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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• A Bayesian optimization algorithm was 
developed to optimize LC gradient 
programs. 

• The algorithm can operate in both the 
single- and multi-objective setting. 

• The algorithm was successfully applied 
to the optimization of two complex dye 
mixtures. 

• The performance of single-versus multi- 
objective optimization was compared.  
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A B S T R A C T   

Contemporary complex samples require sophisticated methods for full analysis. This work describes the devel-
opment of a Bayesian optimization algorithm for automated and unsupervised development of gradient pro-
grams. The algorithm was tailored to LC using a Gaussian process model with a novel covariance kernel. To 
facilitate unsupervised learning, the algorithm was designed to interface directly with the chromatographic 
system. Single-objective and multi-objective Bayesian optimization strategies were investigated for the separa-
tion of two complex (n>18, and n>80) dye mixtures. Both approaches found satisfactory optima in under 35 
measurements. The multi-objective strategy was found to be powerful and flexible in terms of exploring the 
Pareto front. The performance difference between the single-objective and multi-objective strategy was further 
investigated using a retention modeling example. One additional advantage of the multi-objective approach was 
that it allows for a trade-off to be made between multiple objectives without prior knowledge. In general, the 
Bayesian optimization strategy was found to be particularly suitable, but not limited to, cases where retention 
modelling is not possible, although its scalability might be limited in terms of the number of parameters that can 
be simultaneously optimized.  
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1. Introduction 

Liquid chromatography is a powerful and popular method for the 
separation of a mixture into its individual constituents. Gradient elution, 
in which the mobile phase composition is programmed to change over 
time, is the technique of choice for the separation of complex mixtures 
exhibiting a wide range of retention factors. Especially, because it leads 
to a decrease in analysis time and peak compression. The temporal 
changes to the mobile phase composition are often defined in a multi- 
linear gradient program, which contains the coordinates (time and 
modifier concentration) of the transition points between consecutive 
linear segments, also called the gradient nodes (or gradient parameters). 
For gradient-elution based methods, one key objective of method 
development is thus to optimize the parameters of the gradient program 
(and/or other experimental controls) against an objective function(s), 
also called chromatographic response function(s) (CRFs) [1]. 

The search for the optimal combination of the parameters is a 
combinatorial optimization problem, the difficulty of which increases 
exponentially with the number of parameters to be optimized. As an 
example, if there are 10 parameters (just 5 gradient nodes) that can take 
on 20 values each, the number of combinations is 2010(~1013), an as-
tronomical figure. Therefore, efficient optimization methods that 
incorporate domain knowledge are required to be able to cope with a 
large number of parameters. 

Developing such methods has been an active field of research over 
the past decades. One strategy is retention modeling, in which the 
retention behavior of every analyte in a mixture is described by separate 
prediction models based on an interpolation of retention times obtained 
from a number of scanning experiments [2–4]. To construct these 
models, it is key that analytes can be tracked over multiple experiments 
and that the predicted experiments (computed in silico) match the ”wet” 
experiments well, at least in terms of peak width and retention time [5]. 
Then this retention model can be used to predict the performance of 
future experiments that might be optimal, e.g. using a grid search [2], a 
genetic algorithm [6,7], gradient descent optimization [5] or Bayesian 
optimization [8]. The above strategy allows separations to be predicted 
a priori, yet suffers from the dependency of peak tracking and the reli-
ability of the retention model. 

Other strategies strictly rely on modeling the objective function 
directly through”wet” experimental evaluation. In these methods, peak- 
tracking is not required. Here, pioneering methods utilized simplex 
optimization [9,10]. Later methods utilized genetic algorithms in a 
closed-loop fashion for GC-MS [11] and LC-MS/MS [12]. However, for 
such approaches, as every experiment needs to be physically executed (i. 
e., ”wet”), this approach is more costly and time-consuming. Thus, the 
first challenge is to efficiently establish complex gradient programs 
capable of separating contemporary challenging samples in as few ”wet” 
experiments as possible, which we refer to as data efficiency. 

Besides this intricate optimization problem, a second challenge lies 
within the formulation of a numerical optimization goal (i.e., the 
objective function). While this can be described by a single objective, 
such as the degree of separation between peaks, method development 
typically is multi-objective in nature. For example, objectives might 
include the number of peaks, the separation time, the peak capacity, etc. 
[11] In this case, one is often interested in Pareto optimal solutions for 
which any improvement in one objective means deteriorating another. 
The set of these solutions forms the Pareto front. Provided with this set, 
decision-makers can select a solution with an objective trade-off ac-
cording to their needs. Multi-objective problems can be reformulated 
(scalarized) into a single-objective by assigning different weights to the 
objectives and (for example) applying a summation. This has been done 
in various ways in the chromatography literature [7,13–16]. For 
instance, Berridge et al. [16] combined the resolution between peaks, 
the number of peaks, the retention time of the last eluted peak, and the 
retention time of the first eluted peak using three arbitrarily chosen 
weights. However, it can be non-trivial to obtain an adequate set of 

weights where every Pareto optimal solution can be reached, especially 
if the complexity of a sample is unknown a priori. In addition, different 
weights can lead to different Pareto optimal solutions. 

Another approach is to maximize the hypervolume indicator (HVI), 
which measures the hypervolume (area in two dimensions, or volume in 
three dimensions) between the Pareto front and a reference point. 
Maximizing the HVI has been shown to produce excellent coverage of 
the Pareto front over a range of problems [17–19]. In addition, 
multi-objective evolutionary algorithms such as PESA-II and NSGA-II 
have been developed to provide effective approximations of the Pareto 
frontier. The former has been utilized in the multi-objective optimiza-
tion of three objectives (number of peaks, run time, and signal/noise 
ratio) of a human serum sample in GC-MS [11]. As well as in targeted 
metabolite analysis in LC-MS/MS [12]. Moreover, the latter two works 
were fully automated using visual scripts that imitate keyboard and 
mouse commands. 

Resolving the above two challenges of data efficiency and balance 
between (conflicting) optimization objectives, would allow extremely 
rapid method development. One particularly attractive benefit is that 
this can happen in a closed-loop fashion, for example, by a system that 
(1) controls the parameters of the LC machine, (2) performs the mea-
surement, (3) evaluates the objective function(s), and based on this, (4) 
proposes and performs the next experiment, until some optimization 
criterion is met, without any human intervention. We earlier investi-
gated the feasibility of Bayesian optimization to address these challenges 
[8]. Our simulations markedly outperformed grid search and random 
search approaches, and suggested in silico that the technique could be 
used to optimize gradient programs for both 1D- and 2D-LC. In addition, 
other works also have consistently shown that Bayesian optimization 
outperforms evolutionary algorithms (NSGA-II and PESA-II) in terms of 
sample efficiency [17,20,21]. Therefore, in this work, we developed a 
novel algorithm based on Bayesian optimization for the closed-loop 
automated development of gradient-based methods in LC. To achieve 
this, we designed a unique covariance kernel that elegantly incorporates 
domain knowledge of the gradient-program shape to improve efficiency 
in finding a satisfactory optimum. Moreover, our modular strategy is 
demonstrated for both single-objective and multi-objective Bayesian 
optimization. The resulting closed-loop platform was used to optimize 
the separation of two complex dye mixtures. In addition, we assessed the 
performance between single-objective and multi-objective optimization 
on a retention modelling example. 

2. Theory 

2.1. Objective function 

The concept of resolution is commonly used to describe the extent of 
separation between successive peaks in a chromatogram. However, the 
resolution is usually defined in a way that is applicable only to sym-
metrical (Gaussian) peaks with similar peak areas. Schoenmakers et al. 
identified this problem and proposed modifications to the general res-
olution equation to correct for large variations in peak areas and peak 
asymmetry [22]. The authors defined peak asymmetry using the asym-
metry factor As, which for a peak i is given by: 

As,i =
ai

bi
(1)  

where ai and bi are widths of the ascending and descending slopes of the 
peak, relative to the peak apex, respectively. The widths are measured at 
a height of 0.135 relative to the reference height hi (4σ for Gaussian 
peaks). This is illustrated in Fig. 1 for two peaks i and j. 

Given the asymmetry of a peak i, the plate count can be defined as: 

Ni = 16
(

tR,i

ai + bi

)2

(2) 
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where tR,i is the retention time for peak i. By accounting for peak 
asymmetry, the resolution between two peaks i and j can then be defined 
as follows: 

iRsi,j =

(
tR,j − tR,i

)(
1 + As,i

)(
1 + As,j

) ̅̅̅̅̅̅̅̅̅̅
Ni Nj

√

4As,itR,i
(
1 + As,j

) ̅̅̅̅̅
Nj

√
+ 4tR,j

(
1 + As,i

) ̅̅̅̅̅
Ni

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+ 1/2ln
(
hj
/

hi
)√ (3)  

an important consequence of these modifications is that the resolution 
for a pair of peaks has two different values, one for each peak. For the 
second peak (j), the corresponding equation is: 

jRsi,j =

(
tR,j − tR,i

)(
1 + As,i

)(
1 + As,j

) ̅̅̅̅̅̅̅̅̅̅
Ni Nj

√

4As,itR,i
(
1 + As,j

) ̅̅̅̅̅
Nj

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+ 1/2ln
(
hj
/

hi
)√

+ 4tR,j
(
1 + As,i

) ̅̅̅̅̅
Ni

√ (4)  

in this work, we compute values both for Eq. (3) and Eq. (4) and select 
the lowest value, as the lowest value is the most important indicator of 
quality of the separation. This value will be abbreviated as Rsi,j. Next the 
resolution is normalized to a value between 0 and 1 using the following 
desirability function: 

d
(
Rsi,j ≥ 1

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0  if  Rsi,j ≤ 1
Rsi,j

1.5
 if  1 ≤ Rsi,j ≤ 1.5

1  if  Rsi,j ≥ 1.5

(5)  

note that the equation is capped to a resolution of 1.5, and thus higher 
resolution values are not rewarded more. Also, here a lower limit of the 
resolution was chosen to be 1 (as stated in d

(
Rsi,j ≥ 1

)
). Finally, for a 

chromatogram consisting of P peaks, the overall separation quality is 
given by: 

ORs =
∑P− 1

i=1
d(Rsi,i+1) (6)  

in this way, the resolution between all neighboring peaks is computed 
and summed over. 

2.2. Parameters of a multilinear gradient program 

Fig. 2 illustrates a typical example of a multilinear gradient profile. 
The gradient nodes (φi, ti) define the coordinates of the transition points 
between consecutive linear segments, and are depicted by blue dots. 
Note that the initial and final gradient nodes (depicted by black dots) are 
kept fixed throughout all experiments at an initial modifier concentra-
tion of 0% modifier solvent B for 0.25 min, and a final modifier 

concentration of 100% B at t = 20 min (for this example specifically), 
respectively. By adding more gradient nodes (effectively adding two 
parameters per node), more complex gradient programs can be con-
structed. We only allowed for positive or flat (isocratic) gradient steps by 
incorporating the following constraints: φi ≤ φi+1, and ti ≤ ti+1. 

3. Experimental 

3.1. Chemicals 

Milli-Q water (18.2 MΩ cm) was obtained from a purification system 
(Arium 611UV, Sartorius, Germany). Acetonitrile (LC-MS grade) was 
obtained from Biosolve (Valkenswaard, The Netherlands). triethylamine 
(≥ 99.5%), and formic acid (reagent grade, ≥ 95%) were obtained from 
Sigma-Aldrich (Darmstadt, Germany). Different dyestuffs and the ex-
tracts of the samples from historical objects were obtained from the 
Cultural Heritage Agency of the Netherlands (RCE, Amsterdam, The 
Netherlands). 

3.2. Instrumental 

All experiments in this study were performed using an Agilent 1290 
Infinity 2D-LC system (Waldbronn, Germany) configured for one- 
dimensional operation. The system was comprised of a binary pump 
(G7120A), an autosampler (G7129B) equipped with a 20 μL injection 
loop, a thermostatted column compartment (G7116B), and a diode- 
array detector (DAD, G7117B) with a sampling frequency of 240 Hz 
equipped with an Agilent Max-Light Cartridge Cell (G4212-60008, 10 
mm path length, Vdet = 1.0 μL. UV–vis spectra were recorded from 
190.0 nm to 640.0 nm with 0.5 nm steps. The needle was set to draw at a 
speed of 100 μL min− 1 and eject at a speed of 400 μL min− 1 and to allow 
1.2 s of equilibration time. In addition, a needle program with a wait 
time of 2 min was used. After each measurement, the column was 
flushed at 100% mobile phase B 1.5 min followed by 1.5 min 0% mobile 
phase B. During data export, the flow rate was lowered to 0.03 mL min− 1 

to reduce mobile phase use. To protect the column, an Agilent 1290 
Infinity in-line filter was used in front of the column. The system was 
controlled using Agilent OpenLAB CDS Chemstation Edition (rev. 
C.01.10 [287]). An Agilent Poroshell 120 SB-C18 (USCFH10021, 2.1 ×
100 mm i.d., dp = 2.7 μm, max ΔP = 1200 bar) was used. The flow rate 
was set to 0.65 mL min− 1. The injection volume was set to 1.0 μL. The 
temperature of the column oven was set to 40 ◦C. 

Fig. 1. Illustration of the relevant parameters determining the resolution be-
tween two (potentially) asymmetric peaks i and j. hi, tR,i, ai, bi, hj, tR,j, aj, bj. 

Fig. 2. Example of a multilinear gradient profile. Gradient nodes are depicted 
by blue dots and define the transition points between consecutive linear seg-
ments. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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3.3. Sample preparation 

The mobile phase consisted of a aqueous 5 mM triethylamine (TEA) 
buffer, brought to pH = 3.0 with formic acid, and acetonitrile (ACN) in a 
ratio of 95:5 TEA buffer/ACN (v/v, mobile phase A) and 5:95 TEA 
buffer/ACN (v/v, mobile phase B). 

Sample A was a solution of 18 degraded dyestuffs shown in the 
Supplementary Materials. Each dye was diluted, in concentrations of 
approximately 50–60 ppm by weight, in a mixture of ACN and DMSO 1:1 
(v/v). Sample B comprised of 80 samples of dyestuffs. The actual 
composition was more complex because possible impurities and degra-
dation products are unknown. Each sample was diluted into a stock 
solution, in concentrations of 5000 ppm by weight, in a mixture of ACN 
and DMSO 1:1 (v/v). A mixture of these 80 dyestuffs was created by 
mixing all the 5000 ppm stock solutions in equal ratio, resulting in a 
solution containing all 80 dyes, their contaminants, and degradation 
products, in a concentration of approximately 60 ppm for each dye. This 
sample originated from earlier work and a full list of the dyes and their 
molecular structures are described in the appendix of reference [23]. We 
then further diluted this mix to approximately 30 ppm in a mixture of 
ACN and DMSO (1:1) (v/v). 

3.4. Retention modeling framework 

For the retention modeling examples discussed in Sections 4.1 and 
4.5 we use in-house Python code provided in the Supplementary Ma-
terials. In this code, we used the linear solvent strength retention model 
[4], within the framework of multi-linear retention modeling as 
described in Nikitas et al. [14]. We describe peak widths using the model 
of Hao and co-workers [24], which corrects for gradient compression 
effects. For both experiments we use a plate number of 1000. For the 
experiments in Section 4.1, we uniformly sampled ln k0 values between 
1 and 10 and S values between 8 and 20 for 20 compounds. We used a 
column dead time of 0.15 min and a dwell time of 0.15 min. For the 
experiments in Section 4.5, we report retention parameters in the Sup-
plementary Material and use 0.8 min for both the column dead time and 
dwell time. 

3.5. Bayesian optimization algorithm 

The Bayesian optimization algorithm was implemented in Python 
using the BoTorch [25] and GPyTorch [26] packages. The sorting 
Matérn 5/2 kernel was developed in-house and is compatible with 
GPyTorch. Details regarding this kernel and how its hyperparameters 
are estimated can be found in Section S-1.2 of the Supplementary In-
formation. We provide additional theoretical information on Gaussian 
processes, and the acquisition functions mentioned in Section 3.5.1 and 
3.5.2 in Sections S-1.1 and S-1.3 of the Supplementary Information. 

3.5.1. Single-objective Bayesian optimization model 
For the single-objective Bayesian optimization model described in 

Section 4.3 we used the expected improvement acquisition function 
[27]. The acquisition function was optimized using multi-start optimi-
zation on 20 starting points drawn from an initial grid of 512 points. 

3.5.2. Multi-objective Bayesian optimization model 
For the multi-objective Bayesian optimization model described in 

Section 4.4 we used the q-Expected Hypervolume Improvement acqui-
sition function [17]. The acquisition function was optimized using 
multi-start optimization with 20 restarts drawn from an initial grid of 
512 points. 

4. Results and discussion 

4.1. Design of the Bayesian optimization framework 

Bayesian optimization is an established and efficient machine 
learning technique for the multivariate optimization of expensive-to- 
evaluate black-box functions [20]. At its heart, a probabilistic surro-
gate model of the objective function f(x) (the observable to be opti-
mized) is constructed given it’s input parameters x (e.g. x = [φ1, φ2, φ3, 
t1, t2, t3]). This surrogate model is then used to guide the optimization 
process. The model is a prior probability distribution over all possible 
objective functions, representing our belief about the function’s prop-
erties. This distribution is often described by a Gaussian process model, 
in a technique called Gaussian Process Regression (GPR) [28]. The prior 
distribution is updated with each new measurement to produce a more 
accurate posterior distribution. The Gaussian process can then provide 
the mean of this distribution, which is the best estimate of the objective 
function’s form. In addition, the model provides the variance of the 
distribution, which indicates how certain the model is around its pre-
dicted mean. The model will be fitted so that it is compatible with the 
measurements used to construct it. In the case where measurements are 
noisy, this information can also be processed by the posterior distribu-
tion, so that the posterior distribution only needs to fit the data to a 
precision dictated by the measurement noise. In this way, the model 
incorporates both measurement noise and correlations between mea-
surements at different input parameters. 

The correlation between any two measurements is characterized by 
the covariance kernel, which can be designed to reflect domain knowl-
edge and constraints. For instance, in reversed-phase chromatography, 
gradient programs typically contain isocratic steps or are increasing, so 
that φi ≤ φi+1 for ti ≤ ti+1. In addition, values of φi should be bounded 
between a volume fraction of 0 and 1, and ti should be between 0 and a 
user-defined maximum measurement time. While the latter constraints 
are easily set by box constraints (lower and upper bounds on the input 
parameters), constraining the acquisition function such that φi ≤ φi+1 
and ti ≤ ti+1, is less straightforward. We resolved this by adding an 
additional sorting operation to the kernel, which sorts all elements φ1:D 
and elements t1:D from low to high. This is described in more detail in 
Section S-1 of the Supplementary Information. The sorting operation 
introduces a permutation invariance to the kernel and hence the model, 
for example x1 = [φ1 = 0.4, φ2 = 0.2, φ3 = 0.6, t1 = 1, t2 = 3, t3 = 5] and 
x2 = [φ1 = 0.4, φ2 = 0.6, φ3 = 0.2, t1 = 1, t2 = 3, t3 = 5], would both be 
mapped to x = [φ1 = 0.2, φ2 = 0.4, φ3 = 0.6, t1 = 1, t2 = 3, t3 = 5]. This 
sorting operation thus intrinsically excludes negative gradients, and 
therefore reduces the input parameter space significantly. 

The next experiment to be performed is determined by an acquisition 
function based on the mean μ and standard deviation σ provided by the 
surrogate model. A different emphasis can be placed on the importance 
of the mean and standard deviation in order to allow for a trade-off 
between exploration and exploitation. The aim of exploration is to 
suggest regions of the input parameter space where model uncertainty 
(σ) is high. Whereas exploitation mainly focuses on regions with a high 
predicted mean. A simple example acquisition function is the upper 
confidence bound, UCB(x) = μ(x) + βσ(x), where β determines the trade- 
off between exploration and exploitation. Technical details of the 
Bayesian optimization algorithm used in this work can be found in 
Section 3, additional theory on Gaussian processes, and the acquisition 
functions can be found in Sections S-1.1 and S-1.3 of the Supplementary 
Information. With the above considerations in mind, we designed our 
Bayesian optimization loop as follows:  

1. A number of measurements are performed using randomly selected 
input parameters.  

2. A Gaussian process is fit to the previously performed measurements.  
3. An acquisition function is maximized and used to propose the next 

measurement. 
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4. The next measurement is performed, assessed, and added to the 
dataset.  

5. Steps 2–4 are repeated until the convergence criteria are met. 

This is illustrated qualitatively in Fig. 3 for a dummy retention model 
consisting of 40 analytes (see Section 3.4 for details). In this synthetic 
example, the goal is to find the gradient parameters (φ1 and φ2) with 
fixed time points at t1 = 0 min and t2 = 20 min that lead to an optimal 
resolution score (as in Eq. (6)). Column A of the plots in Fig. 3 resembles 
the true objective function values (Eq. (6)) computed on a 20x20 grid of 
values of φ1, φ2, also known as the response surface. Note that these 
surfaces are symmetric with respect to the bottom-left to top-right di-
agonal, as we have ensured that φ1 ≤ φ2 by permuting them if this is 
violated. It can be seen here that there is a clear optimum using a 
gradient program with φ1 = 0.2 and φ2 = 1. Column B of Fig. 3 shows the 
predicted mean of the Gaussian process regression model, based on the 

observed data points shown in red. Note that, despite the fact that all the 
observed data points are positioned in the upper left triangle, the 
Gaussian process regression model models the lower right triangle in a 
similar fashion, due to the imposed symmetry properties of the kernel. 
Column C shows the predicted variance of the surrogate model. Note 
that given the limited number of measurements, the model is not exactly 
describing the true response surface (Column A), however, even with 
just 5 data points (Row 1), the model already captures some trends of the 
true response surface. As more data points are added, the surrogate 
model begins to more closely resemble the true response function. 
Column D shows the surface of the acquisition function, where the red 
point denotes its maximum which is the experiment to be performed 
next. Note that despite the model not being able to accurately describe 
the true response function yet, the acquisition function proposes to 
perform an experiment at the global optimum after just 6 measurements 
(Fig. 3D2). Given enough measurements, the model should be able to 

Fig. 3. Two-dimensional example of a Bayesian optimization algorithm with n = 5, 6, 7, and 16 measured data points (Row 1, 2, 3 and 4, respectively). For the 
colormap, yellow indicates a high valued observable, whereas blue indicates a lower-valued observable. Column A shows the true response surface of a toy retention 
model. Column B shows the predicted mean of the surrogate model, based on the measured data points shown in red. Column C shows the predicted variance of the 
surrogate model. Column D shows the acquisition function and its maximum, denoted by the red cross, which indicates the experiment to be performed next. As more 
data points are added, the surrogate model begins to more closely resemble the true response function. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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model the response function accurately. 

4.2. Construction of a closed-loop platform to facilitate unsupervised 
automated measurements 

A closed-loop platform that facilitates automation was designed in 
order to develop and evaluate the Bayesian optimization framework in 
an unsupervised manner. Since analytical instruments typically 
comprise sophisticated hardware with built-in safety mechanisms that 
prevent improper use of experimental machinery, it was opted to 
interface our algorithm with existing instrument control software (ICS). 
However, ICS is often the product of several stages of development and 
continuously adapted to new technology. To prevent the algorithm from 
requiring adaptation to specific ICS and its procedures, the algorithm 
was designed to program and activate the ICS, after which a listener 
function was activated, while the BO algorithm would remain dormant. 
Once the LC experiment was finished, the ICS was programmed to export 
measurement data and create a signal for the listener function to reac-
tivate the BO algorithm. As a result, the LC is used as a subordinate in 
this workflow, controlled by the algorithm, with method parameters and 
a start signal as input, and raw data and a finalization signal as output. 
Consequently, our algorithm can support any LC system which is 
capable to meet these criteria. 

Upon reactivation of the BO algorithm, the raw data exported by the 
ICS was further processed so that a consistent evaluation of the objective 
function was possible. This comprised a baseline correction using the 
asymmetric least squares method [29], with an asymmetry factor of 
0.002 and a smoothing factor of 105, which was found to give stable 
results. We note that this number might have to be adjusted depending 
on the problem at hand (sample, detector, etc.). This was then followed 
by peak detection and computation of peak widths, which was done 
using modified routines from SciPy [30] using a height threshold of 
1000 and a width threshold of 100. We note that we used the peak in-
tensity of the detected peaks as peak height (hi, See Eqs. (3) and (4)). The 
peak information was then used to compute the objective function (Eq. 
(6)). This workflow is illustrated in Fig. 4. 

4.3. Single-objective Bayesian optimization 

To study the performance of the single-objective Bayesian optimi-
zation approach, the algorithm was configured to maximize the objec-
tive function described in Eq. (6) for two complex dye mixtures, 
abbreviated as sample A and B (described in Section 3.3). In both cases, 
the algorithm was restricted to the development of four-step gradients, 
which had a predefined φinit = 0% at tinit = 0.25 min, then progressed to 
φ1 at t1, to φ2 at t2, to φ3 at t3, to end at a pre-set φfinal = 100% at tfinal =

20.25 min. Here we chose 20.25 min, as longer measurement times 
restricted the number of possible iterations due to mobile phase use, 

however, this value can be set shorter or longer depending on the 
practitioners preferences. The algorithm was thus optimizing the pa-
rameters x = [φ1, φ2, φ3, t1, t2, t3]. The values of φi were restricted be-
tween 0% and 100% and the values of ti were restricted between 0.25 
min and 19 min. The algorithm was initialized with 6 initial measure-
ments. To draw parameters for these initial measurements, we opted for 
a Sobol sampling approach, which is a quasi-random sampling strategy 
that offers a lower discrepancy (fill the space of possibilities more 
evenly) than conventional pseudo-random number generators. The al-
gorithm was given an optimization budget of 34 measurements. All raw 
measurements and baseline corrected measurements can be found in the 
Supplementary Materials. 

Fig. 5 shows the results of the optimization process for sample A. The 
algorithm is seen to explore various combinations of modifier concen-
trations and respective time points (Fig. 5B–C), with alternating success 
according to the objective function score (Fig. 5A1). This is to be ex-
pected as the algorithm is balancing between exploration and exploi-
tation and learning more about the response surface on the fly. The best 
score was obtained at experiment 27, which is shown in Fig. 5D. The 
number of detected peaks are shown in Fig. 5A2, which is seen to have 
strong correlation with the objective function described in Eq. (6). 
However, as the objective function uses the resolution between peak 
pairs, it is also able to discriminate between measurements with a 
similar number of detected peaks, which can be seen for measurements 
27 and 32, which have a similar number of detected peaks, but the 
former has a higher objective function score due to more resolved peaks. 
In addition, incorporating the lower limit of a resolution of 1 in Eq. (6), 
which strictly cuts off these resolutions to 0, makes the objective func-
tion evaluation more stable, as in our setup the width detection typically 
becomes unreliable when peaks are not well resolved. 

Fig. 6 shows the results of the optimization process for sample B. 
Although this sample is more complex as it contains many more com-
pounds, the algorithm is seen to optimize the separation, where the 
objective function (Fig. 5A1) obtains its highest value at measurement 
18, which is shown in Fig. 6D. It is observed that using these gradient 
parameters, almost all of the separation space is used. It is also inter-
esting to note that between experiments 10 and 28, most of the time 
parameters (Fig. 6B–C) are kept fixed or only adapted slightly. Whereas 
the φi parameters do change. It could be that (for this sample) there is 
some redundancy in the parameters, i.e. using fixed timepoints, the al-
gorithm has enough degrees of freedom by changing the φi parameters 
to optimize the separation. 

4.4. Multi-objective Bayesian optimization of complex dye mixture 

In many real-world problems, there are several possible conflicting 
objectives that need to be optimized simultaneously in an efficient 
manner. In liquid chromatography, this could be the trade-off between 

Fig. 4. Schematic overview of the closed-loop Bayesian optimization framework.  
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resolution and total measurement time. In this scenario, the practitioner 
is typically interested in the Pareto front. The hypervolume (i.e.,the area 
for two objectives, the volume for three objectives, etc.) is a frequently 
used metric used to assess the quality of a Pareto front [17]. The 
hypervolume indicator quantifies the hypervolume from a reference 
point r with respect to the Pareto front, as illustrated in Fig. 7. Hence, the 
reference point dictates what values of each respective objective 
contribute to the hypervolume. Therefore, the location of the reference 
point impacts what area of the Pareto front is explored most. In case 
there is some clear area of interest, the reference point can be kept fixed 
and be provided by the practitioner based on domain knowledge. 
However, the reference point can also be adopted on the fly if this 
knowledge is not there. For instance by the method proposed by Ishi-
buchi et al. [31] where the reference point is taken to be slightly worse 
(10%) than the current minimum values of the Pareto front. We use this 
approach to pick the reference point. 

We also investigated the use of multi-objective optimization. For 
this, several objectives had to be defined, which were then modeled by 
separate Gaussian process models. Next, the multi-objective expected 
hypervolume improvement (EHVI) [32] acquisition function was opti-
mized, in order to pick the experiment to perform next. This acquisition 
function is described in more detail in Section S-1.3. This framework was 
then used to maximize the objective function described in Eq. (6) in 
combination with an objective function based on time, which was 
defined to be the time of the latest eluting peak in a measurement. In 

Fig. 5. Overview of results of the Bayesian optimization of sample A. A1) Observed objective function score as a function of experiment number in blue. The black 
dotted line denotes the best experiment value as a function of the experiment number. A2) The detected number of peaks in orange. B-C) Used values for φ1, φ2 and φ3 
(B) and t1, t2 and t3 (C) as a function of experiment number. D) Total intensity chromatogram (in blue) of experiment 27, the measurement with the highest objective 
function score. Detected peaks are shown in orange. The black line denotes the gradient program. The blue dots denote the optimizable gradient parameters. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

gr9_3c.pdf - Fig. 6. Overview of results of the Bayesian optimization of sample B. A1) Observed objective function score as a function of experiment number in blue. 
The black dotted line denotes the best experiment value as a function of the experiment number. A2) The detected number of peaks in orange. B-C) Used values for 
φ1, φ2 and φ3 (B) and t1, t2 and t3 (C) as a function of experiment number. D) Total intensity chromatogram (in blue) of experiment 18, the measurement with the 
highest objective function score. Detected peaks are shown in orange. The black line denotes the gradient program. The blue dots denote the optimizable gradient 
parameters. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 7. Visualization of the hypervolume indicator (grey shaded area) from a 
reference point r. The blue points denote measurements on the Pareto front, 
while the red points denote measurements that are not on the Pareto front. The 
green point is a datapoint that would increase the hypervolume if measured. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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order to have a robust evaluation of this time, we performed an addi-
tional peak detection with a height threshold of 2000 and a width 
threshold of 100, as otherwise artifacts from the baseline correction 
were in rare cases wrongly detected as peaks, and hence resulted into a 
erroneous time score. The peak detection with a height threshold of 
1000 was used for the computation of the objective function described in 
Eq. (6). The algorithm was restricted to optimize the parameters of a 
four-step gradient (x = [φ1, φ2, φ3, t1, t2, t3]) with similar predefined 
values for φinit, tinit, φfinal and tfinal, and bounds for the optimizable pa-
rameters as in Section 4.3. We optimized the same dye mixtures, sample 
A and B as in the single-objective setting. In addition, the algorithm was 
initialized with the same 6 initial experiments and was given an opti-
mization budget of 34 measurements. The reference point described in 
Fig. 7 was chosen to be adapted on the fly and was defined to be 10% 
worse than the minimum values of the Pareto front. The values of the 
reference point during each iteration of the algorithm can be found in 
Supplementary Information Section S-2. All raw measurements and 
baseline corrected measurements can be found in the Supplementary 
Materials. 

Fig. 8 shows the results of the optimization process of sample A. 
Fig. 8B–C shows what combinations of modifier concentrations and 
respective time points have been proposed by the algorithm. Interest-
ingly, compared to the single-objective optimization, the variations in 
the gradient parameters are larger and remain relatively large 
throughout the 34 experiments. This is a result of the algorithm trying to 

identify and explore the full Pareto front, instead of just one Pareto 
optimal point as in single-objective optimization. The progress of the 
discovery of the Pareto front can be seen in terms of hypervolume in 
Fig. 8A and in terms of the Pareto front in Fig. 8D. During the 34 iter-
ations, the algorithm continuously improves the hypervolume and thus 
improves its estimation of the Pareto front, which seemingly is convexly 
shaped, thereby finding different sets of method parameters that trade 
off the measurement time and resolution score. 

Fig. 9 shows two measurements (0 in A, and 6 in B) on the Pareto 
front. Experiment 6 has the highest resolution score but is the longest 
experiment on the Pareto front. Whereas measurement 0 is 5 min 
shorter, yet at a cost of a slightly reduced resolution. 

In similar fashion, Fig. 10 shows the results of the optimization 
process of sample B. Where, although the sample has a more complex 
nature, the algorithm is also able to find several points on a convexly 
shaped Pareto front, and continues to improve the hypervolume over the 
34 experiments, both finding measurements with high resolution scores 
and measurements with short measurement time. Compared to the 
Pareto front in sample A, the resolution score deteriorates faster when 
decreasing the measurement time, due to the more complicated sample 
composition. Note that for both samples, the experiments that have the 
highest resolutions scores in the multi-objective setting, have similar 
scores as the optima found by the single-objective experiments. Mea-
surements 18 and 16 that lie on the Pareto fronts are shown in Fig. 11. 

Fig. 8. Overview of results using multi-objective Bayesian optimization on sample A. A) Hypervolume determined from the initial reference point as a function of 
experiment number. B-C) Used values for φ1, φ2, and φ3 (B) and t1,t2, and t3 (C) as a function of experiment number. D) Pareto front plot. Blue points denote 
measurements on the Pareto front, whereas red points are dominated by the Pareto front. The black cross denotes the initial reference point from which the 
hypervolume is determined. The blue shaded area denotes the area that is dominated by the reference point, hence measurements that have either a time score or 
resolution score (or both) in this area, cannot contribute to the hypervolume. (For interpretation of the references to color in this figure legend, the reader is referred 
to the Web version of this article.) 

Fig. 9. Total intensity chromatograms of measurement 0 (A), and 6 (B) of sample A, which are measurements on the Pareto front.  
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4.5. Single-objective versus multi-objective 

In this section we further investigate and compare the performance 
of single- and multi-objective optimization. For this purpose we study a 
synthetic sample (n = 20), using retention modelling (See Sec. 3.4). As in 
retention modelling we know the retention time and width of each 
component, even when not properly resolved, this allows for a com-
parison study of the BO algorithm that is not corrupted by measurements 
noise or erroneous peak detection. 

When using a linear gradient, this sample has two distributions, 
which is shown in Fig. 12A and by quickly increasing mobile phase B 
after elution of the first distribution, a significantly faster method time 
can be obtained (See Fig. 12B–C). 

To test the performance of the single-objective Bayesian optimiza-
tion we defined the following scalarized objective: 

Oscalarized = αORs + βOt, (7) 

Where ORs is the earlier defined Eq. (6), Ot is the elution time of the 
last eluting peak and α and β are weighting factors which determine the 
importance of each objective. Note that in the determination of ORs, 
peaks eluting after 60 min were excluded. For the multi-objective 
Bayesian optimization, we maximized the hypervolume encompassed 
by the objectives, where we set the reference point to [0, 60], where the 
aim was to maximize the resolution score and minimize the measure-
ment time. The algorithms optimized 8 gradient parameters. Both the 

single-objective and multi-objective algorithms where then ran for 3 
trials with different random initial experiments per trial. Here the single- 
objective algorithm was ran using different values of α and β to compare 
how this affected the optimization process. The random initial experi-
ments in each trial where the same for both the single- and multi- 
objective algorithms so that a fair comparison could be made. 

Fig. 13A–E shows the score as a function of iterations for each al-
gorithm setting. Here it can be observed that all single-objective (SO) 
variations and the multi-objective (MO) optimization converged to an 
optimum after 20 iterations after which only slight improvements where 
still observed. This was the case for all three trials as indicated by the 
error bars. Fig. 13F shows the Pareto fronts for each algorithm setting. 
Here it can be seen, in the single-objective case, that depending on the 
choice of weighting factors α and β, the algorithms converged to 
different optima. For instance, for the case α = 1, β = 1e− 5, which is 
heavily focused on maximizing the resolution (shown in green), optima 
in the right corner of the Pareto front were profound, thus mostly 
ignoring the time component. Likewise for the case α = 1e− 3, β = 1 
(shown in red), most solutions ended up in the top left corner, hence 
mostly focusing on short method times. When picking a more sensible 
case α = 1, β = 0.1 (shown in purple), the algorithm found methods with 
a high resolution score, but also found relatively fast methods that can 
do this. Therefore, it is crucial that α and β are defined in such a way that 
they give methods in which the practitioner is interested. This can be 
difficult to define a priori when the sample composition is unknown, and 

Fig. 10. Overview of results using multi-objective Bayesian optimization on sample B. A) Hypervolume determined from the initial reference point as a function of 
experiment number. B-C) Used values for φ1, φ2, and φ3 (B) and t1,t2, and t3 (C) as a function of experiment number. D) Pareto front plot. Blue points denote 
measurements on the Pareto front, whereas red points are dominated by the Pareto front. The black cross denotes the initial reference point from which the 
hypervolume is determined. The blue shaded area denotes the area that is dominated by the reference point, hence measurements that have either a time score or 
resolution score (or both) in this area, cannot contribute to the hypervolume. (For interpretation of the references to color in this figure legend, the reader is referred 
to the Web version of this article.) 

Fig. 11. Total intensity chromatograms of measurement 18 (A), and 16 (B) of sample B, which are measurements on the Pareto front.  
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hence it is not known what values the resolution score can take, nor how 
long the measurement should be. The multi-objective algorithm on the 
other hand, found solutions in all of these areas simultaneously, within 
the same optimization budget, without the need of defining weighting 
factors. In addition, compared to the setting α = 1, β = 0.1, it even found 
methods with similar resolution, yet shorter method times. Two chro-
matograms for the measurements encircled in Fig. 13F are shown in 
Fig. 12, where it can be seen that the multi-objective algorithm finds a 
faster method with similar resolution. Therefore, the use of multi- 
objective Bayesian optimization seems preferable over single-objective 
optimization, when dealing with multiple competing objectives. 

5. Conclusion 

We have developed an algorithm capable of optimizing gradient 
programs in an unsupervised closed-loop fashion. For our algorithm, we 
opted for Bayesian optimization given its data efficiency and adapted 
this for use in liquid chromatography by tailoring a Gaussian process 
model. To accomplish this, we designed a novel covariance kernel 
capable of incorporating domain knowledge. The algorithm was 
configured to directly interface with the LC system and was successfully 
applied for the optimization of a complex dye mixture. Single-objective 

and multi-objective Bayesian optimization were investigated. While 
both approaches resulted in satisfactory separation methods, multi- 
objective optimization provides the user with a broader range of solu-
tions without any prior knowledge. Relative to retention modeling based 
approaches, our strategy based on Bayesian optimization does not rely 
on peak tracking nor retention modeling. As a result, this method can be 
used for cases where retention modeling is not possible. However, it is 
known that successful applications of Bayesian optimization are typi-
cally limited to problems with less than twenty parameters [33], and 
generally require more measurements as this dimensionality increases. 
Hence, the scalability of the method (i.e. the number of parameters to be 
simultaneously optimized) may be limited. Therefore, as an additional 
step forward, we envisage a solution that combines the time-efficiency 
of retention modelling with the data-efficiency of Bayesian optimiza-
tion. Our future work will be dedicated to this. Furthermore, the 
applicability to different sample matrices must further be explored, as 
well as the utilized objective functions. Finally, the use of multi-channel 
data (e.g. MS) will yield additional information which is expected to 
significantly improve the robustness of the algorithm and will be 
investigated. 

Fig. 12. Chromatograms of synthetic retention modeling sample (n = 20). A) Linear gradient, showing that sample has two distributions of eluting compounds. B) 
The purple measurement encircled in Fig. 13. C) The orange measurement encircled in Fig. 13. 

Fig. 13. A-E) Score versus iteration for multi-objective (MO) and single objective Bayesian optimization (SO) variations with different values of α and β. We report 
the mean and standard error over 3 trials. F) Pareto front of each respective optimization mode. 
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