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Quantitative models express psychological theories in 
a way that facilitates rigorously testing them against 
data. This article reviews an influential and widely used 
type of quantitative psychological model, the race 
model. Figure 1 illustrates one of the most well-known 
examples, Logan and Cowan’s (1984) horse-race model 
of the stop-signal task, used to measure the ability to 
inhibit a response. The “horses” represent cognitive 
processes racing against each other; if the “go” runner 
wins, a response is made, and if the “stop” runner wins, 
it is withheld. The speed of the stop runner is the key 
measure of inhibitory ability, but by definition, that 
runner’s finishing time is not observable. However, 
combining what can be observed with assumptions 
based on the horse-race model enables estimation of 
the stop runner’s speed. Measuring the unobservable 
in this way exemplifies the role of race models in infer-
ring psychological quantities that cannot be directly 
observed.

What Are Race Models?

The defining characteristics of a race model are that (a) 
it contains one or more “runners” that take time to com-
plete the race; (b) if there are two or more runners, they 

may or may not interact in a way that affects their tim-
ing; and (c) it acts according to a winner-takes-all rule 
that controls subsequent processing on the basis of the 
runner, or set of runners, that finishes first. Evidence-
accumulation models (EAMs) are the most widely 
adopted special case of a race model. In EAMs, the 
runners have a specific interpretation as processes that 
are completed when they have accrued a threshold 
amount of evidence. We first examine several basic 
EAMs used to model simple decision tasks. We then 
describe how these basic EAMs can be used as building 
blocks to study a broader range of tasks and psychologi-
cal processes.

Figure 2 illustrates three race models, two in which 
the runners are independent, the linear ballistic accu-
mulator (LBA) and the racing diffusion model (RDM), 
and one that is a special case of the latter, the Wiener 
diffusion model (WDM), in which the runners interact. 
In the LBA and RDM, the horses are evidence accumula-
tors, and each accumulator’s position is the current 
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value of the sum of the evidence for the response that 
accumulator represents. For example, if the task involves 
a choice about whether a stimulus is moving to the left 
or right, the model could have accumulators corre-
sponding to the two response options, as shown in 
Figure 2. Accumulation rates vary from trial to trial but 
are on average higher for the accumulator that matches 
the stimulus than for the accumulator that mismatches 
the stimulus.

In the LBA, accumulation is deterministic (i.e., it 
occurs at a constant rate within a trial); in the RDM, 
accumulation is diffusive (i.e., it varies randomly from 
moment to moment), with a constant average rate. In 
the LBA, the starting point of accumulation also varies 
from trial to trial. In both models, the choice is deter-
mined by the first accumulator to reach its threshold. 
Response time (RT) is the sum of decision time (i.e., 
the time to move from the starting point to the thresh-
old) and nondecision time, typically the sum of the 
times to encode the choice stimulus and to produce a 
motor response once a winner is determined. The third 
column of Figure 2 shows the resulting RT distributions; 
the area under each distribution represents the corre-
sponding response probability.

The WDM, illustrated in the rightmost column of 
Figure 2, is a special case of the RDM in which moment-
by-moment changes in the level of evidence in one 
accumulator correspond to equal and opposite changes 
in the other accumulator. The evidence on which the 
response is based is thus reduced to a difference 
between the two accumulators, and the race becomes 
a tug of war represented as one accumulator with two 
thresholds. The basic WDM wrongly predicts that incor-
rect and correct responses have identical RT distribu-
tions, so it has been augmented with the same types of 

trial-to-trial variability as in the LBA, in which case it 
has been called the diffusion decision model (DDM; 
Ratcliff & McKoon, 2008). Both the WDM and the DDM 
remain limited to binary choices, but other diffusive 
race models, such as the RDM and other variants with 
less than completely negatively correlated interactions 
among the runners, are not so limited.

Donkin and Brown (2018) have provided a broad 
and inclusive review of most types of EAMs. These vary 
in a variety of ways, such as in whether the accrual of 
evidence is discrete or continuous and whether it is 
linear or nonlinear. Bogacz et al. (2007) discussed ratio-
nales for the assumptions of EAMs in terms of optimal-
ity and their biological basis. Despite the differences 
among the various types of EAMs, the core parameters 
are interpreted similarly in all applications: Rates of 
evidence accrual are determined by arousal, attention, 
and stimulus characteristics, whereas thresholds are set 
to strategically control caution and bias in responding. 
Higher thresholds increase caution, slowing responding 
but increasing accuracy (i.e., the speed-accuracy trade-
off) by overcoming starting-point biases or averaging 
out diffusive variability. Bias occurs when the threshold 
is lower for one response than for another.

Figure 3 shows examples of the LBA and RDM used 
as components in models of complex tasks. Strickland 
et al.’s (2018) prospective memory decision-control 
(PMDC) model (see Fig. 3a for details) addresses a 
prospective memory (PM) task in which participants 
view a series of letter strings; in most trials, they must 
indicate whether the string is a word or nonword, but 
in a small subset of randomly selected trials, the stimu-
lus has an attribute (e.g., the substring “tor”) that 
requires them to remember to make a different response. 
To model performance on this task, Strickland et al. 

Finish Line

Go Runner

Stop Runner

Make a Response

Withhold Response

Fig. 1.  Logan and Cowan’s (1984) horse-race model of response inhibition in the 
stop-signal task. On most trials (go trials), participants perform a choice task, mak-
ing a response (typically a binary choice) to a go stimulus, but on some trials, a 
stop signal (e.g., a tone) also occurs some time after the go stimulus, indicating 
that they should withhold their response. Typically, the delay between the go and 
stop signals is varied, and its effects on the probability of stopping and response 
times (RTs) when stopping fails, along with RTs when there is no stop signal, are 
observed. The “horses” represent cognitive processes racing toward the finish line; if 
the go runner wins, a response is made, and if the stop runner wins, it is withheld. 
Combining the race model with these observables, along with some assumptions 
about the distribution of finishing times, provides an estimate of stop-signal RT, the 
time it takes the stop horse to run the race.
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augmented a binary-choice LBA with a third accumula-
tor for the PM response. The PMDC model provided a 
novel cognitive-control-based perspective on PM, illus-
trating how race models can be used to instantiate both 
reactive (i.e., stimulus-driven) control, through feed-
forward inhibition of routine responses when a PM 
stimulus is detected, and proactive (i.e., anticipatory) 
control, through setting different thresholds for different 
accumulators.

Hawkins and Heathcote’s (2021) timed racing diffu-
sion model (TRDM; Fig. 3b) combines a binary-choice 
RDM with a leading model of time perception (Simen 
et al., 2016), a diffusive process with a constant input 
and a threshold set so that it is crossed on average at 
a target time. Previous attempts to model the effect of 
the passage of time on decision making relied on 
implicit timing mechanisms such as decreasing thresh-
olds. The TRDM provides a comprehensive account of 
such effects with an explicit and hence testable mecha-
nism that is grounded in the literature on timing tasks.

Finally, van Ravenzwaaij et al.’s (2020) advantage 
LBA (ALBA) models responding contingent on more 
than one LBA threshold-crossing event. Accumulators 
correspond to “advantages,” that is, evidence for the 
presence of one stimulus over another (see Fig. 3c for 
details). The ALBA accounts for competition effects 
among choice options previously thought to rule out 
independent-race models. It extends to cases of more 
than two response options and predicts Hick’s law, a 
logarithmic increase in RT as the number of choices 
increases. The ALBA uses dynamic logical “AND” func-
tions such that all accumulators in a group must finish 
to trigger a response. Other logical functions can be 
constructed similarly (e.g., an “OR” function requires 
only one group member to finish) to provide the  
building blocks for powerful and general-purpose 
computations.

Reynolds et al. (2021) proposed an alternative to 
the ALBA account that requires only two accumulators 
when there are more than two response options. They 
built on Vickers’s (1979) hypothesis that equates con-
fidence with a “balance of evidence,” the difference 
between the winning and losing accumulator when 
the winner achieves threshold. Reynolds et al. added 
a set of thresholds to each accumulator to translate 
the balance of evidence into discrete responses. For 
example, a choice is rated as uncertain if the losing 
accumulator has passed all but the last threshold when 
the winner reaches the threshold (i.e., the loser is not 
far behind the winner). Figure 4 illustrates this multiple- 
threshold race (MTR) model and related approaches 
in which a response is triggered as a function of the 
states of both accumulators; the response may be 
based on the total number of thresholds passed, or 

the thresholds themselves may be defined jointly by 
both accumulators’ states. Kvam (2019) proposed a 
geometric perspective integrating these and other race 
models. In this framework, the state of each accumula-
tor is represented as Cartesian coordinates. Building 
on Smith’s (2016) seminal circular-diffusion model, 
Kvam showed that with enough thresholds, or a non-
linear joint threshold, race models can be extended 
to accommodate continuous responding. Kvam et al. 
(2022) used this approach to provide a unified account 
of discrete and continuous responding with respect to 
line-length and color-matching judgments.

What Are the Advantages of Using 
Race Models?

The expressive power of race models is being used in 
an increasing number of areas. What motivates research-
ers to quantitatively instantiate their psychological-
process theories in this way? One motivation is to avoid 
mistaken psychological inferences based on data 
reflecting speed-accuracy trade-offs. For example, 
Evans et al. (2018) applied the LBA to data from the 
Human Connectome Project and showed that perfor-
mance correlations between twins that had been inter-
preted in terms of cognitive ability were more likely 
due to the heritability of response caution. Because 
correctly identifying underlying causes is key for effec-
tive interventions, EAMs are increasingly being used in 
areas ranging from computational psychiatry (e.g., 
attention-deficit/hyperactivity disorder; Weigard et al., 
2018) to performance in time-pressured multitasking 
environments (e.g., Palada et al., 2019).

EAMs are also used as a second stage, or back end 
that enables decision-making effects to be disentangled 
from the effects of an initial stage, or front end, model-
ing nondecision phenomena. For example, Steyvers  
et al. (2019) combined a front end accounting for trial-
to-trial changes in task-set activation with an LBA back 
end to model task-switching costs (i.e., slower respond-
ing after switching than after repeating tasks). The 
specificity of this approach supports clearer selection 
among theoretical positions, and it has been applied, 
for example, to theories of attentional selection in 
vision (White et  al., 2011), to primacy and recency 
effects in free recall (Osth & Farrell, 2019), and to theo-
ries of multiattribute choice (i.e., choice between 
options that differ along more than one dimension; 
Evans et al., 2019). The latter case is instructive regard-
ing the utility of the additional constraint afforded by 
RTs, as the model that best fit the data differed from 
earlier comparison models based only on choice data. 
Incorporating RTs also brings measurement advantages. 
For example, Jones et al.’s (2015) race model of 
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health-care preferences elicited by identifying the best 
and worst among a set of options provided the equiva-
lent (in terms of estimation precision) of more than 
doubling sample size relative to traditional choice-only 
models. Front ends can also model variability in pro-
cessing times that adds to a race model’s decision time, 
such as in Provost and Heathcote’s (2015) model of the 
mental-rotation-matching task, or can consist of a series 
of decision stages, as in Fific et al.’s (2010) test of dif-
ferent mental architectures for categorization.

Race models afford even greater expressive ability 
through probabilistic mixtures that model participants 
performing a task in different ways on different trials. 
In work with human participants, mixture models have 
been used to account for guessing in visual working 
memory tasks (Donkin et al., 2013) and to misapplica-
tion of complicated decision rules (Bushmakin et al., 
2017). They have also been used to model monkeys’ 
low caution in a putatively high-caution condition 
(Cassey et  al., 2014). The ability to test for changes 
across trials in the cognitive mechanisms determining 
responses can have applied as well as theoretical impli-
cations. For example, we (Matzke et al., 2017) used the 
mixture approach to account for goal neglect that 
causes the stop runner to fail to enter the race in 
response to a stop signal. In our model, the finishing 
times of the go and stop runners were described by the 
sum of Gaussian and exponential random variables 
(i.e., ex-Gaussian distribution). Goal neglect, rather 
than inhibitory deficits (i.e., slowing of the stop run-
ner), was found to explain why participants with 
schizophrenia performed more poorly than healthy 
control participants in the stop-signal task.

How Should Race Models be Used?

Race-model parameters enable insights into the psycho-
logical causes of observed phenomena. Going beyond 
the ability of simple EAMs to account for speed-accuracy 
trade-offs, the race models in Figure 2 enable insights 
into more complex constructs. For example, Strickland 
et al. (2018) found that PMDC parameter estimates indi-
cate that prospective memory failure is mainly due to 
reactive control rather than proactive control or limited 
attention capacity.

Race models can also be used to unify theoretical 
constructs. For example, Hawkins and Heathcote (2021) 
found that people with greater precision (i.e., less 
moment-to-moment variability) in the diffusion process 
underlying a time-interval-production task also had 
higher precision in the timing component of the TRDM. 
Reynolds et al. (2020) used the MTR framework to unify 
race models with perhaps the most widely applied cog-
nitive model, signal detection theory, providing esti-
mates of its discriminability and bias parameters that 
are informed by RT.

However, to be valid, parameter values must be 
uniquely identified by the data from which they are 
inferred. That is not always guaranteed, particularly 
when the number of observations per participant in 
each condition is low. We (Heathcote et  al., 2019) 
addressed this issue using hierarchical Bayesian estima-
tion and demonstrated the many advantages of a Bayes-
ian approach. Fitting models to simulated data makes it 
possible to assess estimation accuracy and precision by 
comparing the parameters known to generate the data 
with the parameters that the model infers on the basis 

Fig. 3.  Examples of the linear ballistic accumulator (LBA) and racing diffusion model (RDM) as components in models 
of complex tasks. Strickland et al.’s (2018) prospective memory decision-control model, illustrated in (a), is a standard 
binary LBA (i.e., it includes two accumulators corresponding to two response options) that makes a lexical decision (i.e., 
word vs. nonword) on the basis of inputs from word and nonword detectors unless the accumulators for these responses 
are beaten by a third, prospective memory (PM) accumulator that receives input from a detector for a PM stimulus attri-
bute (e.g., “tor” as a substring of the lexical decision stimulus). Solid arrows indicate excitatory inputs and dashed lines 
inhibitory inputs; thicker lines indicate stronger connections. The PM detector both excites the PM accumulator and 
inhibits the lexical decision accumulators, instantiating reactive control. Similarly, the word detector excites the word 
accumulator and inhibits the PM and nonword accumulators, and the nonword detector excites the nonword accumula-
tor and inhibits the PM and word accumulators. Response thresholds instantiate proactive inhibition, in this example, 
favoring PM responses by setting a lower threshold for the PM than for the word accumulator, as only words can contain 
the PM stimulus. Hawkins and Heathcote’s (2021) timed racing diffusion model, illustrated in (b), is a standard binary 
RDM (the evidence process) that makes choices in the usual way unless beaten by a third accumulator (the timing pro-
cess), in which case a random choice is made. Separate accumulators accrue evidence for the correct response and the 
error response. In this illustration, the green circle marks the point at which the former accumulator won the race. The 
advantage LBA model developed by van Ravenzwaaij et al. (2020), illustrated in (c), accounts for a choice between three 
alternatives (labeled “1,” “2,” and “3”; the same approach can be generalized to any number of choices). In this model, 
standard LBAs accumulate “advantage” evidence (i.e., evidence for one stimulus over another; e.g., 1-2 evidence has a 
mean equal to the mean for the evidence for Choice 1 minus the mean for the evidence for Choice 2). A counter for each 
choice starts at zero and is connected to a set of accumulators registering the advantage of that choice over the other 
options; the counter is incremented each time one of the accumulators reaches its threshold. Under a win-all stopping 
rule, a response is triggered by the first counter to achieve a count equal to the number of accumulators in the set (e.g., 
in the model illustrated here, the “1” response is triggered if its counter is the first to register two counts).
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Fig. 4.  Geometric representations (based on Kvam 2019) showing how two racing accumulators (favoring right vs. 
left ends of a dimension) account for selection among more than two responses by triggering a response that is based 
on a particular threshold-crossing event but also contingent on previously occurring threshold-crossing events. For 
instance, the dimension could range from high confidence in one choice to high confidence in the opposite choice, 
or from low (e.g., red) to high (e.g., violet) wavelengths of light. The state of the right accumulator is represented on 
the x-axis, and the state of the left accumulator is represented on the y-axis, so each point on the plane represents the 
joint state of the two accumulators at a given time. The dashed lines represent examples of how the joint state evolves 
over time when accumulation is linear and deterministic. Each accumulator has multiple thresholds: Horizontal dotted 
lines represent thresholds for the left accumulator, and vertical dotted lines represent thresholds for the right accumu-
lator. Each colored line segment corresponds to a different response, which is based on a combination of threshold-
crossing events. The four panels represent the relationship between Reynolds et al.’s (2021) multiple-threshold race 
(MTR) models (a) and threshold-counting models (b–d) within Kvam’s (2019) general geometric framework, in which 
a response is triggered, and an option chosen, on the basis of the x and y states. The diagram in (a) represents an MTR 
model in which selecting among six responses is accounted for using three thresholds per accumulator. Responding is 
triggered the first time an accumulator’s highest threshold is crossed, and the response selected depends on how many 
of the losing accumulator’s thresholds were previously crossed. This example illustrates a model for a task requiring 
binary choices (e.g., “left” vs. “right”) rated as being made with low, medium, or high confidence. Orange segments 

Fig. 4. (continued on next page)
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of the data. We strongly recommend that such parameter- 
recovery studies be carried out not only for new models 
but also for applications of existing models to new 
designs. If problems emerge, either the design or the 
model must be adjusted. Hierarchical estimation can 
help when the number of observations per participant 
is limited, by constraining each participant’s estimates 
through a group-level model of individual differences. 
When there are enough participants, well-estimated 
group-level parameters can be obtained, although limi-
tations may remain for the participant-level estimates.

Carefully chosen parameterizations are key for both 
estimation and interpretation. Ideally, accumulation-rate 
parameters should be made a function of stimulus val-
ues. A simple and general way to do so has been pro-
posed by van Ravenzwaaij et al. (2020), who applied it 
to determine rates (V) when the decision involves 
choosing the brighter of two stimuli, one on the left (L) 
and one on the right (R):

V s w B B w B BS DL L R L R= + +( ) + −( )

V s w B B w B BS DR L R R L= + +( ) + −( ) .

Parameter s quantifies cognitive-processing speed, and 
wS and wD are the weights of the sum (i.e., overall 
magnitude) and difference (i.e., advantage), respec-
tively, of the subjective brightness of the two stimuli 
(BL and BR). Subjective brightness followed Weber’s law 
in being a logarithmic function of the objective lumi-
nance. When objective and/or subjective stimulus val-
ues are not available, the processing-speed and 
magnitude terms are not separately identifiable. In tra-
ditional EAMs, it can also be useful to interpret differ-
ences between the estimated accumulation rates as 

reflecting the aggregate impact of the discriminability 
of the stimuli corresponding to different choices and 
the quality of selective attention to the stimulus features 
that support that discrimination, and to interpret the 
sum term as reflecting the aggregate impact of internal 
(e.g., processing speed) and external (e.g., stimulus 
magnitude) factors driving a response to occur.

Our final example shows how a single race model can 
provide a multifaceted characterization of psychological 
processing that is theoretically revealing, in this case, in 
the domain of healthy cognitive aging. Slowing with age 
is pervasive, so leading theories posit a reduction in 
cognitive-processing speed with age as a broad explana-
tory factor, but age-related performance decrements have 
also been attributed to reduced executive function (i.e., 
reduced ability to flexibly maintain and update goals). 
We (Heathcote et al., 2022) investigated these theories 
using a novel stop-signal task (see Fig. 5) requiring inhi-
bition of both easier and harder binary choices, as well 
as proactive control on go trials based on cues about the 
response most likely to be correct on the upcoming trial. 
We fitted a previous stop-signal model (Matzke et al., 
2017) with an ex-Gaussian stop runner but replaced the 
model of the go trials with RDM runners. The hybrid ex-
Gaussian/RDM approach provides a rich array of mea-
sures, including the key index of inhibitory ability, 
stop-signal RT, as well as goal neglect and measures 
based on RDM go processing—peripheral processing 
speed (nondecision time), central processing speed (aver-
age accumulation rate), selective attention (the difference 
between accumulation rates), caution, and proactive con-
trol of bias in response thresholds.

Our primary finding was that aging affected mainly 
processing speed, both central and peripheral, and  
that only a small part of slowing was due to caution 

correspond to high-confidence responses, green segments to medium-confidence responses, and blue segments to 
low-confidence responses; segments on the horizontal line correspond to choosing the “left” response, and segments 
on the vertical line correspond to choosing the “right” response. In this example, the left accumulator crossed all three 
thresholds before the right accumulator crossed any, which corresponds to a high-confidence “left” response. Note 
that the two accumulators could have different numbers of thresholds, thresholds could be spaced unevenly, and dif-
ferent segments could be mapped to the same option. The diagrams in (b), (c), and (d) represent threshold-counting 
models, alternatives to the MTR models. Threshold-counting models have been used to account for both discrete and 
continuous responding (Kvam et  al., 2022). The diagram in (b) represents a threshold-counting model with three 
evenly spaced thresholds for each accumulator: A response is triggered when three thresholds have been crossed. This 
diagram continues the example of the task described for (a). In this case, the first right threshold is crossed after two 
left thresholds have been crossed, and this triggers a medium-confidence “left” response. The diagram in (c) repre-
sents a threshold-counting model that has quadratically spaced thresholds (i.e., even spacing on a squared scale) and 
accounts for the same responses as in (b). In this case, after the first right threshold is crossed, the first left threshold is 
crossed, and then a second right threshold is crossed; this triggers a low-confidence “right” response. The diagram in 
(d) represents a threshold-counting model with 25 quadratically spaced thresholds for choosing a color of the rainbow  
(a violet choice is illustrated). In the limit of a large number of thresholds, this model approximates a circular boundary 

in Kvam’s (2019) geometric framework (i.e., a response is triggered when x y2 2+  exceeds the radius of the circle). 
Note that different spacings in the threshold-counting model can be used to approximate differently shaped bound
aries. The original figure is available under a CC-BY 2.0 license, at https://tinyurl.com/yck8xrke.

https://tinyurl.com/yck8xrke
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Fig. 5.  Illustration of a hybrid ex-Gaussian/racing diffusion model applied to a stop-signal task (Heathcote et al., 2022). The go (i.e., 
choice) stimuli were 20 × 20 grids of blue and orange squares whose position changed randomly on each screen refresh (see https://
youtu.be/kXZk_jCHjkM for a video of the task). Participants had to decide which color was dominant. Choice difficulty varied ran-
domly from trial to trial; the dominant color constituted 52% of the squares on harder trials and 54% on easier trials. The top panel 
illustrates the sequence in a stop trial requiring participants to withhold their response. The cue indicates that there is a 70% chance 
that orange will be the dominant color in the upcoming stimulus. Stop trials differed from go trials only in that a red square appeared 
around the choice stimulus at a stop-signal delay (SSD) that increased by 50 ms after a stop trial on which response inhibition was 
successful (which made stopping more difficult on the next stop trial) and decreased by 50 ms after a stop trial on which response 
inhibition failed (which made stopping easier on the next stop trial). The stop signal occurred on a randomly ordered 25% of trials. 
ISI = interstimulus interval. The bottom panel illustrates the go-trial (left) and stop-trial (right) models for this task (t = 0 represents 
the onset of the choice stimulus). On go trials, once the stimulus is encoded, two runners corresponding to the “orange” and “blue” 
response options start to race each other from the same initial level. The jagged lines illustrate noisy accumulation of evidence for 10 
races. The total that first crosses its response threshold triggers the associated response. In the illustration, the thresholds for the two 
response options are assumed to be the same and correspond to the x-axis, but when there is response bias, the thresholds for the 
two accumulators may differ. The dashed lines above the x-axis correspond to the distributions of the two runners’ finishing times 
across many trials; finishing times are longer for the orange accumulator because it has a lower average accumulation rate. The solid 
lines correspond to the distributions of the winning times for the two accumulators, which are shorter than the finishing times because 
faster runners win races. The stop-trial model shows the distributions of the finishing and winning times on stop trials. The finishing 
time of the stop runner is assumed to have a truncated ex-Gaussian distribution with a lower bound of 50 ms (i.e., the additional 
gray dashed line below the x-axis). The finishing-time distributions for the go runners are assumed to be identical on stop and go 
trials. The presentation of the go stimulus is followed at time t = SSD by a stop signal that triggers the stop runner. The go response 
is successfully inhibited when the stop runner finishes before either of the go runners. Hence, the distributions of winning times for 
the go runners are faster when inhibition fails (solid lines) than on go trials because slower go finishing times tend to lose out to the 
stop runner. The original figure is available under a CC-BY 2.0 license, at https://tinyurl.com/y5nmbee8.

https://youtu.be/kXZk_jCHjkM
https://youtu.be/kXZk_jCHjkM
https://tinyurl.com/y5nmbee8
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increasing with age (Heathcote et al., 2022). There was 
no evidence of any age-related deficit in executive-
function measures except response inhibition; that defi-
cit was mediated by slowing in the speed of the 
inhibitory runner. If anything, older participants had 
less goal neglect, and better selective attention and 
proactive threshold control. These results are surprising 
given that Ratcliff and McKoon (2008) summarized the 
results of almost a dozen applications of the traditional 
DDM to aging as showing that “the slowdown is almost 
entirely due to older adults’ conservativeness [i.e., cau-
tion]” (p. 911). One explanation is that, in being driven 
purely by the difference in evidence between two 
options, the DDM is unable to represent effects of stim-
ulus magnitude and central processing speed, and so 
any reduction to the latter in older participants can be 
attributed only to increased caution. A more recent 
revision of the DDM can account for stimulus magni-
tude with the additional assumption that the mean and 
variability of accumulation rates are positively related 
(Ratcliff et al., 2018). Further research will be required 
to determine what this new type of DDM indicates 
about the causes of age-related slowing.

These results not only show how race models can 
provide theoretical insights, but also highlight the chal-
lenges with respect to parameter estimation and inter-
pretability. First, the descriptive ex-Gaussian account 
of the stop runner (Matzke et  al., 2017) had to be 
retained in our hybrid model (Heathcote et al., 2022) 
because stop-signal models in which all runners are 
evidence-accumulation processes result in extremely 
poor parameter recovery (Matzke et al., 2020). In con-
trast, the hybrid model’s parameters are well recovered, 
even in our complex design, the key factor being that 
the ex-Gaussian account does not require the estima-
tion of the nondecision time of the stop runner. Second, 
the strong theoretical divergence between the DDM and 
the hybrid model underlines the need to carefully con-
sider the limitations in what a model can and cannot 
represent, and the potential for parameter trade-offs, 
when interpreting any model-based estimate.

Future Directions

A range of emerging applications are using race models 
to integrate different data sources, tasks, and theoretical 
frameworks. For example, the LBA has been used to 
simultaneously link behavioral data to functional MRI 
and electroencephalograph data through hierarchical 
Bayesian estimation (Turner et al., 2016). Similar meth-
ods have been used to link performance in multiple 
tasks through shared LBA parameters (Wall et al., 2021). 
We believe that these joint models are more likely to 

be successful at linking data of different types and from 
different tasks than are approaches, such as structural 
equation modeling, that ignore the details of cognitive 
processing or implicitly assume details, which are 
explicit (and hence testable) in joint models.

Miletić et al. (2021) generalized and improved on 
previous attempts to integrate another very successful 
type of cognitive model, reinforcement-learning mod-
els, into the race-model framework. They used a simple 
learning rule that allowed the model to learn reward 
values for stimuli on the basis of probabilistic feedback 
from forced choices. These values played the role of 
brightness in van Ravenzwaaij et al.’s (2020) equations, 
determining rates for RDM accumulators. The results 
of the model agreed with van Ravenzwaaij et al.’s 
results for perceptual choice: The learned values 
affected accumulation rates mainly through the advan-
tage term, but the magnitude term also played a non-
negligible role. In binary-choice tasks, the model 
outperformed previous approaches that combined the 
DDM with reinforcement learning; further the model 
went beyond what can be achieved with the DDM, 
successfully addressing a three-choice task and reward-
magnitude effects.

In closing, we note that most of the race models dis-
cussed here have been analytically tractable enough to 
yield an easily computed likelihood, the key quantity 
required for fitting the models to data in a comprehensive 
way. However, requiring such tractability can limit the 
scope of potential applications. Fortunately, recent devel-
opments in approximate-likelihood methods, combined 
with faster hardware (Lin et al., 2019) and deep neural 
network approaches to Bayesian estimation (Radev et al., 
2020), look set to make it increasingly practical to employ 
race models in a wider range of applications.

Recommended Reading

Donkin, C., & Brown, S. D. (2018). (See References). A broad 
and integrative historical overview of evidence-accumu-
lation models, their applications (from measuring latent 
constructs to developing theory in cognitive science and 
neuroscience), and methods for estimation, evaluation, 
and inference with respect to these models.

Heathcote, A., Lin, Y.-S., Reynolds, A., Strickland, L., Gretton, 
M., & Matzke, D. (2019). (See References). A practical 
introduction to estimation and inference for a variety of 
race models implementing hierarchical Bayesian Markov 
chain Monte Carlo sampling in a collection of functions, 
with associated tutorials in the R language.

Kvam, P. D. (2019). (See References). A more advanced read-
ing (and winner of the 2021 R. Duncan Luce Outstanding 
Paper Award from the Society for Mathematical 
Psychology) providing a novel perspective on both deter-
ministic and stochastic race models, placing them in an 
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integrative geometric framework that encompasses both 
discrete and continuous responding.

Miletić, S., Boag, R. J., Trutti, A. C., Stevenson, N., Forstmann, 
B. U., & Heathcote, A. (2021). (See References). An evalu-
ation of how well the diffusion decision model and a 
variety of racing diffusion models integrate with simple 
reinforcement learning, finding that input equations and 
architectures from van Ravenzwaaij et al.’s (2020) “advan-
tage” framework provide the best account of learning in 
value-based decision making.
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