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Age-dependent impact of early-life stress on glia and synapses:  
Substrates for increased risk for Alzheimer’s disease

Rationale and aim

Early-life stress (ES) exposure has lasting consequences for later-life health and disease, 
and is associated, based on both pre-clinical and epidemiological data, with increased 
rates of later cognitive decline1–3, psychopathology4,5 and metabolic disorders6,7. This link 
between early-life experience and later-life health is perhaps most intriguingly observed in 
Alzheimer’s disease (AD), a yet-uncurable, age-associated neurodegenerative condition that 
is the leading cause of dementia in an aging global population8,9. Epidemiological evidence 
indeed shows that exposure to various forms of ES is associated with an increased risk for 
dementia and AD10–14.

This association with ES provides another piece to the puzzle of AD etiology, whose incidence 
is also associated with lifetime stress exposure15,16. While much attention has been paid 
to the causal role of the characteristic neuropathological features of AD in its etiology17,18 
(especially amyloid-beta [Aβ] plaques19) , they do not account for the majority of cases, 
which are non-familial, or “sporadic”, in nature20. This is further reflected by the recent lack 
of success of Aβ-based clinical trials to improve AD symptomatology18. This has opened 
up studies into additional risk factors like environmental and lifestyle factors that also 
contribute to disease risk15,16,21–23 and new biomarkers of the disease, that can potentially 
be targeted24–27.

Accordingly, the link between ES and AD can be viewed within the framework of the 
developmental origins of health and disease (DOHAD) hypothesis11,28–30. As a field that 
emerged following observations of a link between birthweight and later-life ischemia31, 
much emphasis is placed here on how early programming can lastingly alter development, 
and thereby later-life health32. Such a view has also been proposed for AD-associated 
risks, whether it be from changes occurring during critical developmental windows, the 
cumulative aggregation of lifetime insults that only manifest in disease, or from lasting shifts 
in the organism’s entire developmental trajectory11,33. Similarly, ES is also thought to lead to 
differential responses to later-life challenges, which rodent studies show evidence for34–37. 
Given the significant time delay between experiencing ES and the eventual emergence of an 
increased disease vulnerability, a common question in the field is whether this programming 
occurs via ES modulation of the aging process itself5. 

To fully understand these mechanisms behind early-life programming of later AD risk, it is 
crucial to understand the neurobiological substrates that are affected by ES. At the cellular 
level, AD is characterized by progressive synaptic loss that is associated with cognitive 
deficits38–41, and neuroinflammatory activation of astrocytes and microglia that lead to Aβ 
phagocytosis42–44. Also, compromised neurovascular profiles have been implicated that 
dysregulate blood brain barrier permeability and impair the clearance of Aβ from the brain 
parenchyma45–49. 
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In this thesis, we attempted to characterize how ES exposure impacts these different 
neurobiological substrates, and how ES can thereby modulate AD phenotypes. 

General experimental design

The nature of our aim necessitates the use of animal experiments50,51, that can help provide 
mechanistic insights emergent at the organismal level52,53. Throughout this thesis, we 
modeled ES in mice using the limited bedding and nesting (LBN) model, first developed 
in the Baram lab for use in rats54 and mice55. Dams and pups in this model are housed 
in cages with reduced bedding and nesting materials for the first postnatal week. These 
‘impoverished’ conditions limit the dam’s ability to build nests, leading to erratic maternal 
behavior55–57. Pups exposed to these conditions reared until adulthood are reported to have 
impairments in hypothalamic-pituitary-adrenal axis reactivity34,55, adult neurogenesis58,59, 
and cognitive performance across several domains60. In the experiments we report here, 
mice are exposed to ES or control conditions from postnatal days (P) 2-9, and are either 
sacrificed at P9 to investigate the direct consequences of ES, or transferred to standard 
housing conditions and sacrificed in adulthood to investigate long term effects of ES.

To more specifically investigate the consequences of ES exposure in relation to AD in a 
controlled setting, we made use of the APPswe/PS1dE9 transgenic mouse line developed 
by the Borchelt lab61. This model leads to Aβ processing through the prion-promoter-based 
overexpression of the human amyloid precursor protein (APP) harboring the Swedish 
mutation, along with the human Presenilin 1 gene with a deletion in exon 9. These mutations 
result in plaque formation by 6 months of age61,62, and are associated with impairments in 
cognition63, synaptic structure64 and neuroinflammation65, among others66. Notably, the core 
phenotype in this model, i.e. a gradual buildup of amyloid load, has been reported to be 
modulated by ES exposure67–69.

Given the age-dependent nature of these effects, we studied the ES and APP/PS1 interaction 
at both early (4 months of age) and late (10-12 months of age) stages of Aβ pathology. 
Importantly, beyond serving as a model for AD neuropathology, our APP/PS1 mouse 
model, which displays a strong neuroimmune response to Aβ42,63,65, can also be viewed as a 
chronic neuroinflammatory challenge that could unmask latent ES effects. We also similarly 
implemented other forms of secondary challenges, such as aging or restraint, in this thesis 
in order to unmask ES effects in wildtype mice.

Neurobiological substrates of interest 

We focused in this thesis on the effects of ES and Aβ overexpression on the hippocampus, a 
brain region important for cognition70, in which adult neurogenesis occurs as well71. 

The hippocampus is strongly affected in AD, exhibiting extensive synaptic loss41. It is one of 
the first regions showing both amyloid and later also tau pathology that spreads through the 
brain72,73. Importantly, the hippocampus contains several cell types74 that have each been 
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shown to contribute to AD pathology41,75,76. This region is also highly sensitive to stress, due 
to its relatively enriched expression of glucocorticoid receptors77,78. In fact, various types of 
stress alter hippocampal size58, synaptic structure79,80, and neurogenesis81,82. Altogether, the 
hippocampus is an interesting brain region due to the consistent disruption of hippocampus-
related spatial learning tasks60 and neurogenesis83,84 by ES and AD. 

In this work, we studied the effects of ES in a transgenic AD mouse model on hippocampal 
synapses, glial cells, and blood brain barrier features. Below, we first give an overview of 
these systems, as to how we understand them to be affected by our experimental variables.

Synapses
As the main functional unit through which neurons communicate, the synapse is an important 
substrate for all neurobiological questions that is often approached via an investigation of 
its structural and functional alterations. In particular, in the context of memory, the synapse 
can be viewed as a neural correlate of learning85. Much attention has further been paid 
recently to the study of synaptic plasticity86,87, neurogenesis88,89, and the representation of 
“memory traces” in specific cell ensembles, called engrams90. 

As mentioned, synaptic loss is a prominent feature of AD pathology, both in early and late 
stages of the disease40,91–93. These effects are partly modulated by direct effects of Aβ on 
synaptic proteins38. While work has been done showing both structural and functional 
alterations to synapses in rodent models of AD41,64,72, the trajectory of these associated 
alterations is still unknown. On the other hand, ES alters synaptic structure, by reducing 
synaptic protein levels94–96, spine numbers97, and neurogenesis58,98 and function58,94,99. 
However, it remains unknown how ES induces alterations to the overall proteomic profile in 
hippocampal synapses, and how it would interact with the trajectory of Aβ overexpression-
induced synaptic changes.

Astrocytes
The formation, maturation, and maintenance of synapses is aided by astrocytes100–103. 
While these cells have classically been viewed as passive supporting cells to the neurons, 
astrocytes can release gliotransmitters that modulate synaptic activity104,105 and synchronize 
neuronal network firing106. These cells support synaptic functions of neurons largely via 
their surveillance of the extracellular milieu. This is mediated through different astrocytic 
receptors, which allow for regulation, e.g., of the levels of neurotransmitters107,108, ions109, 
water110, and nutrients101,111. 

Astrocytes also respond to extracellular challenges and play a role in the neuroinflammatory 
response, e.g. via cytokine release112. In such states, they exhibit a “reactive” profile, 
marked by the upregulation of the astrocytic marker GFAP that underlies the process of 
astrogliosis113,114. Notably, these states can lead to a neurotoxic phenotype115, further driving 
disease states. This is the case in AD, where astrogliosis occurs in response to Aβ plaques116–119. 
These morphological alterations are widespread throughout the main hippocampal 
subregions and accompanied by spatially heterogeneous astrocytic transcriptomes in 
the AD brain120. Beyond this, astrocytes are also highly sensitive to glucocorticoids and 
stress121,122, which can alter their morphology123,124, and glucose metabolism125,126. However, 
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while there is emerging evidence for astrocytes as a substrate for ES effects127, it is unclear 
how ES impacts the astrocytic profile across the lifespan, and how they might be involved in 
ES modulation of AD. 

Microglia
Besides astrocytes, microglia, the innate immune cells in the nervous system, also play a key 
role in maintaining proper brain function128. In healthy states, they survey the extracellular 
environment129, releasing cytokines in response to indicators of extracellular damage such 
as ATP130,131, or phagocytosing apoptotic cells and toxic molecules132. Microglia also play a 
prominent role in a variety of disease states, leading to distinct expression and functional 
profiles133. This microglial adaptation is most evident in neurodegenerative conditions like 
AD134, where mutations in microglial genes can lead to progression of sporadic AD135. In fact, 
microglia can similarly drive disease, as their neuroinflammatory responses42 can become 
maladaptive, e.g. worsening pathology by phagocytosing healthy synapses136. 

Microglia are also among the first functional cell types present in the brain, migrating from 
the yolk sac during embryonic development137. They express distinct gene expression profiles 
throughout development138,139, playing more of a role in sculpting the neuronal architecture 
and synaptic landscape than inflammatory regulation early in life140,141. This early presence 
of microglia makes them sensitive to early alterations in the brain milieu142. Similarly, ES 
exposure affects microglia, as seen in the transcriptomic changes associated with maternal 
separation in mice143. Studies using the LBN model have also illustrated this, as shown in 
our work characterizing age-dependent ES effects on microglial morphology and density in 
the hippocampus in both wildtype and APP/PS1 mice67, as well as a study from the Baram 
lab illustrating ES impairment of microglial synaptic pruning the hypothalamus in wildtype 
mice144.

Important for our research aims, microglia are sensitive to “priming” by prior experiences, 
as they form an “immunological” memory in their responses to later stimuli145. Repeated 
exposure to immune-activating substances contribute to either milder (i.e. “tolerant”) or 
exaggerated (i.e., “trained”) responses146, the direction of which can be dictated e.g. by 
the frequency of the immune challenge147. Crucially, priming can be induced already even 
early in life; as seen in the later life response of mice exposed to a prenatal inflammatory 
environment148,149, or in mice injected postnatally with adjuvants consisting of bacterial cell 
wall extracts150. Given the high sensitivity of microglia to stress151, one of the outstanding 
questions in the field is whether ES can also prime later-life microglial function, and whether 
priming might mediate its effects on the neuroimmune system.

Blood-brain barrier
Lastly, we wanted to investigate the blood brain barrier (BBB), a physical barrier serving 
as the interface between brain and periphery152. The BBB is formed via endothelial cell 
expression of specific tight junction proteins such as Claudin-5153. The surrounding vessel-
adjacent cell types are collectively referred to as the neurovascular unit (NVU)154. Among the 
most important processes at the NVU is neurovascular coupling, i.e. the dynamic changes to 
vascular properties in response to neuronal activity, that are important for energy balance155. 
Disruptions of this balance are notably associated with AD-like cognitive impairments, can 
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lead to vascular dementias156, and may result in brain metabolic alterations, such as seen in 
AD157,158.

Beyond regulating nutrient entry into the brain, the BBB is also implicated in AD through 
its role in the clearance of Aβ47. This process is largely mediated by pathways involving 
apolipoprotein E46, a prominent risk factor for AD159. Work on this and other related proteins 
have demonstrated an emerging role for brain cholesterol metabolism in AD pathology160. 
Crucially, there are strong alterations to both the central and peripheral lipid profiles in 
ES99,161,162. However, despite evidence for stress-associated alterations to BBB function163,164, 
it is currently not known whether and how the BBB is modulated by ES exposure. 

Interactions between substrates
Beyond our interest in the ES effects on each system, we also understand that these 
components are interdependent, and that the effects of ES might be in modulating emergent 
interactions. 

For instance, beyond the well-known recognition of the role of astrocytes in supporting and 
maintaining the pre- and post-synapse (which together form the “tripartite synapse”)104,165, 
this view has been recently expanded to include microglia (i.e., the “quad-partite” 
synapse166,167). This framework views the long term maintenance of synapse as a result 
of sculpting from both glial cell types168. Beyond the microglial pruning of synapses, the 
bi-directional signaling between microglia and astrocytes is also important, given e.g. the 
astrocytic stimulation of microglial phagocytosis169, and the observation that activated 
microglia can in turn, induce neurotoxic, reactive astrocytes115.

Similarly, the induction and integrity of the BBB is actively mediated by cells around the 
neurovascular unit. This is classically done through the signaling of pericytes170 or astrocytes, 
whose end feet wrap tightly around endothelial cells171. In fact, astrocyte secretion can 
regulate both vascularization172,173 and BBB permeability174,175, facilitating the coupling of 
neuronal activity with vascular perfusion discussed above176. Crucially, microglia have also 
recently been shown to be able to impact BBB maintenance in health and disease states177. 

We expect that these interactions will all contribute to the puzzle of how ES affects the 
progression of AD pathology. While we were not always able to directly interrogate these 
interactions, we nonetheless attempted to take them into account in the interpretation of 
our findings.

Aims and outline of this thesis

As introduced above, this thesis aims to contribute to our understanding of how ES leads to 
shifts in the developmental trajectories and properties of microglia, synapses, astrocytes, 
and the blood brain barrier. This will help to understand how ES modulation of AD pathology 
might occur through these substrates. This thesis is organized as follows:
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In chapter 2, we test the hypothesis that ES exposure shifts the aging process by comparing 
wildtype ES and control mice at 20 months of age. We assessed the physiology and cognitive 
performance behavior of these mice, as well as age-associated hippocampal alterations 
in neurogenesis, neuroinflammation, and telomere length. By comparing these data with 
those of younger mice, we attempted to integrate our data into a better understanding of 
the ES “trajectory”.

In chapter 3, we continued our investigation into ES effects on the developmental trajectory 
by focusing on molecular aspects of aging. In particular, we investigated the hippocampal 
expression of LaminB1, a nuclear envelop protein whose declining expression is proposed 
to be a hallmark of aging. We compared how ES exposure affected the overall and astrocytic 
expression of this protein at 4-, 10-, and 20-months.

In chapter 4, we characterized the short- and long-term effects of ES on the hippocampal 
microglial profile by performing mRNA sequencing on fluorescently-sorted microglia, both 
at P9 and in adulthood. In line with our questions on developmental trajectories, we also 
compared how ES altered the pattern of microglial transcriptome changes between P9 and 
adulthood, as well as how ES modulates the microglial transcriptomic response to a later-life 
immune challenge. We compliment these findings by adapting an ex vivo flow cytometry 
assay to assess synaptic phagocytosis in ES microglia, as well as by validating one of our gene 
expression targets in a postmortem human cohort exposed to childhood abuse.

In chapter 5, we investigated the quad-partite synapse, and how ES and Aβ pathology affect 
this at early and later stages of pathology. We isolated hippocampal synaptosomal fractions 
and measured the synaptic proteomic composition via mass spectrometry in WT and APP/
PS1 mice exposed to ES. We then used electron microscopy and immunofluorescence to 
validate our findings.

In chapter 6, after a better understanding how ES modulated the APP/PS1-induced synaptic 
alterations, we turned to the last component of the quad-partite synapse, and characterized 
astrocytes across ages, using qPCR and immunohistochemistry. We compared how these 
were modulated by ES across ages in the wildtype condition, as well as how ES and APP/PS1 
genotype affected these at early and late pathological stages.

In chapter 7, we generated a cohort to understand the effects of ES and later-life restraint on 
the BBB in wildtype mice. We enriched brain endothelial cells to characterize ES effects on 
blood vessel gene expression, as well as generated tissue for immunofluorescence analysis. 
We present preliminary data of our immunofluorescence investigations of BBB structure 
and morphology in ES-exposed mice. We further studied whether this might be a system in 
which ES alterations of astrocytes also manifest.

In chapter 8, we present observations about the ES model used over the past five years, 
analyzing our data from several rounds of maternal care observation data, and proposing 
a new readout to validate successful implementation of the LBN model. Additionally, we 
tackled the well-noted question of how the restriction of nesting material in our model 
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might alter the temperature of the animals, and whether these might also play roles in the 
ES phenotype.

Lastly, in chapter 9, we provide an interpretation of the different findings in the thesis, 
and attempt to contextualize these data with the current state of the field. Based on this 
discussion, we hope to convince the reader that the ES modulation of AD pathology is in part 
mediated by alterations to these substrates we investigated, as well as their interactions.
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