contact between naturalistic learning data
and the traditional cognitive literature on learning is the investiga-
tion of schedules that vary the spacing across multiple learning
events. Schedules that expand the intervals (or the difficulty)
between successive learning events15,16 are better for long-term
retention than schedules in which events are equally spaced or in
which spacing is reduced over time. This result is consistent with
the idea that the rate of forgetting following each successive
learning event is progressively reduced. This idea has major
implications for theories of learning, because it is incompatible
with the idea that forgetting and learning independently contribute
to performance. We will carefully consider here which components
of learning persevere through extended droughts of practice and
which are lost.
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Fig. 1 Example learning curves for three individuals in the Lumosity data set (rows). In the left panels, time is expressed as the date and
time stamp at which each gameplay occurred. Circle markers indicate individual gameplays. Right panels show time expressed as session and
gameplay within session. Performance is assessed by the number of correct decisions within one gameplay (see Methods for details).
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Fig. 2 Distribution of elapsed time between sessions in the Lumosity training data. The outer panel shows the elapsed time in days on a
common logarithm scale. Peaks correspond to multiples of day intervals. The inner panel shows the distribution of elapsed times in our sub-
sample of two cognitive games.
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When systematic rest periods between sessions of practice are
included in an investigation of learning, two important phenom-
ena arise. First, performance drops over the interval of rest.
Though this result is intuitive, it reminds us of the important fact
that forgetting occurs over the course of learning, and that
eventual performance is the outcome of a balance between
ongoing learning and ongoing forgetting. Second, and less
intuitively, performance rises very rapidly during relearning after
short gaps—so rapidly, in fact, that many models of learning are
easily rejected once this point is seriously considered. It is this
aspect of real-world learning that is probative with respect to the
underlying dynamics relating learning and forgetting, and that is a
central target of our analysis here.
Historically, the drop in performance following rest, followed by

rapid gains in performance during relearning, has been known as
the warm-up decrement, a term that reflects the view that the dip
in performance owes principally to factors that moderate the
expression of skill, rather than factors that reflect skill directly17,18.
Such factors might include attentional state, preparedness, and
general familiarization with the task and the interface19. We will
refer to these factors collectively as “task-set preparedness”. This
distinction between true long-term skill at a task and the
preparatory state of the subject plays a key role in the theoretical
position that we develop here.
Accommodating models of learning with the warm-up decre-

ment requires a explicit recognition of the fact that all learning
functions reflect a combination of both growth and decay. Practice
enhances skill and improves performance, but forgetting during
periods of rest offsets those gains. This juxtaposition of learning
and forgetting is the central piece of an important model proposed
by20 and its descendants (e.g., ref. 21), in which performance on a

task is determined by the sum of individual learning events, each
of which experiences power-law forgetting with time. That model
accounts well for the general course of learning and for the cost of
intervals in which practice is ceased22. A related theory was
suggested by ref. 23, in which a latent variable (storage strength)
mediates the magnitude of gains from practice and losses from
forgetting depend on retrieval strength, the variable that deter-
mines manifest performance. Like the model of ref. 20, the overall
learning function is a balance of learning and forgetting. These
views are of a piece with theories in motor learning that emphasize
learning over multiple time scales, some of which lead to more
permanent learning than others14.
A model of learning that does not incorporate forgetting

during periods of inactivity makes predictions about long-term
learning that are obviously but meaningfully wrong. An example
is shown in the top panel of Fig. 3, where learning reflects
practice but not rest. Taking this model as a starting point, what is
lacking are mechanisms that reduce performance during rest—
forgetting—and rapidly regain performance during the initial
trials of each practice session.
More realistic performance is evident in a model, shown in the

second row, that allows for two timescales for learning14. It yields
plausible effects of rest—during which skill is maintained but task-
set preparedness is lost—and greater verisimilitude with the
sample learning functions shown in Fig. 1. Yet this model does not
effectively handle the fact that some gaps in practice are longer
than others: once task-set preparedness is lost, no additional
losses in performance are possible.
A third model, shown in the penultimate row, introduces

genuine forgetting across sessions to the two timescales of
learning. In that model, forgetting balances against the two

Fig. 3 Model predictions for a hypothetical experiment with five sessions of practice and ten games in each session. Dashed lines
separate sessions. All sessions are spaced 1 day apart except for the final session, which occurs 300 days after the previous session. Panel
A shows predictions for M1, panel B for M2, panel C for M3, and panel D for M4. The parameters used to generate model predictions are A= 75,
U= 30, λ= . 05, γ= 0.008, β= 0.5, δ= 0.25, and τ= 0.2.
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timescales of learning, but is agnostic with respect to the nature of
the information that is forgotten. Importantly, the loss is a function
of the actual delay from one session of practice to the next.
Longer breaks reduce performance more dramatically, but
relearning proceeds at the same pace regardless of overall skill.
The final model, shown in the bottom panel, includes forgetting,

learning over two time scales and, critically, an interactive
component between those two components of learning. In that
model, task-set preparedness is lost between sessions but is also
more rapidly regained with each additional practice session. The
diagnostic prediction of this model is the increase in the rate of the
learning function across practice sessions. This approach is
represented well by the models of22–24, which feature interactivity
between competing processes. This interactivity has also been
empirically documented within the empirical literature on relearn-
ing and noted as a characteristic aspect of learning schedules that
contain periods of learning and forgetting25,26.
Here we formulate the four models used to generate the

hypothetical data shown in Fig. 3. M1 is a baseline learning model
that is not designed to capture any within-session learning or
forgetting over long delays between sessions. M2 includes two
timescales for learning but no explicit forgetting. M3 adds to M2

forgetting that varies with delay. Finally, M4 adds to M2 a degree of
interactivity between the two learning components; this inter-
activity yields both forgetting and relearning. In the Supplemen-
tary Materials, we review and describe the predictive capacity of
the Predictive Performance Equation (refs. 21,24), a benchmark
model for understanding the effects of spacing and forgetting on
learning. This model was not designed to handle the extreme
timescales evident in the Lumosity data, and so we do not directly
compare it with the more rudimentary models presented here.
The baseline learning model (M1) is based on standard

learning functions designed to account for the overall effect of
practice based on exponential and power law learning func-
tions27–29. We consider a simple three-parameter exponential
learning model that only accounts for the overall effect of
practice, regardless of session:

yj ¼ A� Ue�λj (1)

In this model, performance y is expressed as a function of j, the
overall number of games played. The learning function has three
parameters: learning rate λ, gain parameter U and asymptote A.
We will assume a parameterization in which trials are zero-
indexed: for the first game, j= 0. With this parameterization,
performance starts at baseline A− U and after extended practice,
approaches the asymptote A.
The two-timescale learning model (M2) is a model intended to

implement the approach described by30, in which performance is
based on two learning processes that operate on different time
scales. The “slow” learning process captures the improvement in
overall skill whereas the second “fast” learning process captures
the changes in the attentional state, task knowledge and general
level of preparedness, all of which increase rapidly within a session
and drop rapidly between sessions. The model incorporates
within-session learning as an additive combination of these two
learning processes:

yj ¼ A� Uðe�λj þ τe�βkÞ (2)

In this model, performance y is expressed as a function of the
overall number of games played (j) and the game play number
within the session associated with the jth game, k. The within-
session game play number (k) resets at the start of every new
session and is zero-indexed (i.e, for the first game in every session,
k= 0). Similar to the baseline model M1, this parameterization
leads to baseline performance A− U on the first game play and
after extended practice, performance approaches the asymptote
A. The model has two learning rate parameters: λ, for the slow

learning process, and β for the fast within-session learning. The
parameter τ determines the size of the within-session learning
effect relative to the overall effect of learning across gameplays.
When this parameter is set to 0, this model reduces to M1. Model
M2 allows for rudimentary forgetting via the loss of task-set
preparedness between sessions. However, this aspect of the two-
timescale model is incompatible with a core characteristic of
forgetting—namely, that it grows with time. The two-timescale
learning model with forgetting (M3) adds to the two components
of learning an explicit forgetting component:

yj ¼ A� Uðe�λj þ τe�βk � δe�γtj Þ (3)

As in the previous models, these components are combined
additively. Parameters are the same as in M2, with the addition of
an additional weighting factor (δ) and rate (γ) for the forgetting
component where tj is the elapsed time between the sessions
associated with game plays j and j− 1. While it is possible that
learners may have different forgetting patterns, not all participants
have enough data to predict a stable individual specific gamma.
Hence we assume γ to be shared across participants.
The interactive model (M4) is designed in the spirit of models

proposed by refs. 21–23,31. Performance reflects the contribution of
learning over multiple time scales, but the nature of forgetting
reflects a distinction between the permanence of skill and the
impermanence of task-set preparedness. Like the ability to ride a
bike, acquired skill is maintained permanently, without loss. Task-
set preparedness, in contrast, is labile, and varies with changes in
context. Forgetting and relearning of that information is thus
governed in part by the delay between sessions of practice. M4

allows forgetting to increase with delay between sessions; unlike
M3, that contribution is not additive, but interactive:

yj ¼ A� Uðe�λj þ ðτ þ ð1� τÞLðtjÞÞe�βkÞ (4)

As in the previous models, the term e−λj indexes the slow
learning process and is based exclusively on the total number of
games played (j). Improvements in performance due to slow
learning are not subject to forgetting. The term e−βk captures the
fast learning process that represents changes in task set prepared-
ness. The term (τ+ (1− τ)L(tj)) determines the relationship between
task set preparedness and forgetting. The term L(tj) represents the
context loss that varies as a function of elapsed time tj. Larger
context losses have a bigger impact on task set preparedness. We
define the context loss function L(t) as follows:

LðtÞ ¼ 1� e�γt (5)

This function can capture a wide variety of temporal patterns
describing context loss during the retention interval. Figure 4 shows
the context loss for different values of γ. This functional form of loss

Fig. 4 Loss of context L as a function of time delay tj. Loss of
context as a function of the time delay (tj) between game session j
and j− 1 for different parameter settings of γ. Colours represent
different values of γ. The black curve shows the estimated context
loss function for the Lumosity data.
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allows for a variety of forgetting functions. When γ= 0 there is no
context loss; as γ increases the loss becomes more rapid. For both
games in our analysis, the best-fitting context loss function
corresponds to the black line. For this function, 50% of the context
is lost after a delay of about 450 days and close to 80% is lost after
800 days. Similar toM3, we assume γ to be shared across participants.
In the analysis that follows, we seek empirical aspects of real-

world learning within the Lumosity data set that adjudicate
between these four theoretical approaches, and provide fits of the
competing models to the data in the Lumosity data set we
introduce in the next section.

RESULTS
The Lumosity platform provides a number of games that tap
memory, attention, flexibility, speeded processing, and problem
solving. In the Lumosity program, users are given a recommended
daily training session of five different cognitive training games.
One five-game session takes ~15 min to complete. Outside of the
training sessions, Lumosity users can also opt to select and play
games directly from the library of available games. We describe in
the Methods section the data and data processing steps we took
for the analyses presented here.

The effect of gaps in practice on retention and relearning
Our primary objective is to provide a means of understanding the
course of skill learning over extended time periods when

interruptions to practice are common, idiosyncratic, and only
partially regular. The learning curves shown in Fig. 1 reveal a
distinctive saw-toothed pattern, in which each new session of
practice begins at a level of performance that is lower than the last
level of performance but quickly rises. This effect is so dramatic
that, even at a delay of almost 1 year (bottom row), and a
considerable reduction in performance, performance recovers
after only a few gameplays in the session.
Because this effect on relearning is one of the most distinctive

features of long-timescale learning, and because it holds
considerable promise in adjudicating between the theoretical
positions outlined here, we provide a more in-depth analysis of
this result.
Figure 5, top row, provides a unique perspective on learning

and relearning effects. Each curve represents a learning function
conditionalized on the specific gameplay within each session. So,
for example, the blue curve represents performance on the very
first gameplay of each session, across many sessions. Learning
across sessions is ample and mirrors traditional learning curves.
But, importantly, each consecutive gameplay reveals shallower
growth over sessions, revealing a new angle from which to view
the effects of warm-up decrements and recovery.
A related phenomenon is shown in Fig. 6, top row, which plots

performance on the first and second gameplays as a function of
the retention interval from the last practice session. A novel and
appealing feature of this analysis is the extreme range in intervals,
which range from only a few days to >2 years. Change is measured

Fig. 5 Observed and predicted aggregate learning curves over sessions for the 1st to 3rd gameplays within each session for Ebb and
flow and lost in migration. The performance score (vertical axis) is assessed by the number of correct decisions per game play.
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proportionally with respect to the first gameplay in the previous
session (prior to the delay). For the first game within the session,
delay has a substantial effect on the proportional change in
performance: a delay of 100 days leads to a 20% reduction in
performance and a delay of 400 days leads to a 50% reduction.
The dramatic finding here is that those losses are quickly offset by
a very small amount of practice. This effect can be seen in the
forgetting function for the second gameplay within the session,
which is flat or nearly so. In the Lost in Migration game, in which a
loss of nearly 100% of prior performance is apparent after
800 days, a single gameplay restores performance to the same
level that was achieved in the prior practice session. Relearning
benefits of this magnitude and over these time scales have not
previously been documented, to our knowledge. They provide a
strong test of the computational approaches to learning.

Computational models of practice
We fit the four models M1, M2, M3, and M4 to the data from each
individual user. In these fits, some model parameters are unique to
each individual and some model parameters are shared among all
users (see Methods for details). We evaluate the models in two
different ways. First, we assess the ability of the models to capture

the qualitative trends in Figs. 5 and 6. Second, we use predictive
evaluation methods to assess the ability of the models to predict
unseen (“out-of-sample”) data32. Specifically, we assessed out-of-
sample model fit by the root mean squared error (RMSE; lower
values indicate better predictive performance), for all four models:
80% of the data was used for model estimation and 20% of the
data was held out as a test set to assess the ability of the models
to predict performance on new (out-of-sample) data. In order to
highlight the distinct contributions of the four models, we report
the predictive model fit for all held-out data, and also across
subsets of the held-out data that differ in retention interval,
varying from quite short (< 1 h, corresponding to within-session
gameplay delays) to very long (>100 days). These partitions were
determined ahead of time based on data availability and were
decided upon prior to viewing the outcomes of the analysis.
Table 1 shows the out-of-sample model results (See Supple-

mentary Table 1 for in-sample results). Note first that both the
single-parameter learning model (M1) and the traditional two-
timescale model (M2) are not competitive in accounting for
learning in this data set. Yet M2 provides a substantial, across-
the-board improvement over M1. This outcome reveals the
ubiquity and substantial nature of warm-up decrements in
naturalistic learning.

Fig. 6 Retention of performance as a function of delay between sessions. Results are shown for Lost in Migration and Ebb and Flow.
Retention is assessed by the proportional change in performance relative to baseline. A value of one (dashed line) indicates no performance
loss relative to the last gameplay in the previous session. Results are separated by the first and second gameplay in the session after the
retention interval. The error bars are the 95% confidence intervals of the mean.
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For lost in migration, M4 provides the most accurate predictions
overall. For ebb and flow, models M3 and M4 provide equivalently
accurate predictions. Taken together, M4, which uniquely allows
for a degree of interactivity between the two timescales of
learning, provides the most general account of performance. This
outcome is particularly compelling in light of the fact that the
much less flexible M3 outperforms the interactive model at six of
the eight interval subsets. That is, a model that allows for two
timescales of learning and independent forgetting can accurately
describe data that arise from a limited range of intervals between
practice sessions, but only the interactive model can account for
the patterns of learning, relearning, and forgetting over the wide
range of intervals produced by naturalistic learning in this set of
games. This outcome provides a salutary example of the dangers
of generalizing models developed from laboratory tasks to real-
world data.
The implications of the interactivity built into model M4 can be

clearly viewed in the second row of Figs. 5 and 6. In those plots,
the predictions of M4 for relearning are plotted in the same
manner as the empirical data in the top row. Model M4 accurately
accounts for the steeper growth for earlier than later gameplays
(Fig. 5) and the rapid recovery from a single gameplay, as revealed
by the much shallower forgetting function evident on the second
than the first gameplay (Fig. 6). The relearning predictions of the
other models do not capture this pattern.

DISCUSSION
The behaviour of learners who guide their own practice over
extended periods reveals much about the process of learning. It is
a testament to the deep historical investment made by
researchers in the learning and cognitive sciences that all of the
important aspects of a robust model of naturalistic learning were
anticipated by researchers using smaller datasets in which practice
was much more constrained.
There is ample prior research on schedules of learning, even

over extreme durations (e.g.33–35), but no research (to our
knowledge) that combines these characteristics with the oppor-
tunity for learners to control their own scheduling of practice.
Because those circumstances are common in real-world learning,
we believe that datasets like the one we have made use of here
can be extremely valuable in helping generalize findings from the
lab and the classroom into the wild and wooly conditions of self-
guided study. We make our data publicly available to facilitate
more work in this area. The key concepts at the core of our
findings are as follows.

First, learning proceeds over multiple timescales. It is apparent
that two components of learning underlie performance in the
tasks under investigation here. We have suggested that these two
components are skill—the fundamental knowledge relevant to
completing the task—and task set—the body of knowledge
relevant to translating that skill into performance. Consider the
popular game Tetris, in which a player must rotate objects as they
descend in order to place them strategically within a growing
collection of such objects. As a player practices this game, they will
get better—they will score more points and make their chosen
moves faster and with greater accuracy. Some of what is learned
in the course of practice is procedural skill that is acquired steadily
but slowly through actual hands-on practice. Other aspects of
performance are linked to the task-relevant set of knowledge that
presents a bottleneck for revealing that skill, like knowing the
keypresses that correspond to different manoeuvres, remember-
ing to check the visual signal that previews the upcoming piece,
and having a long-term strategy for maximizing point gains. Task-
set knowledge can be learned and expressed declaratively
(though it may eventually become automated and part of the
skill itself; 20). Most importantly, these elements of performance
can be partially or wholly forgotten between practice sessions, but
can also be quickly reacquired within each session and so may be
aptly described as the “fast” component of learning. In contrast,
skill, as implemented in the models here, is permanent and not
susceptible for forgetting.
The notion of two timescales for learning has important

historical precedents. One perspective on “fast” learning empha-
sizes the role of reminiscence, through which fluctuations in the
conditions of performance lead to an increasing number of skill-
relevant memories becoming available over time36,37. Such
theories provide little illumination on the core issue presented
here, however: the juxtaposition of rapid learning within a session
with slow learning across sessions. Consolidation over periods of
rest has also been postulated to play a role in promoting long-
term performance38, but such theories run aground on the finding
that interpolated tasks that interfere with consolidation actually
increase, rather than decrease, long-term performance39.
An insightful perspective is provided by refs. 40,41, who

distinguished between short-term gains in performance that accrue
within a session and long-term gains that can only arise when gaps
between learning sessions provide spaced opportunities to retain
knowledge. This theory was supported by a later reanalysis of
Snoddy’s data42 and spurred the development of a more complex
theory that maintained the critical distinction between long-term
learning and short-term effects14. That distinction is embodied in

Table 1. Predictive performance of the models assessed by root mean squared error (RMSE) on out-of-sample data. Numbers in parentheses show
number of participants in the evaluation. Best performing models for each game and data subset are highlighted in bold.

Between gameplay delay (t)

All Data t < 1 h t < 10 days t < 100 days t > 100 days

Game 1: lost in migration (19463) (19463) (19463) (18292) (4680)

M 1: baseline learning 3.61 3.68 3.36 3.77 5.90

M 2: two-timescale learning 3.56 3.65 3.31 3.59 5.41

M 3: two-timescale learning and forgetting 3.56 3.66 3.30 3.54 4.72

M 4: interactive 3.55 3.64 3.30 3.55 5.17

Game 2: ebb and flow (19694) (19694) (19694) (17845) (3336)

M 1: baseline learning 4.56 4.58 4.33 4.99 9.26

M 2: two-timescale learning 4.54 4.57 4.33 4.90 8.94

M 3: two-timescale learning and forgetting 4.53 4.59 4.31 4.79 7.61

M 4: interactive 4.53 4.58 4.32 4.81 8.17

Numbers in parentheses show number of participants in the evaluation. Best performing models for each game and data subset are highlighted in bold.
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nearly all of the models we have considered here and is critical to
predicting performance over either limited retention intervals (in
the form of Model M3) or widely varying retention intervals (in the
form of Model M4). Given this conceptualization of task set, it may
be profitable to look to research on task-switching effects as a
starting point for understanding the nature of “fast” learning43.
Another important concept that constrained model develop-

ment is that forgetting interleaves learning events. Historical
perspectives on learning pay great heed to the practice or study
events that enhance performance but mostly ignore the occasions
for forgetting that arise between those event. Opportunities for
forgetting are limited in laboratory tasks in which learning events
are scheduled back-to-back with little rest, but are ample in real-
world learning, where practice must be co-scheduled with other
tasks and is subject to constraints and interruptions.
A two-timescale model of learning possesses a rudimentary

form of forgetting, insofar as within-session learning is presumed
to be temporary and is thus “forgotten” between practice study
sessions. We see in the data presented here that this view is an
incomplete means of accounting for the fullness of long-term
learning with extensive and varied breaks in practice. Perfor-
mance drops more substantially after a long than a short break.
This finding is intuitive but it is important to note the extent to
which forgetting grows after even exceptionally long breaks.
Performance drops as much between 700 and 800 days of time
off as it does between 0 and 100 days off (see Fig. 6). This
outcome is inconsistent with the concept of task-set learning
being “fast” and temporary; the outcomes of our model-fitting
endeavour support the view that an additional explicit means of
accounting for variable forgetting (as embodied in Model M3)
provides a substantial improvement over the traditional two-
timescale model (M2).
Finally, our results show the components of learning are

interactive. The relearning data considered here indicate that
within-session learning is more effective when skill is greater. This
is revealed by the exceptionally rapid recovery of prior
performance levels, and can only be accounted for with a model
that explicitly allows for interactivity between these components.
This interactivity is evident in models of learning suggested by

refs. 21–24. We have provided an alternative here that is designed
to be robust to the exceptionally long durations present in the
Lumosity dataset, and provide a more in-depth application of one
prominent model (the Predictive Performance Equation21,24) to
these data in the Supplemental Materials.
There is much to be gained from the application of theories

and computational models of learning to real-world data, even
as we must deal with the complexities that they bring with
them. As mainstream learning science has moved from the
conditions of extreme control provided by animal-learning
paradigms to the use of humans in laboratories and classrooms,
we must now consider what can be gained from allowing the

learner to re-enter their most natural milieu—learning on their
own time, at their own schedule.

METHODS
Our analysis is based on an analysis of a data set from the
Lumosity cognitive training platform. Because this project
involves a retrospective analysis of existing data, the research
is exempt from IRB review as determined by the University of
California Irvine IRB.
The platform provides a number of different games for users

that are intended to tap memory, attention, flexibility, speeded
processing, and problem solving. Millions of people play these
games, providing a very rich platform on which to study learning.
Users access the platform through a browser or app but the data
set for this study is based on users who primarily used the web-
based version of the games. The data set comprised the gameplay
event history for two cognitive games, a flanker task (“Lost in
Migration”) and a task switching game (“Ebb and Flow”). This data
set includes 194,695 users, 389,389 individual learning curves, and
41,006,715 single gameplay events. Our analysis is based on a sub-
sample of 19,463 users in the Flanker task and 19,694 users in the
Task Switching game. This data set is available online (see data
availability statement). Figure 7 shows screenshots of two games
we use for our analysis.

Flanker Task
This selective attention game is inspired by the Eriksen flanker
task44. The goal is to respond to the direction of the target (a bird)
and ignore the direction of distractors that flank the target. During
each trial, the target and distractors are arranged in different
spatial layouts. Players use the arrow keys to indicate which
direction the target is pointing; the layout and orientation of the
distractors varies from trial to trial.

Task Switching
This is a game designed to test the ability to switch between
different tasks45. Users have to shift focus between two different
rules depending on the colour of the leaves. When the leaves are
green, the user has to determine the direction in which the leaves
are pointing and respond accordingly. When the leaves are
orange, the user has to respond based on the direction that they
are moving.

Performance assessments
Each gameplay event has a fixed duration: 45 s for the flanker task
and 60 s for task switching. At the end of each gameplay event,
users are provided feedback on mean response time per trial,
mean accuracy, and a score that is based on the total number of
correct trials completed within the fixed time period as well as
bonus points based on a variety of factors (e.g., streaks of correct
responses). The total score is the focal point on the feedback

Fig. 7 Screenshots of the two cognitive games in this research. Lost in Migration (flanker task) and Ebb and Flow (task switching).
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screen, so it can be assumed that the conditions foster a
combination of speed and accuracy.

Participants
We worked with a subset of the data that includes 194,695 users.
Basic demographic information is available from the aggregate
statistics of users of Lumosity. The majority of users are female
(59%), with 36% males and 5% of users who did not provide
gender information. We coded the age of users in 3 bins leading
to the following breakdown of the user sample: 21-40 (18.3%), 41-
60 (41.8%), and 61-80 (40.0%). The youngest age group (1–20) is
omitted from all analyses because of the relatively small sample
size and the heterogeneous nature of this age group. Most users
live in the United States (63%), with substantial populations from
Canada (9.6%), Australia (9.1%) and Great Britain (2.2%). Conse-
quently, it is a sample heavily biased towards Western nations.

Data processing
The raw data is described at the individual trial level (i.e.,
individual decisions within a particular gameplay event) and
include response time, accuracy, as well as the type of condition
associated with the trial. In the raw data, any trial with a
response time >5 s was coded as 5 s. For the purpose of this
research, we analyzed the data summarized at the gameplay
event level. Specifically, we focused on the number of correct
trials completed per game play, a value that is closely related to
the inverse of the mean response time for correct decisions. It is
also closely related to the point score received by the user, but it
is not identical because we omitted bonus points that are part of
the game scoring.
The data set contains the full gameplay history across the two

games spanning a period from December 18, 2012 to October 31,
2017. Users spent a mean of 2.5 years on the platform. The flanker
task and task switching game were played a median of 86 and
81 times, respectively. Some of the gameplays had timestamps
but lacked any recorded gameplay data. We removed these
missing records from the data sets.

Clustering gameplays into sessions. The user activities on the
Lumosity platform can be grouped into sessions on the basis of
the elapsed time between gameplays. When users replay, they
play either immediately (roughly within 15 s after the last game
ends) or wait for several hours but more typically at least 1 day.
We define a session here as all consecutive gameplays for which
there is no between-gameplay break of >1 h. Therefore, any
consecutive gameplays with a delay of 1 h or longer are defined
to be part of different sessions. Based on this definition, the
41,006,715 gameplays were grouped into 34,722,958 total
sessions. The majority of sessions (81%) include only a single
gameplay. When individuals played multiple times, shorter
sessions were more likely than longer sessions (9.7% sessions
with 2 gameplays, 3.9% sessions with 3 gameplays, 1.8%
sessions with 4 gameplays).

Creating a subsample of users. Instances of multiple gameplays
within a session are crucial to investigating relearning. Hence, we
restricted our sample to participants with a ratio of total
gameplays to total sessions >1.5. This constrained the size of
our data to 53,745 and 48,330 participants in the two games. From
this subset, we randomly sampled 25,000 participants for each
game. We further restricted the data to only include participants
that had >50 game sessions. The final subset consisted of learning
curves of 19,463 users that played Lost in Migration and 19,694
users who played Ebb and Flow.
In our final subset, 8,330,182 gameplays (88% of total game-

plays) were played after delays of <7 days. Long delays between
sessions also occur: 32,436 were spaced 1month apart and

667 sessions were spaced an entire year apart. Figure 2b shows
the spread of elapsed time between consecutive sessions in the
subsample of our two games. Supplementary Table 3 shows
additional descriptive statistics of the subsample.
For both games, to split the data into train and test sets, we

follow a conditional sampling approach. We create two subsets
of the data, one with elapsed times between game sessions
>100 days and the other with elapsed times less than a 100 days.
From each subset, we hold out as test set 20% of the gameplays.
The rest of the data was used as training data. This allows us to
ensure the presence of trials with large delays in both the train
and test data.

Estimating proportional performance changes. Because our ana-
lysis highlights performance losses or gains over sessions and over
individuals that vary in overall performance, it is convenient to
scale any performance changes relative to baseline performance
by assessing the proportional change in performance. We use this
metric for the results shown in Fig. 6. To illustrate this metric,
suppose an individual performed at levels X and Y for the t and
t+ 1 gameplay. Suppose further that the individual started at the
beginning of practice at baseline level B. The proportional change
from gameplay t to gameplay t+ 1 is then evaluated as (Y− B)/
(X− B). For example, a value of of 0.7 indicates a loss of 30% of the
performance improvements (relative to baseline) between the t
and t+ 1 gameplay. Values smaller than one indicate a loss in
performance whereas values larger than one indicate a gain. To
perform these calculations, an estimate of the baseline perfor-
mance (B) at the start of practice is needed. We use the average
scores of the observed performances on the first 3 gameplays as
an estimate of baseline performance. In order to avoid instabilities
due to small values in the denominator (X− B), we excluded
observations in our analysis in which (X− B) < 2 (this affected <2%
of scores). Therefore, we are excluding observations where little or
no progress was made relative to the start of practice.

Model estimation
Model parameters were estimated using a maximum-likelihood
procedure, with the objective function defined as the root-
mean-square error between the true game score and the game
score predicted by the model. We implemented automatic
differentiation to numerically calculate the gradients and used
the Adam algorithm46 to carry out adaptive gradient descent to
learn the parameter values. Estimation can be challenging if
appropriate constraints are not placed on model parameters.
We applied the following constraints on parameter values. The
learning rate parameter (λ) in each model was restricted to
values between 0 and 0.1. Other (τ, β, and γ) were restricted to
values between 0 and 1.
Each participant had their own set of parameters in all models

with the exception of parameter γ which was shared across
participants in models M3 and M4. For M3 and M4, we first
computed the maximum-likelihood estimates of the γ parameter
using a subset of 9463 and 9694 participants’ data for the two
games. For the rest of the 10,000 participants in both games, we
used the γ parameter estimated from the subset of participants in
the previous step.
Supplementary Table 2 shows the estimated parameter values

from the application of the four models to the Lumosity data.
Supplementary Fig. 1 shows the distribution of estimated
parameter values across users. Supplementary Fig. 2 shows the
model fit for Model M4 for part of the learning trajectories of a
few illustrative users.

Predictive performance equation
The predictive performance equation (PPE) is a model of the
spacing effect that aims to describe the dynamics of human
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learning and forgetting24. In this section, we explain how we
applied the PPE model to the Lumosity data set. We follow
notation and follow predefined parameter settings as specified
by ref. 24.
In PPE, the activation M of item n is a function of elapsed time T

(in seconds) and the number of practice trials N:

Mn ¼ NcT�d (6)

where c is the learning rate, which is set to 0.124 and d is the decay
rate. d is calculated as a function of elapsed times between
successive practice opportunities (lagj):

dn ¼ bþm
1

n� 1

Xn�1

j¼1

1
lnðlagj þ eÞ

 !

(7)

The value of decay rate approaches the decay intercept
parameter b when lags are long and approaches b+m when
the lags are short (where m is the decay slope parameter). Elapsed
time T is calculated as the weighted sum of the time since each
previous practice event:

Tn ¼
Xn

i¼1

witi (8)

where wi is the weight assigned to each event i:

wi ¼ t�x
iPn

j¼1 t
�x
j

(9)

The variable x modulates the weighting of practice events and
is set to 0.6. The PPE further maps activation Mn to performance Pn
via a logistic function:

Pn ¼ 1

1þ exp τ�Mn
s

� � (10)

The parameters τ and s control the slope and intercept of the
logistic function, respectively.
To adapt the PPE to the context of the Lumosity gameplay

data, we treat each gameplay (j) as a practice event and use
activation Mj to estimate the score in that gameplay via the
following mapping:

yj ¼ Aþ UMk
j (11)

where A, U and k are player-specific scaling parameters. Note that
we have simulated a number of alternative functional mappings
and all yielded similar results.
We fit the PPE separately to each participant’s gameplay

history and used a maximum likelihood estimation procedure to
estimate the model’s parameters. The objective function was
defined as the mean square error between true game score and
game score predicted by the PPE. We inferred A, U, and k
parameters for every individual participant and decay para-
meters b and m shared across participants. We implemented
automatic differentiation to numerically calculate the gradients
and used the Adam algorithm to carry out adaptive gradient
descent to learn the parameter values. Consistent with the
procedures followed by Walsh et al., b and m parameters were
restricted to values between 0 and .2.
The resulting predictive performance of the PPE model, along

with the four models described in the main paper is shown in
Supplementary Table 1. Supplementary Figs. 3 and 4 show the
aggregate model predictions for within and between sessions
learning as well as the retention as a function of delay.

DATA AVAILABILITY
Preprocessed versions of the data are available at: https://osf.io/zkyr8/?
view_only=cb500b45c76f448ea486dd0ec2e6ea4a.

CODE AVAILABILITY
The code used to analyze the data and generate the images used in this paper is
available at: https://osf.io/zkyr8/?view_only=cb500b45c76f448ea486dd0ec2e6ea4a.

Received: 10 November 2021; Accepted: 5 September 2022;

REFERENCES
1. Ebbinghaus, H. Über Das Gedächtnis: Untersuchungen Zur Experimentellen Psy-

chologie (WBG, 1885).
2. Jost, A. Die Assoziationsfestigkeit in Ihrer Abhängigkeit von der Verteilung der

Wiederholungen (L. Voss, 1897).
3. Cepeda, N. J., Vul, E., Rohrer, D., Wixted, J. T. & Pashler, H. Spacing effects in

learning: a temporal ridgeline of optimal retention. Psychol. Sci. 19, 1095–1102
(2008).

4. Benjamin, A. S. & Tullis, J. What makes distributed practice effective? Cogn. Psy-
chol. 61, 228–247 (2010).

5. Sobel, H. S., Cepeda, N. J. & Kapler, I. V. Spacing effects in real-world classroom
vocabulary learning. Appl. Cogn. Psychol. 25, 763–767 (2011).

6. Benjamin, A. S. Memory is more than just remembering: Strategic control of
encoding, accessing memory, and making decisions. Psychol. Learn. Motiv. 48,
175–223 (2007).

7. Koriat, A. & Goldsmith, M. Memory in naturalistic and laboratory contexts: dis-
tinguishing the accuracy-oriented and quantity-oriented approaches to memory
assessment. J. Exp. Psychol. 123, 297 (1994).

8. Steyvers, M. & Benjamin, A. S. The joint contribution of participation and per-
formance to learning functions: exploring the effects of age in large-scale data
sets. Behav. Res. Methods 51, 1531–1543 (2019).

9. Finley, J. R., Tullis, J. G. & Benjamin, A. S. Metacognitive Control of Learning and
Remembering (Springer New York, 2010).

10. Tullis, J. G. & Benjamin, A. S. On the effectiveness of self-paced learning. J. Mem.
Lang. 64, 109–118 (2011).

11. Voss, J. L. & Cohen, N. J. Hippocampal-cortical contributions to strategic
exploration during perceptual discrimination. Hippocampus 27, 642–652 (2017).

12. Chiviacowsky, S. Self-controlled practice: autonomy protects perceptions of
competence and enhances motor learning. Psychol. Sport Exercise 15, 505–510
(2014).

13. Gureckis, T. M. & Markant, D. B. Self-directed learning: a cognitive and compu-
tational perspective. Perspect. Psychol. Sci. 7, 464–481 (2012).

14. Verhoeven, F. M. & Newell, K. M. Unifying practice schedules in the timescales of
motor learning and performance. Hum. Mov. Sci. 59, 153–169 (2018).

15. Finley, J. R., Benjamin, A. S., Hays, M. J., Bjork, R. A. & Kornell, N. Benefits of
accumulating versus diminishing cues in recall. J. Mem. Lang. 64, 289–298 (2011).

16. T. K. Landauer & Bjork, R. A. Optimum rehearsal patterns and name learning.
Pract. Asp. Mem. 1, 625–632 (1978).

17. Adams, J. A. Warm-up decrement in performance on the pursuit-rotor. Am. J.
Psychol. 65, 404–414 (1952).

18. Ammons, R. B. Acquisition of motor skill: I. quantitative analysis and theoretical
formulation. Psychol. Rev. 54, 263 (1947).

19. Nacson, J. & Schmidt, R. A. The activity-set hypothesis for warm-up decrement. J.
Motor Behav. 3, 1–15 (1971).

20. Anderson, J. R. Acquisition of cognitive skill. Psychol. Rev. 89, 369 (1982).
21. Walsh, M. M. et al. Mechanisms underlying the spacing effect in learning: a

comparison of three computational models. J. Exp. Psychol. Gen. 147, 1325
(2018).

22. Anderson, J. R., Fincham, J. M. & Douglass, S. Practice and retention: a unifying
analysis. J. Exp. Psychol. 25, 1120 (1999).

23. Bjork, R. A. & Bjork, E. L. et al. In From Learning Processes to Cognitive Processes:
Essays in Honor of William K. Estes Vol. 2 (eds Healy, A.F.) 35–67 (Psychology Press,
1992).

24. Walsh, M. M., Gluck, K. A., Gunzelmann, G., Jastrzembski, T. & Krusmark, M.
Evaluating the theoretic adequacy and applied potential of computational
models of the spacing effect. Cog. Sci. 42, 644–691 (2018).

25. Rawson, K. A. & Dunlosky, J. Relearning attenuates the benefits and costs of
spacing. J. Exp. Psychol. Gen. 142, 1113 (2013).

26. Rawson, K. A., Vaughn, K. E., Walsh, M. & Dunlosky, J. Investigating and explaining
the effects of successive relearning on long-term retention. J. Exp. Psychol. Appl.
24, 57 (2018).

27. Newell, A. & Rosenbloom, P. S. In Cognitive Skills and Their Acquisition Vol. 1 (ed.
Anderson, J. R.) 1–55 (Psychology Press, 1981).

28. Evans, N. J., Brown, S. D., Mewhort, D. J. K. & Heathcote, A. Refining the law of
practice. Psychol. Rev. 125, 592–605 (2018).

A. Kumar et al.

10

npj Science of Learning (2022)    24 Published in partnership with The University of Queensland

https://osf.io/zkyr8/?view_only=cb500b45c76f448ea486dd0ec2e6ea4a
https://osf.io/zkyr8/?view_only=cb500b45c76f448ea486dd0ec2e6ea4a
https://osf.io/zkyr8/?view_only=cb500b45c76f448ea486dd0ec2e6ea4a


29. Heathcote, A., Brown, S. & Mewhort, D. The power law repealed: the case for an
exponential law of practice. Psychon. Bull. Rev. 7, 185–207 (2000).

30. Newell, K. M., Mayer-Kress, G., Hong, S. L. & Liu, Y.-T. Adaptation and learning: char-
acteristic time scales of performance dynamics. Hum. Mov. Sci. 28, 655–687 (2009).

31. Raaijmakers, J. G. & Shiffrin, R. M. Search of associative memory. Psychol. Rev. 88,
93 (1981).

32. Yarkoni, T. & Westfall, J. Choosing prediction over explanation in psychology:
lessons from machine learning. Perspect. Psychol. Sci. 12, 1100–1122 (2017).

33. Bahrick, H. P. & Phelphs, E. Retention of spanish vocabulary over 8 years. J. Exp.
Psychol. 13, 344 (1987).

34. Poole, D. A. & White, L. T. Two years later: effect of question repetition and
retention interval on the eyewitness testimony of children and adults. Develop.
Psychol. 29, 844 (1993).

35. Ammons, R. B. et al. Long-term retention of perceptual-motor skills. J. Exp. Psy-
chol. 55, 318 (1958).

36. McGeoch, G. O. The conditions of reminiscence. Am. J. Psychol. 47, 65–89 (1935).
37. McGeoch, J. & Irion, A. The distribution of practice and reminiscence. Psychol.

Hum. Learn. 2, 138–193 (1952).
38. Landauer, T. K. Reinforcement as consolidation. Psychol. Rev. 76, 82 (1969).
39. Bjork, R. A. & Allen, T. W. The spacing effect: consolidation or differential

encoding? J. Verbal Learn. Verbal Behav. 9, 567–572 (1970).
40. Snoddy, G. Evidence for two opposed processes in mental growth. Sci. Press 103,

327–330 (2015).
41. Snoddy, G. S. Evidence for a universal shock factor in learning. J. Exp. Psychol. 35,

403 (1945).
42. Stratton, S. M., Liu, Y.-T., Hong, S. L., Mayer-Kress, G. & Newell, K. M. Snoddy (1926)

revisited: time scales of motor learning. J. Motor Behav. 39, 503–515 (2007).
43. Logan, G. D. & Gordon, R. D. Executive control of visual attention in dual-task

situations. Psychol. Rev. 108, 393 (2001).
44. Eriksen, B. A. & Eriksen, C. W. Effects of noise letters upon the identification of a

target letter in a nonsearch task. Percept. Psychophys. 16, 143–149 (1974).
45. Monsell, S. Task switching. Trends Cog. Sci. 7, 134–140 (2003).
46. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. International

Conference on Learning Representations (ICLR). arXiv http://arxiv.org/abs/1412.6980
(2015).

ACKNOWLEDGEMENTS
The authors received no specific funding for this work.

AUTHOR CONTRIBUTIONS
A.K. model implementation, data analysis, writing A.S.B. model conceptualization,
interpretation of data, writing A.H. model conceptualization, interpretation of data,
writing. M.S. model conceptualization, design, data interpretation, writing, project
administration.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41539-022-00142-x.

Correspondence and requests for materials should be addressed to Mark Steyvers.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

A. Kumar et al.

11

Published in partnership with The University of Queensland npj Science of Learning (2022)    24 

http://arxiv.org/abs/1412.6980
https://doi.org/10.1038/s41539-022-00142-x
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Comparing models of learning and relearning in large-scale cognitive training data sets
	Introduction
	Results
	The effect of gaps in practice on retention and relearning
	Computational models of practice

	Discussion
	Methods
	Participants
	Data processing
	Clustering gameplays into sessions
	Creating a subsample of users
	Estimating proportional performance changes

	Model estimation
	Predictive performance equation

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




