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Magic happens when
you do not give up,
even though you
want to.

The universe always
falls in love with a
stubborn heart.

- JM Storm
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Chapter 1

Preface 

13% of people worldwide are affected by mental health issues, which cause substantial 
reductions in quality of life and economic productivity. As such, mental health issues are 
a big burden for the individual and their social surroundings, as well as for society [World 
Health Organization, 2020]. Mental disorders are a diverse group of mental health issues 
that can be characterized by anxiety, emotional dysregulation (ED) or altered behavior 
of the individual [American Psychiatric Association, 2014]. Over the past decades, 
significant amounts of research efforts were invested to improve our understanding of 
the neurobiological mechanisms that contribute to, and may underlie, mental disorders. 

It is also important to consider that the brain is a highly adaptable and malleable 
organ that can and needs to respond to many external factors and challenges [Kolb and 
Teskey, 2012]. In a way, failure to adapt can also be considered a mechanism that might 
underlie specific aspects of mental disorders. In fact, we can utilize the ‘adaptability’ of 
the brain to study the underlying mechanisms of specific brain disorders, and potentially 
also to advance the development of novel treatments. For example, by stimulating the 
brain in a specific, spatio-temporally well-controlled manner, and consequently consid-
ering the dynamic changes that occur in the brain as it adapts to those stimuli, we might 
be able to better understand the mechanisms involved in (mis-)processing of challenges 
to the brain that can modulate behavior, cognition or emotional regulation [Wojtalik et 
al., 2018].

The overall aim of this thesis is, by using comprehensive MRI studies, to inves-
tigate the influence of specific cognitive, pharmacological, and physical interventions 
on selective behavioural, cognitive and neuronal changes of the brain. We here; 1) 
investigated cognitive task-based interventions on specific brain functions, and next 
examined medication effects on certain symptom clusters and brain functions of 
individuals with ADHD, and 2) investigated the effects of a longitudinal exercise inter-
vention on various measures of brain plasticity in young healthy adults.
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General Introduction

1General Introduction

Treatments and interventions for mental disorders

Over the past decades, researchers and medical professionals have worked together to 
develop treatments and interventions for a variety of mental disorders [Wojtalik et al., 
2018]. Currently, one of the most common and most direct ways of treating a mental 
disorder is with medication. Unfortunately, most medications for mental disorders suffer 
from two major problems: 1) a strong heterogeneity in their efficacy between individuals, 
and sometimes even treatment resistance to the available treatments; and 2) adverse 
side effects are relatively common [Howes et al., 2022]. Therefore, efforts are being made 
to develop biomarkers and better measurement techniques that can identify disorder-
specific neurobiological changes, which could aid patient stratification, improve the 
efficacy and reliability of medications, or help to develop better ones [Lozupone et al., 
2017]. 

In addition to pharmacological treatment, behavioural therapy, cognitive interven-
tions, or trainings are commonly being applied in psychiatry. In behavioural therapy, the 
focus lies on changing specific habits or introducing new ones [Antony et al., 2020]. In 
cognitive therapy, certain cognitive abilities, like working memory (WM), attention, or 
emotion regulation, are trained through specific cognitive tasks. A common therapeutic 
approach that has been shown to work well in many mental disorders is a combination of 
the two, namely cognitive-behavioural therapy [Leichsenring et al., 2006]. Most of these 
treatments are based on the premise that the brain is highly malleable. Neuroplasticity, 
also known as brain plasticity, refers to the brains ability to change and adapt in response 
to internal and external challenges, e.g. by reorganizing its structure, connections or 
function. Neuroplasticity is, for example, essential for brain development and learning, 
but also to recover from deleterious disturbances and changes occurring throughout 
life. Generally, two main types of neuroplasticity can be distinguished [Mateos-Apa-
ricio and Rodríguez-Moreno, 2019]: functional and structural neuroplasticity. Structural 
plasticity refers to the formation of new synapses, new dendrites or even new nerve 
cells, and the growth of physiological support structures, like arteries that are essential 
for oxygen delivery, waste removal, and scaffold functions. Also, via processes like axonal 
sprouting, axons can grow new synapses that can establish contact or (re-)connect with 
other neurons, thereby making new links and neural pathways that allow to accom-
plish new functionalities. Functional plasticity, on the other hand, refers to changes in 
output, responsivity or function of a given brain network or structure that is typically 
induced by environmental factors or events [von Bernhardi et al., 2017]. Examples are the 
brain changes underlying learning and memory, or the induction of fear behavior after 
adverse experiences. Functional plasticity can be mediated via plastic changes at the 
level of the synapse, where the transmission of information can be weakened, or rather 
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Chapter 1

strengthened after e.g. repeated experiences, like in long-term potentiation, which is 
the persistent increase in synaptic strength following high-frequency stimulation of a 
chemical synapse [Galván, 2010]. 

While plasticity is prominent during the period of early brain development, scien-
tists nowadays propose that malleability of the brain, even though to a lower extent 
and only in specific brain regions (i.e. mainly in the hippocampus), is in fact maintained 
at many levels and can e.g. take place throughout all life stages [Kempermann et al., 
2018; Nieto-Sampedro and Nieto-Díaz, 2004]. Recently, modern clinical experimental 
approaches such as magnetic resonance imaging (MRI) have made it possible to gather 
more detailed information on plasticity changes also in the in-vivo human brain.

MRI as a tool in intervention studies

MRI is a powerful imaging technique that allows to estimate a wide range of functional, 
structural, and biochemical features of the brain. MRI is non-invasive and accordingly, can 
be applied dynamically and longitudinally, and can be repeated in the same individual. 
Therefore, MRI can be used to evaluate the effects of specific challenges, perturbations 
or trainings on brain structure and physiology. Furthermore, while we can investigate 
effects of exposure to specific challenges, measures of cognition, physiology and other 
participant characteristics can be acquired in parallel. Having information about the 
structural and functional malleability of the brain, measured by MRI, and about the 
changes on behavioral or physiological levels, enables us to link these together and find 
correlates to eventually unravel neurobiological mechanisms underlying brain health and 
disease [Kalin, 2021]. In the following paragraphs a short overview of the MRI techniques 
used in this thesis will be given:

1) T1-weighted MRI is an example of an anatomical MRI technique used to assess 
regional volumetric differences in specific brain regions, such as gray matter (GM), 
white matter (WM), and cerebrospinal fluid (CSF), but also smaller regions, including the 
hippocampus. It can be used to assess differences between groups or longitudinally 
within one participant. For that, the regions’ outline is segmented and its volume or 
thickness can consequently be estimated using sophisticated algorithms. Volumetric 
measures provide information about in- or decreases of the structure of a region, 
but lack information on the exact underlying mechanisms that might cause these 
(adaptive) changes [Keller and Roberts, 2009]. 

2) Functional MRI (fMRI) is a tool to investigate stimulus-induced patterns of brain 
activity. FMRI is based on the observation that brain activation is accompanied by 
a local vascular response. This causes a change of the relative levels of oxygenated 
hemoglobin and deoxygenated hemoglobin that can be detected on the basis of 
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1their differential magnetic susceptibility, which results in the blood-oxygen-level 
dependent (BOLD) signal. The size of the BOLD-signal can be related to the magnitude 
of neuronal activation in specific brain regions. FMRI has played an essential role e.g. 
in determining the functional organization of the human brain, also in response to 
specific tasks or trainings. Resting-state fMRI (rs-fMRI) is a derivative of fMRI that 
measures spontaneous BOLD fluctuations at rest, without any stimulus or activity 
[Chen and Glover, 2015]. 

3) Arterial spin labelling (ASL) is a technique with which we can estimate the amount 
of blood flowing to a region. This approach magnetically labels arterial blood water 
protons as an endogenous tracer, allowing for the measurement of tissue perfusion 
(cerebral blood flow; CBF), often expressed as mL of blood per 100g of tissue per 
minute. This can be compared between groups and also within an individual before 
and after a challenge to get information on perfusion changes. Brain perfusion 
is crucial for neuronal growth and synapse formation as a greater blood supply is 
essential to provide adequate nutrients to support neuronal plasticity and functional 
adaptation [Alsop et al., 2015].

4) Cerebral blood volume (CBV), is defined as the volume of blood present in a certain 
quantity of brain tissue, often expressed as milliliters of blood per 100g of brain tissue. 
Concentration-time curves may be constructed from signal intensity-time curves, and 
the area under these curves can then be used to determine CBV. CBV can be measured 
with so called T1-mapping strategies, for example through measuring the tissue 
T1 relaxation time before and after the arrival of a contrast agent. In this thesis, we 
used gadolinium for that purpose. The calculated CBV gives information about the 
hemodynamic correlate of oxygen metabolism, reflects brain activity and function 
and we can assume the density and architecture of vascularization of a region 
[Lindgren et al., 2014].

5) MR Spectroscopy (MRS) offers a noninvasive way of measuring biochemical changes 
in the brain. In contrast to the methods described above, it does not provide an image 
of the brain, but (typically) a one-dimensional spectrum. It makes use of the so-called 
“chemical shift” of neurometabolites to determine the location of the frequency axis 
of the spectrum, which is determined by the chemical environment protons reside. 
The frequency axis is often in parts per million (ppm), to provide a field-strength 
independent scale of the resonance frequency. The area under the curve of the 
neurometabolites in the spectrum can then be used to estimate the concentrations 
of specific metabolites in a given voxel of the brain [Kreis et al., 2020].
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Chapter 1

Part 1: cognitive and pharmacological interventions in Attention-
Deficit/Hyperactivity Disorder (ADHD)

ADHD
In this thesis, we studied Attention-Deficit/Hyperactivity Disorder (ADHD), one of the 
most common neurodevelopmental disorders. The DSM-5 states a prevalence of 11.4% 
in primary school children [American Psychiatric Association, 2013]. Even though it is 
most commonly diagnosed in childhood, the disorder can persist into adulthood with a 
prevalence of 5% in adults [Caye et al., 2016].

ADHD is defined by the following symptoms: 1) the presence of developmentally 
inappropriate levels of hyperactive-impulsive and/or inattentive symptoms for 6 months 
or more; 2) symptoms occurring in different life settings (e.g., home and school); 3) 
symptoms that cause destructions in daily life; 4) some of the symptoms and impair-
ments began in early to mid-childhood; and 5) no other disorder explains the symptoms 
[Faraone et al., 2015; World Health Organization, 2004]. Depending on the composition 
of their symptoms, ADHD can be classified as mostly inattentive, primarily hyperac-
tive-impulsive, or both. ADHD is frequently associated with comorbidities, including 
mood and anxiety disorders, autistic spectrum disorders, oppositional defiant disorder, 
conduct disorder, eating disorders, and substance use disorders [Faraone et al., 2021]. 
Emotion dysregulation (ED), the inability to control and minimize the disruptive effects 
of irrelevant emotional stimuli on goal-oriented processes, has recently been suggested 
as an additional core symptom in especially adult ADHD [Hirsch et al., 2019]. Emotion 
regulation issues in adult ADHD include impaired emotional recognition, emotional 
responsivity, and emotional lability, further complicating the spectrum of classic 
symptoms [Beheshti et al., 2020]. Importantly, ED is associated with the persistence of 
ADHD into adulthood and predicts lower quality of life in young adults [Groenewold et 
al., 2013]. 

Even though the methodological capabilities in the field of neuroimaging research 
have been improving and the research efforts have been steadily growing, the under-
lying pathophysiological mechanisms of ADHD still remain only partially understood 
[Ghimire et al., 2020]. Nevertheless, neuroimaging has contributed significantly to our 
understanding of the alterations in the structure, function, and neurochemistry in 
ADHD. Structurally, for instance, in children with ADHD, the dorsolateral prefrontal 
cortex (DLPFC), caudate, pallidum, corpus callosum, and cerebellum are most commonly 
found to be smaller in size. The results from specific region of interest (ROI) approaches 
[Xavier Castellanos et al., 2002] and automated procedures [Sowell et al., 2003] suggest 
lower total brain sizes and substantial cortical modifications, indicating that the brain 
may be impacted more broadly. 
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1On a functional level, ADHD has been increasingly proposed to be a condition of 
brain-wide network dysconnectivity rather than one that presents with region-specific 
deviances [Castellanos and Proal, 2012]. The use of rs-fMRI advanced this hypothesis 
significantly and a growing body of diverse research into rs-fMRI connectivity has 
consistently reported reduced connectivity within the default mode network (DMN; 
[Castellanos and Aoki, 2016; Gao et al., 2019b; Posner et al., 2014]), disrupted connec-
tivity between the executive control network (ECN), the DMN [Gao et al., 2019a; Posner et 
al., 2014; Sutcubasi et al., 2020] and salience network (SN), and involvement of affective, 
motivational [Gao et al., 2019b; Posner et al., 2014] and somatosensory networks [Gao et 
al., 2019b].

Neurochemically, positron emission tomography (PET) and single-photon emission 
computed tomography (SPECT) research have frequently focused on changes in 
dopamine [Volkow et al., 2007]. This focus on striatal dopamine has been supported by 
structural and functional imaging findings indicating striatal abnormalities [Hoogman et 
al., 2017; Lei et al., 2015].

Interventions and treatments in ADHD

Methylphenidate
The first-line treatment for ADHD is pharmacotherapy with stimulants. MPH is a 
psychostimulant and the most commonly prescribed medication in ADHD. The 
pharmacological mechanisms of MPH result primarily from its direct inhibition of 
the dopamine and noradrenaline transporters [Cortese et al., 2017]. By increasing 
dopaminergic activity, MPH induces a number of significant behavioral and cognitive 
effects, such as changes in executive and attentional function [Jaeschke et al., 2021]. 
Studies utilizing MPH as an acute pharmacological challenge have been done mainly 
in children and adolescents with ADHD, and have reported decreased functional 
connectivity, measured with rs-fMRI, in e.g. the striatum and thalamus, and frontal regions. 
In typically-developing (TD) adults, an increase in connectivity between the thalamus and 
attention networks, and subcortical regions was found. FMRI assessments have shown 
several functional effects  of  MPH  [Faraone, 2018; Schlösser et al., 2009]. For example, 
MPH was shown to increase activation of the dorsal attention network (DAN) whereas 
it alters deactivation of the default mode network (DMN) [Tomasi et al., 2011]. Another 
investigation discovered that MPH induced activity in the putamen only when a response 
inhibition error (‘commission error’) occurred, but not when response suppression was 
successful [Costa et al., 2013]. Several outcome measures of the Stroop color-word task 
were found to be improved after MPH administration [Moeller et al., 2014; Langleben 
et al., 2006], and this effect was likewise correlated with decreased activity in frontal 
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regions. This provides evidence that the apparent effects of MPH are dependent on the 
circumstances under which they are observed. MPH has also been shown to enhance 
regional cerebral blood flow (CBF) in more subcortical regions, while lowering CBF in the 
prefrontal cortex [Faraone, 2018; Schrantee et al, 2017]. Long-term MPH exposure was 
also shown to enhance activity in hippocampal areas and cerebellar regions, as well as 
change the strength of connections in a number of neural circuits [Schlösser et al., 2009; 
Faraone, 2018]. Additionally, long-term administration of psychostimulants (including 
MPH) was found to diminish structural and functional abnormalities in individuals with 
ADHD in a number of MRI investigations [Mueller et al., 2014; Schlösser et al., 2009; 
Schweitzer et al., 2004]. 

Dopamine transporter density in the striatum of individuals with ADHD has been 
reported to be negatively correlated with the length of time since the last exposure to 
psychostimulants and was positively correlated with the length of time since the last 
treatment, demonstrating that higher dopamine transporter density might be a side 
effect of prior stimulant medication and not a characteristic of the ADHD population as 
a whole [Fusar-Poli et al., 2012]. Interestingly, the theory of neural imprinting suggests 
that exposure to stimulants during stages of maturation may impact later development 
[Andersen, 2005]. In fact, research on animals suggests that the effects of MPH on devel-
opment vary greatly depending on the age at which treatment begins [Canese et al., 
2009]. In line, we found in a clinical trial comparing boys and men with ADHD that the 
effects of ADHD medication are modulated by age [Schrantee et al., 2016; Solleveld et al., 
2017; Bouziane et al., 2018]. Specifically, we found that acute MPH decreased thalamic CBF 
only in children, but not in adults [Schrantee et al., 2017] and observed that prolonged 
MPH-treatment followed by an acute challenge with MPH significantly influenced CBF 
in the striatum and thalamus in children, but not adults, nor in the placebo conditions 
[Schrantee et al., 2016]. Accordingly, we also showed that acute MPH administration 
modulates one of the functional neural mechanisms underlying emotional processing, 
i.e. amygdala reactivity, in an age-dependent manner [Bottelier et al., 2017].

So far, studies still show mixed results and no consensus has been reached on the 
exact mechanisms and potential beneficial effects of MPH on the developing vs. the 
non-developing brain. Such heterogeneity results mainly from previous studies only 
including adults or children, making it difficult to compare them directly, and including 
individuals with different medication histories, making it impossible to rule out the 
influence of that on the results. We here compared the effects of acute and long-term 
MPH on both medication-naive children and adults with ADHD, to investigate the 
age-dependent neural mechanisms involved in the first exposure to MPH. In this 
thesis, we focused on the effects of prolonged MPH on neural mechanisms underlying 
emotional tasks, and acute MPH during rest and correlated them to several symptom 
scores.
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General Introduction

1Behavioral and cognitive Interventions
In addition to pharmacotherapy, the efficacy of behavioral interventions for ADHD have 
been frequently studied [Fullen et al., 2020; Waxmonsky et al., 2019; Young et al., 2020]. 
For instance, these interventions include cognitive trainings, such as WM training. Using 
a ‘neurobiological systems’ approach to analyze ADHD therapeutic outcomes is likely 
to aid in explaining how these therapies can affect brain changes and functionality and 
elucidate the biological mechanisms and cascades that drive the symptoms over time. 
Specifically, by attempting to change behaviors, researchers might be able to obtain 
more knowledge about the etiology and persistence of the behavior. Likewise, by finding 
mechanisms for treatments, critical components, or boundary conditions, the field might 
be able to help individuals with ADHD better. For example, top-down cognitive control 
processes have been shown to influence emotional regulation. For instance, in TD control 
(TDC) participants, the prefrontal cortex (PFC) was activated more during cognitive 
control tasks in the presence of emotional stimuli [Hung et al., 2018; Song et al., 2017], 
indicating the potential top-down suppression of emotional reactivity. Furthermore, 
taxing WM processes before or during exposure to emotionally salient stimuli was 
shown to reduce emotional reactivity in e.g. substance use disorders [Kaag et al., 2018]. 
Therefore, in this thesis, we investigated the potential of a WM training on emotional 
reactivity and the underlying neural mechanisms in adults with ADHD.

Part 2: A longitudinal exercise intervention

Exercise

Neuroimaging findings in exercise studies
It is generally known that engaging in regular physical activity is associated with several 
health benefits, including a lower chance of developing cardiovascular disease, stroke, 
and obesity. Furthermore, exercise interventions have recently been suggested to have 
a positive influence on the brain and e.g. benefit mental health outcomes and several 
brain disorders, including depression [Daley, 2008], anxiety [Aylett et al., 2018], and ADHD 
[Christiansen et al., 2019]. 

Regular physical exercise is thought to introduce both structural and functional 
changes in the brain. Indeed, the simple act of exercising/physical activity has been 
shown to increase hippocampal neurogenesis, a specific form of structural plasticity that 
refers to stem cells giving rise to the birth of new neurons in the adult brain [Czéh and 
Lucassen, 2007; van Praag et al., 1999]. Exercise also was found to present antidepressant 
effects [McKercher et al., 2009; Olson et al., 2006], and improved learning abilities 
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[Anderson et al., 2000; Van Praag et al., 1999; van Praag et al., 2005]. The early investiga-
tions on the neural correlates of exercise in humans focused first on possible structural 
brain changes. Multiple cross-sectional and prospective longitudinal MRI investigations 
in humans have revealed that high-intensity and chronic aerobic exercise increased 
and/or restored age-related declines in brain volume, particularly in the hippocampus 
[Erickson et al., 2011]. Firth et al. [2018] described in their meta-analysis that the most 
significant exercise effects in were found in older people. Nevertheless, one study 
also revealed rapid hippocampus volume increases in younger adults [Thomas et al., 
2012]. While important, the studies on volume changes are lacking information on 
the biological substrates of the exercise-related changes. Several possible underlying 
mechanisms have been proposed in both animal and human studies [Lucas et al., 2015; 
Voss et al., 2011], including changes in perfusion, vascularization, synaptic plasticity, 
neurogenesis, and other molecular and cellular changes. All in all, physical activity 
appears to beneficially modulate several different pathways that may subsequently 
modify brain anatomy and function in both animals and humans [Kandola et al., 2016; 
Voss et al., 2013]. 

While exercise meets the criteria for a low-risk, socially acceptable and stigma-free 
therapeutic option, it so far has been mostly studied in middle-aged and older individuals. 
Relatively little was known about the mechanistic changes induced by exercise in brain 
structure and function, especially of young adults.  Moreover, a study, investigating 
exercise in a multi-modal way, including a variety of neuroimaging-based measurements 
of volume, vasculature, and microstructure and also measures of peripheral health like 
blood markers, that would provide more insight into the underlying mechanisms, was 
lacking in the field. Therefore, we here used comprehensive MRI measures combined 
with several physiological, and peripheral outcome measures to investigated underlying 
neural mechanisms of exercise. We compared a low- and high-intensity regime in young, 
healthy, but otherwise non-trained, adults in a longitudinal, randomized trial.

Experimental setup and contents of this thesis 

In this thesis, comprehensive MRI techniques were used to study functional and structural 
changes in the brain induced by different stimuli. These included: taxing WM, emotional 
tasks, stimulant-medication and an exercise intervention. Both 3T and 7T MRI techniques 
were applied to measure the influences on functional reactivity and connectivity, on 
brain metabolite concentrations, and on volumetric measures, CBF and CBV of the brain. 
Additionally, measures of behaviour, cognition and peripheral physiology were applied 
to correlate them to the observed MRI-based neurobiological changes. The content of 
the experimental chapters is as follows:
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1Chapter 2) Functional reactivity of the amygdala during an emotional 
task in male adult ADHD participants, in response to a WM task.
In this chapter we investigated the underlying neurobiological mechanisms of ED in male 
adults with ADHD. Previous studies in e.g. healthy controls and individuals with substance 
use disorders had suggested that a WM training was able to decrease ED [Andrade et 
al., 2012; van den Hout et al., 2014; Kaag et al., 2018; Markus et al., 2016; McClelland et 
al., 2006]. We therefore hypothesized that targeting WM processes could also benefit 
individuals with ADHD. 

To that end, we developed a novel fMRI paradigm in which we interleaved 
emotionally negative and neutral stimuli with a low and high load WM task, and inves-
tigated whether a high load WM task could attenuate potential hyperreactivity to 
emotional stimuli of the amygdala in adults with ADHD. In contrast to previous reports 
however, we did not find a hyperreactivity of the amygdala to the emotional stimuli 
in the adults with ADHD compared to the TDC participants. Probably consequently, a 
significant effect of the load of the WM task on amygdala reactivity to the emotional 
stimuli was not found either.

Chapter 3) Functional reactivity of the amygdala during an emotional 
face-matching task in medication-naive male children and adults with 
ADHD; modulation by prolonged MPH treatment.
In this chapter, we also studied emotion regulation processes in ADHD. We investigated 
whether prolonged MPH treatment would have an influence on functional measures that 
may underlie emotional processing in medication-naive children and adults with ADHD. 
For that purpose, we used data of the “effects of Psychotropic drugs On Developing brain-
MPH” (“ePOD-MPH”) randomized controlled trial, which was a 16-week double-blind, 
randomized, placebo-controlled, multi-centre trial with MPH, and a blinded endpoint 
evaluation in stimulant treatment-naive participants with ADHD [Bottelier et al., 2014].

We did not find any effect of prolonged MPH on amygdala reactivity to an 
emotional face-matching fMRI task in children or adults with ADHD. Interestingly, the 
MPH treatment did have a positive effect on the behavioural symptoms of ADHD in 
both children and adults with ADHD. Additionally, we found indications that internal-
izing symptoms at baseline (i.e. symptoms of anxiety and depression) could be used to 
predict the change in ADHD symptoms from baseline to during and post-trial in only 
the MPH-treated adults. This indicated that adults with high internalizing problems may 
benefit most from a prolonged MPH treatment.
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Chapter 4) Functional connectivity of the thalamus, striatum, 
dorsal anterior cingulate cortex and prefrontal cortex during rest 
in medication-naive male children and adults with ADHD and TDC 
participants; modulation by acute MPH.
This chapter reports specifically on the baseline data from the ePOD-MPH trial (i.e. before 
randomization). We investigated the effects of an acute MPH challenge on resting-state 
functional connectivity, and studied whether these effects differed between children 
and adults. In addition, we investigated whether MPH normalized potentially aberrant 
patterns of connectivity compared to age-matched TDC participants. 

Interestingly, we found the opposite effects of MPH in children and adults on 
dopamine-sensitive regions (striatum, thalamus), but not on the dorsal anterior cingulate 
cortex (dACC) or prefrontal cortex (PFC). This might be due to possible changes in the 
dopamine and noradrenergic systems during maturation.

Chapter 5) Structural and functional plasticity of the hippocampus in 
young, healthy adult participants, modulated by 12 weeks of low- or 
high-intensity physical activity.
In this comprehensive, multi-modal 3T and 7T MRI, randomized controlled trial, we 
randomized young adult, non-athletic volunteers to a 12-week low- or high-intensity 
exercise program. We used a series of state-of-the-art methods to investigate changes 
in hippocampal volume, and explore potential underlying changes in vasculature, 
perfusion, neuro-metabolites, and peripheral growth factors. 

Surprisingly, both exercise groups showed increases in cardiovascular fitness. Maybe 
as a consequence, we could not find differential effects between the high-intensity 
(aerobic) and low-intensity (toning) exercise groups regarding some of the structural and 
functional measures in the hippocampus of these young adults. However, we showed 
small but significant effects of exercise in general on hippocampal volume, neurome-
tabolism and vasculature across exercise conditions, highlighting the importance of a 
multi-modal, whole-brain approach to assess macroscopic and microscopic changes 
underlying exercise-induced brain changes.

Chapter 6) General Discussion
The content of the described publications is summarized and, while not claiming to be 
comprehensive or complete, subsequently discussed in relation to recent literature.
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Abstract 

Understanding the neural mechanisms of emotional reactivity in Attention-Deficit/
Hyperactivity Disorder (ADHD) may help develop more effective treatments that target 
emotion dysregulation. In adult ADHD, emotion regulation problems cover a range 
of dimensions, including emotional reactivity (ER). One important process that could 
underlie an impaired ER in ADHD might be impaired working memory (WM) processing. 
We recently demonstrated that taxing WM prior to the exposure of emotionally 
salient stimuli reduced physiological and subjective reactivity to such cues in heavy 
drinkers, suggesting lasting effects of WM activation on ER. Here, we investigated 
neural mechanisms that could underlie the interaction between WM and ER in adult 
ADHD participants. We included 30 male ADHD participants and 30 matched controls. 
Participants performed a novel functional magnetic resonance imaging paradigm in 
which active WM-blocks were alternated with passive blocks of negative and neutral 
images. We demonstrated group-independent significant main effects of negative 
emotional images on amygdala activation, and WM-load on paracingulate gyrus and 
dorsolateral prefrontal cortex activation. Contrary to earlier reports in adolescent ADHD, 
no impairments were found in neural correlates of WM or ER. Moreover, taxing WM did 
not alter the neural correlates of ER in either ADHD or control participants. While we did 
find effects on the amygdala, paracingulate gyrus, and dorsal lateral prefrontal cortex 
activation, we did not find interactions between WM and ER, possibly due to the relatively 
unimpaired ADHD population and a well-matched control group. Whether targeting WM 
might be effective in participants with ADHD with severe ER impairments remains to be 
investigated.
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Introduction

In addition to deficits in attention, hyperactivity, and impulsivity [American Psychiatric 
Association, 2013], emotional dysregulation (ED) is considered a core symptom in adults 
with Attention-Deficit/Hyperactivity Disorder (ADHD) [Hirsch et al., 2019]. ED is defined 
as the inability to control and minimize the disrupting effects of irrelevant emotional 
stimuli on goal-oriented processes [Barkley and Fischer, 2010; Wehmeier et al., 2010]. 
In adult ADHD, problems with emotion regulation include emotional recognition, 
emotional responsivity, and emotional lability, adding to the complexity of the spectrum 
of classic symptoms [Beheshti et al., 2020]. Importantly, ED predicts lower quality of 
life in young adults [Groenewold et al., 2013] and is associated with the persistence of 
ADHD into adulthood [Barkley and Fischer, 2010]. A recent meta-analysis demonstrated 
that pharmacological treatments have limited efficacy for ED in adults [Lenzi et al., 
2018], yielding therapeutic challenges. As such, better insights into underlying (neural) 
mechanisms of ED in adult ADHD could help develop more effective treatments.

A critical aspect of ED in ADHD is impaired emotional reactivity (ER): the threshold, 
intensity, or duration of affective arousal, which can be measured through the processing 
of emotionally salient stimuli [Graziano and Garcia, 2015]. Adult participants with 
ADHD do not appear to have deficits in the explicit regulation of emotions, but display 
emotional hyper-responsivity [Materna et al., 2019]. For example, higher emotional 
lability has been associated with a hyper-connectivity of the cortico-amygdalar network, 
including the anterior cingulate cortex, both in children and adolescents [Hafeman et 
al., 2017; Hulvershorn et al., 2014]. In children with ADHD, the processing of negative 
emotional faces stimuli has been associated with amygdala hyper-connectivity and 
hyperreactivity [Brotman et al., 2010; Posner et al., 2011a; Posner et al., 2011b; Quinlan et 
al., 2017] and was notably also linked to ED [Herrmann et al., 2010]. In adults with ADHD, 
amygdala hyperactivity has further been demonstrated in response to salient stimuli 
[Maier et al., 2014; Plichta et al., 2009; Tajima-Pozo et al., 2018], but divergent findings 
have been reported as well [Hägele et al., 2016; Tajima-Pozo et al., 2015] and the exact 
neural mechanisms that underlie ER in adult ADHD thus remain still unclear.

Emotional regulation has been shown to be influenced by top-down cognitive 
control processes. For example, in controls, the prefrontal cortex (PFC) was activated 
stronger in the presence of emotional stimuli during cognitive control tasks [Hung et 
al., 2018; Song et al., 2017] and cognitively demanding tasks could tune down amygdala 
reactivity to emotional stimuli, suggesting top-down suppression of ER [van Dillen et 
al., 2009; Erk et al., 2007]. Furthermore, taxing WM during or prior to the exposure of 
emotionally salient stimuli reduced ER in both anxiety and substance use disorders 
[Andrade et al., 2012; van den Hout et al., 2014; Kaag et al., 2018; Markus et al., 2016; 
May et al., 2010; McClelland et al., 2006]. Additionally, WM training has been shown to 
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improve ER outcomes in healthy individuals as well as in individuals with psychiatric 
disorders other than ADHD [Barkus, 2020; Schweizer et al., 2013]. Whether this affects 
(the neural mechanisms underlying) emotional processing remains to be determined. 
Indeed, an underdeveloped working memory (WM) system may underlie impaired ER 
in ADHD [Groves et al., 2020]. More specifically, ADHD participants perform worse [Marx 
et al., 2011] and show reduced WM-related PFC activation in WM-tasks [Burgess et al., 
2010; Cortese et al., 2012; Ko et al., 2013]. Altogether, this indicates that while WM and 
ER are strongly related, the underlying neural mechanisms of how emotional and WM 
processes interact in ADHD are still unclear [Tsai et al., 2020]. 

Therefore, this study aims to test whether targeting WM processes can reduce 
ER-related neural activity in adult ADHD, through top-down PFC suppression of 
amygdala hyperactivity. In order to disentangle neural mechanisms of emotional 
and WM processes, we used a novel functional magnetic resonance imaging (fMRI) 
paradigm, interleaving emotional stimuli with WM-load blocks. We expected that ADHD 
participants, compared to controls, would show higher levels of amygdala activation in 
response to negative emotional, relative to neutral images. Moreover, participants with 
ADHD were expected to show decreased dorsolateral PFC (dlPFC) and paracingulate 
gyrus (paCG) responses to high versus low WM-load tasks. We furthermore expected 
amygdala reactivity in participants with ADHD to be reduced in response to negative 
emotional blocks following high WM-load more so than in controls.

Methods

Thirty adults with ADHD and 30 controls (19–35 years of age) were included in the study. 
Inclusion criterion for the ADHD group was prior clinical ADHD diagnosis according 
to the DSM-IV [American Psychiatric Association, 2013]; controls were excluded with 
a score > 4 on the ADHD Rating Scale (ADHD-RS) [Kooij et al., 2008]. Controls were 
matched to the participants with ADHD, based on age educational-level, tobacco use 
(Fagerström Test for Nicotine Dependence)[Heatherton et al., 1991], alcohol use [Alcohol 
Use Disorders Identification Test (AUDIT)] [Saunders et al., 1993], cannabis use [Cannabis 
Use Disorders Identification Test (CUDIT)] [Adamson and Sellman, 2003], and the use 
of additional substances [Drug Use Disorders Identification Test (DUDIT)] [Berman et 
al., 2005]. Medicated participants with ADHD (N = 12) were instructed to refrain from 
ADHD medication use for seven days before the MRI scan. Exclusion criteria were: history 
of brain trauma, neurological disease, excessive consumption of alcohol (AUDIT > 12), 
cannabis (CUDIT > 12) or other drugs (DUDIT > 12), and MRI contra-indications. For 
control participants: psychiatric disorders for which they had ever received treatment; for 
participants with ADHD: psychiatric disorders other than ADHD for which they received 
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treatment at the moment of the experiment. Anxiety, depression, and impulsivity were 
assessed using the State and Trait Anxiety Inventory (STAI) [Marteau and Bekker, 1992], 
Beck’s Depression Inventory (BDI) [Beck et al., 1961], and Barratt’s Impulsiveness scale 
(BIS) [Patton et al., 1995], respectively. Written informed consent was obtained from all 
participants. The study was approved by the Ethics Review Board of the University of 
Amsterdam.

Statistical analyses

Data points more than three standard deviations from the mean were removed as 
outliers (results before and after outlier removal did not differ). Analyses of task and fMRI 
data used linear mixed-effects models (lme4 Rv.3.5.3) [Bates et al., 2015; R Development 
Core Team, 2011]. In the case of non-normal distributions, transformations were applied. 
The main and interaction effects of emotional load, WM load, and group were assessed as 
fixed effects. We used an adjusted top-down model selection process using the Bayesian 
information criterion (BIC) for model comparison [Fabozzi et al., 2014; Schwarz, 1978]. The 
model best capturing the data was reported and compared using χ2 tests and BICs. P < 
0.05 was considered statistically significant (Supplementary Materials 1.5).

MRI acquisition

Participants were scanned on a 3T whole-body MR system (Philips, Best, The Netherlands) 
using a 32-channel receive-only head-coil. T1-weighted (T1w) scans were obtained 
using a 3D-TFE sequence (resolution = 0.8mm3, FOV = 240 × 256 × 200mm, TR/TE = 
9.8ms/4.5ms). Functional scans were acquired using a 2D-GE-EPI sequence (resolution 
= 2.5 × 2.5 × 2.2mm, FOV = 240 × 240 × 131.8mm, TR/TE = 1500ms/30ms, FA = 70°, MB-
factor = 3, SENSE = 1.5). A scan with opposite phase-encoding-direction was used for 
distortion correction.

fMRI paradigm

The experimental fMRI paradigm (Figure 1) comprised a blocked design wherein active 
blocks with either the zeroback or the two-back task (‘WM-block’) were interleaved 
with passive blocks consisting of either emotionally neutral or emotionally negative 
pictures (‘EMO-block’). This resulted in four conditions: two-back followed by negative 
pictures (2E), two-back followed by neutral pictures (2N), zero-back followed by 
negative pictures (0E), and zeroback followed by neutral pictures (0N). The order of the 
blocks was randomized per participant, under the conditions that 1) the experiment 
started with a WM-block and 2) blocks were never immediately followed by the same 
type. The WM-blocks consisted of a standard 0-back and 2-back task ([Cousijn et al., 
2014]; Supplementary Methods 1.2). During the emotional block, 64 pictures from the 



585698-L-sub01-bw-Kaiser585698-L-sub01-bw-Kaiser585698-L-sub01-bw-Kaiser585698-L-sub01-bw-Kaiser
Processed on: 9-12-2022Processed on: 9-12-2022Processed on: 9-12-2022Processed on: 9-12-2022 PDF page: 32PDF page: 32PDF page: 32PDF page: 32

32

Chapter 2

International Affective Picture System (IAPS; Supplementary Materials 1.2) were shown 
(32 emotionally negative and 32 emotionally neutral; Figure 1) [Lang et al., 2005]. The 
percentage of correct responses in the n-back task were compared between conditions 
and groups. All participants performed a recognition task after the fMRI experiment to 
determine whether both groups paid equal attention to the images during the fMRI-task. 
Subsequently, participants performed a validation task, in which they rated the valence 
of all images using the Self-Assessment Manikin (SAM) rating from one (‘negative’) to 
nine (‘positive’) [Lang, 1980] (Supplementary Materials 1.2–1.3).

Figure 1. Study design: A) Interleaved active n-back blocks and passive emotional stimuli 
blocks. The effect of WM-blocks preceding emotional stimuli was assessed by subdividing 
the emotional stimuli into four conditions: neutral-after-0-back (0N), emotional-after-0-back 
(0E), neutral-after-2-back (2N), emotional-after-2-back (2E). B) The working memory (WM) 
blocks consisted of 15 trials lasting 2s each. The emotional images blocks (EMO) consisted of 8 
trials lasting 3s each. Every condition was shown twice, resulting in 8 WM and 8 EMO-blocks 
randomly interleaved, which results in a total task duration of 8:53min

fMRI processing

Preprocessing was performed using FMRIPREP v1.2.3 [Esteban et al., 2019; Esteban et 
al., 2020] (RRID: SCR_016216). Each T1w scan was normalized to MNI space. Functional 
data preprocessing included motion correction (FLIRT), distortion correction (3dQwarp), 
followed by co-registration to the T1w. Independent component analysis (ICA) based 
Automatic Removal Of Motion Artifacts (AROMA) was used to generate data that was 
non-aggressively denoised. Subsequently, data were spatially smoothed (6mm FWHM) 
and high pass-filtered (342s) using FSL (Supplementary Methods 1.5). FMRI data were 
entered into the first-level analysis (FSL/FEAT v.6.00; RRID: SCR_002823) [Jenkinson 
et al., 2012]. The model was designed to estimate the effect of WM-load on the neural 
correlates of emotional processing (Supplementary Materials 1.5). To explore whole-
brain activity in the main task contrasts (two-back vs. zero-back; emotional vs. neutral), 
the first-level contrast-of-parameter-estimates (COPE) maps were analyzed using non-
parametric permutation testing (5000 permutations), using FSL Randomise. Thresholds 
for all analyses were initially set at p < 0.05 with family-wise error corrections using 
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threshold-free cluster enhancement [Winkler et al., 2014]. Mean framewise displacement 
per participant was added as a confound regressor. ROI) analyses used predefined ROIs: 
Amygdala, dlPFC, and paCG (Supplementary Methods 1.4). The amygdala is a key region 
in emotional processing [Sergerie et al., 2008], the dlPFC and paCG play an important 
role in executive functioning, especially during WM-back tasks [Miró-Padilla et al., 2018], 
whereas the paCG shows overlapping activation during negative affect and cognitive 
control paradigms [Lin et al., 2015; Shackman et al., 2011]. Hemisphere differences were 
tested using paired t-tests and found to be significant for the dlPFC, but not the amygdala. 
The left and right dlPFC were therefore analyzed separately, whereas parameters were 
averaged across hemispheres for the amygdala. Featquery (FSL) was used to extract the 
COPEs, which were converted to percentage change.

Results 

Participants 

Participants with ADHD and controls were well-matched (Table 1). Two participants were 
removed from the analysis, due to extreme motion during the fMRI-task (framewise 
displacement > 1.5 * 95% CI).

Table 1 Participants characteristics
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Behavioral measures

We found no interaction between WM-load and group on n-back accuracy (χ2(1) = 1.68, p 
= 0.19, ∆BIC = − 3.07), but a main effect of WM-load was found (χ2(1) = 40.29, p < 0.001, ∆BIC 
= 34.87) (Figure 2A). The d-prime of the recognition task suggests that more attention 
was paid towards negative emotional images (χ2(1) = 6.78, p < 0.01, ∆BIC = 1.36), and 
that attention reduced after high-load WM-blocks (χ2(1) = 34.87, p < 0.001, ∆BIC = 1.36) 
(Figure 2B). Additionally, we found a trend towards an interaction effect of group and 
emotional image type (χ2(1) = 3.68, p = 0.05, ∆BIC = −1.74), suggesting that participants 
with ADHD paid more attention to the negative emotional images compared to controls. 
The validation task showed that negative images were perceived as more negative than 
the neutral images by both groups (χ2(1) = 143.29, p < 0.001, ∆BIC = 138.55) (Figure 2C).

fMRI

Exploratory whole-brain analysis assessed the effects of WM-load, emotional image 
type, and group. Permutation tests revealed the expected main effects of the WM-load 
and a main effect of the emotional image type in the executive and salience network, 
respectively (Figure 3, Supplementary Results 2.2). In contrast to our hypothesis, we found 
no main effect of group nor any two or three-way interactions of WM-load, emotional 
image type, and group.

Figure 2 Behavioral data: A) Task performance; No significant differences between participants 
with ADHD (blue) and controls (gray). The performance of the 2-back task was lower than the 
0-back task. B) Recognition task; Neutral images were recognized less correctly than negative 
images. There is a trend towards participants with ADHD recognizing negative images better 
than controls. C) Validation task; Both groups rated negative images as more negative than 
neutral images. Error bars represent the standard error

In line with the whole brain results, we found no significant interaction between WM-
load and group on PaCG activation and left dlPFC (PaCG: χ2(1) = 2.01, p = 0.15, ∆BIC = 
− 2.73; all other ∆BIC < -4.74; left dlPFC: χ2(1) = 2.62, p = 0.11, ∆BIC = −2.13), but a main 
effect of WM-load was found (PaCG: χ2(1) = 41.12, p < 0.001, ∆BIC = 36.38; left dlPFC: 
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χ2(1) = 56.35, p < 0.001, ∆BIC = 51.605)(Figure 4A). Thus, high load WM-blocks (two-back) 
elicited more activity in the PaCG and left dlPFC than zero-back blocks, regardless of 
group. In the right dlPFC, we found a trend-significant interaction between group and 
WM-load (χ2(1) = 4.10, p = 0.04, ∆BIC = −0.65; all other ∆BIC < −3.73), indicating that there 
was less WM-related right dlPFC activity in participants with ADHD compared to controls, 
which suggests that WM processes are only limitedly impaired in the investigated ADHD 
population. 

We assessed the effects of the emotional image type and group on amygdala activity 
during emotional processing (Figure 4B). Model comparisons revealed evidence for a 
main effect of emotional images (χ2(1) = 37.32, p < 0.001, ∆BIC = 45.65), showing higher 
amygdala activity for negative than neutral images, but this was not moderated by 
group. We furthermore found no significant three-way interactions between emotional 
image type, preceding WM-block, and group (χ2(1) = 1.40, p = 0.84, ∆BIC = − 20.37; 
all other ∆BIC < −5.19), which suggests that taxing WM did not influence ER-related 
amygdala activation. Additionally, we assessed the effects of emotional images, the 
preceding WM-load and group on paCG activity during emotional processing, but found 
no three or two-way interactions (χ2(1) = 3.66, p = 0.45, ∆BIC = −18.10; all other ∆BIC < 
−4); neither did we find a main effect of emotional images (χ2(1) = 0.97, p = 0.32, ∆BIC 
= −4.47), which suggests, in contrast to our hypothesis, paCG activity did not react to 
emotional salient stimuli, in either the ADHD or control group.

Figure 3 Whole brain activation maps calculated with permutation tests: BOLD signal for 
negative vs. neutral images (top row) and the 2-back vs. 0-back task (bottom row). Values 
shown are corrected and therefore correspond to the statistically significant regions. Colors 
correspond to 1-p results; with red = 0.95 (corresponding to p = 0.05) and yellow = 1.00
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Discussion

The primary aim of this study was to investigate whether taxing WM could ameliorate 
ER in adults with ADHD, and how WM and emotional reactivity (ER) would interact on a 
neural level. We demonstrated a significant main effect of negative emotional images on 
amygdala activation and a significant main effect of WM-load on activation of the paCG 
and dlPFC across both groups but did not find strong evidence for group differences. 
These findings were in line with the WM-task performance, which also did not reveal any 
group differences. Contrary to our hypothesis, neither amygdala nor paCG activity was 
reduced in response to negative vs. neutral images after inducing a high WM-load in 
participants with ADHD or controls.

Emotional dysregulation in ADHD

ED in ADHD consist of a complex combination of dimensions, including emotion 
recognition, ER, and emotional lability. In the current study, however, we did not find 
amygdala hyperactivity in response to negative emotional stimuli in adults with ADHD. 
This contrasts earlier findings of amygdala hyperactivity in response to negative emotional 
faces [Brotman et al., 2010; Posner et al., 2011a; Posner et al., 2011b; Quinlan et al., 2017] 
and related to delay aversion [van Dessel et al., 2018; van Dessel et al., 2019; Lemiere et 
al., 2012] in children and adolescents with ADHD and in response to loss of anticipation 
[Tanaka et al., 2018; Wilbertz et al., 2017] and delayed rewards [Plichta et al., 2009] in adults 
with ADHD. Interestingly, the only two other studies that investigated ER in adult ADHD 
using stimuli similar to ours (i.e., IAPS images), also failed to find differences between 
participants with ADHD and controls [Hägele et al., 2016; Tajima-Pozo et al., 2018]. In our 
study, valence ratings of the IAPS images by participants with ADHD were comparable to 
that of controls, implying that the lack of amygdala hyperactivity was not due to the lack 
of experiencing the images as negative. As such, amygdala hyperactivity in participants 
with ADHD might be related to deficits in the processing of specific negative stimuli (e.g., 
loss anticipation), instead of general deficits in emotion regulation. This is in line with an 
earlier notion that ER, as an aspect of ED in participants with ADHD, is influenced by many 
factors including age and is much more complex than originally thought [Graziano and 
Garcia, 2015].

Working memory dysfunction in ADHD

In line with previous literature, we found that paCG and dlPFC were activated during 
the WM-task (high vs. low WM-load) [Müller and Knight, 2006; Roth and Courtney, 2007], 
but we did not find group differences in WM-related left dlPFC and paCG activation or 
behavior. In the right dlPFC, however, we found a trend-significant interaction between 
group and WM-load, suggesting blunted WM-related right dlPFC activation in participants 
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with ADHD, which is consistent with other studies in adults [Burgess et al., 2010; Cortese et 
al., 2012; Ko et al., 2013], and adolescents with ADHD [Fassbender et al., 2011; Massat et al., 
2012; Mattfeld et al., 2016; Prehn-Kristensen et al., 2011]. In general, studies in adults with 
ADHD found less differences in neural recruitment between participants and controls 
than those in children with ADHD [Cortese et al., 2012]. This suggests compensatory 
effects with age that has been proposed to involve parietal, occipital, and subcortical 
structures (i.e., cerebellum and basal ganglia) that may overcome deficits presented 
earlier in life [Cortese et al., 2012; Frazier et al., 2007]. These compensatory mechanisms 
could explain why we did not find strong evidence for WM-dysfunction and associated 
frontal hypoactivity in adults with ADHD [Konrad and Eickhoff, 2010; Schweitzer et al., 
2000; Schweitzer et al., 2004]. Nevertheless, previous studies have been inconsistent 
in their operationalization of WM tasks (e.g., n-back, recognition), assessing multiple 
aspects of WM. As a possible contributor, differences in task complexity and difficulty of 
different tasks may have affected the extent of activation, and may even have activated 
different brain regions [Müller and Knight, 2006; Roth and Courtney, 2007]. As this makes 
it challenging to compare results, we suggest that future studies take the complexity of 
WM tasks into account by including WM tasks that place greater demand on executive 
components of WM.

Effect of working memory activation on emotional reactivity

Behaviorally, we found that participants recognized negative emotional images better but 
had worse recognition of images that were preceded by high-load WM-blocks, indicating 
an influence of WM-load on emotional memory processes. In the neuroimaging data, 
however, the amygdala and paCG activation were not reduced in response to negative 
emotional images when they were preceded by high WM-load tasks, suggesting no 
influence of WM-load on the neural correlates of ER. Previous studies that aimed to 
identify an interaction between WM and ER in controls and other patient populations 
used emotional interference tasks in which WM-tasks were performed during the 
presentation of neutral and negative emotional stimuli. Using such paradigms, high 
WM-load reduced amygdala activation to negative emotional stimuli in participants with 
an increased risk of ED [Richter et al., 2013]. Also, negative emotional stimuli enhanced 
WM-related dlPFC activity in participants with major depressive disorder [Kerestes et al., 
2012], adolescents with ADHD [Passarotti et al., 2010], and control adolescents, but not 
in control adults [Mueller et al., 2017]. These effects were supported by impaired WM 
performance in presence of negative emotional stimuli in adolescents [López-Martín 
et al., 2013; Marx et al., 2011; Villemonteix et al., 2017] and adults with ADHD [Marx et 
al., 2014]. Together, these studies suggest interaction effects between WM-load and ER-
related amygdala (hyper-) activity. We were, however, unable to replicate these findings 
using a paradigm in which high WM-load was induced prior to emotional stimulation, 
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instead of during the presentation of emotional stimuli. While our negative findings may, 
at least in part, be due to the limitations of our paradigm, an additional explanation is that 
improving ER by inducing high WM-loads will only be effective when severe impairments 
of ER are present. This may not always have been the case in our ADHD sample, as no 
group differences were found in amygdala reactivity to emotional images and only 
weak evidence was found for right dlPFC hypoactivity. Divergent emotional processing 
in ADHD has been linked to a variety of features in individuals with ADHD [Beheshti et 
al., 2020], such as externalizing symptoms, including conduct problems [Gillberg et al., 
2004] and internalizing symptoms, such as depression and anxiety symptoms [Jarrett 
and Ollendick, 2008]. The participants with ADHD we included here showed relatively 

Figure 4. Region of Interest analysis: A) Amygdala activity during negative vs. neutral images 
(left) and emotional images preceded by working memory blocks (right) divided into the four 
conditions (0N, 2N, 0E, 2E). B) PaCG activity during 2-back vs. 0-back blocks (left) and emotional 
images preceded by working memory blocks (right) divided into the four conditions (0N, 2N, 
0E, 2E). C) Left (left) and right (right) dlPFC activity during 2-back vs. 0-back blocks. paCG = 
paracingulate gyrus; dlPFC = dorsolateral prefrontal cortex; Error bars represent the standard 
error.
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low scores on symptoms of anxiety and depression (although higher than the controls), 
which provides an indication that ER capacities may not have been strongly affected 
in the studied population. Indeed, other studies that found amygdala hyperactivity in 
individuals with ADHD also reported higher symptoms of depression and anxiety in their 
study populations [Maier et al., 2014; Wilbertz et al., 2013]. Interestingly, recent studies 
demonstrated that different subtypes of ED exist and that not all individuals with ADHD 
experience ED in all its complexities [Hirsch et al., 2019]. This thus yields the possibility that 
our current sample of participants with ADHD may have only relatively mild impairments 
in ER.

As the dimensions of ED in adult ADHD are complex and multifaceted [Beheshti 
et al., 2020], it is essential to develop paradigms that can disentangle the effects of 
executive and emotional processes in adult ADHD. Our novel fMRI-task design allows us 
to investigate the interactions of WM and emotional processes, like ER, which may help 
to understand the underlying neural mechanisms and develop novel training for ADHD.

Conclusion

We assessed possible neural correlates of the effects of targeting WM taxing on ER in 
adults with ADHD. We found no group differences in response to the emotional blocks 
on amygdala activation nor of WM-load on paCG and dlPFC activation. Although studies 
suggested an interaction between WM-load and emotional stimuli on the amygdala 
(hyper-) activity, we could not replicate these findings using our paradigm. These results 
might be due to compensatory effects in the adult participants with ADHD. Furthermore, 
targeting WM might still be effective in individuals with severe impairments in emotion 
regulation. These findings contribute to the understanding of the neural mechanisms of 
ER in controls and participants with ADHD.
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Supplementary Materials

Supplementary methods

Pilot study
Seventeen healthy male control participants between the ages of 20 and 29 years old 
were included in a pilot study before the main study, with the same in- and exclusion 
criteria as for the controls of the main study. Based on that study, it was concluded that a 
sample of 30 male participants with ADHD and 30 matched healthy male controls would 
be sufficient to demonstrate a relevant effect of the task.

fMRI task
The following images from the IAPS database were used for the fMRI task.

Table 1. Images used from the IAPS database. 

The experimental fMRI paradigm comprised a blocked design wherein active blocks with 
either the zero-back or the two-back task (‘WM block’) were interleaved with passive 
blocks consisting of either emotionally neutral or emotionally negative pictures (‘EMO 
block’). This resulted in four conditions: a two-back block followed by negative pictures 
(2E), a two-back block followed by neutral pictures (2N), a zero-back block followed 
by negative pictures (0E), and a zero-back block followed by neutral pictures (0N). The 
order of the blocks was randomized per participant, under the conditions that 1) the 
experiment started with a WM block and 2) blocks were never immediately followed by 
a block of the same type.

A WM block consisted of 15 letters that were shown on the screen one by one. 
During the zero-back condition, participants were instructed to use their index finger 
to press a button on the left response box when they saw an ‘x’ and to press a button 
on the right response box when they saw any letter other than ‘x’. During the two-back 
condition, participants were instructed to press the left button when the letter on the 
screen was the same as two letters before and the right button when the letter on the 
screen was different from two letters before. A total of 64 pictures shown during the 
experiment (32 emotionally negative and 32 emotionally neutral) were retrieved from 
the International Affective Picture System (IAPS). Every condition (2E, 2N, 0E, 0N) was 
shown twice, resulting in 16 blocks. The WM blocks lasted 30s each, the EMO blocks 
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24s each (8 stimuli with a duration of 2.5s and 0.5s inter-stimulus interval). Instructions 
before and in between the blocks were 5s long. In total, the task was 8:53min long. 
The percentages of correct responses in the n-back task were extracted and compared 
between conditions and groups.

Recognition task
All participants performed a recognition task after the fMRI experiment to determine 
whether both groups paid equal attention to the images while conducting the fMRI task. 
Images were shown on a computer screen one-by-one and participants were requested to 
indicate on a scale from 0 to 10 whether they recognized the pictures from the fMRI-task. 
A rating of 0 indicated they were confident they did not recognize the picture, a rating of 
10 indicated they were confident they recognized the picture, and a rating of 5 indicated 
they were uncertain whether they recognized the picture or not. The recognition task 
included the 64 pictures that were shown during the fMRI experiment (‘old’ images) plus 
32 ‘new’ images (16 emotionally neutral and 16 emotionally negative) also retrieved from 
the IAPS and meeting the same criteria as the other images. The recognition data were 
analyzed to obtain d-prime (d’) as a measure of discriminability, which is unaffected by 
response bias [Macmillan, 1993]. The rating scale was first divided into recognized as new 
(0-4), unsure (5), and recognized as old (6-10) per participant. Trials with a rating of unsure 
were discarded for the analysis. To calculate d’, the z score that corresponds to the false-
alarm rate was subtracted from the z-score that corresponds to the hit-rates [Macmillan, 
1993]. The recognition task data were binned into the task conditions of the fMRI task, 
resulting in d’ values per participant for 0N, 2N, 0E, and 2E. To correct for possible ceiling 
effects, the log-linear approach was used [Hautus, 1995].

Validation task
After the recognition task, the participants were requested to assess their subjective 
arousal in response to the images to measure the validity of the stimuli in our sample. 
During this validation task, participants rated the valence of all the images shown to 
them during the recognition task using the Self-Assessment Manikin (SAM) rating from 1 
to 9, with one being ‘negative’ and nine being ‘positive’ (SAM; [Lang, 1980]). Ratings of all 
neutral and negative images were averaged per participant, respectively.

fMRI analysis 

Preprocessing with fMRIprep:
Preprocessing was performed using FMRIPREP v1.2.3. Each T1w scan was bias-corrected, 
skull-stripped, and subsequently normalized to MNI space using non-linear registration. 
Functional data preprocessing included motion correction using FLIRT and distortion 
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correction using an implementation of the TOPUP technique using 3dQwarp. This was 
followed by co-registration to the corresponding T1w using boundary-based registration 
with 9 degrees of freedom. Motion correcting transformations, field distortion correcting 
warp, BOLD-to-T1w transformation, and T1w-to-template (MNI) warp were concatenated 
and applied in a single step using antsApplyTransforms (ANTs v2.1.0) with Lanczos 
interpolation. Independent component analysis (ICA) based on Automatic Removal 
Of Motion Artifacts (AROMA) was used to generate data that was non-aggressively 
denoised. Subsequently, data were spatially smoothed (6mm FWHM), and a high pass-
filter (342s) was applied using FSL. Since amygdala fMRI signals may be particularly 
affected by susceptibility artifacts induced by the magnetic field inhomogeneities in the 
ventral part of the brain, we calculated temporal signal-to-noise-ratio (tSNR) maps for the 
whole brain (Supplementary Results 2.1). The design matrices in Supplementary Figure 1 
are examples of the ones used in this study. 

ROI analysis
To assess the effect of WM-load on emotional processing, ROI analyses were conducted 
using predefined ROIs. The left and right amygdala were chosen as ROIs because they 
are key regions in emotional processing and were extracted from the Harvard-Oxford 
Subcortical Structural Atlas with a threshold of 90%. The dlPFC and the paCG were chosen 
as ROIs as they play a key role in executive functioning, especially during n-back tasks. 
Additionally, overlapping activation in studies using negative affect and cognitive control 
paradigms was found in the paCG. The dlPFC and paCG masks were based on the most 
robust activated clusters from a meta-analysis across 1091 WM fMRI studies (Neurosynth). 
For the amygdala, hemisphere differences were tested using a paired t-test and found 
not to be significant. Therefore, all parameters were averaged across hemispheres. For 
the dlPFC, hemisphere differences were tested using a paired t-test and found to be 
significant. The left and right dlPFC were, therefore, analyzed separately. Featquery (FSL) 
was used to extract the COPEs, which were converted to a percentage change.

Statistical Analysis
To assess all data for normality, histograms, and QQplots were inspected, and a Shapiro-
Wilk test was performed. In the case of a non-normal distribution, a transformation was 
applied. Data points that were more than three standard deviations from the mean were 
removed as outliers. Demographics were analyzed with SPSS v.23 (IBM, Chicago, USA). 
Normally distributed data were tested using independent t-tests; otherwise, a Whitney-U 
test was used. To account for more than one source of random variability within-
participant and across-participants, analyses of the task and fMRI data used linear mixed-
effects models in Rv.3.5.3 [R Development Core Team, 2011] using the lme4 package 
[Bates et al., 2015]. The main and interaction effects of emotional load (EMO: emotional/
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neutral), working memory (WM: 2-back/0-back), and group (GRP: ADHD/control) were 
assessed as fixed effects. The model selection process was based on an adjusted top-
down procedure, where the full model (three-way interaction) was tested based on the 
Akaike information criterion (AIC) using the step function, which resulted in the most 
complex fixed effects structure that would then further be tested. 

A random effect per subject was always included in the model (SUBJECT|1), 
controlling for individual variation among participants. The simplest model was then 
increased in complexity, adding fixed effects until all fixed effects that resulted from 
step one were included and compared using the Bayesian information criterion (BIC) 
[Fabozzi et al., 2014; Schwarz, 1978]. Random slopes were then added and tested based 
on BICs and χ² tests. If these were found to add in explaining the variance, they were 
added as random effects and all fixed effects were tested again based on the described 
semi top-down strategy. The model found best capturing the data was consequently 
reported and compared to other models using χ² tests and BICs. All statistical tests were 
conducted using a significance level of p < 0.05. ∆BIC is calculated by subtracting the 
BIC value of the tested model from the model it is being compared to. A negative ∆BIC, 
therefore, indicates that the tested model did not explain the variance better, whereas 

Supplementary Figure 1. A) Design Matrix of one representative participant for the task-
based analysis. The model was designed to estimate the effect of working memory load on the 
neural correlates of emotional processing. B) Design Matrix of one representative participant 
for the PPI analysis. The model included the timeseries of the ROI as well as the task regressors 
and the PPI regressor.
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a positive ∆BIC indicates that the tested model did explain the variance better. A ∆BIC 
between 0 and 2 can be interpreted as weak evidence, 2-6 as positive evidence, 6-10 as 
strong evidence, and ∆BIC>10 as very strong evidence against the model with the higher 
BIC value [Raftery, 1995].

Psychophysiological Interaction (PPI) analysis 
To investigate the effect of WM-load during emotional processing on the connectivity of 
the ROIs (left and right amygdala, dlPFC, and paCG) to the rest of the brain, a PPI analysis 
was conducted. ICA-AROMA denoised functional data were entered into the first-level 
analysis (FSL/FEAT v.6.00), which included the time-series per ROI as well as the task 
regressors and the PPI regressor (Supplementary Figure 1). Whole-brain analyses were 
performed as described above, using the first level data of the PPI analysis.

Supplementary Figure 2. Temporal signal-to-noise analysis. A) Whole brain tSNR maps for 
ADHD patients (up) and controls (down). B) Average tSNR per participant (circles) and group 
(bars) per ROI and for both ADHD patients (blue) and controls (gray). paCG = paracingulate 
Gyrus, dlPFC = dorsolateral prefrontal cortex.
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Supplementary results

Temporal Signal-to-Noise (tSNR)
Since amygdala fMRI signals may be particularly affected by susceptibility artifacts 
induced by the magnetic field inhomogeneities in the ventral part of the brain [Merboldt 
et al., 2001], we calculated tSNR maps for the whole brain [Welvaert and Rosseel, 2013].

The average tSNR in the amygdala for participants with ADHD was 48.88(5.05), and 
for controls was 48.96(6.83). In the paCG, the average tSNR for participants with ADHD 
was 50.8(6.29), and for controls was 53.71(6.57). In the left dlPFC, the average tSNR for 
participants with ADHD was 71.21(8.12), and for the controls was 74.74(10.34), in the right 
dlPFC, it was 64.95(8.41) for participants with ADHD and 69.79(10.43) for controls. As 
previously reported, a tSNR of around 50 requires the acquisition of around 350 volumes 
to detect a 2% signal change [Murphy et al., 2007]. We acquired 370 volumes. We could, 
therefore, conclude that we had sufficient tSNR to measure activation in our regions of 
interest.

Whole Brain Analysis – Cluster Table 

Supplementary Table 2. Clusters resulting from the whole brain analysis, assessing the effects 
of working memory load and emotional stimulus type.
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Habituation Analysis
A habituation analysis of the emotional response within the amygdala was performed to 
exclude the possibility of a difference in adaptive reduction in response to the emotional 
stimuli between participants with ADHD and controls. Blocks of emotional stimuli were 
analyzed depending on when they were presented (N1-N4/E1-E4), with the numbers 
indicating the position of the block in time. For the negative stimulus type there was no 
interaction effect of group and time found (χ²(3) = 4.85, p = 0.18, ∆BIC = -11.5). Also, no 
main effects of group or time were found (all other ∆BIC < -8.35). For the neutral stimulus 
type there was no interaction effect of group and time found (χ²(3) = 1.13, p = 0.77, ∆BIC = 
-15.01). Also, no main effects of group or time were found (all other ∆BIC < -5.24). We can, 
therefore, conclude that there was no habituation effect to negative or neutral emotional 
stimuli in the amygdala, for neither participants with ADHD nor controls.

Supplementary Figure 3. Habituation analysis. A) Amygdala activity in response to the first 
(N1), second (N2), third (N3) and fourth (N4) block of neutral images, for ADHD patients (blue) 
and controls (gray). B) Amygdala activity in response to the first (E1), second (E2), third (E3) and 
fourth (E4) block of negative images, for ADHD patients (blue) and controls (gray).

Heart rate analysis
Heart rate was measured during scanning using a PPU to obtain plethysmographs. The 
average heart rate per WM load and type of emotional stimulus was calculated using 
MATLAB scripts. For the heart rate during the working memory task, no interaction effect 
of group and working memory load could be found (∆BIC < -2.76). A main effect of group 
was found (HR ~ GRP + (1|SUBJECT); χ²(1) = 5.70, p < 0.02, ∆BIC = 1.02). For heart rate 
during emotional stimuli, no interaction effect of group and type of emotional stimulus 
were found (∆BIC < -0.16). Also, no main effects of group or emotional stimuli were found, 
even though there was a trend towards a group effect. This indicates that participants 
with ADHD have a higher heart rate, independent of which task they were doing. We 
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can conclude that the task had no different effect on participants with ADHD than on 
controls. participants with ADHD demonstrated a higher heart rate in general, which 
could be an effect of ADHD medication.

Supplementary Figure 4. Heart rate analysis. A) Heart rate of participants with ADHD(blue) 
and controls (gray) during the presentation of neutral and negative emotional stimuli. B) Heart 
rate of participants with ADHD(blue) and controls (gray) during the low-load (0-back) and 
high-load (2-back) working memory task.

PPI

Whole Brain
For the whole brain PPI analysis, we assessed the effects of WM-load, emotional stimulus 
type, and group. Permutation tests did not show any connectivity of the left and right 
amygdala, nor paCG or left or right dlPFC with the rest of the brain. When contrasting 
emotionally negative and neutral images and high versus low WM-load, we found no 
differences in connectivity of the paCG or left or right dlPFC with the rest of the brain. 
Furthermore, we found no interaction effect of WM-load and emotional stimulus type on 
the connectivity of the left and right amygdala nor paCG or left or right dlPFC with the 
rest of the brain. Neither did we find any group differences.

In line with the presented task effects, no group differences were found, which could 
be explained by a low impairment of ER in our current ADHD patients. Positive structural 
and functional amygdala-frontal coupling as a mechanism that provides top-down 
control of emotions has been shown, e.g., in controls [Banks et al., 2007; Ochsner et 
al., 2009], during emotion regulation tasks [Stein et al., 2007] and more specifically as 
a top-down inhibitory effect of the PFC on the amygdala [Banks et al., 2007]. Moreover, 
studies using PPI-based analyses showed increased co-activation between the amygdala 
and the medial PFC [Erk et al., 2006] and between the amygdala and the dlPFC in 
depression [Siegle et al., 2007] during cognitive-emotional tasks. In contrast, Hägele et 
al., who also used IAPS stimuli, did not find any PPI effects using a seed in the left and 
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right amygdala, which they interpreted as due to high inter-individual differences in 
patients [Hägele et al., 2016]. These differences, including, e.g., differences in perception 
of stimuli or different symptom severities, make it difficult to reach the necessary power 
to calculate a PPI in patient populations, and indicate that effect sizes in these kinds of 
analyses are very small [O’Reilly et al., 2012].

Methodological considerations
To make sure our results were not due to methodological limitation, we assessed temporal 
signal-to-noise-ratio (tSNR) maps per participant, investigated habituation effects in the 
amygdala, and the influence by heart rate. Amygdala fMRI signals can be especially affected 
by susceptibility-artifacts induced by inhomogeneities in the subcortex [Merboldt et al., 
2001]. Therefore, we assessed temporal signal-to-noise-ratio (tSNR) maps per participant 
([Welvaert and Rosseel, 2013]; Supplementary Results 2.1), which were sufficiently high 
in all ROIs for all participants. Additionally, amygdala activation to emotional stimuli has 
been suggested to show a different adaptive reduction between ADHD patients and 
controls [Breiter et al., 1996; Garrett et al., 2012]. However, we did not find any evidence 
for such habituation effects (Supplementary materials and results 2.3). As BOLD contrast 
is based on hemodynamic changes, heart rate (HR) might cause fluctuations in the signal 
[Shmueli et al., 2007]. Task effects were not found to be influenced by HR (supplementary 
materials and results 2.4). Therefore, it is unlikely that our results were affected by these 
methodological challenges. 
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Abstract

Background: Problems with emotional processing are widely reported in individuals 
with attention deficit/hyperactivity disorder (ADHD). Although methylphenidate (MPH) 
effectively alleviates inattention and hyperactivity symptoms in ADHD, its effects 
on emotional processing and internalizing symptoms have remained elusive. While 
we previously found that acute MPH administration modulated neural mechanisms 
underlying emotional processing in an age-dependent manner, the effects of prolonged 
administration remained unknown.
Objectives: Therefore, we investigated: (i) Whether prolonged MPH treatment influences 
neural substrates (amygdala reactivity and connectivity) of emotional processing, and (ii) 
whether these effects are modulated by age.
Methods: The “effects of Psychotropic drugs On Developing brain-MPH” (“ePOD-
MPH”) randomized controlled trial was a 16-week double-blind, placebo-controlled, 
multi-center trial with MPH in 50 boys (10–12 years of age) and 49 men (23–40 years of 
age), all stimulant treatment-naive and diagnosed with ADHD. Participants performed 
an emotional face-matching task during functional magnetic resonance imaging. We 
assessed their symptoms of ADHD and internalizing symptoms at baseline, during the 
trial (8 weeks), and 1 week after the trial end (17 weeks). 
Results and Conclusions: We did not find effects of prolonged MPH treatment on 
emotional processing, as measured by amygdala reactivity and connectivity and 
internalizing symptoms in this trial with stimulant treatment-naive participants. This 
differs from our findings on emotional processing following acute MPH administration 
and the effects of prolonged MPH treatment on the dopamine system, which were both 
modulated by age. Interestingly, prolonged MPH treatment did improve ADHD symptoms, 
although depressive and anxiety symptoms showed a medication-independent 
decrease. Furthermore, our data indicate that baseline internalizing symptoms may be 
used to predict MPH treatment effects on ADHD symptoms, particularly in (male) adults 
with ADHD.
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Introduction

Methylphenidate (MPH), the primary pharmacological treatment for attention-deficit/
hyperactivity disorder (ADHD), effectively alleviates symptoms of inattention and 
hyperactivity in individuals with ADHD. However, individuals with ADHD also present 
difficulties in emotion processing, independent of other comorbidities [Lenzi et al., 2018]. 
Divergent emotional processing in ADHD has been linked to both externalizing symptoms, 
such as conduct problems [Gillberg et al., 2004], and to internalizing symptoms associated 
with symptoms of anxiety and depression [Jarrett and Ollendick, 2008; Sciberras et al., 
2014]. Additionally, it has been found to impact the quality of life of individuals with 
ADHD seriously and was in fact associated with poorer daily life functioning [Kuhne et 
al., 1997; Riley et al., 2006; Schei et al., 2016; Sciberras et al., 2014]. Clinical experience 
suggests that MPH may positively affect emotion regulation, as supported by a recent 
meta-analysis [Lenzi et al., 2018]. 

One possible pathophysiological substrate underlying emotional processing in 
ADHD may involve a dysfunctional striato-amygdalo-medial prefrontal cortical network 
[Shaw et al., 2014]. Likewise, in ADHD, specific brain regions related to emotion processing 
have shown altered connectivity to the rest of the brain [Icer et al., 2018]. For example, 
more emotional problems, particularly externalizing symptoms, were associated with a 
hyperconnectivity of the cortico-amygdalar network, including the anterior cingulate 
cortex, both in children and adolescents [Damiani et al., 2020; Hafeman et al., 2017; 
Hulvershorn et al., 2014]. Furthermore, different self-regulation problem dimensions 
were associated with stronger negative whole-brain functional connectivity patterns in 
children [Rohr et al., 2020]. Additionally, in adolescents with ADHD (aged 11–16 years), 
hyperreactivity and -connectivity of the amygdala were reported in response to fearful 
faces, which was notably increased further after MPH abstinence [Posner et al., 2011a]. 
Also, an acute MPH challenge has been found to normalize altered resting-state circuits 
in children and adults with ADHD [Pereira-Sanchez et al., 2021]. However, even though a 
few studies have shown these positive effects of stimulants on internalizing emotional 
symptoms [Biederman et al., 2009; Coughlin et al., 2015], the exact neural mechanisms 
underlying changes in emotional processing in ADHD remained unclear, especially 
following more prolonged durations of stimulant treatment. 

Increasing preclinical evidence suggests that the effects of ADHD medication are 
modulated by age [Andersen, 2003; Andersen, 2005; Urban et al., 2012], which we also 
found to be the case in a clinical trial comparing boys and adults with ADHD [Schrantee 
et al., 2016; Solleveld et al., 2017]. Accordingly, we had previously shown that acute 
MPH administration modulates one of the functional neural mechanisms underlying 
emotional processing, i.e., amygdala reactivity, in an age-dependent manner [Bottelier 
et al., 2017]. Additionally, preclinical studies have shown that prolonged treatment 
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during adolescence induced anxiety and depressive-like behavior [Bolaños et al., 2003] 
and increased impulsivity during adulthood [Somkuwar et al., 2016]. The most compre-
hensive study on long-term effects of ADHD medication to date, i.e., the multi-modal 
treatment study of ADHD (MTA), found that children treated with ADHD medication 
had higher rates of anxiety and depression (19.1%) than children receiving behavioral 
therapy only (4.3%), as measured 6 years after treatment onset. However, this effect had 
disappeared after 8 years [Molina et al., 2009]. 

Therefore, in the current study, we set out to: (i) investigate whether prolonged 
treatment with MPH influences internalizing symptoms and the neural substrates under-
lying emotional processing in stimulant-naive participants with ADHD, and (ii) assess 
whether these effects are modulated by age. Based on the literature, we expected that 
MPH would increase amygdala reactivity and the connectivity to the prefrontal cortex 
during an emotional face-matching, functional magnetic resonance imaging (fMRI) 
paradigm in children but not, or less so, in adults.

Methods

The present study is part of the “effects of Psychotropic drugs On Developing brain-MPH” 
(“ePOD-MPH”) randomized controlled trial (RCT), which was a 16-week double-blind, 
randomized, placebo-controlled, multi-center trial with MPH, and a blinded endpoint 
evaluation in stimulant treatment-naive participants with ADHD [Bottelier et al., 2014]. 
The primary objective of the ePOD-MPH RCT was to report on the age-dependent 
effects of MPH on the outgrowth of the dopaminergic system, as published elsewhere 
[Schrantee et al., 2016]. The current study investigated the secondary outcome measures, 
namely functional measures underlying these changes, including emotional processing. 
The study protocol applied the code of medical ethics and was registered by the Central 
Committee on Research Involving Human Subjects (an independent registry) on March 
24, 2011 (identifier NL34509.000.10) and subsequently at the Netherlands National Trial 
Register (identifier NL2955/NTR3103). The enrollment started with the first patient on 
October 13, 2011, ended on June 15, 2015, and was monitored by the Clinical Research 
Unit of the Amsterdam University Medical Center, University of Amsterdam, Amsterdam, 
the Netherlands.

Participants 

We included 50 stimulant treatment-naive boys (10–12 years of age) and 49 stimulant-
treatment naive men (23– 40 years of age) in the ePOD-MPH RCT. They were diagnosed 
with ADHD and recruited through clinical programs at the Child and Adolescent 
Psychiatry Center Triversum (Alkmaar), the Department of Child and Adolescent 
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Psychiatry at the Bascule/AMC (Amsterdam), and the PsyQMental Health Facility (The 
Hague). An experienced psychiatrist (MAB) diagnosed all children and adults. They met 
criteria for ADHD according to the Diagnostic and Statistical Manual of Mental Disorders 
(DSM-IV, 4th edition), as confirmed by a structured interview, i.e., the Diagnostic Interview 
Schedule for Children [NIMH-DISC-IV: authorized Dutch translation [Ferdinand and van 
der Ende, 1998]] and the Diagnostic Interview for ADHD (DIVA 2.0) for adults [Kooij, 
2012]. The DSM-IV requirement of at least six inattention or hyperactivity/impulsivity 
symptoms was applied to both children and adults. Exclusion criteria were: comorbid axis 
I psychiatric disorders requiring treatment with medication at study entry; and a history 
of major neurological or medical illness or clinical treatment with drugs influencing the 
dopaminergic system (for adults before 23 years of age), such as stimulants, neuroleptics, 
antipsychotics, and/or D2/D3 agonists. More detailed inclusion and exclusion criteria are 
listed in the Supplementary Methods. All participants and parents or legal representatives 
of the children provided written informed consent after receiving a complete description 
of the study.

Intervention, randomization, and blinding 

After baseline (BL) assessments, we stratified participants by age and randomized 
them to either placebo or MPH treatment (1:1), using a permuted block randomization 
scheme generated by the local Clinical Research Unit. The treating physician prescribed 
the study medication under double-blind clinical guidance (reduction of ADHD 
symptoms) following Dutch treatment guidelines. Participants received oral dosages of 
short-acting MPH starting with 1–2 doses of 0.3 mg/kg daily. Dosages were increased 
weekly with 5–10 mg/day to a maximum of 50 mg/day until the target clinical dosage 
was reached, in line with clinical guidelines in the Netherlands. If, after decreasing the 
dosage, serious side-effects occurred, the participant returned to the previous dosage 
and dosage modifications were more gradual thereafter. Decisions about dosage 
modifications were always and only done by the treating psychiatrist (mean dosage per 
person in Supplementary Results). Participants, care providers, and research personnel 
were blinded to the treatment condition (Supplementary Methods for further details). 
The Medical Center Alkmaar hospital pharmacy assigned participants to a specific 
allocation, using sequentially numbered containers. The appearance of the placebo 
tablet was identical to the MPH tablet and was manufactured and labeled according to 
GMP guidelines (2003/94/EG). We obtained data at three timepoints: at BL, at 8 weeks 
into treatment (during treatment = DT), and 1 week after the treatment had ended (post 
treatment=PT) (Figure 1). Short-acting MPH has a half-life (t1/2) of approximately 2 hours; 
therefore, MPH is cleared approximately 10 hours after the last MPH administration. We 
used a wash-out period of 1 week to ensure that no acute effects of MPH influenced the 
PT assessment. Adherence to the study medication was monitored at each of the control 
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visits and was expressed as a percentage, based on the number of tablets remaining 
divided by the number of tablets that should have remained (based on the daily dose, 
adjusted at each of the control visits). Adult participants received coaching sessions, and 
parents of children received psychoeducation.

Figure 1. Timeline of the ePOD-MPH RCT. We measured fMRI activity and connectivity on 
an emotional face-matching task at three time points: at BL before randomization, 8 weeks 
during treatment (DT), and 1 week after the trial end (PT). Furthermore, we assessed clinical 
measures of ADHD, anxiety, and depression at these same timepoints.

Clinical and behavioral variables

In children, we assessed ADHD severity, anxiety, and depressive symptoms using 
the disruptive behavior disorder rating scale (DBD-RS) [Pelham Jr. et al., 1992], Child 
Depression Inventory (CDI) [Kovacs, 1985], and the child version of the Screen for Child 
Anxiety Related Disorders (SCARED) [Muris P, Bodden D, Hale W, 2007]. In adults, we used 
the Attention-Deficit Hyperactivity Disorder-Self Report (ADHD-SR) [Kooij, 2012], Beck’s 
Depression Inventory (BDI) [Beck et al., 1961], and Beck’s Anxiety Inventory (BAI) [Beck et 
al., 1988]. We assessed all clinical scales at BL, DT, and PT (Figure 1). Behavioral response 
data (accuracy and reaction times) of the fMRI task were extracted from E-Prime.

fMRI

Participants performed an emotional face-matching fMRI paradigm at BL, DT, and PT 
(Figure 1). We presented a practice run before the first MRI scan and used two versions of 
the task to minimize learning effects. The emotional face-matching paradigm consisted 
of a blocked design and was adapted from a task previously used to assess drug effects 
on amygdala reactivity [Bottelier et al., 2017; Hariri et al., 2002]. The emotional stimuli 
consisted of angry and fearful faces, and the neutral stimuli consisted of ellipses assembled 
from scrambled faces (Supplementary Figure S1). During the task, we recorded reaction-
time to button press and accuracy. 

The MRI study was performed on a 3T Philips scanner (Philips Healthcare, Best, 
Netherlands) using an eight-channel receive-only head coil. Eight children and one 
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adult were scanned on a 3T Phillips scanner at a different center (Philips Healthcare, 
Best, Netherlands). A 3D T1-weighted anatomical scan was acquired for registration 
purposes, and fMRI data were acquired using a single-shot echo-planar imaging 
sequence (parameters: TR/TE = 2300/30ms, resolution = 2.3 × 2.3 × 3mm, 39 sequential 
slices, FA = 80°, dynamics = 70). Preprocessing was performed using FMRIPREP v.1.2.3 
[Esteban et al., 2019; Esteban et al., 2020](RRID: SCR 016 216). Each T1-weighted (T1w) 
scan was normalized to MNI space. Functional data preprocessing included motion 
correction (FLIRT), distortion correction (3dQwarp), followed by co-registration to the 
T1w. Independent component analysis-based Automatic Removal Of Motion Artifacts 
(ICA-AROMA) was used to generate non-aggressively denoised data. Subsequently, data 
were spatially smoothed (6mm FWHM) and high pass-filtered (100s) within FSL/FEAT 
(FSL/FEAT v.6.00; RRID: SCR 002 823) (Supplementary Methods for further detail). 

FMRI data were entered into the first-level analysis in FSL/FEAT [Jenkinson et al., 
2012]. For our regions of interest (ROI) analyses of the emotional face-matching task, 
mean signal intensity for the left and right amygdala [Posner et al., 2011b] was extracted 
from the first level contrasts using masks from the Harvard–Oxford atlas (thresholded 
at 50%). To explore whole-brain activity in the main task contrasts (faces vs shapes; 
shapes vs faces), the first-level contrast-of-parameter-estimates (COPE) maps were 
analyzed pairwise using nonparametric permutation testing (5000 permutations) in 
FSL Randomise. Thresholds for all analyses were initially set at P < 0.05 with family-wise 
error corrections using threshold-free cluster enhancement [Winkler et al., 2014]. From a 
total of 198 MRI scans, 34 scans could not be entered into the statistical analysis (17.2%). 
Exclusion criteria for MRI scans were: technical problems (0.6%), mean frame-wise 
displacement >0.5 mm (2%), scrubbing >15% (1.5%), drop-out (8.6%), or incomplete 
understanding of the task <70% accuracy (4.5%). 

Psychophysiological interaction (PPI) analyses were conducted to assess connec-
tivity during the emotional face-matching task. The left and right amygdala were chosen 
as seed regions and separately entered into two first-level models. Whole-brain analyses 
were performed as described before, using the first level data of the PPI analysis.

Statistical analysis

All statistical analyses were conducted using R v.3.5.3 [R Development Core Team, 2011]. 
Clinical and behavioral variables were analyzed intention-to-treat, and fMRI activity was 
analyzed per protocol with the significance level set at P < 0.05 (two-sided). All data 
were checked for normality and, in the case of nonnormality, transformed accordingly. 
To account for missing data points and the longitudinal nature of the RCT, linear mixed 
effects models were used to analyze clinical and behavioral variables and fMRI activity 
to investigate the main effect of scan session (BL, DT, PT), medication group (placebo, 
MPH), and age group (children, adults), and its corresponding interaction effects using 
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the lme4 package [Bates et al., 2015]. For the amygdala reactivity data, the average 
framewise displacement per participant was added to the model as a covariate. A variable 
representing the scanner that was used was tested as a possible covariate and found to 
not contribute significantly. Additionally, we tested whether leaving out the participants 
with comorbidities changed the results of our analyses. Model selection was based on 
an adjusted topdown procedure, in which the resulting models were compared using 
the Bayesian information criterion (BIC), and consequently, the model best capturing the 
data was reported using approximate F-tests based on the Kenward–Roger approach 
[Kenward and Roger, 1997]. Follow-up pairwise comparisons were corrected for multiple 
testing using a Sidak correction. Exploratory prediction analyses were done using linear 
models (lm); BL ADHD severity scores were included as a covariate.

Results 

Clinical characteristics and randomization

A total of 99 participants with ADHD were randomized to either MPH or placebo. No 
serious adverse events were reported in any of the participants. Treatment groups did 
not differ in age, intelligence quotient (IQ), depressive or anxiety symptoms, and ADHD 
severity at BL (Table 1). One adult in the placebo group had a current panic disorder. 
Discarding the data from this participant did not change the results, and therefore we 
decided to include these data in the analyses.

Treatment assignment

In Supplementary Figure S2, treatment allocation and dropout rates are reported 
according to CONSORT standards. One adult was excluded from the analysis due to 
undisclosed previous stimulant treatment. Eight adults underwent the PT scan at 8 weeks 
instead of at 17 weeks of the trial due to significant technical changes (software upgrade) 
to the MRI scanner. The mean treatment duration did not differ between both treatment 
groups in adults (t(42) =−0.02, p = 0.98) or children (t(45) = 0.15, p = 0.88). Medication 
conditions did not differ in age, IQ, or ADHD, depression and anxiety symptoms, or 
motion parameters after exclusion of scans (Supplementary Table S1).
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Behavioral outcomes

Linear mixed-effects model analyses showed a significant medication x scan-session 
effect for ADHD symptoms in adults (F(2,78) = 4.82, p = 0.01). Posthoc tests revealed that 
ADHD symptoms in the MPH group decreased significantly more than in the placebo 
group from BL to 8 weeks during treatment (DT) and continued to be lower 1-week PT 
(ADHD-SR: DT: t(101) =−2.21, p = 0.03; PT: t(95) =−2.33, p = 0.02). In children, the inattention 
subscale showed a significant medication × scan-session effect (DBD-RS-A: F(2,83) = 5.47, 
P < 0.01), but not the hyperactivity subscale (DBD-RS-H: F(3,90= 2.48, p = 0.07). Post hoc 
tests revealed that inattention symptoms in the MPH group decreased significantly more 
than in the placebo group from BL to 8 weeks DT and continued to be lower 1 week PT 
(DBD-RS-A: DT: t(116) =−3.62, p < 0.01; PT: t(111) =−3.77, p < 0.01). For the hyperactivity 
subscale in children, we found a significantly larger decrease for the MPH group than for 
placebo at DT, but not at PT (DBD-RS-H: DT: t(94) =−2.16, p = 0.03; PT: t(88) =−1.87, p = 
0.07) (Figure 2A; Supplementary Table S2).

For anxiety symptoms, a main effect of scan session was only found in the children 
(SCARED: F(2,93) = 22.70, p < 0.01; BAI: F(2,85) = 2.01, p = 0.14); both the MPH and placebo 
conditions in children showed improvement from BL to 1 week PT (MPH: t(96) = 3.32, p < 
0.01; placebo: t(94) = 5.17, p < 0.001) (Figure 2B; Supplementary Table S2). For depressive 
symptoms, in both children and adults, a main effect of scan session was found (CDI: 
F(2,91) = 38.17, p < 0.01; BDI: F(2,44) = 4.05, p = 0.02). Post hoc tests showed that both 
the MPH and placebo conditions in children improved from BL to 1week PT (CDI: MPH: 
t(93) = 5.36, p < 0.001; placebo: t(92) = 6.58, p < 0.001); however, in adults, the effect was 
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driven by a small effect of the placebo group from BL to DT (BDI: t(90) = 2.77, p = 0.02). 
No treatment effects were found from BL to PT (BDI: MPH: t(91) = 1.45, p = 0.32; placebo: 
t(90) = 0.79, p = 0.71) (Figure 2B; Supplementary Table S2). 

Figure 2. (A) ADHD symptoms. Line graphs show mean with 95% CI ADHD symptoms. A 
medication (MPH, placebo) × session (BL, DT, PT) effect was found for ADHD symptoms in 
adults and the inattention subscale in children but not the hyperactivity subscale. Post hoc 
tests revealed that ADHD symptoms in the MPH group decreased significantly more than in 
the placebo group from BL to DT and continued to be lower at PT in adults and the inattention 
subscale in children. We found a significantly larger decrease for the MPH group than placebo 
at DT for the hyperactivity subscale in children, but not at PT. (B) Clinical variables. Line graphs 
show the mean with 95% CI of anxiety, and depression scores. A main effect of session (BL, DT, 
PT) was found for anxiety and depressive symptoms in children, and depressive symptoms 
in adults. For depression and anxiety symptoms, both the MPH and placebo conditions in 
children showed improvements from BL to PT, but not adults. ∗= post hoc effect of session; += 
post hoc effect of medication condition.

Prediction analysis revealed a significant interaction effect of BL depressive and anxiety 
symptoms and medication condition on ADHD symptom change from BL to DT and BL 
to PT in adults, but not children (DT-BL: BDI: F(4,31) = 8.93, p < 0.01; BAI: F(4,32) = 10.70, 
p < 0.01; PT-BL: BDI: F(4,34) = 13.26, p < 0.01; BAI: F(4,35) = 13.67, p < 0.01). Post hoc tests 
showed that adults in the placebo condition did not show any relation between the 
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clinical variables and ADHD symptom change. In contrast, a negative association was 
found in the MPH condition, meaning higher BL depression and anxiety scores predicted 
a larger ADHD symptom severity decrease (Figure 3).

fMRI results

Emotional face-matching paradigm as expected, the emotional face-matching task 
elicited activity in the bilateral amygdala, bilateral and medial prefrontal cortex, and 
bilateral occipital and parietal areas, including the fusiform gyrus at BL. For activation 
maps, see Bottelier et al. [2017]. 

Figure 3. Prediction analysis. Scatterplots showing linear regressions between BL anxiety or 
depression symptoms and ADHD symptom severity change from BL to DT and BL to PT. Higher 
clinical scores at BL significantly predicted a higher decrease in ADHD symptom severity in 
adults treated with MPH (but not placebo) and not in children.

Linear mixed-effects model analyses did not show a significant age × medication × scan-
session interaction on left or right amygdala reactivity (left: F(11,181) = 0.91, p = 0.53; 
right: F(10,172) = 0.74, p = 0.69), nor a significant scan-session × medication interaction in 
children (left: F(5,70) = 1.23, p = 0.30; right: F(5,69) = 1.22, p = 0.31) or adults (left: F(5,93) = 
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0.69, p = 0.63; right: F(5,93) = 1.17, p = 0.33), nor any main effects of scan session (children: 
left: F(2,63.61) = 0.68, p = 0.51; right: F(2,60.58) = 1.27, p = 0.29; adults: left: F(2,83.85) = 
0.86, p = 0.43; right: F(2,82.64) = 0.85, p = 0.43), or medication (children: left: F(1,39.45) = 
0.14, p = 0.70; right: F(1,40.54) = 0.85, p = 0.36; adults: left: F(1,42.50) = 1.12, p = 0.30; right: 
F(1,43.12) = 2.57, p = 0.12) (Figure 4A; Supplementary Table S2). Furthermore, none of the 
clinical questionnaires of ADHD, depression, or anxiety in either the children or adults 
correlated with the left or right amygdala reactivity in any of the sessions (Supplementary 
Table S4). Accuracy and reaction time (RT) data did not show any medication × scan-
session interaction (children: accuracy faces: F(5,72.66) = 0.99, p = 0.50; accuracy shapes: 
F(3,68.83) = 1.24, p = 0.30; RT faces: F(5,66.93) = 1.06, p = 0.39; RT shapes: F(5,87.10) = 0.84, 
p = 0.52; adults: accuracy faces: F(5,85.32) = 0.09, p = 0.66; accuracy shapes: F(3,82.97) = 

Figure 4. FMRI results of the emotional face-matching task. (A) ROI analysis. Line graphs 
display mean with 95% CI, showing no significant interaction or main effects of session (BL, DT, 
PT) and medication (MPH, placebo). 
(B) PPI-analysis.Whole-brain maps per group showed increased connectivity between the right 
amygdala and the occipital fusiform gyrus, paracingulate gyrus, and inferior frontal gyrus in 
adults treated with MPH from BL to PT. (C) Exploratory whole-brain analysis. Whole-brain maps 
show increased reactivity in the superior frontal cyrus and paracingulate cortex in children 
treated with MPH from BL to DT and decreased reactivity in the lateral occipital cortex in adults 
treated with placebo from BL to PT.
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0.04, p = 0.99; RT faces: F(3,81.50) = 1.36, p = 0.26; RT shapes: F(5,67.13) = 1.02, p = 0.42), nor 
medication main effects (Supplementary Table S2, Supplementary Figure S4).

Connectivity and exploratory whole-brain analyses PPI analysis per group indicated 
that MPH increased the connectivity between the right amygdala and the occipital 
fusiform gyrus, paracingulate gyrus, and inferior frontal gyrus in adults from BL to 1 
week PT (Figure 4B; Supplementary Table S3). Exploratory whole-brain analyses revealed 
that MPH increased reactivity to the emotional face-matching task in the superior frontal 
gyrus and paracingulate cortex in children in the period of 8 weeks during treatment 
(DT) to 1 week after treatment. Additionally, a decrease in reactivity in the lateral occipital 
cortex was found in placebo-treated adults from BL to 1 week PT (Figure 4C).

Discussion

In this 4-month RCT in stimulant treatment-naive boys and men with ADHD, MPH did not 
influence internalizing symptoms or neural substrates underlying emotional processing, 
although MPH positively affected ADHD symptoms in both the children and adults, 
compared to placebo. Furthermore, we did not find that age modulated any of these 
effects. However, PPI analyses showed an increase of connectivity between the right 
amygdala and frontal regions only in the MPH-treated adults. In our exploratory whole-
brain reactivity analyses we found small increases in cortico-limbic circuits in the MPH-
treated children and in MPH-treated adults, we showed decreasing effects in the lateral 
occipital cortex. Interestingly, higher BL depressive and anxiety symptoms in adults 
predicted larger ADHD symptom reductions in the MPH but not the placebo condition. 
These results were independent of BL ADHD severity, providing further evidence for the 
important role of internalizing symptoms in obtaining clinical response and the role of 
ADHD medication herein. 

Previous studies, including our research in the same sample of ADHD participants 
(BL only), showed that acute MPH administration normalized the heightened amygdala 
reactivity during emotional processing in individuals with ADHD [Bottelier et al., 2017; 
Posner et al., 2011a]. In contrast, in the current study on prolonged MPH treatment, we did 
not find evidence for altered amygdala reactivity, nor was this response age dependent. 
Previous studies comparing individuals with and without ADHD using emotional 
processing tasks have found mixed results, with some studies reporting increased left 
amygdala reactivity [Brotman et al., 2010; Posner et al., 2011b], whereas others only found 
significant results for either adults or children, or only in participants with certain comor-
bidities [Shaw et al., 2014]. Consequently, functional impairments of the amygdala, and 
therefore also the influence of MPH thereon, may be heterogeneous and highly dependent 
on the task. Furthermore, studies have suggested that ADHD-related deficits in the PFC 
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may be responsible for the deficient integration of information of regions responsible for 
perception and emotion recognition [Winston et al., 2003]. Therefore, medication effects 
should be assessed within the functional network associated with the task.  

Indeed, in our exploratory whole-brain connectivity analyses we found small yet 
specific effects in the MPH treated children within cortico-limbic circuits. Although these 
findings require replication in larger samples, they indicate that MPH induces changes in 
top-down control processes, as MPH has been found before to primarily affect fronto-pa-
rietal circuits [Faraone et al., 2019]. In line with our results, the “dyscontrol hypothesis” 
postulates that externalizing symptoms in ADHD are not emerging from direct dysfunc-
tional emotional processing itself, but rather from executive dysfunction, affecting 
top-down processes, such as the capacity to suppress responses evoked by emotional 
stimuli [Posner et al., 2014]. Research on internalizing symptoms and their neural corre-
lates in ADHD participants is scarce. One study found that increased connectivity of 
the amygdala with prefrontal regions is associated with higher internalizing emotional 
regulation problems in children with ADHD [Uchida et al., 2015]. Although we did not 
find changes in amygdala-prefrontal connectivity in children, in MPH-treated adults, we 
showed a significant increase in connectivity between the right amygdala and frontal 
regions, including paracingulate gyrus and inferior frontal gyrus. Additionally, this group 
showed increased connectivity between the right amygdala and the fusiform gyrus 
during the task. This pathway is thought to be important for emotional feedback from 
the amygdala during visual processing in the fusiform gyrus [Vuilleumier et al., 2004]. 
While several studies have linked deficits in connectivity in this particular pathway to 
problems with emotional processing in various disorders [Herrington et al., 2011], future 
studies should consider investigating the influence of MPH on internalizing symptoms 
and its relation to the neural mechanisms of emotional processing in ADHD further as 
research on this topic is still scarce. 

Children across both treatment conditions scored lower on scales of anxiety and 
depression during and after the trial. This finding points towards a general trial effect 
[Arkes and Harkness, 1980], including the consequences of a diagnosis and the subse-
quent support, rather than medication-specific improvements in these symptoms. It is 
important to note that the BL anxiety scores in this sample were in the clinical range for 
anxiety symptoms for most children (54% SCARED > 25), but their BL depression scores 
were identified as ”none to mild” for 84% of the sample. However, in adults, the BL 
depression and anxiety scores were in the subclinical range for most (BDI: 83% less than 
mild depressive symptoms; BAI: 70% less than mild anxiety symptoms). Therefore, it is 
perhaps not surprising that anxiety symptoms did not change over the course of the trial. 

Depressive symptoms in adults transiently decreased during the trial in the 
placebo condition. This effect was minimal and is likely due to the significant variance 
and individual differences in this measure. Despite the low prevalence of anxiety and 
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depressive symptomatology, our results are of clinical importance. Contrary to previous 
preclinical and some human studies [Bolaños et al., 2003; Somkuwar et al., 2016], we 
did not observe an increase in depressive and anxiety symptoms in the MPH condition 
during the 16 weeks in this well-controlled trial. This is in line with another long-term 
(3-year) study, which found a reduced risk for developing depressive symptoms 
associated with previous medication [Chang et al., 2016]. Moreover, the effect of MPH 
on internalizing symptoms is likely patient-specific and Coughlin et al. (2015) argued in 
their meta-analysis that the positive impact on anxiety symptoms outweighs the risk 
of psychostimulants inducing anxiety in children with ADHD, and so far, the causal link 
between stimulant treatment and internalizing symptoms thus remains debated. 

Interestingly, higher depression and anxiety symptoms at BL predicted a larger 
ADHD symptom-severity reduction during the trial (week 8) and after the trial end (1 
week PT) in the adult MPH condition, but not in the adult placebo group or in children. 
The current guidelines for treating adult ADHD state that comorbid depression and 
anxiety require treatment before starting stimulant medication, as stimulants could 
introduce internalizing symptoms as a side-effect [JJ et al., 2004; Kollins, 2008]. In 
contrast, we did not find an MPH induced increase in internalizing symptoms in adults 
or children with ADHD, and therefore do not confirm previous findings [Fredriksen et al., 
2014; Molina et al., 2009]. As such, we could argue that worries about MPH introducing 
internalizing symptoms in children or adults might be unwarranted and MPH should be 
considered as a potential treatment for adults with ADHD and anxiety and/or depression 
comorbidities. However, close monitoring of side-effects should always be ensured and 
future studies in samples with more severe internalizing symptoms should replicate 
these findings. Notably, adults’ depression and anxiety scores at BL in our study were 
in the subclinical range. Therefore, future studies should additionally consider investi-
gating the interactions between MPH, depression and anxiety, and ADHD symptoms 
within an ADHD population with more severe internalizing symptoms. 

These results are conflicting with the recent findings of Masi et al., who reported 
that higher ED at BL, as assessed by the CBCL dysregulation profile (including symptoms 
of anxiety/depression, aggression, and inattention), predicted higher ADHD symptoms 
at follow-up after 4 weeks of MPH treatment in children and adolescents [Masi et al., 
2020]. In their trial, individuals were followed for 4 weeks of MPH treatment, whereas we 
assessed our participants (both children and adults) after 8 and 17 weeks. Additionally, 
the operationalization of emotion regulation problems differed between the two studies; 
while Masi et al. assessed emotion dysregulation defined as a combination of internal-
izing and externalizing symptoms (depression, anxiety, attention, and aggression) and 
considered absolute values of ADHD symptom severity at PT, we focused on internal-
izing symptoms of anxiety and depression in relation to changes in ADHD symptom 
severity, possibly explaining the differences in results. 
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A critical strength of our current study is its design. To rule out the influence of a 
history of medication use, we included only stimulant treatment-naive individuals. For 
ethical reasons, we could not extend the follow-up period to more than 4 months and 
did not include healthy control participants in our study; therefore, we cannot argue 
how amygdala reactivity changed compared to healthy control participants. Further 
limitations of our study are that its results cannot be extrapolated to all children and 
adults with ADHD, as we only studied male participants within a specific age range. We 
chose to include only male participants to limit participant variation. Females and males 
differ considerably in their patterns of brain growth [Giedd et al., 1999] and ADHD is most 
prevalent in male individuals [Polanczyk et al., 2007]. Additionally, the fact that patients 
in the MPH groups were prescribed short-acting MPH, and that DT scans were carried 
out throughout the day, may have resulted in increased variability in fMRI activity within 
these groups at that timepoint. However, this is not reflected in differences in variance 
between the groups. Even though we applied advanced and state-of-the-art motion 
correction methods, we had to exclude several scans due to motion in the MRI scanner; 
consequently, framewise displacement did not differ between groups included in the 
analysis (Supplementary Table S1). Furthermore, internalizing symptoms are known to 
change over development, and as such, its operationalization varies in children and 
adults, even though we assume similar underlying neural processes [Shaw et al., 2014]. 
This makes a comparison of the symptomatology between the age groups challenging, 
especially keeping in mind the complexity of the multiple domains that might span 
emotion regulation problems [Graziano and Garcia, 2015]. 

Future studies should clarify the effects of prolonged stimulant therapy on the 
differential effects on internalizing and externalizing comorbidities in ADHD, both 
separately and together, and their underlying neural mechanisms. In conclusion, we 
did not find evidence for the effects of prolonged MPH on internalizing symptoms nor 
neural substrates underlying emotional processing. Nevertheless, we did demonstrate 
that MPH improved ADHD symptoms the most in adults with the highest depressive 
and anxiety symptoms at BL, suggesting that adult ADHD patients with comorbidities 
could also benefit from treatment with MPH. Furthermore, we did not confirm that MPH 
treatment increased internalizing symptoms in either children or adults, suggesting that 
worries about (early) prescription of MPH might be unwarranted. Nevertheless, future 
studies in an ADHD population with more severe internalizing symptoms should confirm 
these findings to guide treatment in patients at risk for, or presenting with, comorbid-
ities.
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Supplementary Methods

Participants
Boys aged 10-12 years and men aged 23-40 years were included. Inclusion criteria were 
meeting criteria for a diagnosis of and requiring treatment with medication for ADHD 
(Inattentive, Hyperactive/Impulsive or Combined subtype). The diagnosis was determined 
by an experienced clinician based on the Diagnostic and Statistical Manual of Mental 
Disorders (DSM-IV; [American Psychiatric Association, 1994]), which was confirmed with 
a (semi-)structured interview [Ferdinand and van der Ende, 1998] in children; Diagnostic 
Interview for Adult ADHD (DIVA; [Kooij, 2012]). The DSM-IV requirement of at least 
six inattention or hyperactivity/impulsivity symptoms was applied to both children 
and adults. Participants were not eligible when they had received clinical treatment 
influencing the DA system (for adults before age 23), such as stimulants, neuroleptics, 
antipsychotics, D2/D3 agonists, or when they had a current or previous dependency on 
drugs that influence the DA system (for adults before age 23). Other exclusion criteria 
were an estimated IQ < 80 (Block Design and Vocabulary subtests of the WISC-III-R [Kort et 
al., 2002], Dutch Adult Reading Test [Schmand et al., 1992], and/or a history of significant 
medical or neurological trauma or illness (see Figure 2 for a CONSORT flow diagram). 

fMRI paradigm
Subjects performed an emotion recognition fMRI paradigm at three different time 

points during the trial. To further minimize learning effects, a practice run was presented 
before the first MRI scan. Two versions of the tasks were used to overcome learning 
effects. 

The emotion recognition paradigm consisted of a blocked design and was adapted 
from a task previously used to assess drug effects on amygdala reactivity [Bottelier et 
al., 2017; Hariri et al., 2002]. The emotional stimuli consisted of angry and fearful faces, 
whereas the neutral stimuli consisted of ellipses assembled from scrambled faces 
(Supplementary Figure 1). Two blocks of emotional stimuli were interleaved with three 
neutral blocks, each block (30s) containing six trials (5s) (6 trials per block x 5 blocks = 30 
trials (15min)). For each emotional trial, three stimuli were presented simultaneously, and 
subjects had to decide which one of the lower two stimuli expressed the same emotion 
as the target stimuli presented above. Similarly, for each neutral trial, three stimuli were 
presented, but subjects had to decide which of the bottom two ellipses was identically 
oriented to the target ellipse. During the task, reaction time to button press and accuracy 
were recorded.
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Supplementary Figure 1.fMRI task paradigm.

MRI acquisition
The MRI study was performed on a 3.0 T Philips scanner (Philips Healthcare, Best, The 
Netherlands) using an 8-channel receive-only head coil. A high-resolution 3D T1-weighted 
anatomical scan was acquired for registration purposes, and fMRI data were obtained 
using a single-shot echo-planar imaging sequence Parameters were: TR/TE=2300/30ms, 
resolution=2.3 × 2.3 × 3mm, 39 sequential slices, FOV=220x220x117mm, GE-EPI read-out, 
no gap, 80° flip angle, 70 dynamics were used.

MRI preprocessing
Preprocessing was performed using FMRIPREP v1.2.3. Each T1w scan was bias-corrected, 
skull-stripped, and subsequently normalized to MNI space using non-linear registration. 
Functional data preprocessing included motion correction using FLIRT and distortion 
correction using an implementation of the TOPUP technique using 3dQwarp. This was 
followed by co-registration to the corresponding T1w using boundary-based registration 
with 9 degrees of freedom. Motion correcting transformations, field distortion correcting 
warp, BOLD-to-T1w transformation, and T1w-to-template (MNI) warp were concatenated 
and applied in a single step using antsApplyTransforms (ANTs v2.1.0) with Lanczos 
interpolation. Independent component analysis (ICA) based on Automatic Removal Of 
Motion Artifacts (AROMA) was used to generate data that was non-aggressively denoised. 
Subsequently, data were spatially smoothed (6mm FWHM), and a high pass-filter (100s) 
was applied using FSL. 

First-level analyses were performed by modeling the signal changes using the stimu-
lation paradigm (faces vs. shapes), convolved with a canonical hemodynamic response 
function. Data from subjects with extreme motion (framewise displacement > 1mm) 
were removed from the analysis. 



585698-L-sub01-bw-Kaiser585698-L-sub01-bw-Kaiser585698-L-sub01-bw-Kaiser585698-L-sub01-bw-Kaiser
Processed on: 9-12-2022Processed on: 9-12-2022Processed on: 9-12-2022Processed on: 9-12-2022 PDF page: 78PDF page: 78PDF page: 78PDF page: 78

78

Chapter 3

Supplementary Figure 2.Treatment assignment.
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Supplementary Results

Supplementary Table 1. Characteristics of the participants included in the fMRI Analysis of the 
randomized controlled trial at Baseline.

Supplementary Figure 3. Mean and confidence interval of the dose of MPH treatment or 
placebo over the whole trial, including data points per participant.
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Supplementary Table 2. Statistics.
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Supplementary Figure 4. Accuracy and reaction time measures from the fMRI task.

Supplementary Table 3. PPI whole-brain analysis and exploratory task reactivity whole-brain 
analysis of the emotion recognition taks (Faces > shapes).



585698-L-sub01-bw-Kaiser585698-L-sub01-bw-Kaiser585698-L-sub01-bw-Kaiser585698-L-sub01-bw-Kaiser
Processed on: 9-12-2022Processed on: 9-12-2022Processed on: 9-12-2022Processed on: 9-12-2022 PDF page: 82PDF page: 82PDF page: 82PDF page: 82

82

Chapter 3

Supplementary Table 4. Correlations of amygdala reactivity and clinical measures per session 
(significance level alpha=0.008 after bonferroni correction per age group and session (number 
of tests=6)).
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Abstract 

Prior studies suggest that methylphenidate, the primary pharmacological treatment 
for attention-deficit/hyperactivity disorder (ADHD), alters functional brain connectivity. 
As the neurotransmitter systems targeted by methylphenidate undergo significant 
alterations throughout development, the effects of methylphenidate on functional 
connectivity may also be modulated by age. Therefore, we assessed the effects of a 
single methylphenidate challenge on brain network connectivity in stimulant-treatment 
naïve children and adults with ADHD. We obtained resting-state functional MRI from 
50 boys (10–12 years of age) and 49 men (23–40 years of age) with ADHD (DSM IV, all 
subtypes), before and after an oral challenge with 0.5 mg/kg methylphenidate; and 
from 11 boys and 12 men as typically developing controls. Connectivity strength (CS), 
eigenvector centrality (EC), and betweenness centrality (BC) were calculated for the 
striatum, thalamus, dorsal anterior cingulate cortex (dACC), and prefrontal cortex (PFC). 
In line with our hypotheses, we found that methylphenidate decreased measures of 
connectivity and centrality in the striatum and thalamus in children with ADHD, but 
increased the same metrics in adults with ADHD. Surprisingly, we found no major effects 
of methylphenidate in the dACC and PFC in either children or adults. Interestingly, pre-
methylphenidate, participants with ADHD showed aberrant connectivity and centrality 
compared to controls predominantly in frontal regions. Our findings demonstrate that 
methylphenidate’s effects on connectivity of subcortical regions are age-dependent in 
stimulant-treatment naïve participants with ADHD, likely due to ongoing maturation 
of dopamine and noradrenaline systems. These findings highlight the importance 
for future studies to take a developmental perspective when studying the effects of 
methylphenidate treatment.
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Introduction

In recent years, attention-deficit/hyperactivity disorder (ADHD) has been increasingly 
considered a disorder of brain-wide network dysconnectivity rather than of region-
specific deficits [Castellanos and Proal, 2012; Samea et al., 2019]. Methylphenidate, the 
primary pharmacological treatment for ADHD, has been proposed to alter functional 
connectivity in various brain-wide functional circuits affected by ADHD [Pereira-Sanchez 
et al., 2021]. For instance, normalized connectivity in fronto-parietal-cerebellar circuits 
has been observed in children with ADHD following acute methylphenidate. This was first 
observed by An et al., demonstrating that a single dose of methylphenidate compared 
to placebo, upregulated abnormally decreased local connectivity in bilateral ventral 
prefrontal cortices and the cerebellar vermis, and downregulated abnormally increased 
local connectivity in the right parietal and visual areas in children with ADHD [An et 
al., 2013]. Similarly, Silk et al. found that a single dose of methylphenidate compared 
to placebo normalized increased functional connectivity in occipital, temporal, and 
cerebellar regions and visual, executive, and default mode networks in adolescents with 
ADHD [Silk et al., 2017]. More recently, alterations in fronto-parietal-cerebellar circuits 
have also been observed following prolonged methylphenidate treatment in medication-
naïve children with ADHD [Yoo et al., 2018]. Finally, preliminary evidence suggests that 
such a normalization might also occur in adults with ADHD [Cary et al., 2017; Picon et 
al., 2020]. However, due to methodological heterogeneity in previous studies, including 
prior use of stimulant medications, results remain inconclusive [Pereira-Sanchez et al., 
2021]. 

Methylphenidate acts by inhibiting dopamine and noradrenaline reuptake in the 
brain [Cortese et al., 2017]. As the dopamine system undergoes significant alterations 
throughout development [Chen et al., 2010], methylphenidate-induced effects on 
functional connectivity may be modulated by age. For example, a recent longitudinal 
study demonstrated an age-dependent effect of prolonged stimulant treatment-response 
on cingulo-opercular network connectivity [Norman et al., 2021b]. Moreover, exposure to 
stimulants during sensitive stages of maturation might cause developmental alterations, a 
process called neuronal imprinting [Andersen, 2005]. Indeed, animal studies suggest that 
the age at initiation of methylphenidate treatment affects its influence on development 
in a highly specific manner [Canese et al., 2009]. In the same sample as described here, we 
also observed that the effects of methylphenidate may be modulated by age; we found 
that acute methylphenidate decreased thalamic cerebral blood flow only in children, but 
not in adults [Schrantee et al., 2017]. Moreover, we observed that prolonged methylpheni-
date-treatment followed by an acute challenge with methylphenidate significantly influ-
enced cerebral blood flow in the striatum and thalamus in children, but not adults, nor in 
the placebo conditions [Schrantee et al., 2016]. 
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Here, we aimed to assess the effects of a single-dose challenge of methylphenidate 
on resting-state functional MRI (rs-fMRI) network connectivity in stimulant-treatment 
naïve children and adults with ADHD using graph theoretical measures, to investigate 
potential age-dependent neural mechanisms involved in stimulant-induced changes 
in ADHD. Based on previous findings, we expected significant methylphenidate-in-
duced alterations in connectivity of the striatum, thalamus, dorsal anterior cingulate 
cortex (dACC), and prefrontal cortex (PFC). We expected that these effects would differ 
between children and adults because of functional maturation of the dopamine and 
noradrenaline system [Chen et al., 2010]. In addition, based on studies reporting altered 
connectivity in individuals with ADHD compared to typically developing control partic-
ipants, we hypothesized that an acute dose of methylphenidate would strengthen 
connectivity for these four brain regions in adults, whereas in children, we expected 
increased connectivity in frontal regions (PFC and dACC) and decreased connectivity in 
the thalamus and striatum.

Methods

We included 50 stimulant treatment-naive boys (10–12 years of age) and 49 stimulant-
treatment naive men (23–40 years of age) that were part of the “effects of Psychotropic 
drugs On the Developing brain methylphenidate” (ePOD-MPH) trial (NTR3103 and 
NL34509.000.10; [Bottelier et al., 2014; Schrantee et al., 2016]). They were recruited through 
clinical programs at the Child and Adolescent Psychiatry Center Triversum (Alkmaar, The 
Netherlands), the Department of Child and Adolescent Psychiatry at the Bascule/AMC 
(Amsterdam, The Netherlands), and the PsyQ Mental Health Facility (The Hague, The 
Netherlands). All participants were diagnosed with ADHD (DSM-IV, all subtypes) by an 
experienced psychiatrist, using a structured interview, (Diagnostic Interview Schedule 
for Children (NIMH-DISC-IV): authorized Dutch translation [Ferdinand and van der Ende, 
1998]) and the Diagnostic Interview for ADHD (DIVA 2.0) for adults [Kooij et al., 2008]. In 
addition, as a typically developing comparison group, we included 11 boys (aged 10–12 
years) and 12 men (aged 23–40 years) as non-ADHD control participants, who received 
pre-methylphenidate scans only (Table 1). 

Exclusion criteria were: comorbid axis I psychiatric disorders requiring treatment 
with medication at study entry, a history of major neurological or medical illness or 
clinical treatment with drugs influencing the dopamine system (for adults before 23 
years of age), such as stimulants, neuroleptics, antipsychotics, and/or D2/D3 agonists (see 
Supplementary Material for more detail). The study was approved by the medical ethical 
committee and consequently monitored by the Clinical Research Unit of the Amsterdam 
University Medical Center, University of Amsterdam, Amsterdam, the Netherlands. 
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All participants and parents or legal representatives of the children provided written 
informed consent. 

The primary outcome measure of the ePOD-MPH trial was to report on the modifi-
cation by age of methylphenidate treatment on the outgrowth of the dopamine system 
by using pharmacologic MRI [Schrantee et al., 2016]. Here, we report on acute effects 
of methylphenidate on the baseline rs-fMRI measurement of the trial, during which 
ADHD participants underwent two MRI scans, one before and one 90min after an oral 
challenge of short-acting methylphenidate (Sandoz B.V., Weesp, the Netherlands; 0.5mg/
kg with a maximum of 20 mg in children and 40mg in adults). The dose was chosen so 
that 80% of dopamine transporters were occupied [Swanson and Volkow, 2003], and we 
chose 90min of waiting period for optimal occupation of these transporters. Typically 
developing control subjects did not receive a challenge of methylphenidate.

Table 1 Characteristics of participants included in the rs-(MRI) analysis. Significaant effects are 
indicated in bold (p < 0.05)
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Resting-state fMRI

Data were acquired on 3 T Philips scanners (Philips Healthcare, Best, The Netherlands) 
using an 8-channel receive-only head coil. A 3D T1-weighted anatomical scan was 
acquired for registration purposes, and rs-fMRI data were acquired using a single-shot 
echo-planar imaging sequence (TR/TE = 2300/30ms, resolution = 2.3 x 2.3 x 3mm, 39 
sequential slices, FA = 80°,dynamics = 130). 

Preprocessing was performed using FMRIPREP v1.2.3 ([Esteban et al., 2020]; RRID: 
SCR_016216), including ICA-AROMA. Subsequently, white matter (WM) and cerebral 
spinal fluid (CSF) signals (obtained before ICA-AROMA) were regressed out and 
high-pass-filtering (100 s) was applied using FSL. The Brainnetome atlas was used to 
define 246 parcels ([Fan et al., 2016]; Figure 1a,b) and fMRI signal time-series per partic-
ipant were extracted and z-scored (Figure 1c). Framewise displacement (FD) values were 
calculated from low-pass filtered motion parameter time-series according to Gratton 
et al. [2020] to remove respiration artifacts (Supplementary Methods) and fMRI signal 
timepoints where FD >0.2mm were scrubbed. Participants were excluded from further 
analyses if mean FD >0.2 mm or if the number of volumes after scrubbing ≤104.

Cleaned fMRI time-series were then used to calculate connectivity matrices using 
Pearson correlations, resulting in a 246 x 246 connectivity matrix per participant, 
which was absolutized for further analyses (Figure 1c,d). Temporal signal-to-noise 
ratio (tSNR) maps were calculated per participant to remove low-tSNR nodes (Supple-
mentary Methods).Graph theory measures were calculated for the whole brain from 
connectivity matrices using the Brain Connectivity Toolbox ([Rubinov and Sporns, 2010]; 
[RRID:SCR_004841]; Figure 1e). Quality control measures as defined by Ciric et al. [2017], 
as well as the number of negative correlations and average correlation coefficients, were 
calculated (Supplementary Figure 1; Supplementary Table 1). Connectivity strength (CS), 
betweenness centrality (BC), and eigenvector centrality (EC) were calculated and conse-
quently averaged for four regions of interest (ROIs): striatum, thalamus, dorsal anterior 
cingulate cortex (dACC), and prefrontal cortex (PFC) (Brainnetome region numbers per 
ROI in Supplementary Table 2). The striatum was selected because it is rich in dopamine 
transporters and is the primary target of methylphenidate. The thalamus and dACC were 
selected because animal literature has demonstrated the largest age-dependent effects 
of methylphenidate in these two important projections from the striatum [Andersen, 
2005]. Finally, the PFC was selected due to its hypothesized importance and its intercon-
nection with other areas that are affected by ADHD [Mehta et al., 2019]. 
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We decided not to take lateralization into account, mainly for statistical reasons. An 
additional division into left and right would have significantly decreased the statistical 
power of our study. Additionally, we did not have any a-priori hypotheses about later-
alization of methylphenidate induced resting-state connectivity changes in either the 
striatum, thalamus, dACC or the PFC, as pre-registered with the ePOD-MPH randomized 
controlled trial. Correlations of all connectivity measures and FD can be found in Supple-
mentary Table 3. Further details on the analysis methods can be found in the Supple-
mentary Material.

Statistical analysis

Statistical analyses were conducted using R v.3.5.3 [R Development Core Team, 2011]. All 
data were checked for normality and, in case of non-normality, log-transformed. Linear 
mixed-effects models were used to analyze changes in fMRI connectivity per age group 
separately to investigate the main effect of methylphenidate (pre and post-challenge 
of acute methylphenidate) using the lme4 package [Bates et al., 2015]. Linear models 
were used to analyze the differences between the ADHD participants and controls at pre-
methylphenidate. The average whole-brain CS per participant was added to the model 
as a covariate. FD and a variable representing the scanner that was used were tested as 
possible covariates, but not significant and thus not included in the models. Multiple 
comparison correction within modalities was performed using Sidak’s correction: α* = 
1-(1-α)1/m, with α = 0.05 and m = 4 (number of ROIs), which resulted in an α* = 0.0127.

Results

Participants

Of the 99 ADHD patients scanned, data from 81 participants with ADHD and 21 
typically developing controls were analyzed (Table 1). One adult ADHD participant was 
excluded because of undisclosed prior stimulant treatment (more details about the trial 
are published elsewhere [Schrantee et al., 2016]. Seventeen children with ADHD were 
excluded due to excessive motion (whose characteristics did not differ from the included 
children (Supplementary Results)).
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Rs-fMRI connectivity

All results of the statistical tests, as well as the estimated means and 95% confidence 
intervals, can be found in Table 2.

Striatum
Pre to post-methylphenidate, in children with ADHD, CS, and EC significantly decreased, 
but changes in BC did not survive multiple comparison corrections. Pre to post-
methylphenidate, in adults with ADHD, the opposite effect was found; both CS and EC 
significantly increased, but BC did not change significantly.

Pre-methylphenidate, neither children nor adults with ADHD differed significantly 
from the respective controls in any of the connectivity metrics. Post-methylphenidate, 

Figure 1. Analysis overview. (a and b) to construct functional brain networks per participant, the 
Brainnetome atlas (BNA) was used to define 246 parcels [Fan et al., 2016]. (c and d) the cleaned 
time series were then used to calculate connectivity matrices using Pearson correlations, 
resulting in a 246 x 246 connectivity matrix per participant, which was absolutized for further 
analyses. (e) Graph theory measures were calculated from the connectivity matrices using the 
brain connectivity toolbox [Rubinov and Sporns, 2010]. Connectivity strength (CS), betweenness 
centrality (BC), and eigenvector centrality (EC) were calculated for four regions of interest 
(ROIs): Striatum, thalamus, dorsal anterior cingulate cortex (dACC), and prefrontal cortex (PFC).
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in children with ADHD, none of the connectivity metrics differed significantly from the 
respective young controls. Post-methylphenidate, in adults with ADHD, CS and EC differed 
significantly from the adult controls, but BC did not differ significantly. (Figure 2a; Table 2).

Table 2. Results of statistical tests.

Thalamus
Pre to post-methylphenidate, in children with ADHD, CS, EC, and BC decreased 
significantly. Pre to post methylphenidate, in adults with ADHD, the opposite effect was 
found; CS, EC, and BC increase significantly. Pre-methylphenidate, children with ADHD 
did not differ significantly from the young controls in any of the connectivity metrics. 

Pre-methylphenidate, adult ADHD participants showed lower BC than adult 
controls, but CS and EC did not differ significantly. Post methylphenidate, in children 
with ADHD, CS was significantly different from the respective controls, but EC and BC 
were not significantly different. Post-methylphenidate, in adults with ADHD, CS and EC 
were significantly different from the respective controls (Figure 2b; Table 2).
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dACC
Pre to post-methylphenidate, in children with ADHD, CS, BC and EC changes did not 
survive multiple comparison corrections. Pre to post methylphenidate, in adults with 
ADHD, none of the connectivity metrics changed significantly. Pre-methylphenidate, 
children with ADHD did not differ significantly from the respective controls in any of the 
connectivity metrics. 

Pre-methylphenidate, adult ADHD participants showed higher CS and EC values than 
the adult controls, but BC did not differ significantly. Post-methylphenidate, in children 
with ADHD, none of the connectivity metrics differed from the controls. Post-methylphe-
nidate, in adults with ADHD, CS, EC and BC differed significantly from (Figure 2c; Table 2).

PFC
Pre to post-methylphenidate, in children with ADHD, none of the graph-theory metrics 
changed significantly. Pre to post-methylphenidate, in adults with ADHD, CS and EC did 
not survive multiple comparison corrections, BC was found to increase significantly. 

Pre-methylphenidate, children with ADHD showed significantly higher CS values 
than controls. None of the other connectivity measures differed significantly. Adults with 
ADHD showed no differences to controls in CS, but significantly higher EC values and 
lower BC values than the control group. Post-methylphenidate, in children with ADHD, 
EC was not significantly different from the young controls, but CS and BC were found 
to be significantly different. Post-methylphenidate, in adults with ADHD, none of the 
connectivity metrics were significantly different from the adult controls (Figure 2d; Table 
2).

Discussion

The goal of this study was to investigate the effects of acute methylphenidate on rs-fMRI 
connectivity in stimulant-treatment naïve children and adults with ADHD. In line with 
our hypotheses, we found that methylphenidate decreased measures of connectivity 
and centrality in subcortical ROIs in children with ADHD, but increased the same metrics 
in adults with ADHD, indicating an age-dependent acute effect of methylphenidate in 
dopamine-sensitive regions. Surprisingly, we found no major effects of methylphenidate 
in frontal ROIs in either children or adults. Interestingly, at pre-methylphenidate, 
participants with ADHD showed aberrant connectivity and centrality predominantly in 
frontal ROIs compared to controls.
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Figure 2. Functional connectivity within the ROIs. Connectivity strength, eigenvector centrality, 
and betweenness centrality are shown for the (a) striatum (b) thalamus (c) dorsal anterior 
cingulate cortex (dACC) and (d) prefrontal cortex (PFC). Estimated marginal means and 95% 
confidence intervals at pre-MPH (pre) and post-MPH (post) for children and adults are shown 
in green. Estimated means and 95% confidence intervals for TD controls are shown in black. 
Significant effects are indicated with an asterisk (*; p < 0.0127)
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Effect of methylphenidate in children with ADHD

A recent review on the effects of stimulant medication on rs-fMRI connectivity in 
individuals with ADHD shows that methylphenidate appears to modulate several rs-
fMRI networks, but the number of studies is small, and the results are heterogeneous 
[Pereira-Sanchez et al., 2021]. In line with findings from Silk et al. [2017], we observed 
that acute methylphenidate decreased connectivity in the striatum and thalamus, 
whereas in the dACC we found nonsignificant increases in connectivity after a single 
dose of methylphenidate. This is in agreement with a previous study reporting that 
acute methylphenidate increased connectivity in frontal regions [An et al., 2013]. 
Notwithstanding, our study has some methodological differences compared to previous 
studies. Firstly, all our participants were stimulant-treatment naïve, whereas in other 
studies medication status was inconsistent. Therefore, our study rules out the influence 
of prior medication on connectivity through prolonged effects of stimulants on the 
dopamine system. For example, prolonged MPH treatment has been shown to impact 
(proxy measures of) dopamine function in juvenile animals and children [Andersen, 2005; 
Moll et al., 2001; Schrantee et al., 2016]. Furthermore, long-term stimulant treatment 
normalized delayed structural maturation of the PFC in individuals with ADHD, which 
may reflect dopaminergic adaptive processes [Shaw et al., 2009; Xavier Castellanos et al., 
2002]. 

Secondly, we assessed graph theory metrics, whereas Silk et al., 2017 used Network 
Based Statistics to identify connections that are affected by methylphenidate, and An 
et al., 2013 used regional homogeneity, reflecting local synchronized brain activity, 
considered to be a measure of functional segregation [Lv et al., 2018]. As such, our study 
extends prior literature from connectivity metrics to topology metrics, which allows 
us to not only assess individual nodes or global connectivity, but to assess the impor-
tance and integration of pre-specified nodes within the global network. In subcortical 
regions, methylphenidate affects average connectivity (CS) and nodal importance 
(EC), suggesting changes in the role of these regions in both local and global network 
topology. In frontal regions on the other hand, we observe marginal increases in global 
importance (BC) following methylphenidate, which might indicate a more important 
role for these regions regarding information flow in the network [Farahani et al., 2019; 
Wang et al., 2010]. Thirdly, both previous studies included placebo conditions, whereas 
we used a pre-post design. Finally, the dose that we used was slightly higher than Silk et 
al. ([2017]; 0.41 mg/kg) and substantially higher than An et al. (10mg), which may have 
affected functional connectivity differently [An et al., 2013], particularly considering the 
inverted-U relationship between dopamine levels and cognition [Arnsten and Rubia, 
2012; Froudist-Walsh et al., 2020]. 

Although previous studies have reported that methylphenidate normalizes brain 
activity [Czerniak et al., 2013; Rubia, 2011] and connectivity [An et al., 2013], our results do 
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not support these findings. Instead, in accordance with a recent meta-analysis [Cortese 
et al., 2021], pre-methylphenidate, we show no group differences in connectivity in 
subcortical ROIs, and our findings suggest that methylphenidate-induced changes in 
connectivity deviate from the control-like state. We could speculate that these discrep-
ancies are due to divergent brain development in ADHD, affecting local vs. global metrics 
differently. As such, methylphenidate could normalize local connectivity and activity, 
as demonstrated by previous studies, but compensate for altered network structure 
on a global level, as found here. Alternatively, the deviation from the control-like state 
(“normal” to “abnormal”) may also represent potential “side effects” of the medication.

Future studies are needed to determine whether these different connectivity 
patterns reflect compensatory processes or unwanted side effects of medication. In the 
PFC on the other hand, we found higher CS compared to controls, one of the latest brain 
regions to mature [Mills et al., 2014]. This is partly in line with two recent meta-analyses 
proposing increased connectivity within the executive control network in children with 
ADHD [Gao et al., 2019; Sutcubasi et al., 2020], potentially reflecting greater mental effort 
to compensate for executive function in ADHD.

Effect of methylphenidate in adults with ADHD

The present study is, to our knowledge, the first to investigate the acute effects of 
methylphenidate in stimulant-treatment naive adults with ADHD. In agreement 
with our hypotheses, our findings indicate that methylphenidate increased overall 
connectivity and importance of striatal and thalamic nodes within the brain network. 
Our results show overlap with regions identified in a study investigating prolonged 
effects of methylphenidate in adults [Cary et al., 2017], and correspond to findings from 
typically-developing adults showing that acute methylphenidate increased connectivity 
between the thalamus and attention networks, and subcortical regions [Farr et al., 2014; 
Mueller et al., 2014]. These findings, together with the absence of major differences in 
connectivity when compared to controls, suggest that the mechanisms underlying the 
effects of methylphenidate on subcortical connectivity are largely comparable between 
adults with and without ADHD. However, this is in contrast with evidence from Positron 
Emission Tomography (PET) studies reporting significant differences in striatal dopamine 
release between adults with ADHD and controls following a stimulant challenge; albeit in 
different directions [Cherkasova et al., 2013; Volkow et al., 2007]. Together, this suggests 
that differential effects of methylphenidate on subcortical dopamine release may not 
directly translate into differential subcortical connectivity between individuals with 
ADHD and controls. 

The pattern observed in cortical regions is more complex. In the dACC, methylphe-
nidate did not induce changes in connectivity in participants with ADHD, despite higher 
pre-methylphenidate connectivity compared to controls. Such hyperconnectivity [Guo 
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et al., 2020] could be speculated to be a result of developed compensatory processes, in 
response to reduced network efficiency [Konrad and Eickhoff, 2010], particularly in adults 
who were never treated with ADHD medication. Interestingly, the absence of normalized 
dACC after methylphenidate could suggest that such processes are dopamine and 
noradrenaline-independent. Alternatively, individual differences may be too large to 
observe group differences, or such processes affect other network measures than those 
studied here. Conversely, in the PFC, we found that BC increased, whereas CS and EC 
decreased after methylphenidate. This would mean that methylphenidate increases the 
role of the PFC as a global communication hub (i.e., BC), but reduces connectivity of the 
PFC with other regions (i.e., CS and EC); meaning that the PFC connections become more 
specialized for network communication.

Age-dependent effects of methylphenidate in ADHD

The effects of methylphenidate on the brain have been proposed to be age-dependent 
[Andersen, 2005; Canese et al., 2009; Norman et al., 2021b]. Indeed, we previously showed 
that thalamic cerebral blood flow was reduced following acute methylphenidate in 
children, but not in adults with ADHD [Schrantee et al., 2016]. Accordingly, we here find an 
opposite effect of acute methylphenidate in thalamic and striatal connectivity in children 
compared to adults. Nevertheless, these age-effects may not be specific to ADHD, as 
functional connectivity changes over development, complicating intergenerational 
comparisons [Tooley et al., 2021; Váša et al., 2020]. Functional segregation appears 
predominant in children, whereas functional integration prevails in adults. 

System neuroscience models suggest that increased segregation reflects efficient 
network functioning, and that excessive integration can be a correlate of brain 
dysfunction. If excessive cross-network functional integration were confirmed to be a 
consistent feature of ADHD, it could represent a therapeutic target [Pereira-Sanchez et 
al., 2021; Wig, 2017]. As such, typical development of functional connectivity is charac-
terized by simultaneous reduction of local circuitry and strengthening of long-range 
connectivity [Grayson and Fair, 2017; Supekar et al., 2010]. Nevertheless, we can speculate 
that the difference in methylphenidate-induced connectivity changes between children 
and adults might result from maturation of dopaminergic and noradrenergic systems 
[Chen et al., 2010]. For instance, adults display a more segregated architecture in the 
frontoparietal network, including the dorsal basal ganglia (i.e., caudate nucleus) [Fair et 
al., 2009], possibly through changes in the dopamine system in the frontal cortex [DR 
and DA, 1994; MS et al., 1991; MS and P, 1992]. This network is, for example, important 
for the top-down regulation of emotion and attention [Zhou et al., 2007]. Indeed, a 
recent longitudinal study on the effects of stimulant treatment response and age found 
a significant influence on cingulo-opercular network connectivity [Norman et al., 2021b]. 
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The age-dependent effects on striatal and thalamic connectivity reported here could 
therefore be due to compensatory mechanisms taking place in the adults, especially 
given that they were stimulant treatment naïve before the study. It has been argued 
that the neuropathology of childhood remittent cases could be attributed largely to 
a delayed frontal cortex maturation, whereas the neuropathology of persistent cases 
is linked more to pathology in extra-frontal and subcortical structures [Francx et al., 
2015]. In summary, this suggests that the efficacy of stimulant therapy may not be based 
on normalization only, but rather depend on combinations of factors that return the 
network organization to typical topology for some systems while reorganizing others. 
In other words, it might be that altered networks in the brain do not need to return to 
the control state to function in the desired way, a restructuring of function could be 
sufficient. It is therefore important that future studies take age-dependent effects into 
account. 

In addition, previous studies have suggested potential neural differences between 
persistent and remitted adults with ADHD [Mattfeld et al., 2014]. By definition, our 
adult ADHD sample had persistent ADHD, whereas this remains to be assessed for our 
pediatric sample [Caye et al., 2016; Kessler et al., 2005]. Longitudinal (f)MRI studies on 
ADHD persisters and remitters with childhood ADHD will be crucial to gain more insight 
into the differences in brain connectivity of persisting and remitting ADHD in childhood 
[Rubia, 2018]. Speculatively, in addition to developmental differences, our results may 
partially be explained by neuronal differences between these two ADHD phenotypes. 
Norman et al., indeed found reduced connectivity within the inferior frontal gyrus in 
children with ADHD to be indicative of longitudinal risk for ADHD inattention symptoms 
[Norman et al., 2021a]. Additionally, because we included stimulant treatment naïve 
individuals with ADHD, the adults might not represent a typical sample, as most adults 
with ADHD will receive medication before adulthood. For a long time, it has been 
debated if ADHD may also be developed in adulthood, with no previous symptoms in 
childhood (“adult-onset ADHD”; [Castellanos, 2015]). However, a recent review argues 
that symptoms in adults indeed exist but that their source would be either symptoms 
that were previously surpassed, were not properly assessed before, or not detected 
earlier [Taylor et al., 2021]. 

One of the main strengths of this study is that we included both stimulant-treatment 
naïve boys and men with ADHD and that, compared to previous studies on the acute 
effects of methylphenidate, we included a larger number of participants. However, 
limitations of our study are that the results cannot be extrapolated to all children and 
adults with ADHD, because we only studied participants with restricted age ranges. 
Furthermore, we included only male participants to reduce heterogeneity, but this limits 
the generalizability to female participants. Additional studies are needed in females, 
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since female sex hormones modulate dopamine transporter expression [Wagner et 
al., 2007]. Furthermore, the comparisons between participants with ADHD and control 
participants have to be interpreted with caution, due to the small control groups and 
because control participants did not receive a methylphenidate challenge. Ethical 
considerations did not permit us to administer methylphenidate to the young controls, 
therefore, the controls were assessed only once. Due to this limitation, we cannot fully 
exclude the possibility of a scan order effect causing differences, even though children 
and adults showed effects in opposite directions in this study, which makes that expla-
nation unlikely. Moreover, we acquired only a relatively short scan of 5min, which might 
have made the intra-/intersession reliability lower.

Conclusion

Taken together, in line with our hypothesis, we found opposing effects of acute 
methylphenidate on connectivity strength and the relative importance of the nodes in 
subcortical regions, in children compared to adults. In contrast with what we expected, 
MPH induced changes in connectivity of frontal cortical regions were marginal. They did 
not indicate differences between age groups, and mainly global importance of these 
regions (i.e., their importance as a hub) within the network was increased. Therefore, we 
conclude that acute methylphenidate-effects on connectivity measures in dopamine-
sensitive subcortical, but not cortical regions, are different in children and adults with 
ADHD, possibly due to changes of the dopamine and noradrenergic systems during 
maturation.

These findings highlight the importance for future studies to investigate the 
age-dependent effects of long-term methylphenidate treatment, ideally in previously 
medication-naive individuals, on graph-theoretical connectivity measures, with a focus 
on centrality measures of subcortical regions. Additionally, we did not find normal-
izing effects of acute methylphenidate in either of the age groups, indicating that the 
previously found normalization towards a control state might be present on the local 
connectivity level, whereas on the global network level methylphenidate may give rise 
to reorganization of function.
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Supplementary Materials

Supplementary Methods

Participants
Boys aged 10-12 years and men aged 23-40 years were included. Inclusion criteria were 
meeting criteria for a diagnosis of and requiring treatment with medication for ADHD 
(Inattentive, Hyperactive/Impulsive or Combined subtype). The diagnosis was determined 
by an experienced clinician based on the Diagnostic and Statistical Manual of Mental 
Disorders (DSM-IV; [American Psychiatric Association, 1994]), which was confirmed with 
a (semi-)structured interview [Ferdinand and van der Ende, 1998] in children; Diagnostic 
Interview for Adult ADHD (DIVA [Kooij, 2012]). The DSM-IV requirement of at least six 
inattention or hyperactivity/impulsivity symptoms was applied to both children and 
adults. 

Participants were not eligible when they had received clinical treatment influencing 
the DA system (for adults before age 23), such as stimulants, neuroleptics, antipsy-
chotics, D2/D3 agonists, or when they had a current or previous dependency on drugs 
that influence the DA system (for adults before age 23). Other exclusion criteria were an 
estimated IQ < 80 (Block Design and Vocabulary subtests of the WISC-III-R [Kort et al., 
2002], Dutch Adult Reading Test [Schmand et al., 1992], and/or a history of significant 
medical or neurological trauma or illness.

MRI acquisition
The MRI study was performed on a 3.0 T Philips scanner (Philips Healthcare, Best, The 
Netherlands) using an 8-channel receive-only head coil. Eight children and 1 adult were 
scanned on a 3T Philips scanner at a different center than the rest of the participants, also 
using an 8-channel head coil. A high-resolution 3D T1-weighted anatomical scan was 
acquired for registration purposes, and fMRI data were obtained using a single-shot echo-
planar imaging sequence Parameters were: TR/TE=2300/30ms, resolution=2.3×2.3×3mm, 
39 sequential slices, FOV=220x220x117mm, GE-EPI read-out, no gap, 80° flip angle, 130 
dynamics, total scan duration 4:98 minutes. 

Participants were instructed to keep their eyes open and let their mind wander. In 
order to increase compliance, light blue blocks (disappearing one by one every minute) 
on a white background were shown, indicating the duration of the scan. The screen was 
placed directly behind the scanner and participants were able to see it through a mirror 
system attached to the head coil.
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MRI preprocessing
Preprocessing was performed using FMRIPREP v1.2.3 ([Esteban et al., 2019], RRID: 
SCR_016216). Each T1w scan was bias-corrected, skull-stripped, and subsequently 
normalized to MNI space using non-linear registration. Functional data preprocessing 
included motion correction using FLIRT and distortion correction using an implementation 
of the TOPUP technique using 3dQwarp. This was followed by co-registration to the 
corresponding T1w using boundary-based registration with 9 degrees of freedom. 

Motion correcting transformations, field distortion correcting warp, BOLD-to-T1w 
transformation, and T1w-to-template (MNI) warp were concatenated and applied 
in a single step using antsApplyTransforms (ANTs v2.1.0) with Lanczos interpolation. 
Independent component analysis (ICA) based on Automatic Removal Of Motion Artifacts 
(AROMA) was used to generate data that was non-aggressively denoised [Pruim et al., 
2015]. Two brain volumes were removed from the start of each scan to ensure that the 
steady-state equilibrium was attained.

High frequency motion was quantified by determining the percent of relative 
power above 0.1 Hz within each motion direction, focusing on motion in the y-trans-
lation (phase-encoding), using scripts and protocols from [Gratton et al., 2020], using a 
low-pass Butterworth filter of 1st order, with normalized cutoff frequency 0.1/(0.5/TR) 
with TR=2.3.

Temporal signal-to-noise (tSNR) maps were calculated per participant to calculate 
the lowest-quartile mask per age group per session. Parcels overlapping with the lowest-
quartile of the tSNR maps with more than 70% of voxels for more than 10% of the partici-
pants were excluded from the connectivity matrices [Meijer et al., 2017] (Table 1).

Firstly, connectivity strength was measured, a measure of the temporal correla-
tions in the blood oxygenation level-dependent (BOLD) signals between brain regions 
at rest. Secondly, two centrality measures were assessed, which reflect the influence 
a brain region has on the whole-brain network. We measured eigenvector centrality 
(EC), a measure of the extent to which a given brain region is connected to other highly 
connected regions, and betweenness centrality (BC), indicating the number of shortest 
connections that pass through it.
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Supplementary Table 1. Excluded regions based on low temporal signal-to-noise ratios.
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Supplementary Figure 1. Residual QC-FC correlations after denoising. The distribution of all 
edgewise QC-FC correlations after denoising shows a narrow distribution and a distribution 
center close to 0 [Ciric et al., 2017].

Supplementary Table 2. Adjacency matrices - quality control.
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Supplementary Table 3. BNA parcellation numbers per region of interest (ROI).
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Supplementary Results

Participants
Included adult ADHD participants were significantly older than the TD adults (mean age 
ADHD= 28.5±4.6; mean age control 25.1±1.9; t(39)=3.90, p<0.01; but 80% of the adults 
with ADHD were under 30). TD controls did not differ from the ADHD participants in IQ 
(p>0.05). In addition, children and adults with ADHD differed from TD controls in ADHD 
symptom severity, as well as in anxiety and depressive symptoms.

Pre-methylphenidate, FD differed significantly between children and adults (ADHD: 
t(45)=5.48, p<0.01; controls: t(13)=4.99, p<0.01). Excluded children did not differ in 
age, IQ, ADHD symptom-severity, anxiety symptoms, or depressive symptoms from 
the included children (p>0.05). Children with ADHD had significantly higher FDs than 
controls at pre-methylphenidate, but FD significantly decreased post-methylphenidate 
(F(1,87)=18.84, p<0.01). Pre-methylphenidate, adult ADHD FD values did not differ from 
controls, but they decreased post-methylphenidate (F(1,96)=10.08, p<0.01)(Supple-
mentary Figure 2). Post-methylphenidate, FD of ADHD participants did not differ from 
controls. Importantly, except in two cases, (CS and BC in the PFC) none of the connec-
tivity measures were correlated with motion (Supplementary Table 4). 

Supplementary Table 4. Correlation results of all connectivity measures with Framewise 
Displacement.
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Supplementary Figure 2. Mean Framewise Displacement at pre and post MPH challenge 
for participants with ADHD (green) and control participants (gray). Showing estimated means 
with confidence intervals.
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Abstract 

Physical exercise affects hippocampal structure and function, but the underlying neural 
mechanisms and the effects of exercise intensity remain incompletely understood. 
Therefore, we undertook a comprehensive, multi-modal 3T and 7T MRI randomized 
controlled trial (Netherlands Trial Register NL5847) in which we randomized 52 young, 
non-athletic volunteers to a 12-week low or high-intensity exercise program. Using 
state-of-the-art methods, we investigated changes in hippocampal volume, as well as 
changes in vasculature, neuro-metabolites, and peripheral growth factors as potential 
underpinnings. Cardiorespiratory fitness improved over time (p < 0.001), but no interaction 
with exercise intensity was found (p = 0.48). Accordingly, we did not observe significant 
interactions between exercise condition and time on MRI measures (all p > 0.06). However, 
we found a significant decrease in right hippocampal volume (p < 0.01), an increase in left 
hippocampal glutathione (p < 0.01), and a decrease of left hippocampal cerebral blood 
volume (p = 0.01) over time, regardless of exercise condition. Additional exploratory 
analyses showed that changes in brain-derived neurotrophic factor (p = 0.01), insulin-like 
growth-factor (p = 0.03), and dorsal anterior cingulate cortex N-acetyl-aspartate levels (p 
= 0.01) were positively associated with cardiorespiratory fitness changes. Furthermore, 
a trend toward a positive association of fitness and gray-matter cerebral blood flow (p 
= 0.06) was found. Our results do not provide evidence for differential effects between 
high-intensity (aerobic) and low-intensity (toning) exercise on hippocampal structure 
and function in young adults. However, we show small but significant effects of exercise 
on hippocampal volume, neurometabolism and vasculature across exercise conditions. 
Moreover, our exploratory results suggest that exercise might not specifically only 
benefit hippocampal structure and function, but rather has a more widespread effect. 
These findings suggest that, in agreement with previous MRI studies demonstrating 
moderate to strong effects in elderly and diseased populations, but none to only mild 
effects in young healthy cohorts, the benefits of exercise on the studied brain measures 
may be age-dependent and restorative rather than stimulatory. Our study highlights 
the importance of a multi-modal, whole-brain approach to assess macroscopic and 
microscopic changes underlying exercise-induced brain changes, to better understand 
the role of exercise as a potential non-pharmacological intervention.
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Introduction

Physical exercise can have numerous positive effects on our body and brain; including 
reductions in the risk for cardiovascular disease, stroke, and obesity. Furthermore, it has 
been found to promote brain plasticity and positively affect brain structure and function 
in both rodents and humans [Demnitz et al., 2021; Dorsman et al., 2020; Haskell et al., 2007; 
Intlekofer and Cotman, 2013; Venkatraman et al., 2020; Voss et al., 2013]. Therefore, the 
possibility to use physical activity to improve brain health has received much attention 
lately as a low-cost and easy to apply, non-pharmacological intervention [Cole et al., 
2019; van Praag et al., 2005]. So far, however, the exact underlying mechanisms by which 
exercise can benefit the brain, and what role exercise intensity plays, have remained 
incompletely understood.

The first studies investigating brain correlates of exercise-induced changes sought 
to determine structural brain alterations. Using magnetic resonance imaging (MRI), 
multiple cross sectional and prospective-longitudinal studies in humans have shown 
that high-intensity aerobic exercise increased or normalized age-related decreases in 
brain volume, particularly in the hippocampus [Erickson et al., 2011; Pajonk et al., 2010]. 
In their meta-analysis, Firth et al. found the most substantial exercise effects in older 
adults [Firth et al., 2017], even though some studies also reported rapid hippocampal 
volume increases in younger adults [Thomas et al., 2016]. 

Volume changes alone lack information on biological substrates of exercise-related 
changes [Czéh and Lucassen, 2007]. Both animal and human studies have proposed 
several underlying mechanisms [Lucas et al., 2015; Voss et al., 2013], such as changes 
in perfusion, as measured with cerebral blood flow (CBF), vascularization as measured 
with cerebral blood volume (CBV), synaptic plasticity and neurogenesis as estimated 
by neuro-metabolite concentrations, and other molecular and cellular changes [Bullitt 
et al., 2009; Burdette et al., 2010; Dorsman et al., 2020; Guiney et al., 2015; Pereira et 
al., 2006; Stillman et al., 2018; Suwabe et al., 2018]. For instance, rodent studies have 
shown exercise-induced increases in angiogenesis and neurogenesis [Bloor, 2005; Czéh 
and Lucassen, 2007; Kerr et al., 2010; Vivar and van Praag, 2017]. Physical exercise was 
further shown to alter specific neuro-metabolites; Biedermann et al. and Wagner et al. 
reported decreased right hippocampal glutamate (Glu) levels of mice and humans after 
prolonged exercise [Biedermann et al., 2012; Wagner et al., 2015], and similar results were 
found in the human occipital cortex [Dennis et al., 2015] and the rat striatum [Meeusen 
et al., 1997]. Cross-sectional studies have further associated higher fitness of endur-
ance-trained, middle-aged adults with higher N-acetyl aspartate (NAA) levels in their 
frontal cortex [Erickson et al., 2012; Gonzales et al., 2013]. 
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In summary, physical exercise in both animals and humans influences various 
mechanisms that may alter brain structure [Kandola et al., 2016; Voss et al., 2013]. In this 
respect, Thomas et al. were one of the first to investigate volume changes in young, 
healthy adults in a multimodal approach [Thomas et al., 2016]. They used several neuro-
imaging measures of volume, vasculature, and microstructure, and specifically found 
a temporary increase in volume and myelination, but no vascular changes. So far, the 
role of exercise intensity has received little attention [Lucas et al., 2015; Wilke, 2020], 
even though a recent meta-analysis stressed the importance of high-intensity training 
(heartrate (HR) > 80% of maximum HR) for improving fitness in younger adults [Bacon et 
al., 2013; Wen et al., 2019]. 

Therefore, we here undertook a comprehensive, multi-modal study to compare 
the effects of a 12-week high vs. low-intensity exercise paradigm in young, healthy, 
but otherwise non-athletic volunteers. We studied exercise-induced changes in 
hippocampal volume, and additionally, its potential underpinnings, like changes in 
angiogenesis, synaptic plasticity, neurogenesis, and peripheral growth factors. Because 
earlier studies had indicated that certain changes only occur in specific hippocampal 
subfields [Nuninga et al., 2019], we further explored changes in hippocampal subfield 
volume and relations of all measures to individual changes in cardiorespiratory fitness. 
We used 3T MRI to study outcomes related to vascular changes and 7T MRI to obtain 
high resolution anatomical delineation of hippocampal subfields and reliable quantifi-
cation of various neuro-metabolites [Terpstra et al., 2016]. To study exercise intensity and 
control for baseline differences in fitness, we randomized participants, after stratification 
for age, sex, and baseline VO2max, to a high-intensity, aerobic exercise condition, or a 
low-intensity, stretching and toning (active control) exercise condition. 

Based on earlier literature, we hypothesized that cardiorespiratory fitness and 
hippocampal volume increases would occur in the high-, but not low-intensity exercise 
condition. Based on an increase in hippocampal volume, we furthermore expected 
changes in vascularization, as measured with cerebral blood flow (CBF), and cerebral 
blood volume (CBV), along with vascular endothelial growth factor (VEGF) concentra-
tions, as a marker for vascular maintenance and remodeling. Moreover, neuronal remod-
eling was expected, estimated through changes in neuro-metabolite concentrations 
of NAA, glutathione (GSH), glutamate (Glu), and glutamine (Gln), and brain-derived 
neurotrophic factor (BDNF) as well as peripheral insulin-like growth factor-1 (IGF-1), as 
markers for neuronal development. We chose the dorsal anterior cingulate cortex (dACC) 
as a control region and regarded whole-brain gray matter (GM) changes as evidence for 
non-specific effects.
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Methods

Participants and Experimental Design Participants were recruited through posters and 
online advertisements. We included 52 healthy, non-athletic volunteers (30 women 
and 22 men, aged 18-30 years old, Table 1) in a 3month randomized, controlled trial 
(Netherlands Trial Register NL5847; Figure 1). After stratification for age, sex, and baseline 
cardiorespiratory fitness, participants were randomized to a 12-week intervention of 
high or low-intensity exercise training. Before and after the intervention, participants 
performed a maximal exercise test to measure cardiorespiratory fitness and underwent 
MRI measurements (Figure 2A). 

Participants that were classified as athletic based on the definition by Haddad Herdy 
and Uhlendorf [Haddad Herdy and Uhlendorf, 2010], i.e., VO2maxmales > 55 ml/kg/min, 
VO2maxfemales > 45 ml/kg/min, were excluded. Furthermore, participants who engaged 
in intensive sports (>3 times/week) were also excluded. In addition, we excluded partic-
ipants based on the following criteria: BMI >30 kg/m2 (>class 1 obesity), MRI contra-in-
dications, a history of chronic renal insufficiency, allergy to gadolinium-containing 
compounds, a history of psychiatric disorders, excessive smoking (>1 pack/day), excessive 
alcohol consumption (>21 units/week), or other regular drug use. Additionally, females 
were only included if they were on hormonal contraceptives to control for the effects 
of the hormonal cycle. We obtained written informed consent from all participants, 
and the study was approved by the local Medical-Ethical Committee of the Amsterdam 
University Medical Centre, University of Amsterdam (NL55943.018.15).

Table 1. Participant characteristics and fitness measures.
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Exercise-Intervention

All participants were enrolled in an exercise program for 12 weeks, in which they were 
instructed to exercise three times a week for 45min [Astorino et al., 2017; Haskell et 
al., 2007] at the university sports center (USC). Their presence and active engagement 
were monitored by tracking their sports center visits using an automated fingerprint 
entrance system and by using weekly questionnaires on exercise duration and activities. 
Additionally, participants received a HR monitor (Polar, Finland) to measure HR during each 
training session (Table 1). Participants randomized to high-intensity exercise performed 
high-intensity interval training, targeting HR zones above 80% of their maximum HR. 
Participants randomized to low-intensity exercise performed stretching and toning 
exercises (active control condition), targeting HR zones under 60% of their maximum 
HR. In collaboration with the sports scientists of the USC, we provided a list of generic 
exercise group classes offered at the USC which were supervised by an experienced 
fitness instructor, that participants were allowed to choose from (Supplementary Material 
1.5; Supplementary CERT Checklist [Slade et al., 2016]). Participants that were engaged in 
physical activity before the study were instructed to do the recommended sports classes 
on top of their usual activities. For motivation purposes, participants were contacted 
regularly to check in on their progress and one experimenter joined them at least 
once during the intervention period to train with them (more detail in Supplementary 
Material 1.5). The Dutch version of the International Physical Activity Questionnaire 
(IPAQ; [Vandelanotte et al., 2005]) was used to measure physical activity during walking, 
intermediate and vigorous intensities before and after the intervention.

Cardiorespiratory Fitness Participants underwent a cardiopulmonary exercise test 
on an ergometer before and after the exercise intervention to assess individual cardi-
orespiratory fitness. After 2min of rest (baseline measurement), an incremental bicycle 
protocol (which was dependent on weight and sex) was started with a 3-min warm-up 
period, followed by an increase in resistance (watts) every minute until maximal effort 
(maximum resistance) or exhaustion, which was immediately followed by a 2-min 
recovery period at 50 watts resistance. Breath-by-breath gas exchange measurement 
data were obtained to determine maximum oxygen uptake (VO2max (mL/kg/min)) 
[Astorino et al., 2017]. VO2max data were time-averaged using 10s intervals [Wagner et 
al., 2015]. For exercise tests to be considered maximal, participants had to reach both a 
plateau in VO2max and a respiratory exchange ratio of >1.1 CO2/O2. VO2max tests took 
place at least 24h before the MRI scans.

MRI Acquisition

Participants were scanned on a 7T whole-body MR system (Philips, Best, The Netherlands) 
using a dual-channel transmit coil and a 32-channel receive head-coil, and on a 3T 
whole body MR system (Philips, Best, The Netherlands) using a body transmit coil and a 
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32-channel receive head-coil. A 24h gap between the last workout and MRI scanning was 
ensured to minimize the potential influences of dehydration on brain volume and acute 
exercise effects [Maddock et al., 2011].

Figure 1. CONSORT flow chart.

7T MRI 
Whole-brain T1-weighted data were obtained with a sagittal 3D magnetization-prepared 
rapid gradient echo (MPRAGE) sequence (TR/TE = 4.1/1.8ms; TI = 1300ms; 0.9 × 0.9 × 
0.9mm3 isotropic voxels; flip-angle = 7°). T2weighted data covering the hippocampus were 
obtained using a coronal multi-slice turbo spin-echo (TSE) sequence (TR/TE = 6000/80ms; 
voxel-size = 0.4 × 0.4 × 2mm; flip-angle = 110°) (Figure 2B). Single voxel 1H-MRS data were 
collected from the left hippocampus and dACC with a semi-localized adiabatic selective 
refocusing (sLASER) sequence (TR/TE = 5000/36ms; FOCI pulses [Arteaga de Castro et al., 
2013]) to ensure correct adiabatic behavior of the FOCI pulses: B1 > 17µT; bandwidth = 4 
kHz; 2048 data points; voxel-size = 30 × 15 × 15mm; NSA dACC = 64; NSA hippocampus = 
128 (Figure 2C; Supplementary Figure 1). Non-water suppressed spectra were obtained 
for quantification and eddy-current correction.
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Figure 2. Study methods: (A) Participants were enrolled in a 12-week low- (active control) and 
high-intensity exercise intervention. Several measures, including a cardiorespiratory fitness 
test (VO2max), and peripheral growth factors (blood sampling) were conducted before (PRE) 
and after (POST) the exercise intervention. Additionally, HR, exercise frequency, and exercise 
questionnaires were collected during the intervention. Furthermore, several MRI measures 
were collected before and after the exercise regime: (B) T1- and T2-weighted scans were 
conducted at 7T for segmentation purposes. (C) Single voxel spectroscopy was conducted 
at 7T in the dACC (left) and left hippocampus (right). (D) T1-mapping using a steady-state 
contrast-enhanced method was conducted at 3T to derive CBV and R1. (E) A pCASL sequence 
was used at 3T to obtain CBF values.
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3T MRI 
To obtain CBV and myelination (R1 = (1/T1)), quantitative T1 measurements of the 
hippocampus and sagittal sinus blood were performed before and after gadolinium 
contrast administration (0.1mL/kg, 1–2mL/s followed by 20mL saline (0.9% NaCl)) 
(Gadovist, Bayer B.V., Mijdrecht, The Netherlands). For brain T1-mapping, a 3D Look-Locker 
sequence with 40 inversion times was performed as described by Lindgren et al. [2014], 
in a coronal slab covering the hippocampus (Figure 2D) with the following parameters: 
TR/TE = 10/4ms; flip-angle = 5°; TI = 110ms, inter-shot TR = 6s, resolution = 1.15 × 1.15 × 
2mm, acquisition time = 6min. Blood T1 values were obtained using a single-slice multi-
time-point inversion recovery sequence planned perpendicular to the posterior sagittal 
sinus with parameters: TR/TE=110/16ms, flip angle =95°; resolution = 1.5 × 1.5mm; slice-
thickness = 2mm. To obtain whole brain CBF measures we used a gradient-echo single-
shot EPI pseudo-continuous arterial spin labeling (pCASL) sequence with background 
suppression (TR/TE = 4091/16ms; label-duration = 1650ms, post-label delay = 1525ms; 
voxel-size = 3 × 3 × 5mm) (Figure 2E). For CBF quantification, an additional M0 scan was 
acquired using the same imaging parameters, except for the TR = 2000ms, and without 
labeling and background suppression.

MRI Data Analysis 

Volume 
Using both T1-weighted and T2-weighted scans, segmentations of the hippocampus 
were performed in native space using Automatic Segmentation of Hippocampal 
Subfields (ASHS) software [Wisse et al., 2016; Yushkevich et al., 2015]. This method 
automatically generates segmentations based on a segmentation atlas [Wisse et al., 
2016] with a machine-learning algorithm using similarity-weighted voting and learning-
based bias-correction techniques (Figure 2B). The following subfields were defined: 
whole hippocampus, consisting of CA1, CA2, CA3, CA4, DG, subiculum, head, tail, 
entorhinal cortex, and cysts. Segmentation of the dACC was performed with Freesurfer 
v.5.3.0 [Reuter et al., 2012]. Gray matter (GM) and white matter (WM) segmentations were 
performed with SPM12. 

For the main analyses, all measures were calculated for the whole left and right 
hippocampus. The dACC was used as a control region, and whole-brain GM changes were 
regarded as region-unspecific effects. Further exploratory analyses involved volume 
measures of hippocampal subfields: CA1, CA3, and dentate gyrus, and hippocampal GM 
and WM.
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1H-MRS 
Pre-processing included optimized coil combination, eddy current correction, and spectral 
registration [Near et al., 2015]. Spectra were fitted using LCModel with a simulated basis 
set with a measured macromolecular baseline (Supplementary Methods 1.1). Metabolite 
concentrations for glutamate, glutamine, glutathione (GSH), and N-acetyl-aspartate (NAA) 
were calculated using water-scaling and were corrected for partial volume effects using 
the tissue volume fractions [Gasparovic et al., 2006]. T1-weighted scans were segmented 
using SPM12 to determine the contributions of GM, WM, and CSF to each voxel. Spectral 
quality measures calculated with LCModel, and signal-to-noise ratio (SNR > 30), linewidth 
(FWHM > 19Hz), and Cramér–Rao lower bounds (CRLB ≤ 40), were used to exclude lower-
quality spectra [Kreis et al., 2020; Öz et al., 2021].

CBF 
ASL post-processing was performed using Explore ASL [Mutsaerts et al., 2020]. Motion 
was estimated, spike frames > mean + 3 standard deviations (SD) were deleted, and 
motion estimation was repeated. ASL perfusion-weighted images were registered to 
GM-tissue probability maps of each participant using six degrees-of-freedom (DOF). 
Label and control images were pairwise subtracted (M), corrected for slice gradients, and 
averaged. CBF was calculated using the single-compartment model [Alsop et al., 2015], 
using a separate M0 image and individual hematocrit values that were derived from blood 
samples to calculate T1-blood values. Before and after quantification, voxel-based outlier 
rejection was applied. GM-tissue probability maps were normalized using Diffeomorphic 
Anatomical Registration analysis using Exponentiated Lie algebra (DARTEL), and T1-to-
MNI transformation fields were applied to CBF maps [Ashburner, 2007]. Median ROI CBF 
was based on voxels remaining after excluding voxels with CBF values exceeding 2.5 
times the mean CBF over the entire volume, assumed to originate from large vessels. 
Thresholded left and right hippocampal masks (Harvard-Oxford Subcortical Structural 
Atlas) were masked for GM, and median ROI CBF values were calculated per participant.

CBV and Myelination 
ROI averaged Look-Locker signal time curves were generated from different ROIs. T1 values 
for each ROI were calculated using a 3-parameter fit of the Look-locker signal equation 
[Deichmann and Haase, 1992]. For determination of blood T1 values, 5 pixels that showed 
the highest average signal intensity, averaged over the last ten inversion times, within the 
sagittal sinus, were selected. Subsequently, T1 was determined by averaging signals from 
different combinations of pixels and choosing combinations that resulted in the lowest 
T1 fit-error based on a 3-parameter fit of the multi-timepoint inversion recovery curve. 
Finally, CBV was calculated using equations by Lindgren et al. with brain tissue density = 
1.04g/ml, hematocrit levels in large vessels = 0.45, and hematocrit levels in small vessels = 
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0.25, and GM CBV was corrected for the expected fast-water exchange-effects [Lindgren 
et al., 2014; Shin et al., 2006]. Hippocampal values were consequently expressed relative 
to GM values. Furthermore, R1 values were obtained for left and right hippocampal WM 
by calculating 1/T1 to estimate myelination [Stüber et al., 2014].

Peripheral Neurotrophic Factors 
Blood samples were collected before the MRI measurements, pre and post-intervention, 
to obtain: 1) brain-derived neurotrophic factor (BDNF) levels as a proxy for exercise effects 
on hippocampal neuronal health, plasticity, and possibly neurogenesis [Adlard et al., 
2005; Aguiar et al., 2010; Marlatt et al., 2012]; 2) insulin-like growth factor 1 (IGF) as a proxy 
for cell proliferation and the inhibition of cell death [Åberg et al., 2003], 3) free vascular 
endothelial growth factor (VEGF) levels, as a prime regulator of angiogenesis [Fabel et 
al., 2003]; and 4) hematocrit levels. For BDNF and IGF, a total of 4mL serum was collected 
(15min centrifugation at 1000×g). For VEGF, 8mL serum was collected in PECT tubes [Niers 
et al., 2011b] through an open system, drop by drop, without using a tourniquet (60min 
centrifugation at 4°C at 1,700×g). All samples were aliquoted and stored at −80°C. Growth 
factors were quantified using enzyme linked immunosorbent assays (ELISAs) according to 
the manufacturer’s instructions (R&D Systems; DVE00 for VEGF; DBD00 for BDNF; DG100 
for IGF), and optical densities were converted into concentrations using an LP4 logistic fit 
(Graphpad Prism 5).

Statistical Analysis 
Sample size calculations can be found in the Supplementary Methods (1.4). All data were 
checked for normality and, in the case of non-normality, transformed accordingly. To 
account for missing data and the longitudinal nature of the trial, linear mixed-effects 
models were used to investigate the condition (high vs. low-intensity exercise) × time 
(pre vs. post-intervention) interaction effects in Rv.3.5.3 [R Development Core Team, 2011] 
using the lme4 package [Bates et al., 2015]. Sex (female vs. male) was tested as a possible 
predictor but did not contribute to any of the models. Model selection was based on an 
adjusted top-down procedure, in which the resulting models were compared using the 
Bayesian information criterion (BIC), and subsequently, the model best capturing the data 
was reported using χ²-tests and BICs [Schwarz, 1978]. Bayes factors (BF) were calculated, 
indicating the strength of evidence, using BIC approximation [Wagenmakers, 2007]. The 
evidence categories of Wetzels et al. were used [Wetzels et al., 2011] (Supplementary 
Table 1). We regarded changes in cardiovascular fitness and hippocampal and dACC 
volume as primary hypotheses, and changes in neuro-metabolites, CBV, myelination, 
CBF, and neurotrophic factors as secondary hypotheses. 

Statistical tests regarding the interaction effects were corrected for multiple compar-
isons within modalities using Sidak’s correction: α* = 1 – (1 – α)^(1/m), with α = 0.05 and 
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being the number of interaction and main effects (m = 3), which resulted in an α* = 0.02. 
Additionally, Tukey corrected t-tests were used as post-hoc tests. 

Furthermore, exploratory analyses testing associations of all variables with changes 
in VO2max were conducted using linear models in R, including the baseline measure of 
the explanatory variables and VO2max as covariates (α = 0.05). We additionally tested 
exercise-condition as a possible covariate, which did not contribute to the model. Mean 
and standard deviation per timepoint per variable are reported in Supplementary Table 
4. 

Figure 3. Cardiorespiratory fitness: (A) Cardiorespiratory fitness (VO2max) was found to 
increase over time irrespective of the exercise group (p < 0.01), even though post-hoc tests 
show only a significant increase in the high-intensity group (p < 0.01). (B) The ergometer power 
output during the VO2max test increased over time irrespective of the exercise group (p < 0.01), 
with the post-hoc test showing a significant increase in both groups (both p < 0.01). (C) Even 
though participants in the high-intensity group spent significantly more time in the target HR 
zone (80% of max. HR) than the low-intensity group (p < 0.01), the hours spent exercising was 
not associated with changes in fitness (p = 0.19).

Results

Six participants dropped out during the exercise program and one participant was 
removed from the analysis because of incomplete VO2max data. Therefore, the low-
intensity condition consisted of 10 males and 13 females, the high-intensity condition of 
11 males and 11 females. Conditions did not differ in age, sex, education, IQ-estimation, 
VO2max, or BMI at baseline (Table 1).
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Cardiorespiratory Fitness 

Hours spent exercising demonstrated high compliance with the exercise program in 
both exercise groups (Table 1). As expected, participants in the high-intensity condition 
spent significantly more time exercising in the intended higher HR regime than the low-
intensity condition, which did not explain the change in VO2max (t(40) = 1.34, p = 0.19; 
Figure 3C). The low and high-intensity exercise groups did not show a significant change 
from pre to post-intervention on the total score or scores for walking and intermediate 
intensity activities as measured with the IPAQ questionnaire. However, a significant 
condition x time effect was found on vigorous intensity activities (χ²(1) = 5.46, p = 0.02), 
indicating an increase in the high-intensity group but not in the low-intensity group 
(Supplementary Results 2.3). 

Nevertheless, contrary to our expectations, we found no condition x time effect on 
VO2max; instead, we found decisive evidence (BF > 100) for an effect of time (χ²(1) = 
15.43, p < 0.001; low-intensity: 4.7%, high-intensity: 12.65% change) (Figure 3A). Never-
theless, post-hoc tests revealed only a significant increase in the high-intensity condition 
(low: t(49) =1.72, p = 0.09; high: t(49) = 4.20, p < 0.01). In line with the results on VO2max, 
we found no interaction effect, but decisive evidence (BF > 100) for a main effect of time 
(χ²(1) = 38.92, p < 0.001) on the maximal resistance attained. Post-hoc tests revealed a 
significant increase in both conditions (t(23) = 4.67, p < 0.01; t(24) = 7.02, p < 0.01; Figure 
3B). No group effects on HR during the VO2max test were found (Supplementary Table 
2).

Figure 4. Volume measures: (A) Left hippocampal volume did not show any differences over 
time. (B) Right hippocampal volume decreased over time, irrespective of the exercise group (p 
< 0.01). Post-hoc tests revealed only a significant decrease in the high-intensity exercise group 
(p = 0.03). (C) The control region, the dorsal anterior cingulate cortex (dACC), did not show any 
significant changes over time.
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MRI Volume 

For left and right hippocampal volume, one baseline scan had to be removed from the 
analysis due to incomplete hippocampal coverage of the T2-weighted scan. Left and 
right hippocampal volumes were analyzed separately, based on previous literature 
reporting lateralized effects of exercise [Bracht et al., 2016; Nauer et al., 2020]. We found 
no interactions between condition and time for either left and right whole hippocampal 
volume. However, we found substantial evidence (BF = 4.48) for a negative main effect of 
time in the right hippocampus (χ²(1) = 7.51, p < 0.01). Post-hoc tests further revealed only 
a significant decrease in the high-intensity condition (t(47) = 2.22, p = 0.03; Figures 4A,B). 
Consequently, we sought to determine whether this change was specific to a certain 
hippocampal subfield but found no significant effects (Supplementary Table 2). We did 
not find changes in volume in our control region, the dACC (Figure 4C).1H-MRS 

We were unable to obtain 1 baseline and 1 post spectrum in the left hippocampus 
and 7 baseline dACC spectra due to technical difficulties. Due to further exclusion based 
on stringent quality control measures (Supplementary Results 2.1) a total of 42 baseline 
and 43 post hippocampal spectra, and 40 baseline and 51 post dACC high-quality 
spectra were included in the analyses. No condition-by-time interactions were found for 
any neuro-metabolites investigated, i.e., glutamate, glutamine, glutathione, and NAA, 
in the hippocampus and the dACC (Supplementary Table 2). However, we found strong 
evidence (BF = 11.19) for increased GSH in the left hippocampus across conditions (main 
effect of time: χ²(1) =9.21, p < 0.01)(Figure 5).

Vascularization and Myelination 

No condition-by-time interactions were found for CBF and CBV, in the left and right 
hippocampus, and GM (Supplementary Table 2; Figure 6). However, anecdotal evidence 
(BF = 2.79) for a decrease of CBV in the left hippocampus was found (main effect of time: 
χ²(1) = 5.97, p = 0.01), with post-hoc tests showing a slight reduction in CBV in the low-in-
tensity condition (t(43) = 1.94, p = 0.05). 

No condition-by-time interactions were found for R1 in the left and right 
hippocampal WM (Supplementary Table 2).
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Figure 5. 1H-MRS: GSH in the hippocampus was found to increase over time, irrespective of the 
exercise group (p < 0.01). No other metabolites in the hippocampus or the control region, dorsal 
anterior cingulate cortex (dACC), were found to change over time.

Peripheral Neurotrophic Factors 

We found no interaction effect of condition and time, and no main effects of time for 
BDNF, VEGF, or IGF levels (BF < 100−1) (Supplementary Table 2). No significant interaction 
effect of condition and time was found for hematocrit (χ²(2) = 0.03, p = 0.98), but a main 
effect of time was found, indicating an increase in both exercise groups (χ²(1) = 12.90, p 
< 0.01; BF = 8.4).

Regression Analyses 

MRI Regression analyses demonstrated no association between changes in hippocampal 
or dACC volume and change in VO2max (left: F(1, 41) = 0.17, p = 0.95; right: F(1, 41) = 0.43, 
p = 0.65; dACC: F(1, 40) = 0.30, p = 0.59). There was no association between changes in 
hippocampal Gln, Glu, GSH and NAA and VO2max change (F(1, 26) = 0.38, p = 0.55; F(1, 
26) = 0.42, p = 0.74; F(1, 25) = 0.77, p = 0.52; F(1, 25) = 0.54, p = 0.72). In the dACC, Glu, Gln, 
and GSH changes (F(1, 26) = 0.46, p = 0.64; F(1, 26) = 0.30, p = 0.83; F(1, 26) = 0.96, p = 0.43) 
were not associated with VO2max change, but increased VO2max was associated with 
increased dACC NAA levels (F(1, 26) = 7.14, p = 0.01) (Supplementary Figure 2). While not 
significant, GM CBF showed a trend toward an association with VO2max change (F(1, 45) = 
3.06, p = 0.06). No other associations with VO2max changes were found (Supplementary 
Table 3).
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Figure 6. Vasculature: No vascular changes were found over time. CBV, Cerebral blood volume; 
CBF, Cerebral blood flow.

Peripheral Neurotrophic Factors 

BDNF and IGF level changes were found to be positively associated with change in 
VO2max (F(1,35) = 6.84, p = 0.01; F(1,35) = 6.27, p < 0.01) (Supplementary Figure 2), whereas 
VEGF level changes were not (F(1, 36) = 0.22, p = 0.63, F(1, 36) = 1.09, p = 0.30).

Discussion

We investigated the effects of a 12-week high- vs. low-intensity exercise intervention 
paradigm on various structural and functional brain changes. Despite adherence to the 
intervention in both groups (Figure 3C), we found that cardiovascular fitness increased 
significantly independent of the exercise intensity. Nevertheless, post-hoc tests revealed 
that this effect was driven by significant increases in the high-intensity group. While 
we did not find differential effects of exercise intensity on changes in hippocampal 
volume, vasculature, or metabolite measures, we found a significant decrease in the 
right hippocampal volume, an increase in left hippocampus GSH levels, and a decrease 
in left hippocampal CBV across conditions over time. However, these specific changes 
were not associated with individual changes in cardiorespiratory fitness. Instead, BDNF 
and IGF, as well as dACC NAA levels (as a control region), were positively associated with 
cardiorespiratory fitness changes.
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Hippocampal Volume and Its Relation to Exercise 

We found decreased right hippocampal volume, particularly in the high-intensity exercise 
condition. This effect was not found to be driven by changes in specific hippocampal 
subfields as previously suggested [Nuninga et al., 2019]. Although most studies, 
particularly in older adults, have reported increases in hippocampal volume following 
exercise [Biedermann et al., 2016; Erickson et al., 2011; Thomas et al., 2016], Wagner et 
al. [2015] also demonstrated that young, healthy participants (age 21-28) who failed to 
benefit from an exercise program showed decreases in hippocampal volume. 

These findings suggest that changes in hippocampal volume are highly variable 
between individuals, especially in young adults [Lupien et al., 2007]. Indeed, a 
meta-analysis concluded that exercise does not stimulate the hippocampal growth in 
young participants but instead prevents its volume decline as it occurs with increasing 
age [Firth et al., 2017]. Additionally, many studies that found hippocampal volume 
increases through exercise interventions in younger adults were conducted in patient 
populations instead of healthy individuals [van der Kleij et al., 2018; Krogh et al., 2014; Liu 
et al., 2019; McKercher et al., 2009; Szulc-Lerch et al., 2018]. 

Hence, exercise effects on hippocampal volume may be dependent on age and 
disease [Wilckens et al., 2021], and therefore exercise could be regarded as a restorative, 
rather than stimulatory intervention.

Neuro-Metabolites, BDNF, and IGF and Their Relation to Exercise 

To further understand the potential underpinnings of the volume reductions of the right 
hippocampus, we investigated neuro-metabolite concentrations and peripheral BDNF 
and IGF concentrations as markers of neuronal remodeling. Utilizing the potential of 
ultra-high field MRI, we resolved numerous (low-concentration) neuro-metabolites, such 
as Glu, Gln, and GSH additionally to NAA. This was important as previous studies in young 
adults reported both increases [den Ouden et al., 2018] and decreases [Wagner et al., 
2015] in Glx (Glu + Gln) and NAA after aerobic exercise. 

We found increases in GSH levels in the left hippocampus over time, independent 
of exercise intensity, which were mainly driven by an increase in the low-intensity 
condition. GSH is known to be responsible for the survival and function of neural cells 
and for sustaining dendrite integrity and cognitive function [Dringen, 2000]. Reducing 
GSH levels in hippocampal neurons of mice resulted, e.g., in dendritic disruption, 
glial activation in CA1, and cognitive impairment [Fernandez-Fernandez et al., 2018]. 
GSH levels have previously been shown to increase in rats after long-term exercise 
[Somani et al., 1995], but not in the hippocampus; therefore, this finding was somewhat 
surprising, particularly given the absence of findings in other metabolites involved in 
neuronal integrity in the hippocampus. We can speculate that increases in GSH levels 
detected here could be indicative of cell proliferation, but replication of these findings is 
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needed, and associations with fitness changes will need to be confirmed. Furthermore, 
neuro-metabolite levels in this study were only measured in the left hippocampus, 
whereas volume decreases were found particularly in the right hippocampus. Previous 
studies have found metabolite changes due to exercise interventions in both the left 
[den Ouden et al., 2018] and right hippocampus [Wagner et al., 2015], and therefore 
future studies should consider acquiring bilateral hippocampal MRS data. 

Although no associations between fitness and hippocampal NAA were found, 
increased fitness was associated with increased NAA levels in the dACC (the control 
region). NAA is a well-accepted marker of neuronal viability, and exercise-induced 
increases in NAA could potentially reflect improvements in neuronal health. In the 
rodent hippocampus, NAA changes have been linked to neurogenesis [Czéh and 
Lucassen, 2007; Fuchs et al., 2004; Park et al., 2014; Zhu et al., 2017], a form of structural 
hippocampal plasticity that was recently re-confirmed to take place also in the human 
brain [Boldrini et al., 2018; Kempermann et al., 2018; Lucassen et al., 2020; Moreno-
Jiménez et al., 2019] and is thought to underlie associations between exercise and 
hippocampal volume [Czéh and Lucassen, 2007; Déry et al., 2013; Erickson et al., 2011; 
Marlatt et al., 2012; Nuninga et al., 2019; Vivar and van Praag, 2017]. In our exploratory 
analyses, we found a novel positive association between NAA in the dACC and fitness. A 
previous study [den Ouden et al., 2018] has found changes in NAA in the hippocampus 
that we could not replicate. This exploratory finding thus requires further replication, 
in order to investigate whether exercise induced alterations in neurometabolites are 
region-specific or global. 

We further found individual BDNF and IGF changes to be associated with individual 
fitness changes. While BDNF has been suggested as a primary candidate, IGF also plays 
a vital role in stimulating neurogenesis in the hippocampus [Fabel et al., 2003; Voss et 
al., 2011]. Most rodent studies determined hippocampal levels of BDNF and IGF, whereas 
we determined neurotrophic factors in peripheral blood, which may not directly reflect 
changes in the hippocampus or its subregions. Nevertheless, BDNF and IGF associations 
with fitness indicate that individual changes in cardiorespiratory fitness were indeed 
associated with markers of neuronal health. 

In summary, we found exercise-independent increases of GSH, possibly indicating 
a gain in cell proliferation over time. Additionally, dACC NAA levels, as well as BDNF and 
IGF levels, were positively associated with fitness, hinting toward a relationship of cardi-
ovascular fitness and neuronal remodeling in young, healthy adults.

Changes in Vasculature and VEGF and Its Relation to Exercise 

Also vascularization was investigated as a potential underlying mechanism of exercise-
induced changes in hippocampal volume. Changes in vascularization can be estimated 
using CBF, CBV, as well as the peripheral neurotrophic factor VEGF. 
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One of the first studies on exercise-induced changes in vascularization suggested 
strong, positive effects of exercise on hippocampal angiogenesis, estimated with CBV, in 
both rodents and older adults [Pereira et al., 2006]. They argued that oxygen and neuro-
trophic factors can reach the brain more efficiently through formations of new blood 
vessels and could, therefore, positively affect cardio-pulmonary and cognitive functions. 
Subsequent studies have not yet replicated beneficial exercise-induced changes in blood 
volume but found a positive association of fitness changes and changes in hippocampal 
vasculature (CBF and CBV) in a population of older adults [Maass et al., 2015]. In contrast, 
Thomas et al. found no effects of exercise on CBV [2016] and we found a decrease in left 
hippocampal CBV over time in young adults which is suggestive of no or negative effects 
of exercise on hippocampal vasculature. 

Furthermore, even though non-significantly, increases in individual GM CBF were 
associated with improved individual fitness, indicating global, whole-brain changes 
rather than specific fitness effects on hippocampal CBF, but these results need repli-
cation. CBF is a potential marker for neuronal activity, as blood supply needs to be 
guaranteed during higher energy demands [Venkat et al., 2016]. These findings are in line 
with several other studies that found widespread beneficial effects of exercise on CBF 
[Chapman et al., 2013; Dougherty et al., 2019], and no effects on CBF in the hippocampus 
[Chapman et al., 2016]. 

In line with the absence of exercise effects on hippocampal vasculature, we also 
did not find any exercise-induced changes in peripheral VEGF levels. VEGF is thought 
to play a pivotal role in the formation of new blood vessels. Its peripheral levels were 
not changed in our study, even though we used collection in PECT tubes, which should 
provide an accurate estimation of in-vivo circulating VEGF levels [Niers et al., 2011a]. 

In sum, independent of fitness, we found CBV in the left hippocampus to decrease 
over time, as a potential marker for angiogenesis. Interestingly, even though non-sig-
nificant, we found indications that increased fitness is positively associated with global 
increases in CBF.

Important Factors in Exercise Research 

Contrary to our hypothesis and to previous studies, mainly performed in middle-aged or 
older adults [Erickson et al., 2011; Maass et al., 2016], our high-intensity aerobic exercise 
intervention did not improve cardiorespiratory fitness significantly more than the low 
intensity stretching and toning intervention. Although related exceptions have been 
reported [Coen et al., 2011], this was an unexpected finding, as low-intensity training 
was previously found not to influence VO2max [Maass et al., 2016], and a meta-analysis 
stressed the importance of high-intensity training (HR > 80% of the maximum HR) for 
improving fitness in younger adults (18–45 years old) [Bacon et al., 2013]. Moreover, the 
two groups strictly adhered to the instructed intensities of the respective interventions, 
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as is further evidenced by the significantly higher percentage of maximum HR attained 
during the training sessions in the high-intensity condition (Figure 3C). 

These findings, therefore, may suggest that engaging in stretching and toning activ-
ities might have caused sufficiently large changes in activity and/or lifestyle to increase 
fitness in young, otherwise non-athletic volunteers. Indeed, previous studies have 
argued that also low intensity exercise such as yoga and pilates might be beneficial for 
cardiovascular fitness in young individuals [Fernández-Rodríguez et al., 2019; Sreehari 
et al., 2013], even though sample sizes were small and effect sizes were medium. This 
would partially explain why we did not observe an interaction effect between the 
low and high-intensity conditions (despite the fact that only the high-intensity group 
showed a significant increase in VO2max). Nevertheless, our findings suggest that 
perhaps in some individuals, even minimal time of elevated HR might be enough to 
increase cardiorespiratory fitness, which is an important finding for those starting to 
exercise again, or in rehabilitation medicine. However, this suggestion needs to be inter-
preted with caution and requires further investigation, as time spent in these high HR 
regimes did not explain changes in VO2max. As an alternative explanation, it has been 
suggested that some forms of exercise (regardless of their intensity) are more “mindful” 
than others, presuming possible synergistic effects of physical and cognitive activity on 
brain structure and function; however, this remains to be confirmed in future studies 
[Diamond and Ling, 2016; Hillman et al., 2019]. 

On the other hand, however, other studies have found that moderately intense 
exercise benefits neuronal health most [Coelho et al., 2013; Knaepen et al., 2010; Kramer 
and Erickson, 2007]. Therefore, speculatively, our high-intensity intervention may have 
been too intense, which might have evoked an accompanying stress reaction, which 
in turn could have deteriorated, rather than improved, some of the measures studied 
here [Clark and Mach, 2016; Droste et al., 2003; Naylor et al., 2005]. Although we did not 
measure stress hormone levels, we found no association between cardiorespiratory 
fitness or volume measures and subjective stress scores (measured with the Depression 
Anxiety Stress Scale DASS-S), indicating that this explanation is less likely. 

Taken together, our findings highlight the importance of a passive control condition 
that refrains from exercise entirely in future studies; in addition to an active control 
condition (as implemented in this study), and different levels of exercise intensities (e.g., 
to control for possible environmental “enrichment” effects, including changes in social 
interactions, and individual motivation), to investigate if lifestyle changes or exercise 
training change brain health in young, healthy adults. In our study, we did not directly 
supervise the exercise sessions, but chose a more naturalistic approach, in which partic-
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ipants could choose from a predefined list of classes at the sports center. These classes 
were supervised by a certified fitness instructor. This approach has the advantage that it 
resembles better how exercise would be implemented in everyday life and introduces 
less stress and pressure. Nevertheless, it also meant that we had less control over the 
classes that participants chose to follow, which might explain some of the variance in the 
cardiovascular fitness measures in this study. 

Notably, previous studies have been inconsistent in their operationalization of 
(maximal) cardiorespiratory fitness (e.g., VO2plateau, VO2peak, VO2vat), thereby making 
it challenging to compare results [Astorino et al., 2017; Bullock et al., 2017; Déry et al., 
2013; Erickson et al., 2012; Gonzales et al., 2013; Maass et al., 2015; den Ouden et al., 2018; 
Thomas et al., 2016; Wagner et al., 2015]. Therefore, we warrant it essential to harmonize 
the analyses and detailed reporting of such outcome measures. 

It has further been suggested that individuals differ in the extent to which they are 
susceptible to fitness-based interventions, which may subsequently also influence the 
relationship between exercise and brain-related changes [Déry et al., 2013; Silva-Batista 
et al., 2020; Wagner et al., 2015; Weatherwax et al., 2016]. Upon confirmation in more 
extensive studies (e.g., the IGNITE study [Erickson et al., 2019]), it would become essential 
to develop individualized exercise programs to confer neurobiological benefits [Firth et 
al., 2017]. So far, the most prominent advantages of exercise for the brain seem to apply 
mainly to middle-aged or older adults and diseased populations, and less so to younger, 
healthy adults, due to possible ceiling effects and an already optimal neuronal health. 
Nevertheless, it is important to mention that we studied a relatively homogenous group 
(comparable BMI, age, fitness), which might have made ceiling effects even more likely. 
Overall, our results point toward the hypothesis that exercise benefits on the human 
brain are restorative rather than stimulatory. 

Interestingly, evidence is accumulating that exercise effects might be transient 
and change relatively rapidly in young adults. For instance, Van Der Borght et al. [2009] 
found that the vasculature in rodents changed rapidly 3 days after exercise training but 
also declined again after 24h of inactive behavior. Thomas et al. [2016] even observed 
temporary changes in young healthy adults, at least for the anterior hippocampus. 
Specifically, they found a temporary effect of exercise intensity on the volume and myeli-
nation of the anterior hippocampus. As these changes were temporary, consistency 
and regularity of training seem to be essential factors, which could have influenced our 
measures. In our study, we intentionally controlled for rapid exercise effects on perfusion 
by guaranteeing a 24h gap between the last exercise session and MRI measurements, as 
we were interested in the prolonged effects of exercise intensity.
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Conclusion

In sum, we found that cardiorespiratory fitness improved independent of exercise 
intensity in these young, non-athletic volunteers, but observed no differential effects of 
exercise intensity over time for hippocampal volume, vasculature, or neuro-metabolite 
measures. We found a fitness-independent decrease in the right hippocampal volume, an 
increase in GSH, and a decrease in CBV in the left hippocampus over time. In exploratory 
analyses, changes in BDNF and IGF levels, as well as dACC NAA levels, were found to 
be associated with individual cardiorespiratory fitness changes, indicating a beneficial 
effect of exercise on neuronal health on an individual level, independent of the exercise 
intervention intensity. 

All in all, the benefits of physical activity are likely not attributable to a single 
mechanism but probably involve multiple biological changes within the body and 
brain that could differ across individuals. In our study in a young population, explor-
atory analyses suggest that cardiovascular fitness shows positive associations with CBF 
and markers of neuronal viability, arguing that exercise does not seem to benefit the 
hippocampus specifically. 

Our findings highlight the utility of a multimodal approach in assessing exercise 
induced neural integrity. Work of this kind will help to bridge the gap between animal 
and human studies by studying neuronal changes that occur on the macroscopic and 
microscopic level, as well as understand the role of exercise intensities to use physical 
activity as a potential future treatment for various disorders in humans.
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Supplementary Materials

*1) Recommended exercise group classes per exercise intensity group (translated from Dutch):

*2) In collaboration with the sports scientists of the University Sports Center (USC), we provided a list of generic 
exercise group classes offered at the USC which were supervised by an experienced fitness instructor, that 
participants were allowed to choose from (Supplementary Materials 1.5; *1)).
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*3) Their presence and active engagement were monitored by tracking their sports center visits using an 
automated fingerprint entrance system and by using weekly questionnaires on exercise duration and activities. 
Additionally, participants received a HR monitor (Polar, Finland) to measure HR during each training session 
(Table 1).

*4) For motivation purposes, participants were contacted regularly to check in on their progress and one 
experimenter joined them at least once during the intervention period to train with them (more detail in 
Supplementary Material 1.5).

*5) No home-program or non-exercise components were added to the intervention.

*6) No adverse events occurred during the exercise intervention in this study.

*7) All participants were enrolled in an exercise program for 12 weeks, in which they were instructed to exercise 
three times a week for 45 minutes [Astorino et al., 2017; Haskell et al., 2007] at the university sports center (USC).

*8) Hours spent exercising demonstrated high compliance with the exercise program in both exercise groups 
(Table 1). As expected, participants in the high-intensity condition spent significantly more time exercising in 
the intended higher HR regime than the low-intensity condition, which did not explain the change in VO2max 
(t(40)=1.34, p=0.19; Figure 3C). The low- and high-intensity exercise groups did not show a significant change 
from pre to post-intervention on the total score or scores for walking and intermediate-intensity activities as 
measured with the IPAQ questionnaire. However, a significant condition x time effect was found on vigorous-
intensity activities (χ²(1)=5.46,p=0.02), indicating an increase in the high-intensity group but not in the low-
intensity group (Supplementary Results 2.3). Nevertheless, contrary to our expectations, we found no condition 
x time effect on VO2max; instead, we found decisive evidence (BF>100) for an effect of time (χ²(1)=15.43,p<0.001; 
low-intensity: 4.7%, high-intensity: 12.65% change) (Figure 3A). Nevertheless, post-hoc tests revealed only a 
significant increase in the high-intensity condition (low: t(49)=1.72, p=0.09; high: t(49)=4.20, p<0.01). In line with 
the results on VO2max, we found no interaction effect, but decisive evidence (BF>100) for a main effect of time 
(χ²(1)=38.92,p<0.001) on the maximal resistance attained. Post-hoc tests revealed a significant increase in both 
conditions (t(23)=4.67,p<0.01; t(24)=7.02,p<0.01; Figure 3B). No effects on HR during the VO2max test were found 
(Supplementary Table 2).

Low-Intensity Group:
· BBB - The class consists of a short warm-up followed by various exercises that focus on 

the belly, buttocks, and legs.
· Body power* - This is a group workout to music using simple and effective exercises 

with barbells and dumbbells. It is focused on the muscular endurance of the whole 
body.

· Essentrics - At Essentrics you get an effective toning workout to music using dynamic 
stretches and fluid movements without using gear. The main goals are a slimmer 
silhouette, more flexibility, and better posture.

· Pilates - In this class the focus is on: posture and control, flexibility, breathing, and 
awareness. In Pilates, you do floor exercises that target all postural muscles in the body, 
especially the abdominal and back muscles. You do the exercises slowly, fluently and 
in collaboration with your breath. You concentrate on doing the exercises carefully 
and accurately, and not on the number of repetitions. The result is better posture and 
flexibility.

· TrippleShape barre workout - Ballet Barre workout is a combination of ballet, pilates, 
and yoga to contemporary music.

· Yoga basic - This is a basic yoga class. The focus lies on: stretching and holding 
postures.
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· Kinesis - Kinesis Training takes traditional exercises (like chest press, lat pull, row) and 
combines them with functional movements (like reaching, squatting, bending). It 
develops balance, core/overall strength, and flexibility for people of all fitness levels.

· Abs - 15 minutes of abs training using own-body weight.
· Basic movement - In this class good technique of the most basic exercises using own-

body weight is being practiced. This lesson focuses on questions such as: How do I 
perform the squat correctly? What is a pull-up and how do I do it? What variations are 
there for a deadlift?

· Mobility class - This lesson focuses on increasing flexibility in muscles and joints.
· Calisthenics - This is a class to practice exercises like a handstand, muscle up, human 

flag, front and back lever.
· Core*- This lesson focuses on posture and strengthening the abdominal and back 

muscles in a controlled manner. The training does not only consist of floor exercises 
but is also offered in challenging circuit forms.

· W.A.C.* - Weightlifting Aerobic Circuit: this workout is originally based on Olympic 
weightlifting, a valuable full-body workout. 

* For Core, W.A.C., and body power, participants were only allowed to do a maximum of 1 of these 3 per week for 
this sports program.

High-Intensity Group:
· Combat - In this class you train your entire body during circuit training. It includes 

techniques from (kick) boxing, self-defense techniques, strength, and conditioning to 
increase your heart rate.

· Fitness training - This is circuit training in which all available materials are used. 
Walking and jumping are used a lot in this training, the intensity is largely determined 
by the participants themselves. A high-intensity training involving both strength and 
condition.

· Fit Fight - This is a powerful cardio workout inspired by Eastern martial arts such as 
karate, boxing, taekwondo, and Muay Thai to music.

· Kick & shape - This is an intensive class in which participants learn various punching 
and kicking techniques against the punching bag to music.

· Spinning - In this class participants sit on a spinning bike, on which, under the 
guidance of the teacher, they go on a ‘bike tour’ in which different speeds alternate. 
The resistance is chosen by the participants themselves.

· Step & dance - Step & dance is a choreographically challenging, advanced step class, 
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with the goal of increasing aerobic fitness.
· Total body workout - This class is a short piece of aerobics hi/low impact after a 

warm-up. This is followed by exercises for all muscle groups: back, arms, abdomen, 
shoulders, chest, and legs. This class improves the participant’s overall fitness, both 
cardio and muscle endurance are trained.

· Synrgy - Synrgy is a large device, with rods, ropes, bells, and whistles. Participants 
can follow group training sessions of 30 minutes several times a day, in which they do 
high-intensity interval training in circuit form.

· H.I.I.T. - High-Intensity Interval Training consists of short periods of intense effort, 
followed by short recovery moments. Participants train their general condition but 
also strength and speed, using simple materials or body weight.

· CrossFit - This small group training is based on the principles of a fitness concept from 
the USA: functionality, variation, and high intensity. Participants train speed, (muscle) 
endurance, strength, flexibility, and coordination.
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Supplementary Methods

1H-MRS

Supplementary Figure 1. Representative spectra for one participant, measured in the A) 
hippocampus and B) dorsal anterior cingulate cortex (dACC).

Spectra were fitted using LCModel with a simulated basis set with a measured 
macromolecular baseline (using an sLASER dual inversion recovery sequence(Penner 
and Bartha, 2015)) and the following metabolites: alanine (Ala), aspartate (Asp), creatine 
(Cr), γ-aminobutyric acid (GABA), Gln, Glu, GSH, glycine (Gly), glycerophosphocholine 
(GPC), Inositol, Lac, phosphoethanolamine (PE), phosphocholine (PCh), phosphocreatine 
(PCr), inositol (Ins), choline (Cho), NAA, N-acetyl aspartyl glutamate (NAAG), taurine (Tau), 
scylloinositol (Sci), succinate (Suc), pyruvate (Pyr) and threonine (Thr). 
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The following control parameters were used for LCModel analyses:
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Statistical Analysis

Supplementary Table 1. Evidence Categories for Bayes Factor (BF) [Jeffrey, 1961; Wagenmakers, 
2007].

Sample Size Calculations
We aimed to investigate the neural mechanisms underlying brain volume changes 
resulting from exercise interventions. First, we determined the sample size to assess 
a hypothesized effect on neurometabolite signaling. A previous study investigating 
exercise effects on anterior cingulate cortex glutamate concentration changes reported 
an effect size of d=1.48 (Cohen d) in young participants [Maddock et al., 2016]. As this 
study used an acute exercise intervention, we expected a more moderate effect size for a 
longitudinal exercise intervention of d=1.0. To detect the effect of exercise, with a power 
of 80% and an α of 0.05, we would need 12 participants per exercise intervention group. 
Taking a 20% dropout into account (due to MRI data quality), we would need at least 
15 subjects in each exercise intervention group. Secondly, we calculated the required 
sample size to assess the effect of exercise on vascular outcome measures. A previous 
study using contrast-enhanced MRI assessed the effect of a dietary intervention with 
flavanol on CBV in the hippocampus [Brickman et al., 2014]. This study detected an 
increase in CBV with an effect size of d=0.75. We expect the dietary intervention to have 
effects of a similar magnitude as the exercise intervention. With an effect size of d=0.75, a 
power of 80%, and an α of 0.05, we would need 16 subjects to detect a difference before 
and after the exercise intervention. Taking a 20% dropout into account, we would need 
at least 20 subjects in each exercise group.
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Supplementary Figure 2: CONSORT flow chart

Exercise Intervention
Recommended exercise group classes per exercise intensity group (translated from 
Dutch):

Low-Intensity Group:
· BBB - The class consists of a short warm-up followed by various exercises that focus on 

the belly, buttocks, and legs.
· Body power* - This is a group workout to music using simple and effective exercises 

with barbells and dumbbells. It is focused on the muscular endurance of the whole 
body.

· Essentrics - At Essentrics you get an effective toning workout to music using dynamic 
stretches and fluid movements without using gear. The main goals are a slimmer 
silhouette, more flexibility, and better posture.
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· Pilates - In this class the focus is on: posture and control, flexibility, breathing, and 
awareness. In Pilates, you do floor exercises that target all postural muscles in the body, 
especially the abdominal and back muscles. You do the exercises slowly, fluently and 
in collaboration with your breath. You concentrate on doing the exercises carefully 
and accurately, and not on the number of repetitions. The result is better posture and 
flexibility.

· TrippleShape barre workout - Ballet Barre workout is a combination of ballet, pilates, 
and yoga to contemporary music.

· Yoga basic - This is a basic yoga class. The focus lies on: stretching and holding 
postures.

· Kinesis - Kinesis Training takes traditional exercises (like chest press, lat pull, row) and 
combines them with functional movements (like reaching, squatting, bending). It 
develops balance, core/overall strength, and flexibility for people of all fitness levels.

· Abs - 15 minutes of abs training using own-body weight.
· Basic movement - In this class good technique of the most basic exercises using own-

body weight is being practiced. This lesson focuses on questions such as: How do I 
perform the squat correctly? What is a pull-up and how do I do it? What variations are 
there for a deadlift?

· Mobility class - This lesson focuses on increasing flexibility in muscles and joints.
· Calisthenics - This is a class to practice exercises like a handstand, muscle up, human 

flag, front and back lever.
· Core*- This lesson focuses on posture and strengthening the abdominal and back 

muscles in a controlled manner. The training does not only consist of floor exercises 
but is also offered in challenging circuit forms.

· W.A.C.* - Weightlifting Aerobic Circuit: this workout is originally based on Olympic 
weightlifting, a valuable full-body workout.

*  For Core, W.A.C., and body power, participants were only allowed to do a maximum of 1 of these 3 per week 
for this sports program.

High-intensity Group:
· Combat - In this class you train your entire body during circuit training. It includes 

techniques from (kick) boxing, self-defense techniques, strength, and conditioning to 
increase your heart rate.

· Fitness training - This is circuit training in which all available materials are used. 
Walking and jumping are used a lot in this training, the intensity is largely determined 
by the participants themselves. A high-intensity training involving both strength and 
condition.

· Fit Fight - This is a powerful cardio workout inspired by Eastern martial arts such as 
karate, boxing, taekwondo, and Muay Thai to music. 
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· Kick & shape - This is an intensive class in which participants learn various punching 
and kicking techniques against the punching bag to music.

· Spinning - In this class participants sit on a spinning bike, on which, under the 
guidance of the teacher, they go on a ‘bike tour’ in which different speeds alternate. 
The resistance is chosen by the participants themselves.

· Step & dance - Step & dance is a choreographically challenging, advanced step class, 
with the goal of increasing aerobic fitness.

· Total body workout - This class is a short piece of aerobics hi/low impact after a 
warm-up. This is followed by exercises for all muscle groups: back, arms, abdomen, 
shoulders, chest, and legs. This class improves the participant’s overall fitness, both 
cardio and muscle endurance are trained.

· Synrgy - Synrgy is a large device, with rods, ropes, bells, and whistles. Participants 
can follow group training sessions of 30 minutes several times a day, in which they do 
high-intensity interval training in circuit form.

· H.I.I.T. - High-Intensity Interval Training consists of short periods of intense effort, 
followed by short recovery moments. Participants train their general condition but 
also strength and speed, using simple materials or body weight.

· Crossfit - This small group training is based on the principles of a fitness concept from 
the USA: functionality, variation, and high intensity. Participants train speed, (muscle) 
endurance, strength, flexibility, and coordination.

Details about the exercise intervention:
Exercise progression was monitored by tracking their sports center visits using an 
automated fingerprint entrance system and by using weekly questionnaires on exercise 
duration and activities. Additionally, participants received an HR monitor (Polar, Finland) 
to measure HR during each training session. In case the regularity of participants’ 
training sessions was decreasing, participants were contacted and motivated to continue 
exercising by one of the experimenters. No home-program or non-exercise components 
were added to the intervention. No adverse events occurred during the exercise 
intervention in this study.
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Supplementary Results

Quality control spectra
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Exploratory Analysis:

Supplementary Table 2 | Statistical tests for all variables: Linear mixed-effects models 
were used to investigate the condition (high- vs. low-intensity exercise) x time (pre- vs. post-
intervention) x sex (female vs. male) interaction in Rv.3.5.3 using the lme4 package. Multiple 
comparison corrections using Sidak’s resulted in an α*=0.02. Model selection was based on 
an adjusted top-down procedure, in which the resulting models were compared using the 
Bayesian information criterion (BIC); the model was consequently tested using chi-square (χ²) 
tests.
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Supplementary Table 3 | Exploratory analyses testing the association of all variables with 
VO2max, and hippocampal or dACC volume change were conducted using linear models in 
R, including the baseline measure of the explanatory variables, VO2max, and sex as covariates 
(α=0.05).

Variables Regression with VO2max 
SPORT  

VO2max - 
Bike-resistance F(1,38)=7.46, p=0.01, β=1.68 

Volume measures  
Left Hippocampus  

Whole  F(1,41)=0.51, p=0.48, β=1.74 
Dentate Gyrus F(1,42)=1.81, p=0.19, β=0.38 

CA1 F(1,40)=0.82, p=0.37, β=-0.95 
CA3 F(1,41)=0.88, p=0.36, β=0.17 
WM F(1,39)=0.06, p=0.80, β=-0.43 
GM F(1,41)=0.27, p=0.61, β=-1.06 

Right Hippocampus  
Whole  F(1,40)=0.51, p=0.48, β=2.18 

Dentate Gyrus F(1,42)=1.80, p=0.19, β=1.76 
CA1 F(1,40)=0.08, p=0.78, β=0.33 
CA3 F(1,41)=0.88, p=0.36, β=-0.20 
WM F(1,40)=0.56, p=0.46, β=0.46 
GM F(1,39)=0.13, p=0.72, β=-3.47 

dACC F(1,40)=0.30, p=0.59, β=3.22 
1H-MRS  

Hippocampus  
GLU F(1,26)<0.01, p=0.95, β=-0.002 
GLN F(1,27)=0.38, p=0.55, β=0.02 
NAA F(1,25)=0.07, p=0.80, β=-0.006 
GSH F(1,25)=0.99, p=0.33, β=0.007 

dACC  
GLU F(1,25)=0.08, p=0.78, β=0.006 
GLN F(1,26)<0.01, p=0.98, β=0.001 
NAA F(1,27)=7.14, p=0.01, β=0.04 
GSH F(1,26)=0.26, p=0.61, β=0.002 

  Vasculature  
CBF   

Left Hippocampus F(1,27)=1.08, p=0.31, β=-0.002 
Right Hippocampus F(1,27)<0.01, p=0.96, β=0.001 

GM F(1,28)=3.06, p=0.06, β=0.35 
CBV  

Left Hippocampus F(1,27)=0.63, p=0.44, β=-0.01 
Right Hippocampus F(1,27)=1.86, p=0.18, β=-0.02 

GM F(1,27)<0.01, p=0.94, β=0.01 
Myelination (R1)  

Left F(1,37)=0.02, p=0.88, β=0.001 
Right F(1,36)=0.33, p=0.57, β=-0.001 

Neurotrophic factors  
BDNF F(1,36)=6.84, p=0.01, β=23.01 
VEGF F(1,36)=0.02, p=0.89, β=-0.04 

IGF F(-1,36)=5.19, p=0.03, β=0.02 
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Supplementary Table 4 | Mean and standard deviation for pre- and post-exercise intervention 
per variable.
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Supplementary Figure 2 | Exploratory analysis – associations with VO2max: Significant 
associations of the change in power output during the VO2max test, NAA concentration in the 
dACC, blood BDNF levels, and blood IGF levels with change in VO2max.

Physical activity besides the intervention:
Minutes spent on physical activity did not change for either low- or high-intensity 
condition from pre to post (low: t(37)=0.26, p=0.79; high: t(36)=-0.12, p=0.91). When 
splitting these hours up into different categories we also did not find any changes 
from pre to post intervention in minutes spent walking (low: t(43)=0.85, p=0.40; high: 
t(45)=1.43, p=0.16); minutes spent on- intermediate activities (low: t(40)=0.80, p=0.43; 
high: t(41)=0.77, p=0.45). Minutes spent on vigorous activities significantly changed only 
in the high-intensity group (low: t(43)=-0.24, p=0.81; high: t(47)=3.46, p<0.01).
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In this thesis, the results of comprehensive MRI studies are reported that investigated the 
influence of different types of interventions on behavioral, cognitive and neurobiological 
readouts. Firstly, we studied cognitive task-based interventions as well as medication 
effects on brain functions and symptom clusters in individuals with ADHD. Secondly, 
we investigated the effects of a low- and high-intensity exercise intervention on various 
brain measures in young and healthy, but otherwise non-athletic adults.

In the following chapter, our findings in relation to current literature, and support 
for the specific choices we made in our studies will be discussed, and in addition 
recent methodological developments and possible future opportunities for this field of 
research will be highlighted.

Part I: cognitive and pharmacological 
interventions in ADHD

Emotional Dysregulation in ADHD 

Inattention and hyperactivity are considered core  symptoms of ADHD. In addition, 
individuals often exhibit impairments in emotion processing that are distinct from those 
caused by any comorbid conditions [Lenzi et al., 2018]. Both externalizing symptoms 
(e.g., aggression or conduct problems), and internalizing symptoms (e.g., anxiety and 
depression), have been linked to aberrant emotional processing in ADHD [Gillberg 
et al., 2004; Jarrett and Ollendick, 2008; Sciberras et al., 2014]. Interestingly, a recent 
meta-analysis indicated that most ADHD medication might have a limited efficacy for 
emotional dysregulation (ED) problems, especially in adults [Lenzi et al., 2018], resulting 
in therapeutic challenges. 

Adults and children with ADHD often display multi-facetted symptoms of ED, 
including impulsivity, impatience, and emotional instability [Biedermann et al., 2012; 
Sobanski et al., 2010; Surman et al., 2013]. Because of the heterogeneity of the symptoms 
connected to it, recent studies on ED in children have argued that multimodal interven-
tions (e.g. behavioral therapy or cognitive-behavioral-therapy (CBT) in combination with 
parental training) should be considered in order to achieve an effective reduction of 
symptoms, like irritability and symptoms of depression [Vacher et al., 2020]. In chapter 
2 and 3, we studied emotional regulation issues in participants with ADHD, focusing 
on internalizing symptoms, i.e. depressive and anxiety symptoms, and their neural 
underpinnings using fMRI paradigms, as internalizing symptoms were previously found 
to relate to amygdala hyperreactivity [Posner et al., 2011b]. The emotion dysregulation 
spectrum is wide and therefore our assessment may have missed some aspects of 
emotional problems [Posner et al., 2011b]. Consequently, it would be of great value to 
have instruments available that can measure a more heterogeneous set of symptoms in 
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individuals, and e.g. distinguish emotional impulsivity and deficient emotional self-regu-
lation from irritability [Faraone et al., 2019a].

Top-down vs. Bottom-up theory of ED
The “affectivity hypothesis” proposes that emotional lability in ADHD may emerge 

from a direct route of dysfunctional emotional processing itself [Posner et al., 2014]. 
Accordingly, previous studies in children with ADHD have proposed a hyperreactivity of 
the amygdala to negative emotional stimuli, as a potential underlying neural mechanism 
of emotion dysregulation [Brotman et al., 2010; Posner et al., 2011a; Posner et al., 2011b; 
Quinlan et al., 2017].  In contrast, in chapter 2 and 3, we did not find any differences in 
amygdala reactivity to emotional stimuli with our paradigms, when comparing partic-
ipants with and without ADHD. This discrepancy with earlier studies may on one hand 
be due to interindividual differences in ED and on the other hand a result of a complex 
interplay between different brain regions. As mentioned before, ED in ADHD consists of 
a multi-faceted interplay of dimensions, including emotion recognition and emotional 
lability. Indeed, recent research has shown that not all individuals with ADHD experience 
ED in its full complexity and several subtypes of ED may even exist [Christiansen et al., 
2019a].

Interestingly, a previous study has suggested that ADHD-related deficits in the 
prefrontal cortex may be responsible for a deficient integration of information by regions 
responsible for perception and emotion recognition, such as the amygdala [Winston et 
al., 2003]. We found some evidence supporting this hypothesis, as we report small, yet 
specific effects within cortico-limbic circuits during the emotional recognition task in our 
exploratory whole-brain connectivity analyses of children treated with MPH (chapter 
3). In line with this, we found in changes in top-down control processes rather than in 
the subcortex itself. These results are supported by the “dyscontrol hypothesis”, which 
postulates that externalizing symptoms in ADHD are not emerging from direct dysfunc-
tional emotional processing itself, but rather from an executive dysfunction, affecting 
top-down processes, such as the capacity to suppress responses that are evoked by 
emotional stimuli [Posner et al., 2014].

Age-related compensatory effects in ED
Compared to earlier studies in children with ADHD, research in adults has identified fewer 
regional group differences between individuals with ADHD and controls [Cortese et al., 
2012]. One of the possible explanations for this are age-related compensatory effects, 
which may engage parietal, occipital, and subcortical systems (i.e., cerebellum and basal 
ganglia) to overcome possible impairments that may have started in early development 
[Cortese et al., 2012; Frazier et al., 2007]. Indeed, in both chapter 2 and 3, we failed to find 
any changes in amygdala reactivity to the emotional stimuli in adult ADHD participants. 
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Nevertheless, especially adults with ADHD report large functional impairments as a result 
of ED symptoms [Retz et al., 2012], which is in line with an earlier notion that emotional 
reactivity, a prominent aspect of ED in participants with ADHD, is influenced by many 
factors, including age, and is notably much more complex than originally thought 
[Graziano and Garcia, 2016]. 

It is therefore crucial to create future paradigms that can untangle the impacts of 
cognitive processes on ED in adult ADHD, especially since the characteristics of ED in 
adult ADHD are especially complex and multidimensional [Beheshti et al., 2020]. We may 
therefore speculate that the functional symptoms of ED presented in adults with ADHD 
may not be represented in just one particular brain region, but are more widespread 
across the whole brain.

Measuring mechanisms of ED with MRI
In order to investigate emotion processing, we made use of two different fMRI paradigms; 
in chapter 2, we chose to use a novel paradigm interleaving working memory (WM) 
blocks (n-back), with emotional and neutral picture blocks, (International Affective 
Picture System (IAPS)), whereas in chapter 3 we used an emotional-face matching 
paradigm. Surprisingly, and in contrast to earlier findings [Brotman et al., 2010; Posner 
et al., 2011a; Posner et al., 2011b; Quinlan et al., 2017], we did not find amygdala hyper-
reactivity to emotionally negative (non-scene) stimuli from the IAPS in the participants 
compared to without ADHD. Conversely, in chapter 3 we chose a well-established 
emotional face-matching paradigm [Hariri et al., 2002], because the human amygdala 
had been suggested to exhibit a stronger BOLD fMRI response to fearful and threatening 
facial expressions, compared to non-face IAPS stimuli. 

Additionally, because of its robustness, this task does not require the acquisition of 
many averages. Nevertheless, also with that task, we did not find any hyperreactivity 
of the amygdala. Interestingly, the only two other studies that investigated emotional 
reactivity in adult ADHD using IAPS images, also failed to find differences between 
participants with ADHD and TDCs [Hägele et al., 2016; Tajima-Pozo et al., 2018]. Conse-
quently, functional impairments of the amygdala, and therefore also the influence of 
challenges or interventions thereon, may be a heterogeneous phenomenon, which 
seems to be highly dependent on the fMRI task used. The field should therefore reach a 
consensus on the (fMRI) tasks used to research well-defined cognitive and/or behavioral, 
in this case ED related, concepts.

MPH for ED
Previous studies indicated a lower efficacy of ADHD medications/stimulants for ED 
problems [Lenzi et al., 2018], whereas a small number of studies showed that stimulants 
could reduce part of the symptoms, in particular internalizing emotional symptoms 
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[Biederman et al., 2009; Coughlin et al., 2015]. Amygdala hyperreactivity and -connectivity 
in adolescents with ADHD (aged 11-16 years) was previously found to increase 
significantly after MPH discontinuation [Posner et al., 2011b]. However, the exact neural 
mechanisms underlying these changes remained unclear, particularly those related to 
long-term stimulant treatment. In chapter 3 (as a secondary analysis of the ePOD trial), 
we therefore investigated how MPH treatment may modulate neural mechanisms that 
can underlie emotion regulation in ADHD. 

In our study, long-term MPH treatment did not influence either internalizing 
symptoms, or the brain substrates underpinning emotional processing. Nevertheless, 
we showed that long-term MPH did reduce ADHD symptoms most effectively  in those 
adults with the highest depression and anxiety symptoms at trial onset. This indicates 
that internalizing symptoms may possibly be used to predict MPH treatment effects on 
ADHD symptoms, particularly in (male) adults with ADHD. Based on chapter 2 and 3 
we could speculate that adults with ADHD that present with high levels of internalizing 
symptoms, might benefit most from both cognitive and pharmacological interventions. 
However, we did not find direct evidence for a beneficial effect on the neural correlates 
of emotion regulation of either intervention, nor did we identify differences between 
ADHD and TDC groups. 

Importantly, preclinical studies had shown before that a prolonged treatment with 
MPH during adolescence induced anxiety and depressive-like behavior [Bolaños et al., 
2003] and increased impulsivity later during adulthood [Somkuwar et al., 2016]. The 
most comprehensive study on long-term effects of ADHD medication to date, i.e. the 
multi-modal treatment study of ADHD (MTA), found that children treated with ADHD 
medication had higher rates of anxiety and depression (19.1%) than children receiving 
behavioral therapy only (4.3%), as measured 6 years after treatment onset. However, this 
effect had disappeared when studied after 8 years [Molina et al., 2009]. Interestingly, 
in chapter 3, we did not observe any increase in depressive nor anxiety symptoms in 
the MPH condition during the 16 weeks in this well-controlled trial. This is in line with 
another long-term (3-year) study, that found a reduced risk for developing depressive 
symptoms in association with previous medication [Chang et al., 2016]. It seems that 
the effect of MPH on internalizing symptoms is likely patient-specific. Also, for instance, 
Coughlin et al. [2015] have argued that the positive impact of MPH on anxiety symptoms 
outweighs the risk of psychostimulant use inducing anxiety in children with ADHD. In 
fact, we demonstrated that MPH improved ADHD symptoms the most in adults with the 
highest depressive and anxiety symptoms before treatment start.

Alternative therapy options in ADHD

Although MPH is usually recommended as the first pharmacological option for the 
treatment of adult ADHD, clinical trials focusing on the efficacy of MPH have shown a 



585698-L-sub01-bw-Kaiser585698-L-sub01-bw-Kaiser585698-L-sub01-bw-Kaiser585698-L-sub01-bw-Kaiser
Processed on: 9-12-2022Processed on: 9-12-2022Processed on: 9-12-2022Processed on: 9-12-2022 PDF page: 164PDF page: 164PDF page: 164PDF page: 164

164

Chapter 6

wide variability of results, ranging from no effects at all to large improvements [Buitelaar 
et al., 2022; Castells et al., 2011]. It is therefore important to; 1) investigate where those 
heterogeneities come from, and preferably try to find biomarkers that could help predict 
and/or stratify patient responses and hence treatment allocation, and 2) find alternative 
therapies that might provide less side-effects and/or higher efficacy.

Also in other mental disorders, for example in anxiety or substance use disorders, 
emotional hyperreactivity occurs [Hofmann et al., 2012; Spence and Courbasson, 2012]. 
This was found to decrease when WM was activated during or before the exposure to 
emotionally relevant stimuli [Andrade et al., 2012; van den Hout et al., 2014; Kaag et 
al., 2018; Markus et al., 2016; May et al., 2010; McClelland et al., 2006]. WM training had 
also been demonstrated to improve emotional reactivity outcomes in both healthy 
subjects and other psychiatric disorders, but not yet in ADHD [Barkus, 2020; Schweizer 
et al., 2013]. In chapter 2, we therefore investigated whether taxing of WM processes 
would have an influence on the neural mechanisms of emotional reactivity in adults with 
ADHD, with the potential to use WM training as a (add-on) treatment for individuals with 
ADHD. Interestingly, and in contrast to previous studies, we did not find any differences 
in amygdala reactivity to negative stimuli, and only weak evidence for a hypo-activation 
of WM related regions [Burgess et al., 2010; Cortese et al., 2012; Ko et al., 2013], when 
comparing adults with ADHD and typically developing controls (TDC). Probably as a 
consequence, we also did not find the WM task-load to influence the amygdala reactivity 
to emotional stimuli in either group.

As another alternative, non-pharmacological interventions such as exercise have 
been proposed [Christiansen et al., 2019b]. In chapter 5, we investigated the effects 
of a low- vs. high-intensity physical exercise training on several neuronal measure in 
young, healthy TDC participants. All in all, the benefits of physical activity were found 
to be likely not attributable to a single mechanism but they probably involve multiple 
biological changes within the body and brain that differ considerably across individuals. 
In our study, notably performed in a young population, exploratory analyses suggested 
that cardiovascular fitness was positively associated with whole-brain CBF and markers 
of neuronal viability, arguing that exercise does not benefit the hippocampus specifi-
cally, but rather involves several areas of the brain. As such, exercise training, might be 
beneficial for many brain disorders and mental health problems and deserves further 
study in the future. Such studies should consider multi-modal whole-brain approaches 
to not miss out on the potential wide-spread effects. Moreover, these more widespread 
beneficial effects of exercise could possibly be used to develop specific exercise 
regimens as a therapy for mental disorders. Indeed, aside from several beneficial 
peripheral effects of moderate exercise in large cohorts [del Pozo Cruz et al., 2022], 
specific studies have already shown beneficial effects for e.g. depression [Daley, 2008], 
anxiety [Aylett et al., 2018] and also ADHD in children and adolescence [Christiansen et 
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al., 2019b]. Nevertheless, large-scale clinical trials involving children as well as adults 
with ADHD, preferably medication-naive, are needed to investigate the exact effects of 
physical exercise on the ADHD brain.

Additionally, other training options have been proposed [Faraone et al., 2019b], 
including Parent Behavior Management Training, cognitive-behavioral therapies, 
mindfulness and meditation training, neurofeedback or Transcranial magnetic stimu-
lation, but this is beyond the scope of this thesis and will not be discussed in detail.

Brain Networks in ADHD 

Over the past years, ADHD is increasingly viewed as a disorder of brain-wide network 
dysconnectivity, as opposed to more region-specific deficits [Castellanos and Proal, 2012; 
Samea et al., 2019]. MPH is known to inhibit the reuptake of dopamine and noradrenaline 
in the brain [Cortese et al., 2017], and because the dopamine system undergoes 
considerable changes throughout development [Chen et al., 2010], we hypothesized that 
age might also modify the impact of MPH on functional connectivity. In chapter 4, we 
therefore went on to study age-dependent effects of an acute dose of MPH on resting-
state connectivity in dopamine sensitive regions. In chapter 4, the same participants as 
described in chapter 3 were measured before and after an acute dose of MPH, before they 
were randomized to one of the intervention groups. Additionally, MR scans of TDCs were 
obtained once without a medication dose. We used topological metrics, which not only 
enabled us to evaluate individual nodes or global connections, but also the relevance 
and integration within the global network before and after MPH administration. 

Indeed, in accordance with our hypothesis, we observed opposite effects of acute 
MPH treatment on connectivity strength, and the relative importance of subcortical 
(dopamine-sensitive) regions in children vs. adults. These changes might potentially be 
attributable to maturational changes in the dopamine and noradrenergic systems [Chen 
et al., 2010]. Contrary to our expectations, MPH-induced modifications in the connec-
tivity of the frontal brain regions were minimal. In these regions, no differences were 
identified between age groups. However, in the PFC, across groups, the global impor-
tance (i.e., the value as a hub) specifically increased within the network from before to 
after MPH. This might indicate a more important role for the frontal regions regarding 
information flow in the brain, after the intake of MPH [Farahani et al., 2019; Wang, 2010]. 

MPH has been hypothesized to cause changes in functional connectivity across 
multiple brain networks involved in ADHD [Pereira-Sanchez et al., 2021]. As an example, 
acute methylphenidate treatment has been shown to restore normal connections in 
fronto-parietal-cerebellar circuits in children with ADHD. The first study to notice this 
was An et al., [2013] who showed that a single dose of methylphenidate, compared 
to placebo, upregulated an abnormally decreased local connectivity in the bilateral 
ventral prefrontal cortices and the cerebellar vermis, while downregulating abnormally 
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increased local connectivity in the right parietal and visual areas in children with ADHD 
[An et al., 2013]. Similar results were seen in teenagers with ADHD when a single dose 
of methylphenidate was compared to placebo; they discovered that functional connec-
tivity in occipital, temporal, and cerebellar regions as well as in visual, executive, and 
DMN, were normalized [Silk et al., 2017]. 

In recent years, it has been established that prolonged MPH treatment in medica-
tion-naive children with ADHD causes changes in fronto-parietal-cerebellar circuits 
[Yoo et al., 2018]. Finally, there is some evidence that this normalization may also occur 
in adults with ADHD [Cary et al., 2017; Picon et al., 2020]. We did not find normalizing 
effects of acute MPH in any of the measures in either age group, using topological 
outcome measures. This may suggest that the previously observed normalization 
towards a “control state” [Pereira-Sanchez et al., 2021] may exist only at the level of local 
connectivity, whereas MPH may cause a reorganization of function at the level of the 
global network. This suggests that the efficacy of stimulant therapy may not be based 
on normalization only, but rather depend on combinations of factors that return the 
network organization to the typical topology for some systems, while reorganizing 
others. In other words, it might be that altered networks in the brain do not need to 
return to the control state to function in the desired way. Additionally, if structural 
networks are changed in ADHD, the functional networks might possibly not be able to 
return to a control-like state. Future studies combining structural, anatomical connec-
tivity with functional connectivity measures would aid in investigating this hypothesis.

As ADHD has been suggested to be more of a disorder of network connectivity 
dysfunction, it will be important to investigate the underlying neural mechanisms in a 
multi-modal, broad approach. This might facilitate the development of new interven-
tions or trainings to help children and adults with ADHD struggling with internalizing 
as well as externalizing problems. According to a recent meta-analysis using rs-fMRI 
studies, the field of ADHD brain networks is still in its infancy. This is probably due to 
the majority of study results being based on small sample sizes, and in many areas, repli-
cation has not been achieved [Cortese et al., 2021]. While some results appear to be fairly 
consistent in replicated theory-driven studies (e.g., abnormalities within the DMN and 
in its connectivity) [Sutcubasi et al., 2020], data-driven approaches must be expanded 
in order to gain unbiased, comprehensive insights into the brain networks underlying 
ADHD. While we begin to comprehend the genetic underpinnings of these networks 
and the effects of treatment [Yoo et al., 2018], larger-scale investigations are required.

Context-dependence of task-based experiments

Research employing well-controlled but simplified paradigms with basic context-
independent inputs has established some key aspects of brain architecture. In contrast 
to the static, single-sensory settings that the majority of studies attempt to apply, the 
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dynamic, multisensory real world demands a variety of top-down (attentional and 
otherwise) processes for us to function well in our daily lives. Therefore, one might argue 
that task-based neural reactivity is context-dependent, and hence that experimental set-
ups might not be able to capture the full picture [Matusz et al., 2019]. As an example, ED 
in ADHD populations has been reported mainly on a behavioral level, for example in 
the social context, or in highly emotionally challenging periods of their life [Courbet et 
al., 2021; Purper-Ouakil et al., 2004]. Additionally, the neural mechanistic underpinnings 
are still mostly unknown and highly heterogeneous [Herrmann et al., 2010b]. This might 
partly be because showing context-independent stimuli in an experimental set-up might 
not induce the same emotional reaction that would occur when applied in more realistic, 
‘real-life’ situations, or when stimuli would have been used that were adjusted to the 
specific individuals’ life situation.

In chapter 5, we tried to apply a more naturalistic approach to the longitudinal exercise 
intervention. Participants were allowed to do the exercises in their own time, using a large 
list of possible classes they were allowed to do at the university sports center, only defining 
the frequency and intensity for them. This had a positive influence on adherence and made 
it more applicable for a comparison to daily life activities, but it may also have increased 
the heterogeneity within the exercise groups, thereby hampering the interpretation of 
the results. In fact, both exercise groups increased in fitness measures, even though one 
group was employed as a control condition, indicating that also mild levels of activity may 
already induce relevant brain changes in young adult participants. In future studies, the 
inclusion of a mostly sedentary control group would therefore be recommended to be 
able to exclude an effect of context completely.

On the other hand, the application of highly reproducible and controllable stimuli 
is needed in research in order to compare results between studies, but also within 
studies when it comes to longitudinal designs. In all chapters of this thesis, comparing 
results with the literature was often difficult, as many earlier studies had been incon-
sistent in their operationalization of stimuli as well as in outcome measures. Future 
studies could therefore consider applying more naturalistic, applicable, maybe even 
individual, stimuli in big sample sizes to generate new hypotheses, which then can be 
tested in a more controlled and standardized experiment. Especially the IAPS task used 
in chapter 2 might e.g. be highly context dependent, as full scenes are depicted in it 
[Lang et al., 2005]. Nevertheless, this dataset was validated thoroughly and was found 
to clearly induce negative emotions in participants [Lang et al., 2005]. Nevertheless, in 
chapter 2, we only used negative and neutral stimuli. In contrast, in individuals with 
ADHD, the processing of positive stimuli has been associated with lower ventral striatal 
activity [Herrmann et al., 2010a], decreased event-related potentials in EEG, and altered 
startle response modulation. Consistently, a deficient reward system was postulated as a 
mechanism behind these observations. Importantly, the deficit was revealed not just for 
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reward-related tasks but also for the processing of more general positive stimuli. 
In summary, not only context makes a difference with respect to the influence of 

specific stimuli and interventions on the brain. Also, the heterogeneity within the 
enrolled participant groups plays a big role. In this thesis, we showed 1) age-spe-
cific effects of medication on symptom changes, and also on network connectivity in 
chapter 3 and 4. We 2) showed a different influence of an exercise intervention in young 
adults (chapter 5) than in older adults as was found in previous studies [Firth et al., 2018]. 
In chapter 3 and 4, we concluded that medication might have a different influence on 
children than on adults with ADHD, because the brain is still in development. Maturation 
of several brain regions is going on until adolescence [Giedd et al., 1999], and medication 
might have a different influence during this much more sensitive phase of life [Xavier 
Castellanos et al., 2002] than when studied after development has been completed. In 
other words, neuronal plasticity is much higher during the brain development, than 
during adulthood. Nevertheless, neuroplasticity also plays a big role during aging, 
causing e.g. the hippocampus to decline in volume which could underlie cognitive 
functions to deteriorate as well [Hardcastle et al., 2020], which might explain why we 
did not find any effects of a physical exercise intervention in healthy, young adults in 
chapter 5. Following this, one could conclude that interventions and task influences on 
the brain during phases of higher brain plasticity in life (e.g. in childhood and in older 
adults, or in disease) might be more effective and have bigger influence than in young 
adulthood, where the neuronal architecture of the brain may be less flexible. 

Resting- vs. task-unrelated states
Some recent publications argue that functional connectivity can better be estimated 
by regressing the task effects out of task-based fMRI experiments. Despite substantial 
variation in the nature and design of the used tasks, it was observed that dispersed, task-
induced modifications in functional connectivity predicted phenotype-independent 
task activation [Greene et al., 2020]. This might be the result of locking brain activity to a 
task, which would restrict it and synchronize it among participants [Buckner et al., 2013; 
Hasson et al., 2004]. Additionally, rs-fMRI paradigms require participants to lie still without 
a distraction (of e.g., a task) for quite a long time, which might increase the chances of 
motion. Task-induced resting-state fMRI approaches therefore might have the potential 
to increase inter-individual similarity and predicted accuracy by reducing inter-individual 
variability (e.g., head motion) that might influence the results substantially [Finn et 
al., 2017; Laumann et al., 2017]. These findings also support the widely held idea that 
diffuse brain circuitries, rather than specific regions of interest, underlie  sophisticated 
complex cognitive functions [Turk-Browne, 2013]. 

Future studies could therefore use designs where a baseline per individual is 
acquired, which will then statistically be taken into account to explain the change 
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after a specific intervention, trigger or stimulus. Additionally, it would be beneficial if 
studies would not only take into account one measuring point, but several, or rather 
apply longer scanning sessions, to be able to find the exact moment of change after 
the intervention. These outcome measures could provide us with a more specific way to 
detect changes in brain responses in relation to environmental challenges, which could 
help develop potential biomarkers for mental disorders and may benefit the field by 
improving therapy response or develop new therapies and trainings.

Part II: Exercise as an intervention

Prolonged moderate to intense levels of physical exercise have been shown to have 
widespread beneficial effects on the body and mind [del Pozo Cruz et al., 2022]. 
Furthermore, in older adults, several studies showed positive effects of exercise on 
cognitive functioning and neuronal health, preventing further decreases in brain volume 
and cognitive decline [Firth et al., 2017]. Also in younger adults, exercise might have a 
positive influence on brain volume, but in a more rapid, temporary way, as increases were 
already found after 6 weeks of physical exercise training, but these returned to baseline 
levels again 6 weeks after the discontinuation of physical exercise [Thomas et al., 2016]. 

So far, the role of exercise intensity had received little attention [Lucas et al., 2015; 
Wilke, 2020], even though a recent meta- analysis stressed the importance of high-in-
tensity training [heart- rate (HR) > 80% of maximum HR] for improving fitness in younger 
adults [Bacon et al., 2013; Wen et al., 2019]. Therefore, in chapter 5, we investigated 
what influence a low- (stretching and toning) vs. a high- intensity (aerobic) exercise 
intervention of 12 weeks would have on the hippocampal volume of young, healthy, but 
non-athletic adults. We additionally explored possible underlying neuronal mechanisms 
with comprehensive MRI methods. Overall, we observed no differential effects of either 
exercise intensity on hippocampal volume, vasculature, or neuro-metabolite markers, 
probably because cardiorespiratory fitness increased in both exercise groups. 

Although the hippocampus is thought to benefit from exercise in general, explor-
atory analyses in our young cohort of chapter 5 demonstrated that cardiovascular 
fitness exhibits beneficial relationships on whole-brain cerebral blood flow and 
indicators of neuronal survival and integrity, estimated with MR spectroscopy. In fact, 
the advantages of exercise might not be due to a single mechanism but rather include 
various biochemical changes inside the body and brain, some of which may be unique 
to each individual. These results showed that a multimodal approach is useful and 
maybe even necessary to disentangle the various effects that exercise might have on the 
(young) brain. It also highlights the value of a non-active, sedentary control group when 
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comparing exercise effects in young adult participants.
The most prominent advantages of exercise for the brain seem to apply mainly to 

middle-aged or older adults and diseased populations, and less so to younger, healthy 
adults, due to possible ceiling effects and an already optimal neuronal health. Never-
theless, it is important to mention that in chapter 5 we studied a relatively homogenous 
group (comparable BMI, age, fitness), which might have made ceiling effects even more 
likely. Interestingly, evidence is accumulating that exercise effects might be transient 
and change relatively rapidly in young adults. For instance, Van Der Borght et al. [2009] 
found that the vasculature in rodents changed rapidly 3 days after exercise training but 
also declined again after 24h of inactive behavior. Thomas et al. [2016] even observed 
temporary changes in young healthy adults, but only in the anterior hippocampal 
volume and for measures of myelination. As these changes were temporary, a consistent 
and regular training scheme seems to be essential, which could have influenced our 
measures as well, as we, in our study, intentionally controlled for rapid exercise effects 
on perfusion, by guaranteeing a 24h gap between the last exercise session and MRI 
measurements, which allowed us to study mainly the prolonged effects of exercise 
intensity. 

However, there is sufficient evidence to recommend structured exercise training 
as an effective first-line treatment in patients: e.g. for moderate depression and as an 
adjunctive intervention for improving symptomatic recovery in severe mental illness, 
as also adopted in the guidelines of the European Psychiatric Association on physical 
activity in mental illness [Stubbs et al., 2018]. Clinical practice recommendations for 
mood disorders [Malhi et al., 2015] from the Royal Australian and New Zealand College of 
Psychiatrists also identify exercise, smoking, food, and sleep as “step zero” targets, that 
are to be addressed before implementing medication and/or psychotherapy. However, 
systematic longitudinal studies with blinded experimenters and appropriate control 
groups should be implemented to confirm the assumed effects and likely help stratify 
subgroups who may benefit most.

Interventions as a challenge to help understand brain function

Challenging hemostasis
Testing interventions experimentally can also be done on a more methodologically 
relevant level. In recent years, a lot of MRI research has gone into the attempt of finding 
neurobiological markers to distinguish individuals with and without mental disorders, 
to improve diagnosis, but also for treatment allocation, but so far without any strong 
results. One theory is that comparing group averages (i.e. healthy control participants vs. 
individuals with a mental disorder) is not strong enough because of the heterogeneity 
that individuals with mental disorders display. Furthermore, studies have found that 
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specific tasks both increase inter-subject functional connectivity similarity and improve 
individual identifiability on the basis of functional connectivity patterns [Finn et al., 
2017]. Moment-to-moment “events” in the BOLD signal have e.g. been found to explain 
substantial functional connectivity variance, which are highly synchronized across 
individuals during a task [Zamani Esfahlani et al., 2020].

Additionally, it has been suggested that, especially in neurochemical terms, the 
brain may not show detectable differences when in homeostasis, but when its function 
is challenged by a stimulus, the neurochemical response might become different. 
Maintaining homeostasis in the brain is likely to result in unaltered baseline metabolite 
concentrations; however, the response to a stress test or a complex, highly demanding 
cognitive task may reveal more specific metabolic anomalies [Duarte and Xin, 2018]. 
Several longitudinal investigations have failed to identify a correlation between baseline 
(i.e. pre-challenge) metabolite levels and a longitudinal, later reaction to the challenge 
[Brennan et al., 2017; Godlewska et al., 2019]. In spite of this, they hypothesized that the 
magnitude of change in metabolite levels during therapy may impact the degree of 
symptomatic improvement later on [Goff et al., 2002; de la Fuente-Sandoval et al., 2013]. 
These results are significant not just for the molecular insights they provide, but also 
because they reveal that changes in glutamate metabolite concentrations, for example, 
in the very beginning of the medication therapy may be predictive of longer-term clinical 
outcomes. Future clinical trials may examine change values as prospective predictors, 
since it is obvious that early treatment-response markers, such as neurometabolite 
changes, might guide treatment paradigms. In addition, a design like this would address 
concerns regarding the standardization of 1H-MRS acquisitions across different research 
sites, as it would focus on the within-subject variation in 1H-MRS metabolite levels rather 
than on a single measurement at a specific time point (provided that inter-site repeata-
bility is stable enough) [Egerton, 2021].

Suggestions for future directions

Future studies should explore the influence of challenges on the brain further. For that is 
would be interesting to explore whether the influence could be increased by making the 
stimuli more individualized and adjusting them to the context in which, e.g., symptoms 
might arise in everyday life. For that purpose, it may be important to increase effect sizes 
in especially adult studies by either increasing sample sizes, by using more powerful 
tools (as described in more detail below) or by including a more homogeneous sample of 
participants, e.g. only including medication-naïve participants, or participants with the 
same symptom clusters. Furthermore, it might be important to pay closer attention to 
longitudinal statistical designs and models that can help describe the individual changes 



585698-L-sub01-bw-Kaiser585698-L-sub01-bw-Kaiser585698-L-sub01-bw-Kaiser585698-L-sub01-bw-Kaiser
Processed on: 9-12-2022Processed on: 9-12-2022Processed on: 9-12-2022Processed on: 9-12-2022 PDF page: 172PDF page: 172PDF page: 172PDF page: 172

172

Chapter 6

per participant and can take into account baseline values, that might have a big influence 
on how the outcome measures will change over time [Twisk et al., 2018].As described 
before, MRI studies aiming to find new biomarkers for the improvement or development 
of new treatments for mental disorders are needed. One essential problem of such 
studies lies in the heterogeneity of patients with mental disorders, which causes effect 
sizes to be small. Several ways of dealing with this could be proposed.

Advances in MR measurements 

First, the development of more accurate MRI sequences may allow the detection of smaller 
changes in the brain, that could further this effort. This could e.g. be achieved with the 
development of better spatial or temporal resolution, depending on the property that 
needs to be measured. MRI has already improved massively over the past decades and 
continues to improve until today. 

The development and validation of specific MR-sequences, but also of methods for 
pre- and postprocessing of the data, are needed to improve the signal we can extract, 
and therefore the information we can obtain. Any imaging technique used to compare 
local metrics over time and/or across individuals is susceptible to errors and biases 
introduced by the imaged volume selection (especially in MRS), co-registration among 
images, and smoothing procedures, and these need to be taken into account [Triana et 
al., 2020]. 

Multi-modal approach
Additionally, combining several MRI contrasts might help to establish a more detailed 
profile of functional, structural, and biochemical alterations, which leads to a more 
complete picture of the underlying biology responsible for a specific behavioral 
readout. By combining many MRI contrasts, we may leverage the relative contributions 
of various disease substrates to selected MRI contrasts and significantly boost the 
sensitivity to specific substrates. There are possible approaches spanning from simply 
measuring several MRI parameters (thus e.g. using several sequences for different 
outcome measures) in the same individuals, to develop joint models, to using complex 
computational approaches to derive new measures [Cercignani and Bouyagoub, 2018]. 
Moreover, having this information, additional measures (i.e., cognitive or physiological) 
can be chosen more judiciously from there. 

Unexploited potentials of established MR methods
Nevertheless, some acquisition strategies in MRI still present unexploited potential 
as stand-alone methods. For example, most studies employing 1H-MRS are using 
static acquisitions, i.e., several averages acquired at one time-point and consequently 
averaged, from a single relatively large voxel in the brain. Increasing research efforts are 
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spent on MR spectroscopic imaging (MRSI), which permits the simultaneous assessment 
of multiple voxels. Particularly, 1H-MRSI sequences that are currently available, can 
measure e.g. Glx [Ding et al., 2015; Gasparovic et al., 2011; Steel et al., 2020], glutamate 
and glutamine [Goryawala et al., 2016; Henning et al., 2009], and GABA [Moser et al., 2019] 
across substantial portions of the brain. This approach has the ability to map metabolite 
anomalies associated with, for example, certain diseases or mental disorders, allowing for 
the analysis of region-specific abnormalities between these groups.

Functional 1H-magnetic resonance spectroscopy (fMRS), which detects changes in 
metabolite concentration over time, examines how the 1H-MRS metabolite signal varies 
in response to an external stimulus. For example, multiple experimental studies have 
shown that glutamate concentration changes measured with fMRS can increase  by an 
average of 7% [Mullins, 2018]. It remains yet unknown how precisely changes in metab-
olite signal are displayed, in other words what the shape and duration of their change 
function is, whether or not and to what extend habituation happens, and whether or not 
homeostatic processes may occur [Apvalka et al., 2015; Jelen et al., 2018]. These questions 
have large potential and are now being investigated to enhance the possible use of 
fMRS. The investigation of pharmacological manipulation of metabolite dynamics using 
fMRS will be an intriguing topic of future research. In line with this, improved recording 
methods and improved analysis techniques have inspired many groups to examine both 
non-stationary and stationary aspects of rs-fMRI on much shorter time scales than in 
the past, i.e., “dynamic rs-fMRI”. In their review, Thompson et al. conclude that studies 
comparing dynamic rs-fMRI to behavior or disease have shown that these techniques can 
often distinguish changing brain states better than static rs-fMRI, indicating that indeed 
a more dynamic approach might be a promising avenue in the future [Thompson, 2018].

Potential of field strength
Not only different MR-sequences can be used to our advantage, also different field 
strengths of the MRI scanner can influence the ultimate measurement [Neuner et al., 2022]. 
The primary benefits of ultra-high-field (UHF; >7T) MRI include a high (temporal) signal-
to-noise ratio (SNR), which results in an increased spatial resolution and contrast and 
enables the study of single participants individually [Dumoulin et al., 2018; Triantafyllou 
et al., 2005]. For example, with the availability of UHF MRI scanners for human research 
studies, it becomes increasingly possible to resolve lower concentration metabolites, 
such as GABA or glutathione, and to separate glutamate and glutamine resonances under 
optimal acquisition sequences [Godlewska et al., 2017]. 

The primary clinical benefit of using a higher field strength, namely 7T MR imaging, 
is problem solving when the resolution or signal of lower field strength magnets is not 
sufficient [Sydnor and Roalf, 2020]. Even though MR imaging at 7T provides greater 
signal-to-noise ratio, smaller voxel size, and/or faster scan times compared to lower field 
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strength scans, it comes at the expense of increased costs and artifacts in certain appli-
cations, including non-uniform radiofrequency fields, enhanced susceptibility artifacts 
[Ladd et al., 2018].

Potential of exploratory studies

More exploratory clinically applied cognitive neuroscience studies using MRI should 
be done, which could discover new targets and avenues, that consequently could be 
investigated in bigger, randomized controlled trials. In line, big datasets could be used 
together with artificial intelligence (AI) methods, to find new patterns and clusters in 
multi-modal datasets. In recent years, one of the most important theoretical advances in 
psychiatry and clinical psychology has been a move away from single-cause theories of 
mental disease [Kendler, 2019]. Many now agree that (1) the etiology of mental diseases 
is complex and multifaceted, (2) many of the processes that maintain mental disorders 
cross diagnostic boundaries, and (3) mental disorders require pluralist explanations 
[Borsboom et al., 2019] or other complexity-based approaches [van der Wal et al., 2021].

Potential of artificial intelligence (AI) in MR neuroimaging

In general, AI has found its way already into regular practice for cognitive and clinical 
neuroscience research. The applications to psychiatric neuroimaging may offer the 
possibility of developing robust and dependable illness biomarkers for monitoring 
everyday clinical practice [Davatzikos, 2019; Johnston et al., 2015]. MRI applications have 
focused amongst others on mental disorders, including bipolar disorders [Rubin-Falcone 
et al., 2018], autistic spectrum disorders [Wallace et al., 2013], conduct disorders [Zhang et 
al., 2018], schizophrenia [Nieuwenhuis et al., 2012], attention deficit hyperactivity disorder 
(ADHD) [Lim et al., 2013], and depressive disorders [Serpa et al., 2014; Wise et al., 2018]. 
Support vector regression [Valli et al., 2016], multivariate relevance vector regression 
[Hoexter et al., 2013], and multivariate pattern analysis [Cabral et al., 2016] are frequently 
used to improve the analysis of MRI for the detection and treatment of mental illnesses. 

Overall, AI in MRI processing is expected to continue to evolve, helping clinical 
personnel with innovative technologies that are effective and efficient. Both mass-uni-
variate and multivariate approaches of processing MRI data can provide information 
regarding the location of disease-related structural or functional changes. In reality, 
univariate approaches are simpler to interpret, but they may be less responsive to small 
changes in distributed systems [Brammer, 2009]. However, both approaches, if effec-
tively executed, have the potential to yield valuable disease outcome maps.

However, one possible issue with AI methods might be the issue of overfitting, 
which could impair the generalizability of the results [Davatzikos, 2019]. Overfitting 
occurs when an algorithm discovers a solution that precisely parameterizes the existing 
dataset, but fails to appropriately classify additional data. One cause of overfitting is the 
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use of insufficient sample numbers for training data [Wen et al., 2018]. Also, appropriate 
machine learning tools require sufficient amounts of input data, which may not be trivial 
given the variability among mental health disorder cohorts and subsequent issues of 
data harmonization and potential biases introduced when using them to develop 
machine learning based tools aimed for universal use. Other limitations of AI based 
methods are most likely due to insufficient code and (training) data sharing. Conse-
quently, machine- and deep-learning approaches are only justifiable when paired with 
large-scale open-access datasets and open-source software.

Consensus and collaboration

To achieve more comparability and reproducibility between studies, more consensus 
should be found between research sites. Open science, consensus papers, checklists 
and reporting standards could help with this endeavor. Additionally, standardized data 
processing and analysis pipeline should be developed and most importantly applied. 

Furthermore, it could also be helpful to develop advanced artificial intelligence methods 
to improve the quality of existing datasets to make them comparable to more modern 
ones, or to recover data that may not meet certain quality control standards to increase 
the number of usable datasets.
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Chapter 7

English Summary

Challenging the Brain : Insights from comprehensive structural & 
functional MRI studies.

Approximately 13% of people worldwide are affected by mental health disorders, that 
cause substantial reductions in quality of life and economic productivity. Unfortunately, 
most medications for mental disorders suffer from two major problems: 1) there is a strong 
heterogeneity in their efficacy between individuals, and often even treatment resistance 
to many treatments; 2) adverse side effects are relatively common. Therefore, efforts 
are undertaken to develop specific biomarkers or tools that would not only allow more 
insight into the underlying mechanisms, but could also be used to identify correlated, 
or even predictive, biological measures, which will aid patient stratification and thereby 
improve the efficacy and reliability of medication for specific subgroups of patients, and/
or help to develop better ones.

In this thesis, MRI techniques were used to study functional and structural changes 
in the brain induced by different external stimuli. These included: taxing working 
memory (WM), emotional tasks, stimulant medication and an exercise intervention. MRI 
techniques were applied to measure the influences on functional reactivity and brain 
connectivity, on brain metabolite concentrations and on volumetric measures of specific 
subregions, cerebral blood flow and cerebral blood volume of the brain. Additionally, 
measures of behavior, cognition and peripheral physiology were applied and correlated 
to the neurobiological, MRI-based changes.

We studied these effects in individuals with Attention-Deficit/Hyperactivity Disorder 
(ADHD), one of the most common neurodevelopmental disorders. Even though it is most 
commonly diagnosed in childhood, ADHD can persist into adulthood. Regardless of the 
steadily improving methods in the field of imaging research, and the ever growing liter-
ature on ADHD, its underlying pathophysiological mechanisms remain elusive [Ghimire 
et al., 2020]. In addition to inattention and hyperactivity, which are considered to be the 
core symptoms of ADHD, individuals often also exhibit emotion dysregulation (ED) that 
consists of a multi-faceted interplay of dimensions, including emotion recognition and 
emotional lability. 

The first-line treatment for ADHD is pharmacotherapy with stimulant medications, 
with methylphenidate (MPH) being most commonly prescribed. Its mechanism of action 
involves a direct inhibition of the dopamine and noradrenaline transporters. Although 
MPH is recommended for the treatment of adult ADHD as well, meta analyses have 
shown a wide variability of efficacy, ranging from no effects at all to large improvements 
in ADHD symptoms. It is therefore important to; 1) investigate where that variation 
comes from, and preferably try to find markers that could help patient stratification and 
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treatment allocation, and 2) find alternative therapies that might provide less side-ef-
fects or higher efficacy.

Chapter 2
In chapter 2, we investigated whether the taxing of WM would affect the neural 
mechanisms of emotional reactivity in adults with ADHD. Previous studies in children with 
ADHD had found a hyperreactivity of the amygdala in response to negative emotional 
stimuli. In anxiety and substance use disorders, a decrease in emotional hyperreactivity 
has been found when presented with a WM task during or before seeing emotional 
stimuli. In addition, WM training was shown to improve emotional reactivity outcomes 
in both healthy individuals and those with mental health conditions, but results in ADHD 
were still lacking.

Therefore, we here tested if taxing WM in individuals with ADHD could help reduce 
their hyperreactivity to emotional stimuli, with the potential to use WM training as a 
(add-on) treatment for individuals with ADHD. 

Interestingly, we did not find any differences in amygdala reactivity to negative vs. 
neutral stimuli between typically developing controls (TDC) and adults with ADHD. Also, 
only weak evidence was found for a hypo-activation of WM related regions, including 
the para-cingulate cortex and dorsolateral prefrontal cortex, in the TDC vs ADHD groups. 
Probably as a consequence, we also did not find any influence of the load of the WM task 
on amygdala reactivity in either group. This might have been due to the relatively low 
scores in the category of ED symptoms, including depressive and anxiety symptoms in 
the included participants. Additionally, because we included adults with ADHD who had 
been diagnosed in childhood, compensatory mechanisms might have developed over 
time, that may have reduced the emotion regulation problems in adulthood, therefore 
reducing the effects of our WM taxing paradigm.

Chapter 3
In chapter 3, we investigated effects of prolonged MPH treatment on the underlying 
neural mechanisms of emotion regulation in ADHD. In adolescents with ADHD (aged 11-
16 years), amygdala hyperreactivity and -connectivity in response to fearful faces had 
been identified before, which significantly increased following MPH discontinuation. 
Additionally, an acute MPH challenge restored altered resting-state circuits in individuals 
with ADHD of all ages. Yet, the precise neural mechanisms underlying such changes in 
emotional processing in ADHD, remained unclear, particularly after longer stimulant 
treatment. Additionally, (pre-)clinical research had suggested that effects of ADHD 
medication are age-dependent. 

Therefore, in this study (as the secondary analysis of the ePOD trial), we investi-
gated the potential influence of a prolonged methylphenidate treatment on amygdala 
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reactivity and connectivity to an emotion recognition task. We used the longitudinal 
data from the ePOD trial, which included medication-naïve male children and adults 
with ADHD, randomized to either four months of methylphenidate, or placebo.

Long-term MPH treatment did not have any effect on either internalizing symptoms, 
nor on the brain substrates underpinning emotional processing. However, we did find 
that MPH reduced ADHD symptoms most effectively in those adults with the highest 
depression and anxiety symptoms before trial onset, indicating that adult ADHD patients 
with comorbidities might potentially benefit most from long-term therapy with MPH.

Chapter 4
ADHD is increasingly viewed as a disorder of brain-wide network dysconnectivity, as 
opposed to being due to region-specific deficits. In chapter 4, we therefore studied age-
dependent effects of an acute dose of MPH on resting-state connectivity in dopamine 
sensitive regions. MPH inhibits the reuptake of dopamine and noradrenaline in the brain 
and as the dopamine system undergoes considerable changes throughout development, 
we hypothesized that age might modify the impact of MPH on functional connectivity. 

In chapter 4, the same participants as described in chapter 3 were measured 
before and after an acute dose of MPH, before they were randomized to one of the 
intervention groups. Additionally, MR scans of TDCs were obtained without medication 
dose. Therefore, we used topological metrics in chapter 4, which not only enabled us to 
evaluate individual nodes or global connections, but also the relevance and integration 
of pre-specified nodes within the global network, before and after MPH administration. 

In accordance with our hypothesis, we observed opposite effects of acute MPH 
administration on connectivity strength and the relative importance of the subcortical 
nodes in children vs adults. Contrary to our expectations, MPH-induced modifications 
in the connectivity of frontal brain regions were minimal. In these regions, no differ-
ences were found between the age groups, and across groups the global importance 
of these areas (i.e., their value as a hub) specifically increased within the network. This 
might indicate a more important role for frontal regions regarding information flow in 
the network and we conclude that the acute effects of MPH on connectivity metrics in 
dopamine-sensitive subcortical regions, but not cortical regions, are different in children 
and adults with ADHD. This is likely due to maturational changes in the dopamine and 
noradrenergic systems. Furthermore, we did not find any normalizing effects of acute 
MPH in either age group, suggesting that the previously observed normalization towards 
a “control state” may exist only at the level of local connectivity, whereas MPH may cause 
a reorganization of functions at the level of the global network. 

These findings suggest that the efficacy of stimulant therapy may not be based 
on normalization only, but rather depend on combinations of factors that return the 
network organization to its typical topology for some systems while reorganizing 
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others. In other words, it might be that altered networks in the brain do not need to 
return to the control state to function in the desired way, a restructuring of function 
could be sufficient. Our findings also imply that the age of stimulant-naive individuals 
with ADHD determines the effect that MPH may have on subcortical connections. This 
is most likely due to the continued development of the dopamine and noradrenaline 
systems in the younger participants. These findings highlight the need for more investi-
gations into the possible age-dependent effects of MPH.

Chapter 5
In chapter 5, we studied the effects of physical exercise as an external stimulus that is 
known to induce widespread beneficial effects on the body and mind. Furthermore, 
in older adults, several studies showed a positive effect on cognitive functioning and 
neuronal health, preventing further decreases in brain volume and cognitive decline. 
Also in younger adults it has been suggested that exercise might have a positive influence 
on brain volume, increasing after 6 weeks of physical exercise training already, but also 
returning to baseline levels 6 weeks later. 

In chapter 5, we investigated the influence of a low- (stretching and toning) vs. a 
high- intensity (aerobic) exercise intervention of 12 weeks on the hippocampal volume 
of young, healthy, but non-athletic adults, and, additionally explored the possible under-
lying neuronal mechanisms that could underly these volumetric changes with compre-
hensive MRI methods. 

Overall, we observed no differential  effects of the different exercise intensities on 
hippocampal volume, vasculature, or neuro-metabolite markers, probably because 
cardiorespiratory fitness increased in both groups. In fact, the advantages of exercise 
might not be due to a single mechanism, but rather include various biochemical changes 
inside the body and brain, some of which may be unique to each individual. Although 
the hippocampus is thought to benefit from exercise in general, exploratory analyses 
in our young cohort of chapter 5 demonstrated that cardiovascular fitness exhibits 
beneficial relationships on whole-brain cerebral blood flow and indicators of neuronal 
survival and integrity, estimated with MR spectroscopy. These results show that a multi-
modal approach is useful and maybe even necessary to disentangle the various effects 
that exercise might have on the (young) brain. 
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Nederlandse Samenvatting

Challenging the Brain: Inzichten uit uitgebreide structurele en 
functionele MRI-studies.

Ongeveer 13% van de mensen wereldwijd heeft te maken met psychische problemen. 
Het is bekend dat die leiden tot een aanzienlijke vermindering van de kwaliteit van 
leven alsmede economische productiviteit. Helaas hebben de meeste medicijnen 
voor psychische stoornissen twee grote problemen: 1) er is een groot verschil in hun 
werkzaamheid (met ook vaak therapieresistentie); en 2) vervelende bijwerkingen komen 
relatief vaak voor. Daarom is het belangrijk om specifieke biomarkers en meettechnieken 
te ontwikkelen die de ten grondslag liggende biologische veranderingen in psychische 
stoornissen kunnen bloot leggen. Deze kennis zal niet alleen kunnen helpen in de 
keuze voor de meest geschikte behandeling of medicatie, maar ook bijdragen in het 
vergroten van de evidence waarop deze medicijnen worden voorgeschreven. Uiteindelijk 
zal hierdoor de werkzaamheid van bestaande medicijnen verbeteren, en het aantal 
bijwerkingen worden gereduceerd. Ook kan deze kennis gebruikt worden om betere 
medicijnen te ontwikkelen.

Een veel gebruikte methode in de neurowetenschappen om mechanismen (sneller) 
bloot te leggen is door het brein te ‘challengen’ door middel van een externe stressor 
van emotionele-, farmacologische of fysieke aard. In dit proefschrift werden om die 
reden verschillende externe stimuli toegepast om functionele en structurele veran-
deringen in de hersenen te induceren, welke vervolgens met  verschillende MRI-tech-
nieken konden worden gemeten. Deze stimuli waren: een werkgeheugen taak, 
emotionele taken, stimulerende medicatie en een sportinterventie. We gebruikten 
zowel 3T- als 7T-MRI-technieken om de invloed van deze stimuli te meten op: functionele 
reactiviteit en connectiviteit in de hersenen, hersenmetaboliet-concentraties, hersen-
volumes, hersen-doorbloeding en bloedvolume. Tegelijkertijd werden deze neurobiol-
ogische veranderingen gecorreleerd aan veranderingen in gedrag, cognitie en perifere 
fysiologie. 

Ondanks verbeterde beeldvormende technieken en de steeds groeiende literatuur, 
blijven de onderliggende (neuro) biologische mechanismen van Attention-Deficit/
Hyperactivity Disorder (ADHD) slechts gedeeltelijk begrepen. Naast onoplettendheid 
en hyperactiviteit, die worden beschouwd als de kernsymptomen van ADHD, vertonen 
individuen vaak stoornissen in de verwerking van emoties (emotionele dysregulatie; ED), 
wat bestaat uit een veelzijdig samenspel van dimensies, waaronder emotieherkenning 
en emotionele labiliteit.
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De eerstelijnsbehandeling van ADHD is farmacotherapie met stimulerende 
middelen. Methylfenidaat (MPH) is hierbij de meest voorgeschreven medicatie. De 
werkingsmechanismen van MPH bestaan voornamelijk uit heropname-remming 
van dopamine- en noradrenaline transporters. Hoewel MPH gewoonlijk ook wordt 
aanbevolen als de eerste farmacologische optie voor de behandeling van ADHD bij 
volwassenen, laten meta-analyses in die leeftijdsgroep een groot verschil in effecti-
viteit zien, variërend van überhaupt geen effect, tot grote verbeteringen. Het is daarom 
belangrijk om; 1) te onderzoeken welke mechanismen ten grondslag liggen aan die 
verschillen, en aan de hand hiervan biomarkers te vinden die kunnen helpen bij patient 
stratificatie, en 2) alternatieve therapieën te vinden die mogelijk minder bijwerkingen-, 
of een hogere werkzaamheid bieden.

Hoofdstuk 2
In hoofdstuk 2 hebben we onderzocht of het stimuleren van het werkgeheugen 
invloed heeft op de mechanismen die ten grondslag liggen onder emotionele 
reactiviteit bij volwassenen met ADHD. Eerdere studies in kinderen met ADHD 
toonden een hyperreactiviteit van de amygdala op negatieve emotionele stimuli aan. 
Interessant is dat bij zowel angst- als middelengebruik stoornissen de emotionele 
hyperreactiviteit afneemt wanneer het werkgeheugen wordt geactiveerd tijdens of vóór 
de blootstelling aan emotioneel relevante stimuli. Emotionele reactiviteit verbeterde 
ook na werkgeheugentraining bij zowel gezonde personen als mensen met psychische 
aandoeningen, maar dit is nog niet eerder onderzocht bij mensen met ADHD. 

Omdat werkgeheugentraining naast ene externe stimulus, ook een mogelijk 
(add-on) behandeling zou kunnen zijn in ADHD testten we in dit hoofdstuk of het 
stimuleren van het werkgeheugen ook zou kunnen helpen bij het verminderen van 
hyperreactiviteit op emotionele stimuli bij volwassen personen met ADHD. 

Onverwacht, vonden we geen verschillen in amygdala-reactiviteit op negatieve versus 
neutrale stimuli tussen volwassenen met ADHD en normaal ontwikkelende controles 
(TDC). Ook werd slechts zwak bewijs gevonden voor hypo-activering van werkgeheugen 
gerelateerde regio’s, waaronder de paracingulate cortex en dorsolaterale prefrontale 
cortex, in de ADHD-groep vergeleken met de TDC. Waarschijnlijk vonden we daarom ook 
geen invloed van het werkgeheugen taakje op de amygdala-reactiviteit op emotionele 
stimuli in beide groepen. Deze resultaten kunnen te wijten zijn aan relatief lage scores 
op ED symptomen, waaronder symptomen van depressie en angst bij de geïncludeerde 
deelnemers. Bovendien, omdat we volwassenen met ADHD onderzochten die in de 
kindertijd waren gediagnosticeerd met ADHD, is het wellicht zo dat compensatie-mech-
anismen de problemen met emotieregulatie op volwassen leeftijd verminderd, waardoor 
het effect van de stimulatie van het werkgeheugen niet heel groot was.
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Hoofdstuk 3
In hoofdstuk 3 onderzochten we daarentegen de effecten van een langdurige 
farmacologische behandeling met MPH op de onderliggende neurale mechanismen 
van emotieregulatie bij ADHD. Bij adolescenten met ADHD (11-16 jaar) waren eerder 
amygdala-hyperreactiviteit en -connectiviteit als een hyperreactiviteit op angstige 
gezichten aangetoond, wat significant verhoogde na het stoppen van MPH. Bovendien 
was aangetoond dat acute MPH-toediening de “resting-state” circuits herstelt bij 
personen met ADHD van alle leeftijden. Ondanks deze kennis, bleven de precieze 
neurale mechanismen die ten grondslag liggen aan veranderingen in emotionele 
verwerking bij ADHD, vooral na een langere behandeling met stimulerende middelen, 
onduidelijk. Bovendien hebben een aantal (pre)klinische onderzoeken aangetoond dat 
de effecten van ADHD-medicatie leeftijdsafhankelijk zijn.  In deze studie (als secundaire 
analyse van de ePOD-studie) bestuderen we daarom de invloeden van een langdurige 
MPH-behandeling op amygdala-reactiviteit en connectiviteit met behulp van een 
emotieherkenningstaak. Daarvoor gebruikten we de longitudinale data van het ePOD-
onderzoek, waarin medicatie-naïeve kinderen en volwassenen met ADHD werden 
gerandomiseerd naar vier maanden MPH-, of placebo behandeling. 

We vonden dat MPH op de lange termijn geen effect heeft op internaliserende 
symptomen noch de onderliggende hersenveranderingen bij emotionele verwerking. 
We hebben wel aangetoond dat MPH de ADHD-symptomen het meest effectief 
vermindert bij die volwassenen met de hoogste depressie- en angstsymptomen (vóór 
de start van de studie).

Hoofdstuk 4
ADHD wordt in toenemende mate gezien als een stoornis van netwerkdisconnectiviteit, 
in tegenstelling tot regio specifieke afwijkingen. In hoofdstuk 4 bestudeerden we 
daarom de connectiviteit in rusttoestand in dopaminegevoelige hersenregio’s. MPH 
remt de heropname van dopamine en noradrenaline in de hersenen. Omdat het 
dopaminesysteem tijdens de ontwikkeling aanzienlijke veranderingen ondergaat, was 
onze verwachting dat leeftijd ook invloed zou hebben op de effecten van MPH op 
functionele connectiviteit in dopaminegevoelige hersenregio’s. In hoofdstuk 4 werden 
dezelfde deelnemers als in hoofdstuk 3 gemeten, maar nu voor en na een acute (dus 
een enkele) dosis met MPH, en voordat ze werden gerandomiseerd naar een van de 
interventiegroepen. Bovendien werd eenmaal een MR-scan van leeftijd en geslacht 
gematchte TDC’s gemaakt zonder medicatie. In onze analyses maakten we gebruik van 
topologische methodes, aangezien die ons niet alleen in staat stellen om individuele 
knooppunten of globale verbindingen te evalueren, maar ook de relevantie en integratie 
van vooraf gespecificeerde knooppunten binnen het globale netwerk te meten: en dit 
voor en na MPH-toediening. 



585698-L-sub01-bw-Kaiser585698-L-sub01-bw-Kaiser585698-L-sub01-bw-Kaiser585698-L-sub01-bw-Kaiser
Processed on: 9-12-2022Processed on: 9-12-2022Processed on: 9-12-2022Processed on: 9-12-2022 PDF page: 193PDF page: 193PDF page: 193PDF page: 193

193

7

Nederlandse Samenvatting

In overeenstemming met onze hypothese vonden we tegenovergestelde effecten 
van acute MPH op de connectiviteitssterkte en het relatieve belang van de subcorticale 
knooppunten bij kinderen versus volwassenen. In tegenstelling tot onze verwachtingen 
echter waren de MPH-geïnduceerde modificaties in de connectiviteit van frontale hersen-
gebieden minimaal. In deze regio’s werden geen verschillen gevonden tussen de beide 
leeftijdsgroepen, en tussen de groepen nam het mondiale belang van deze gebieden 
(d.w.z. hun waarde als hub) specifiek binnen het netwerk toe. Dit zou kunnen wijzen op 
een belangrijkere rol voor frontale regio’s met betrekking tot de informatiestroom in 
het netwerk. We concluderen dan ook dat de acute effecten van MPH op connectivite-
itsstatistieken in dopamine-gevoelige subcorticale regio’s, maar niet in corticale regio’s, 
verschillend zijn bij kinderen en volwassenen met ADHD. Dit is vermoedelijk grotendeels 
toe te schrijven aan ontwikkelingsveranderingen in de dopamine- en nor-adrenerge 
systemen. Verder vonden we geen normaliserende effecten van acute MPH in beide 
leeftijdsgroepen, wat suggereert dat de eerder gevonden normalisatie naar een 
“controle status” mogelijk alleen op het niveau van lokale connectiviteit bestaat, terwijl 
MPH een reorganisatie van functie op het niveau van het hersenwijde netwerk lijkt te 
veroorzaken. 

Deze bevindingen suggereren dat de werkzaamheid van stimulerende medicijnen 
niet alleen gebaseerd is op normalisatie. Met andere woorden, het kan zijn dat 
gewijzigde netwerken in de hersenen niet naar de controlestaat hoeven terug te keren 
om op de gewenste manier te functioneren, een herstructurering van de functie zou 
kunnen volstaan. Onze bevindingen tonen daarnaast aan dat de effecten van MPH op de 
connectiviteit van subcorticale regio’s leeftijdsafhankelijk zijn bij niet eerder behandelde 
deelnemers met ADHD, waarschijnlijk als gevolg van de voortdurende ontwikkeling van 
het dopamine- en nor-adrenalinesystemen. Deze bevindingen benadrukken het belang 
voor toekomstige studies om een   ontwikkelingsperspectief te nemen bij het bestuderen 
van de MPH effecten.

Hoofdstuk 5
In hoofdstuk 5 hebben we de stimulus ‘langdurige lichamelijke inspanning’ bestudeerd, 
waarvan bekend is dat deze uiteenlopende gunstige effecten heeft op lichaam en geest. 
Bovendien toonden verschillende onderzoeken bij ouderen een positief effect op het 
cognitief functioneren en de neuronale gezondheid, waardoor verdere afname van 
hersenvolume en cognitieve achteruitgang werd voorkomen. Ook bij jonge volwassenen 
bestaat het idee dat lichaamsbeweging een positieve invloed zou kunnen hebben op het 
hersenvolume.  

In hoofdstuk 5 onderzochten we daarom wat voor invloed een lage (stretching 
en toning) vs. een hoge intensiteit (aërobe) inspanningsinterventie van 12 weken 
zou hebben op het hippocampusvolume van jonge, gezonde, maar niet-atletische 
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volwassenen. Bovendien hebben we met uitgebreide MRI-methoden onderzocht wat 
de mogelijke neuronale mechanismen kunnen zijn die ten grondslag liggen aan de 
deze volumetrische veranderingen. Over het algemeen vonden we geen verschil van 
de twee trainingsintensiteiten op hippocampusvolume, onderliggende bloedvaten 
structuur of neuro-metabolietmarkers. Waarschijnlijk omdat de fysieke fitheid in beide 
trainingsgroepen toenam. In feite zijn de voordelen van lichaamsbeweging misschien 
niet te wijten aan een enkel mechanisme, maar eerder aan verschillende biochemische 
veranderingen in het lichaam en de hersenen. Hoewel men denkt dat de hippocampus 
baat heeft bij lichaamsbeweging in het algemeen, hebben verkennende analyses in ons 
jonge cohort van hoofdstuk 5 aangetoond dat fitheid gunstige effecten vertoont op 
de cerebrale doorbloeding van de gehele hersenen naast op indicatoren van neuronale 
overleving en integriteit. Onze multimodale aanpak bleek derhalve nuttig en misschien 
zelfs noodzakelijk is om de verschillende effecten van beweging op het (jonge) brein te 
ontrafelen.
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Deutsche Zusammenfassung

Challenging the Brain: Erkenntnisse aus umfassenden strukturellen 
und funktionellen MRT-Studien.

Etwa 13 % der Menschen weltweit leiden unter psychischen Gesundheitsproblemen. 
Es ist bekannt, dass diese zu einer erheblichen Verminderung der Lebensqualität sowie 
der wirtschaftlichen Produktivität führen. Leider haben die meisten Medikamente 
für psychische Störungen zwei Hauptprobleme; 1) es gibt einen großen Unterschied 
in ihrer Wirksamkeit (mit oft auch Behandlungsresistenz); und 2) unangenehme 
Nebenwirkungen sind relativ häufig. Daher ist es wichtig, spezifische Biomarker 
und Messtechniken zu entwickeln, die die zugrunde liegenden (neuro)biologischen 
Veränderungen bei psychischen Störungen aufdecken können. Dieses Wissen hilft bei 
der Auswahl der am besten geeigneten Behandlung oder Medikamenten. Letztendlich 
wird dies die Wirksamkeit bestehender Medikamente verbessern und die Zahl der 
Nebenwirkungen verringern. Dieses Wissen kann auch genutzt werden, um bessere, 
innovative Medikamente zu entwickeln.

Eine weit verbreitete Methode in den Neurowissenschaften, um neuronale Mecha-
nismen (schneller) aufzudecken, ist die „Herausforderung“ des Gehirns durch einen 
externen Stressor emotionaler, pharmakologischer oder physikalischer Natur. Daher 
wurden in dieser Arbeit verschiedene externe Stimuli verwendet, um funktionelle 
und strukturelle Veränderungen im Gehirn zu induzieren, die dann mit verschiedenen 
MRT-Techniken gemessen werden konnten. Diese Stimuli waren: eine Arbeitsgedächt-
nisaufgabe, emotionale Aufgaben, stimulierende Medikamente und eine Sportinter-
vention. Wir haben sowohl 3T- als auch 7T-MRT-Techniken verwendet, um den Einfluss 
dieser Stimuli zu messen: funktionelle Reaktivität und Konnektivität im Gehirn, Konzen-
trationen von Gehirnmetaboliten, regionale Gehirnvolumen, zerebraler Blutfluss und 
Blutvolumen. Gleichzeitig wurden diese neurobiologischen Veränderungen mit Verän-
derungen im Verhalten, der Kognition und der peripheren Physiologie korreliert.

Trotz verbesserter MRT Methoden und der ständig wachsenden Literatur sind die 
zugrunde liegenden (neuro)biologischen Mechanismen der Aufmerksamkeitsdefizit-/
Hyperaktivitätsstörung (ADHS) nur teilweise verstanden. Neben Unaufmerksamkeit 
und Hyperaktivität, die als Kernsymptome von ADHS gelten, zeigen Betroffene häufig 
Störungen in der emotionalen Verarbeitung (emotionale Dysregulation; ED), die aus 
einem vielschichtigen Zusammenspiel von Dimensionen besteht, darunter Probleme 
mit Emotionserkennung und emotionale Labilität.

Die erste-Wahl-Behandlung von ADHS Stimulanzien, so wie Methylphenidat (MPH), 
was das am häufigsten verschriebene Medikament ist. Die Wirkmechanismen von MPH 
bestehen hauptsächlich in der Hemmung von der Wiederaufnahme von Dopamin- und 
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Noradrenalin-Transportern. Während MPH normalerweise auch als erste pharmako-
logische Option zur Behandlung von ADHS bei Erwachsenen empfohlen wird, zeigen 
Metaanalysen in dieser Altersgruppe große Unterschiede in der Wirksamkeit, die von 
überhaupt keiner Wirkung bis zu erheblichen Verbesserungen reichen. Es ist daher 
wichtig; 1) um die Mechanismen zu untersuchen, die diesen Unterschieden zugrunde 
liegen, um Biomarker zu finden, die bei der Medikamentenzuweisung helfen können, 
und 2) um alternative Therapien zu finden, die weniger Nebenwirkungen oder eine 
höhere Wirksamkeit bieten können.

Kapitel 2
In Kapitel 2 haben wir untersucht, ob die Stimulierung des Arbeitsgedächtnisses die 
Mechanismen beeinflusst, die der emotionalen Reaktivität bei Erwachsenen mit ADHS 
zugrunde liegen. Frühere Studien bei Kindern mit ADHS zeigten eine Hyperreaktivität 
der Amygdala auf negative emotionale Reize. Interessanterweise nimmt die emotionale 
Hyperreaktivität sowohl bei Angst- als auch bei Substanzgebrauchsstörungen ab, wenn 
das Arbeitsgedächtnis während oder vor der Bloßstellung zu emotional relevanten 
Reizen. Auch die emotionale Reaktionsfähigkeit verbesserte sich nach dem Training 
des Arbeitsgedächtnisses sowohl bei gesunden Personen als auch bei Menschen 
mit psychischen Erkrankungen, aber dies wurde bisher nicht bei Menschen mit ADHS 
untersucht. Da das Training des Arbeitsgedächtnisses eine mögliche (Zusatz-)Behandlung 
bei ADHS sein könnte, haben wir in diesem Kapitel getestet, ob die Stimulierung des 
Arbeitsgedächtnisses auch dazu beitragen kann, die Hyperreaktivität auf emotionale 
Reize bei erwachsenen Personen mit ADHS zu reduzieren.

Unerwarteterweise fanden wir keine Unterschiede in der Amygdala-Reaktivität auf 
negative vs. neutralen Stimuli zwischen Erwachsenen mit ADHS und normal entwi-
ckelnden Kontrollteilnehmern. Außerdem wurden in der ADHS-Gruppe im Vergleich 
zum normal entwickelnden Kontrollteilnehmern nur schwache Hinweise auf eine 
Hypoaktivierung von Regionen gefunden, die mit dem Arbeitsgedächtnis in Verbindung 
stehen, einschließlich des paracingulären Kortex und des dorsolateralen präfrontalen 
Kortex. Dies ist wahrscheinlich der Grund, warum wir in beiden Gruppen keinen Einfluss 
der Arbeitsgedächtnisaufgabe auf die Amygdala-Reaktivität zu emotionalen Reizen 
fanden. Diese Ergebnisse können auf relativ niedrige Werte bei ED-Symptomen zurück-
zuführen sein, einschließlich Symptomen von Depressionen und Angstzuständen in 
unseren Teilnehmern. Da wir Erwachsene mit ADHS untersucht haben, bei denen ADHS 
in der Kindheit diagnostiziert wurde, ist es außerdem möglich, dass Kompensationsme-
chanismen die Probleme mit Emotionsregulation im Erwachsenenalter reduzierten, so 
dass die Wirkung der Stimulation des Arbeitsgedächtnisses nicht sehr groß war.
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Kapitel 3
Im Gegensatz dazu untersuchten wir in Kapitel 3 die Auswirkungen einer 
pharmakologischen Langzeitbehandlung mit MPH auf die zugrunde liegenden 
neuronalen Mechanismen der Emotionsregulation bei ADHS. Bei Jugendlichen mit ADHS 
(11-16 Jahre) war zuvor eine Amygdala-Hyperreaktivität und Konnektivität auf ängstliche 
Gesichter nachgewiesen worden, die nach Absetzen von MPH signifikant zunahmen. 
Darüber hinaus hat sich gezeigt, dass die akute MPH-Verabreichung bei Personen mit 
ADHS aller Altersgruppen die Netzwerke im Gehirn im Ruhezustand wiederherstellt. 
Trotz dieses Wissens blieben die genauen neuronalen Mechanismen unklar, die den 
Veränderungen der emotionalen Verarbeitung bei ADHS zugrunde liegen, insbesondere 
nach längerer Stimulanzien Behandlung. Darüber hinaus haben eine Reihe von (prä)
klinischen Studien gezeigt, dass die Wirkung von ADHS-Medikamenten altersabhängig 
ist. In dieser Studie (als Sekundäranalyse der ePOD-Studie) untersuchten wir daher 
die Einflüsse einer langfristigen MPH-Behandlung auf die Amygdala-Reaktivität und 
-Konnektivität während einer Emotionserkennungsaufgabe. Wir verwendeten die 
Langzeitdaten von der ePOD-Studie, in der Medikamenten naive Kinder und Erwachsene 
mit ADHS zu einer viermonatigen MPH- oder Placebo-Behandlung randomisiert wurden.

Wir fanden heraus, dass MPH keine langfristigen Auswirkungen auf die Symptome 
von Depression oder Angstzuständen hatte und auch nicht auf die zugrunde liegenden 
neuronalen Mechanismen der emotionalen Verarbeitung. Zusätzlich konnten wir zeigen, 
dass MPH bei der Reduzierung von ADHS-Symptomen bei den Erwachsenen mit den 
stärksten Symptomen von Depressionen und Angstzuständen (vor Beginn der Studie) 
am effektivsten war.

Kapitel 4
ADHS wird zunehmend als eine Störung gehirnweiter Netzwerk-konnektivität 
angesehen, im Gegensatz zu regionalspezifischen Defiziten. Wir haben in Kapitel 4 die 
Konnektivität im Ruhezustand in Dopamin-empfindlichen Gehirnregionen untersucht. 
Methylphenidat hemmt die Wiederaufnahme von Dopamin und Noradrenalin im Gehirn, 
und da das Dopaminsystem im Laufe der Entwicklung erheblichen Veränderungen 
unterliegt, stellten wir die Hypothese auf, dass Alter ebenfalls einen Einfluss hat auf 
wie MPH die funktionelle Konnektivität verändert. In Kapitel 4 werden die gleichen 
Teilnehmer wie in Kapitel 3 beschrieben. Sie wurden vor und nach einer akuten MPH-
Dosis gemessen, bevor sie einer der Interventionsgruppen zugeteilt wurden. Zusätzlich 
wurden MRT-Scans von Kontrollpersonen mit neurotypischer Entwicklung einmalig 
ohne Medikamentendosis gemacht. Wir haben topologische Metriken verwendet, die 
es uns nicht nur ermöglichten, einzelne Regionen/ globale Verbindungen des Gehirns 
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zu bewerten, sondern auch die Relevanz und Integration von vordefinierten Regionen 
innerhalb des globalen Netzwerks zu untersuchen, und das vor und nach der MPH-
Verabreichung. 

In Übereinstimmung mit unserer Hypothese beobachteten wir gegensätzliche 
Auswirkungen einer akuten MPH Dosis auf die Konnektivitätsstärke und die relative 
Wichtigkeit der subkortikalen Regionen bei Kindern gegenüber Erwachsenen. Entgegen 
unseren Erwartungen waren die MPH-induzierten Modifikationen in der Konnektivität 
der frontalen Hirnregionen minimal. In diesen Regionen wurden keine Unterschiede 
zwischen den Altersgruppen festgestellt. Über die Gruppen hinweg nahm die globale 
Bedeutung dieser Gebiete (d.h. ihr Wert als Knotenpunkt) innerhalb des Netzwerks 
gezielt zu. Dies kann auf eine wichtigere Rolle der frontalen Regionen im Hinblick auf 
den Informationsfluss im Netzwerk hindeuten. Wir folgern daraus, dass die akuten 
Auswirkungen von MPH auf Konnektivität in Dopamin-empfindlichen subkortikalen 
Regionen, nicht aber in kortikalen Regionen von Kindern und Erwachsenen mit ADHS 
unterschiedlich sind. Dies ist möglicherweise weitgehend auf Entwicklungsverände-
rungen im Dopamin- und noradrenergen System zurückzuführen. 

Darüber hinaus fanden wir in beiden Altersgruppen keine normalisierenden Effekte 
durch akutes MPH. Das deutet darauf hin, dass die zuvor beobachtete Normalisierung in 
Richtung eines „Kontrollzustands“ nur auf der Ebene der lokalen Konnektivität existiert, 
während MPH eine Reorganisation der Funktion auf der Ebene des globalen Netzwerks 
verursachen kann. Dies deutet darauf hin, dass die Wirksamkeit der Stimulanz Therapie 
möglicherweise nicht nur auf Normalisierung basiert. Sie hängt vielmehr von Faktor-
kombinationen ab, die die Netzwerkorganisation für einige Systeme zu einer typischen 
Topologie zurückführen, während sie andere reorganisieren. Mit anderen Worten, es 
kann sein, dass veränderte Netzwerke im Gehirn nicht in den Kontrollzustand zurück-
kehren müssen, um wie gewünscht zu funktionieren. Eine Umstrukturierung der 
Funktion kann ausreichen. Unsere Ergebnisse zeigen, dass die Auswirkungen von MPH 
auf die Konnektivität subkortikaler Regionen bei Stimulanzien-naiven Teilnehmern mit 
ADHS altersabhängig sind. Grund sind vermutlich die anhaltenden Entwicklungen von 
Dopamin- und Nor-Adrenalin-Systemen. Diese Ergebnisse unterstreichen, wie wichtig es 
für zukünftige Studien ist, bei Untersuchung der Auswirkungen der MPH-Behandlung 
Altersunterschiede in Betracht zu ziehen.

Kapitel 5
In Kapitel 5 haben wir die Effekte eines körperlichen Sport-Trainings untersucht, was 
weitreichende positive Auswirkungen auf Körper und Geist hat. Darüber hinaus zeigen 
mehrere Studien bei älteren Erwachsenen eine positive Wirkung auf kognitive Funktionen 
und die neuronale Gesundheit. Die Abnahme des Gehirnvolumens und ein kognitiver 
Rückgang können dadurch verhindert werden. Auch bei jüngeren Erwachsenen wird 



585698-L-sub01-bw-Kaiser585698-L-sub01-bw-Kaiser585698-L-sub01-bw-Kaiser585698-L-sub01-bw-Kaiser
Processed on: 9-12-2022Processed on: 9-12-2022Processed on: 9-12-2022Processed on: 9-12-2022 PDF page: 199PDF page: 199PDF page: 199PDF page: 199

199

7

Deutsche Zusammenfassung

vermutet, dass Bewegung einen positiven Einfluss auf das Gehirnvolumen haben könnte. 
Aber es nimmt bereits nach 6 Wochen körperlichen Trainings zu, und kehrt 6 Wochen 
danach auch wieder zu den Ausgangswerten zurück. 

In Kapitel 5 haben wir untersucht, welchen Einfluss eine 12-wöchige Trainings-
intervention mit niedriger (Dehnung und Kräftigung) vs. hoher Intensität (aerob) auf das 
Volumen des Hippocampus bei jungen, gesunden, aber nicht sportlichen Erwachsenen 
haben kann. Zusätzlich untersuchten wir mit umfassenden MRT-Methoden die mögli-
cherweise zugrunde liegenden neuronalen Mechanismen, die diese volumetrischen 
Veränderungen verursachen können. 

Insgesamt beobachteten wir keine unterschiedlichen Auswirkungen der 
verschiedenen Trainingsintensitäten auf Hippocampusvolumen, Gefäßsystem oder 
Neuro-metabolit Marker. Grund ist vermutlich die Zunahme der Fitness in beiden 
Trainingsgruppen. Tatsächlich sind die Vorteile des Trainings voraussichtlich nicht auf 
einen einzigen Mechanismus zurückzuführen, sondern umfassen vielmehr verschiedene 
biochemische Veränderungen in Körper und Gehirn. Einige davon können für jeden 
Menschen spezifisch sein. Es wird angenommen, dass der Hippocampus im Allgemeinen 
von Bewegung profitiert. Dies zeigen explorative Analysen in unserer jungen Kohorte 
von Kapitel 5. Sie zeigen einen positiven Zusammenhang von Fitness und zerebralen 
Blutfluss des gesamten Gehirns und Indikatoren für das Überleben und der Integrität von 
Neuronen auf. Diese Ergebnisse zeigen, dass ein multimodaler Ansatz nützlich und sogar 
notwendig ist, um die verschiedenen Auswirkungen zu entwirren, die Bewegung und 
Sport auf das (junge) Gehirn haben können.
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2021
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2018
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0.5
1

1
1
0.5
0.5
0.5
0.5
0.5
1
0.5
0.5
0.5
1
0.5
0.5
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Hakuna matata, diesen Spruch sag‘ ich gern

Hakuna matata, gilt stets als modern

Es heißt, die Sorgen bleiben dir immer fern

Keiner nimmt uns die Philosophie

Hakuna matata

- Lion King





Challenging the Brain: 
Insights from comprehensive structural  

& functional MRI studies

Antonia Kaiser

Challenging the Brain 
A

ntonia K
aiser


