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Lazard et al.1 predict homologous recombination deficiency from hematoxylin and eosin-stained slides of
breast cancer tissue using deep learning. By controlling for technical artifacts on a curated dataset, themodel
puts forward novel HRD-related morphologies in luminal breast cancers.
Worldwide, the prognosis of most can-

cer cases is generally improving, in part

due to more advanced biomarker testing

to provide personalized therapies. Two

such therapies are poly (ADP-ribose) poly-

merase inhibitors (PARPi), which induce

double-strand breaks, and interstrand

crosslinks-inducing platinum-based thera-

pies, which are effective against prostate,

pancreatic, ovarian, and breast tumors

that have adeficient homologous recombi-

nation repair (HRR) pathway.2 Whereas

an HR-proficient (HRP) cell repairs the

induced damage, the HR-deficient (HRD)

cancer cell is unable to and will die. There-

fore, it is important to clinically identifyHRD

as this allows for targeted treatment

planning.2

The main cause of HRD are mutations

in, or epigenetic modifications of, the

BRCA1/2 or other HRR-supporting genes

(e.g., ATM, PALB2, RAD51). These ge-

netic changes result in a functionally defi-

cient HRR phenotype with specific

genomic scars.2 The majority of FDA-

approved tests focus on these mutations,

epigenetic changes, or genomic scars as

they may be indicative of HRD, yet

have diverging results.2 Additionally,

these genetic tests have a long turn-

around time and are generally considered

expensive. Therefore, it is key to find

quick and robust tests. Lazard et al.1

investigate the performance of artificial in-

telligence (AI) methods to predict HRD

from hematoxylin and eosin-stained

(H&E) whole-slide images (WSIs) of breast

cancer (BC) tissue and describe novel

HRD-related morphological patterns in

clinically relevant luminal BC patients

(Figure 1).
This is an open access ar
Recently, the AI revolution made its

way to computational pathology, able to

predict a plethora of genomic mutations

and signatures across cancer types

from H&E WSIs.4 Notably the scoring of

microsatellite instability, a biomarker for

immune therapy response, e.g., in colo-

rectal cancer, has reached clinical-level

performance5 and is available through

commercial products. Since the resulting

genomic scar from HRD leads to down-

stream changes in cellular and tumor

microenvironmental morphology in (for

example) ovarian cancer,6 there exists

an evident genotype-phenotype relation

which can be learned by an AI model.

This is evidenced by Valieris et al.,7

who show that an AI-based HRD classi-

fier trained on The Cancer Genome Atlas

(TCGA) could be validated on an inde-

pendent test set. Building upon this

method, we showed the benefit of self-

supervised pre-training and tumor het-

erogeneity-aware multiple instance

learning for the prediction of HRD in BC

within TCGA, and we showed tumorous

tissue with high pleomorphism, high het-

erogeneity, and necrosis to be HRD

related.8 Finally, Wang et al.9 show that

AI can predict BRCA1/2 mutation status

in BC. This provides evidence that the

mutational causes and genomic scar

consequences of HRD can indeed be

predicted, yet the exact morphologies

are not fully understood.

Although AI models can find HRD-

related morphological patterns, they

might pick up patterns that are spuriously

correlated with HRD. For example, a

model might learn that a slide’s pen

marking originates from a medical center
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ticle under the CC BY-NC-ND license (http://cr
that mainly treats high-grade tumors and

uses this pattern to predict the patient’s

poor prognosis. Such models could not

be used to successfully discover novel

morphologies related to a good prog-

nosis, or for clinical applications, since

the model does not generalize to other

data distributions. Guidelines to reduce

the model’s abuse of spurious features

have been previously described.10

Lazard et al.1 show that spuriosity

manifests in TCGA, besides the known

site-related technical artifacts, through

the correlation between molecular sub-

type and HRD, such that subtype-spe-

cific morphologies, unrelated to HRD,

may be learned. Even their curated pri-

vate dataset contains artifacts related to

a change in fixation and impregnation

protocols over the collection period

which can indicate the time of sample

collection and be correlated with a

changing patient demographic. To

circumvent these confounding factors,

they train solely on H&E WSIs of luminal

BC from a single institution while control-

ling for the changed protocols using stra-

tegic sampling. This forces the model to

focus more on HRD-related features as

visualized in Figure 1.

The two-dimensional representation of

the latent feature vectors of this model’s

high and low HRD-scoring tiles confirms

that TILs, necrosis, and high atypia are

HRD-related morphologies. In contrast,

low tumor cell density and clear space

surrounding (apocrine) cell nests are

related to HRP tumors. The predictive-

ness of TIL density, nuclear, and atypia

grade are validated through pathologist

scoring showing evident correlations
December 20, 2022 ª 2022 The Authors. 1
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Figure 1. Interplay of PARPi response, genotype and genomic phenotype, confounding factors, and resulting morphology
The confounders may be correlated with the genotype and used by the AI model. Lazard et al.1 partly block the technical confounders by focusing on a single-
center dataset, controlling for technical artifacts. Additionally, they partly block the possibility of using biological confounders by modeling only basal BC
samples. The resulting model is forced to focus on HRD-related morphologies. By analyzing the model predictions, they conclude that the morphologies
described in the ‘‘Possible HRD-related morphologies’’ box are indicative of HRD. The figure draws heavily on Figure 2 from Stewart et al.2 The spurious
correlation flow is inspired by Figure S2 in Ilse et al.3
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between the pathologist scores and HRD

status. Furthermore, a visualization that

walks varying paths from low- to high-

scoring tiles in the two-dimensional

feature space shows a continuous degree

of HRDness along the dimensions of nu-

cleus size, lymphocytic infiltration, or

necrotic features, reminiscent of latent

feature interpolation in generative net-

works. Finally, they find tiles enriched

with carcinomatous cells with clear cyto-

plasm and intra-tumoral laminated

fibrosis as novel HRD-related morphol-

ogies, hypothesizing an alteration of spe-

cific metabolic processes.

In conclusion, downstream cellular and

tumor microenvironmental phenotypes

caused by upstream intracellular func-

tional changes, like HRD, are observable

in H&E WSIs of BC tissue. AI can learn

to correlate such morphologies to the ge-

notype without morphological prior

knowledge. Although technical or biolog-

ical confounding factors may be present,

methods like strategic sampling and care-

ful data curation can reduce the model’s

capacity of abusing these. Lazard et al.1
2 Cell Reports Medicine 3, 100873, Decembe
exemplify these methods, shed new light

on morphologies that are indicative of

HRD in luminal BC, and set the stage for

further work to validate the clinical appli-

cability of H&E WSI-based deep learning

methods to be used as a complementary

diagnostic tool to perform pre-screening

for HRD.
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