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1. Introduction

1.1 A Personal Note on Popular Science

Anyone who’s met me knows that I have a passion for fitness. During my PhD,
I tried a variety of sports from general fitness and bodybuilding, to running, soc-
cer, and have now arrived at Olympic weightlifting. In addition to sports, I also
regularly see a nutritionist and I am part of the Weight Watchers group in Ams-
terdam. Accompanying my fitness journey is a plethora of books, blog posts, and
social media content on training, nutrition, and self-improvement. This part of my
private life is somewhat detached from my work life, and so I was surprised to dis-
cover how they intersect. That is, the longer I studied research methods and what
constitutes good and bad scientific practice, the less I enjoyed the half-knowledge,
Google research and baseless claims of self-proclaimed fitness experts. Over the
years, I have also become painfully aware of the persistence of non-replicable psy-
chological studies in popular science. In the following paragraphs I briefly describe
some of the most striking examples from my personal experience.

My first anecdote refers to a book I read during the most work-intensive months
of my doctoral studies. The book is called “Why We Sleep: Unlocking the Power
of Sleep and Dreams” written by Matthew Walker (2017) and makes the follow-
ing argument: adequate sleep is necessary to learn and work optimally, to avoid
chronic illness, and to be emotionally balanced. In doing so, the book goes against
the current grind culture that promotes that a few hours of sleep a night are suf-
ficient and even necessary to be successful in one’s full-time job, to have a rich
family life, to be a top athlete, and to pick up two side-hustles at the same time.
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Figure 1.1: Relationship between sleep and injury risk for athletes as presented in
Walker’s book “Why We Sleep: Unlocking the Power of Sleep and Dreams”. Data
extracted from Figure 1 of the original manuscript.

The author stresses that “Why We Sleep” is scientifically accurate and should
not be taken as popular science literature. Unfortunately, however, the book does
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Figure 1.2: Relationship between sleep and injury risk for athletes as presented
in the original article by Milewski et al. (2014). This graph features an additional
column which is at odds with Walkers hypothesis: athletes who slept on average
five hours, reported fewer injuries than athletes who slept six and seven hours.

not live up to this claim. In his sixth chapter, Walker (2017) argues that longer
sleep duration increases athletic performance and lowers the risk of injury. To
support his claim, Walker presents a graph showing the injury risk of athletes who
sleep between six and nine hours a day. The result appears compelling: the less
the athletes slept, the greater the likelihood of injury (see Figure 1.1). On the Joe
Rogan podcast, Walker comments on this result: “the most surprising factor was
injury risk: when they looked at athletes across the season, and they just plotted
how frequently will they get injured and then they surveyed them ‘how much sleep
are you getting?’ and they bucketed them into people getting nine hours, seven
hours, six, five, four: it’s a perfect linear relationship: The less sleep that you
have, highered your injury risk” (36:40; Rogan, 2018).

When I checked the original publication cited by Walker, I learned that the
authors (Milewski et al., 2014) did not actually test whether the risk of injury
decreases the more athletes sleep. Instead, Milewski et al. (2014) first combined
data from all athletes who slept less than eight hours and data from all athletes
who slept eight hours or more; next they examined whether these two groups
differed in their risk of injury. In other words, the analysis by Milewski et al.
(2014) does not directly address the pertinent question involving a monotonic
relation between sleep and risk of injury; all that follows from the analysis is that
sleeping less than eight hours is statistically associated with a higher risk of injury
than sleeping eight hours or more. The staircase pattern in Figure 1.1 does suggest
a monotonic trend, but this was not statistically tested. Note that the original
study does not provide error bars, nor information about how many athletes are
in each bin.

More problematic, however, is that Walker draws this conclusion from data

3



1. Introduction

he had tinkered with (for a discussion, see Gelman, 2020 and Guzey, 2019). The
findings from the original study by Milewski et al. (2014) are shown in Figure 1.2.
Milewski et al. (2014) not only reported the injury risk of athletes with an average
of six hours of sleep or more, but also with five hours of sleep. But instead of
getting injured most often, the data shows that athletes who sleep five hours got
injured less often than athletes who slept six or seven hours. Confronted with
this inconvenient finding, Walker decided to simply crop the graph for his book.
This example highlights the problem of non-transparent research reporting, but
also the problem of testing hypotheses with inappropriate statistical methods.

The second anecdote relates to my effort to improve my relationship with
food. To do so, I signed up to the Amsterdam Weight Watchers meetings at the
beginning of my doctoral studies. Over the years, my coaches and the other group
members taught me a lot about healthy eating, habit formation, and self-efficacy.
However, I came to realize that a considerable amount of their information is
–to put it mildly– no longer up to date. Every few months or so, when my
Weight Watchers coach discussed tips and tricks to curb cravings, their catalog of
recommendations seemed to be based exclusively on Brian Wansink’s work. These
included suggestions such as “use smaller plates to trick yourself into eating less” or
“never go grocery shopping while hungry”. Brian Wansink was what people would
consider a rockstar scientist : his papers have been cited almost 38,000 times, he
was involved in various food related programs administered by the United States
Department of Agriculture (USDA), and his research was featured regularly in
outlets such as The New York Times and The Washington Post.

That all changed in 2016, when Wansink published a blog post which led to his
downfall. Originally, the blog post was meant to encourage aspiring researchers to
seize opportunities. Instead, the blog post demonstrates a prime example of what
constitutes shabby research practice. In his blog post, Wansink (2016) described
two members of his lab: a lazy postdoctoral fellow and a dedicated PhD student.
The lazy postdoc declined to continue working on a “failed study” which showed
null results. The dedicated PhD candidate, on the other hand, spent her time
more wisely. Encouraged by Wansink, she went on “deep data dives” with the
goal of perhaps eliciting statistically significant results from the data after all.
Eventually her fishing expeditions were rewarded: the PhD candidate was able
to obtain the desired significant results leading to 5 publications. By contrast,
the lazy postdoc left Wansink’s lab after a year (and subsequently left academia)
with only a quarter as many publications as the dedicated PhD student. This blog
post, especially the encouragement to “massage” data to find interesting patterns
(i.e., fudging) and then reverse-engineer matching hypotheses (i.e., HARKing;
Kerr, 1998, see Figure 1.3), set off alarm bells among methodologists worldwide,
prompting some of them to scrutinize Wansink’s published articles more closely.

In subsequent years, a thorough examination of Wansink’s articles revealed
–among other things– conclusions that were not supported by the data, an ex-
traordinary amount of misreporting (e.g., the so-called ‘Pizzagate’ affair, in which
independent analysts discovered 150 discrepancies in 4 of his papers; van der Zee,
Anaya, & Brown, 2017), incorrect statistical analyses, improper archiving, and
refusal to share the original data. The investigations eventually led to the re-
traction of 18 Wansink articles (one article was retracted twice), with 15 other

4



1.1. A Personal Note on Popular Science

Figure 1.3: A researcher fishing for significant results by either abusing dif-
ferent analysis pipelines until the result is significant (fudging) or by adapt-
ing the hypothesis to the data at hand (HARKing). Figure available at
https://www.bayesianspectacles.org/library/ under CC license https://

creativecommons.org/licenses/by/2.0/.

articles having to be corrected, and several others receiving an expression of con-
cern (Retraction Watch, 2022). In the meantime, Wansink had to step down from
his position. Nevertheless, Wansink’s work is still cited today and, in the case of
Weight Watchers, is considered sound science that carries practical ramifications.

1.1.1 The Empirical Cycle

The reason “deep data dives” are considered bad research practice is that the re-
liability of empirical science rests on there being a sharp distinction between the
creative context of discovery and the statistical context of justification (Reichen-
bach, 1938). This distinction prohibits researchers from “using the same data
twice”, that is, using them first to formulate a hypothesis and then again to test
that hypothesis. Ideally, empirical research adheres to the empirical cycle (De
Groot, 1956/2014) illustrated in Figure 1.4.

Researchers start from existing knowledge and data based on previous studies
and published literature. The researcher can now speculate and explore in order
to derive new hypotheses and concrete predictions. With the predictions at hand,
the researcher then designs a new experiment, collects data, and executes a sta-
tistical analysis to test these predictions. By evaluating the results, the researcher
determines whether or not the hypotheses receive support from the data, and the
resulting conclusion is then in turn part of the scientific knowledge accumulation.

5
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1. Introduction

The problem arises when researchers do not adhere to the empirical cycle but
decide to take a shortcut. That is, instead of testing new predictions on new data,
the predictions are tested on the same data that inspired them. Here researchers
are fooling themselves. Instead of making a scientific discovery, they are more
likely to be interpreting a pattern that emerged from chance thus increasing the
chance of misleading research claims (Simmons, Nelson, & Simonsohn, 2011). As
Richard Feynman famously said: “The first principle is that you must not fool
yourself–and you are the easiest person to fool”.

Researchers want to discover the truth. However, they also want to present
convincing results that leave no room for doubt and publish papers that make
interesting claims. Add to this the fact that although the researchers themselves
have the greatest incentive to produce clean and significant effects, they are typi-
cally the ones who carry out all research steps themselves, from data collection to
conducting the analysis to writing the manuscript. In psychology, we have reaped
the fruits of these perverse incentives and researchers’ reluctance to acknowledge
uncertainty. Systematic, high-powered replication studies conducted over the past
decade have shown that the field is in a “crisis of confidence” (Pashler & Wagen-
makers, 2012) as, for the most part, only a disappointingly small percentage of
studies can be replicated (Camerer et al., 2018; R. Klein, Ratliff, Vianello, Adams,
et al., 2014; R. Klein et al., 2018; Open Science Collaboration, 2015).

1.1.2 Combating the Crisis of Confidence

I personally rate the crisis of confidence in psychology as luck in disguise (cf.
Spellman, 2015 and Vazire, 2018). In fact, in our field the crisis cleared the way for
ongoing extensive methodological reforms (Chambers, 2013, 2017; Kidwell et al.,
2016; MacCoun & Perlmutter, 2015; Nosek et al., 2015, see e.g., ). The goal of these
reforms is to improve research practices by increasing transparency, openness, and
to establish good research practices that ensure researchers adhere to the empirical
cycle.

Some of these reforms are already well established in the field. For instance,
one reform which has quickly gained popularity is preregistration (Munafò et al.,
2017; Nosek & Lindsay, 2018; Wagenmakers, Wetzels, Borsboom, van der Maas,
& Kievit, 2012). Through preregistration, researchers tie their hands to prevent
(conscious or subconscious) significance chasing by detailing their research design,
sample size, and analysis plan before they have collected the data. This prevents
changes being made during data collection (e.g., more data being collected when
results were not significant with the original number). When the data are avail-
able, the researchers execute the preregistered analysis, eliminating the confusion
between hypothesis–generating and hypothesis–testing.

But despite its popularity, the method has also been criticized (e.g., Devezer,
Navarro, Vandekerckhove, & Buzbas, 2020; Fiedler, 2018; Muthukrishna & Hen-
rich, 2019; Oberauer & Lewandowsky, 2019; Szollosi et al., 2020). For instance,
researchers are reluctant to adopt preregistration due to its lack of flexibility. In-
deed, if one commits to a precise analysis plan, there is the risk that the planned
analyses will not work on the data that is eventually collected. A solution to
this problem may be analysis blinding, a method commonly applied in physics
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Figure 1.4: Empirical cycle and the distinction between the context of dis-
covery and the context of justification. Researchers fool themselves when
they test new predictions against old knowledge and data, setting up a feed-
back loop between analysis decisions and their results. Figure available at
https://www.bayesianspectacles.org/library/ under CC license https://

creativecommons.org/licenses/by/2.0/.

but underappreciated in psychology and the social sciences (Dutilh, Sarafoglou,
& Wagenmakers, 2019; MacCoun, 2020; MacCoun & Perlmutter, 2015; MacCoun
& Perlmutter, 2018). With analysis blinding, researchers do not determine their
analysis plan in detail before seeing the data. Instead, they develop their analysis
strategy on “blinded” data for which a collaborator or independent researcher has
removed all potentially biasing information (e.g., condition assignment). As with
preregistration, analysis blinding breaks the feedback loop between analysis deci-
sions and their results. An additional advantage is that analysis blinding retains
the flexibility to account for unexpected peculiarities in the data.

Another promising development concerns the attitude towards hidden uncer-
tainty in data analysis. There is an increasing shift towards acknowledging that
there are multiple alternative statistical perspectives on data. That is, researchers
might draw different conclusions even when answering the same research question
based on the same data set. Following this shift, a number of multi-analyst studies
have explored this uncertainty in more detail.

In concert with methodological reforms, increased attention has been paid
to statistical innovations (e.g., Benjamin et al., 2018; Rouder, Morey, Verhagen,
Province, & Wagenmakers, 2016). For instance, within Bayesian statistical frame-
work, powerful methods have been proposed to help researchers formulate and
test hypotheses about trends and patterns of effects (so-called ordinal hypothe-

7

https://www.bayesianspectacles.org/library/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/


1. Introduction

ses). These methods could be used, for instance, to test Walker’s hypothesis that
the risk of injury decreases the more you sleep.1 In terms of addressing the crisis of
confidence, the ability to test specific ordinal hypotheses is particularly important
in replication research, in which researchers seek to confirm whether data from a
replication study show the same trend as the original study. Furthermore, testing
ordinal hypotheses ties in with the empirical cycle in two ways. By appropriately
quantifying the predictions, ordinal hypotheses facilitate the derivation of concrete
predictions based on theory (Haaf, Klaassen, & Rouder, 2019), and the associated
statistical tests further improve the step from testing the data to evaluating the
results.

The crisis of confidence has even spawned a new field of research called “meta-
science” that conducts research on research. It validates reform ideas, develops
new methods to improve science, and analyzes the acceptance of existing methods
among researchers. My work is located at the intersection between meta-science
and statistical research methods. Thus, the goal of my dissertation was to study
interesting reform ideas but also to develop statistical methods that support re-
searchers in their work. My efforts can be thematically divided into three parts,
which will be summarized in the next section.

1.2 Chapter Outline

1.2.1 Part I: Revealing Hidden Uncertainty in Data Analysis

The first part of the dissertation examines current good research practices in
psychological science. This part begins with a sobering realization: you do not
need to be an expert to be able to predict whether a social science study replicates–
Chapter 2 illustrates that laypeople too are able to predict replication success
with above-chance performance. We suggest that laypeoples’ predictions may be
used to quantify intuitive plausibility of empirical effects and hence contribute to
efficiently selecting studies for replication research.

Chapter 3 introduces the Many-Analysts Religion Project. In this project,
we recruited 120 analysis teams to investigate (1) whether religious people self-
report higher well-being, and (2) whether the relation between religiosity and self-
reported well-being depends on perceived cultural norms of religion (i.e., whether
it is considered normal and desirable to be religious in a given country). For
the first research question, all but 3 teams reported positive effect sizes with
credible/confidence intervals excluding zero. For the second research question,
this was the case for 65% of the teams.

Chapter 4 contains our reflections and conclusions about the Many-Analysts
Religion Project. We address the issue of theoretical specificity, highlight some
more in-depth observations, discuss some methodological concerns, and reflect on
our experience of organizing a many-analysts project.

Chapter 5 describes a survey study identifying the benefits and challenges of
preregistration from the researcher’s perspective. The study showed that prereg-

1I was curious how much evidence the complete and cropped data provided for Walker’s
hypothesis but unfortunately I was unable to perform an analysis since Milewski et al. (2014)
did not publicly archive their data.
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istration has benefits beyond safeguarding the adherence to the empirical cycle,
including the improvement of the overall project quality. This survey, however,
also illustrates some of the challenges that come with preregistration, such as the
increase of the overall project duration and work related stress.

Chapter 6 introduces analysis blinding as an addition or possible alternative
to preregistration. The chapter discusses how analysis blinding can be applied in
experimental psychology. Specifically, it introduces different methods of analysis
blinding, offers recommendations for blinding of popular experimental designs,
and introduces the design for an online blinding protocol.

Following this idea, Chapter 7 compares the reported efficiency and conve-
nience of preregistration and analysis blinding in the context of the Many-Analysts
Religion Project. The recruited teams answered the same research questions based
on the same data either preregistering their analysis or using analysis blinding.
The study concludes that analysis blinding does not mean less work but approxi-
mately the same amount, but researchers can still benefit from the method since
they can plan more appropriate analyses from which they deviate less frequently.

1.2.2 Part II: Multinomial Order-Restrictions

The second part of the dissertation discusses how theory-based knowledge can be
quantified in statistical models and introduces statistical techniques to test ordinal
hypotheses in the context of categorical data analysis.

Chapter 8 describes a Bayesian technique with which researchers can eval-
uate ordinal hypotheses concerning the distribution of multinomial proportions.
Whenever researchers formulate ordinal hypotheses that entail expectations about
increasing or decreasing trends they must rely on methods that are relatively in-
efficient and computationally expensive. To address this problem, we developed
a bridge sampling routine that allows an efficient evaluation of these hypothe-
ses for multinomial variables. An empirical example shows that bridge sampling
outperforms current Bayesian methods in terms of accuracy and efficiency.

In order to maximize the accessibility of the proposed bridge sampling rou-
tine, we developed the user-friendly R package multibridge which is introduced
in Chapter 9. The package implements the bridge sampling routine for multi-
nomial variables and independent binomial variables. The chapter describes the
core functions in multibridge and illustrates its use with two examples, one of
which concerning the prevalence of statistical reporting errors across eight different
psychology journals.

Chapter 10 applies the evaluation of ordinal hypotheses in the context of multi-
nomial processing tree (MPT) models. In psychology, MPT models are used to
test sophisticated theories on memory, judgement and decision making, and rea-
soning. The chapter highlights how researchers can refine their Bayesian MPT
modeling practices by adequately capturing their theory in the model and testing
their ordinal expectations.
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1.2.3 Part III: Guidelines for Good Research Practices

The third part of the dissertation provides concrete suggestions on how to facilitate
the uptake of good research practice among researchers. This part addresses this
challenge on two levels: educating researchers and training students.

Chapter 11 presents the Transparency Checklist which allows researchers in
social and behavioural sciences to improve and document the transparency of
research reports. The initial set of items in the Transparency Checklist was eval-
uated by 45 behavioural and social science journal editors-in-chief and associate
editors, as well as 18 open-science advocates. The final checklist spans the four
study components: preregistration, methods, results and discussion as well as
data, code and materials availability. Responses to the checklist items can be
submitted along with a manuscript, providing reviewers, editors and, eventually,
readers with critical information about the research process necessary to evaluate
the robustness of a finding.

Chapter 12 discusses seven concrete statistical practices which embody the
current aspirations in the social and behavioural sciences to increase transparency
and reproducibility. These practices are (1) visualizing data; (2) quantifying infer-
ential uncertainty; (3) assessing data preprocessing choices; (4) reporting multiple
models; (5) involving multiple analysts; (6) interpreting results modestly; and (7)
sharing data and code. We discuss the benefits and limitations of each practice
and provide guidelines for its adoption.

The remaining two chapters show how the concepts of good research practices
can be incorporated into the methodological training of students. Chapter 13
describes the content of the graduate course “Good Research Practices” which we
have designed and taught at the University of Amsterdam. This course gives a
general introduction into the crisis of confidence as well as recent methodological
reforms proposed in psychological science, such as direct and conceptual replication
studies, preregistration, and the public sharing of data, code, and analysis plans.

Chapter 14 presents a Bayesian research project that we conducted with un-
dergraduate psychology students. This project aimed to (1) convey the basic
mathematical concepts of Bayesian inference; (2) have students experience the en-
tire empirical cycle including collection, analysis, and interpretation of data and
(3) teach both the philosophy behind good research practices and the practical
skills needed to apply them.
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Chapter 2

Laypeople Can Predict Which
Social-Science Studies Will Be

Replicated Successfully

Abstract

Large-scale collaborative projects recently demonstrated that several key
findings from the social science literature could not be replicated successfully.
Here we assess the extent to which a finding’s replication success relates to
its intuitive plausibility. Each of 27 high-profile social science findings was
evaluated by 233 people without a PhD in psychology. Results showed that
these laypeople predicted replication success with above-chance performance
(i.e., 58%). In addition, when laypeople were informed about the strength
of evidence from the original studies, this boosted their prediction perfor-
mance to 67%. We discuss the prediction patterns and apply signal detection
theory to disentangle detection ability from response bias. Our study sug-
gests that laypeople’s predictions contain useful information for assessing
the probability that a given finding will replicate successfully.

This chapter is published as Hoogeveen, S., Sarafoglou, A., & Wagenmakers, E. J. (2020).
Laypeople can predict which social-science studies will be replicated successfully. Advances in
Methods and Practices in Psychological Science, 3, 267–285.
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2. Laypeople Can Predict Which Social-Science Studies Will Be
Replicated Successfully

2.1 Introduction

Recent work has suggested that the replicability of social science research may
be disturbingly low (Baker, 2016). For instance, several systematic high-powered
replication projects demonstrated successful replication rates ranging from 36%
(Open Science Collaboration, 2015), 50% (R. Klein et al., 2018), 62% (Camerer
et al., 2018) to 85% (R. Klein, Ratliff, Vianello, Adams, et al., 2014). These low
replication rates have been explained by several factors that operate at different
levels. At the level of the scientific field as a whole, problems include publication
bias (Francis, 2013) and perverse incentive structures (Giner-Sorolla, 2012). At
the level of individual studies, problems concern low statistical power (Button et
al., 2013; Ioannidis, 2005) and questionable research practices such as data-driven
flexibility in statistical analysis (i.e., significance seeking; John, Loewenstein, &
Prelec, 2012; Simmons et al., 2011; Wagenmakers, Wetzels, Borsboom, & van der
Maas, 2011). Here we focus on yet another problem that has recently been associ-
ated with poor replicability: the a priori implausibility of the research hypothesis
(Benjamin et al., 2018; Ioannidis, 2005).

If the a priori implausibility of the research hypothesis is indicative of repli-
cation success, then replication outcomes can be reliably predicted based only on
a brief description of the hypothesis at hand. Indeed, results from recent surveys
and prediction markets demonstrated that researchers (i.e., experts) in psychology
and related social sciences can anticipate replication outcomes with above-chance
accuracy – as a group, experts correctly predicted the replication outcomes for
58%, 67%, and 86% of the studies included in the Reproducibility Project: Psy-
chology, the Many Labs 2 project, and the Social Science Replication project,
respectively (Camerer et al., 2018; Dreber et al., 2015; Forsell et al., 2018). These
surveys and prediction markets involved forecasters with a PhD in the social sci-
ences (e.g., psychology, economics). In addition, the forecasters had been provided
with statistical information concerning the effect size in the original study, includ-
ing p-values, effect sizes, and/or sample sizes. This raises two key questions about
anticipated replicability: First, do forecasters need to be social science experts
to predict replication outcomes with above-chance accuracy? Second, are fore-
casters’ predictions driven by intuitions about empirical plausibility alone or also
influenced by statistical information about the original effect?

In this study, our primary aim was to investigate whether and to what extent
accurate predictions of replicability can be generated by people without a pro-
fessional background in the social sciences (i.e., laypeople; people without a PhD
degree in psychology) and without access to the statistical evidence obtained in
the original study. Laypeople may be able to produce reliable evaluations of plau-
sibility (and hence replicability) of research hypotheses, even without access to
relevant statistical information or in-depth knowledge of the literature – after all,
social science concerns itself with constructs that are often accessible and interest-
ing to a lay audience (Milkman & Berger, 2014). Consequently, when presented
with a non-technical description of a study’s topic, operationalization and result,
laypeople may well be able to produce accurate replicability forecasts. For exam-
ple, consider a non-technical description of the research hypothesis by Kidd and
Castano (2013):
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“Can reading literary fiction improve people’s understanding of other
people’s emotions? Participants read a short text passage. In one
group, the text passage was literary fiction. In the other group, the
text passage was non-fiction. Afterwards, participants had to identify
people’s expressed emotion (e.g., happy, angry) based on images of
the eyes only. Participants were better at correctly recognizing the
emotion after reading literary fiction.”

A general understanding of the concepts (e.g., literary fiction, emotions) and pro-
posed relation between those concepts (e.g., reading literary fiction improves emo-
tion recognition) may suffice to form intuitions about plausibility that match the
(eventual) empirical evidence. The accuracy of such intuitions can be gauged by
comparing laypeople’s prediction against the empirical outcome – hence, for this
study, we selected 27 high-profile findings that have recently been submitted to
high-powered replication attempts (Camerer et al., 2018; R. Klein et al., 2018).

If laypeople can indeed make accurate predictions about replicability, these
predictions may supplement theoretical considerations concerning the selection of
candidate studies for replication projects. Given limited resources, laypeople’s
predictions concerning replicability could be used to define the subset of studies
for which one can expect to learn the most from the data. In other words, re-
searchers could use laypeople’s predictions as input to assess information gain in a
quantitative decision-making framework for replication (Hardwicke, Tessler, Pelo-
quin, & Frank, 2018; MacKay, 1992). This framework follows the intuition that
–for original studies with surprising effects (i.e., low plausibility) or small sample
sizes (i.e., little evidence)– replications can bring about considerable informational
gain (R. Klein, Ratliff, Vianello, Adams Jr, et al., 2014).

More generally, if even laypeople can to a large extent correctly pick out the
unreplicable findings, this suggests that researchers should be cautious when con-
ducting and eventually publishing studies with risky and counterintuitive hypothe-
ses. Laypeople’s adequate predictions of replicability may thus provide empirical
support for a culture change that emphasizes robustness and ‘truth’ over novelty
and ‘sexiness’ (Dovidio, 2016; Giner-Sorolla, 2012; Nosek, Spies, & Motyl, 2012).
When extended to novel hypotheses, laypeople’s skepticism may even serve as a
‘red flag’, prompting researchers to go the extra mile to convince their audience
–laypeople and peers alike– of the plausibility of that particular research claim
(e.g., by using larger samples, engaging in Registered Reports, setting a higher
bar for evidence; see Benjamin et al., 2018; Chambers, 2013).

The secondary aim of the current study was to assess the extent to which
the inclusion of information about the strength of the evidence obtained in the
original study improves laypeople’s prediction performance. In contrast to the
expert prediction surveys by Camerer et al. (2018) and Forsell et al. (2018), we
used Bayes factors rather than p-values and effect sizes to quantify the evidence
in the original studies (Jeffreys, 1961; Kass & Raftery, 1995).

We preregistered the following expectations and hypotheses: First, we ex-
pected that, based on an assessment of the a priori plausibility of the research
hypotheses at hand, (1a) laypeople can predict the replicability of empirical stud-
ies with above-chance accuracy, and (1b) laypeople’s confidence is associated with

15



2. Laypeople Can Predict Which Social-Science Studies Will Be
Replicated Successfully

the magnitude of the effects of interest in the replication study. The former would
be reflected in a prediction accuracy rate above 50% and the latter in a positive
correlation between people’s confidence in replicability and the replication effect
size. In addition, we hypothesized that (2) the inclusion of information on the
strength of the original evidence (i.e., the Bayes factor) would improve prediction
performance.

2.2 Disclosures

2.2.1 Data, materials, and preregistration

The current study was preregistered on the Open Science Framework by means
of a time-stamped PDF; readers can access the preregistration, as well as all
materials, reanalyses of the original studies, the anonymized raw and processed
data (including relevant documentation for the data of ML2 and SSRP), and
the R code to conduct all confirmatory and exploratory analyses (including all
figures), in our OSF folder at: https://osf.io/x72cy/. Any deviations from the
preregistration are mentioned in this chapter.

2.2.2 Supplemental Material

In the online Supplemental Material (http://journals.sagepub.com/doi/10
.1177/2515245920919667) we provide additional details on the methods and ad-
ditional exploratory analyses. Specifically, the supplemental material presents de-
tails on the Bayesian reanalyses of the original studies, the sampling plan, and the
statistical models and prior specifications; includes tables with the descriptions (in
English and Dutch) of all the original studies as presented to the participants; and
reports two additional exploratory analyses. The first of these analyses concerns
the accuracy of predictions derived from the Bayes factors alone, without human
evaluation, and the second analysis is a Bayesian logistic regression model that
includes random effects for both participants and studies.

2.2.3 Reporting

We report how we determined our sample size, all data exclusions, all manipula-
tions, and all measures in the study.

2.2.4 Ethical approval

The study was approved by the local ethics board of the University of Amsterdam
and all participants were treated in accordance with the Declaration of Helsinki.
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2.3 Methods

2.3.1 Participants

In total we obtained data from 257 participants, who were recruited from the
online platform Amazon Mechanical Turk (n = 83), the online subject pool of
first-year psychology students from the University of Amsterdam (n = 138), and
social media platforms such as Facebook (n = 36). Participants from MTurk
received a financial compensation for participation, first-year students from the
University of Amsterdam received research credits, and participants from social
media were given the opportunity to enter a raffle for a voucher from a Dutch web-
shop. After exclusions (see below), the final sample consisted of 233 participants,
with 123 participants in the Description Only condition and 110 participants in
the Description Plus Evidence condition.

2.3.2 Sampling Plan

Based on our sampling plan, we determined the minimum number of 103 observa-
tions per group to obtain strong evidence (i.e., a Bayes factor > 10) in favor of our
hypothesis with a probability of 80%, assuming a medium effect size of δ = 0.5,
a default prior, and a study design that compares two independent groups (i.e.,
a t-test). As preregistered, data collection continued after the minimum number
of participants was reached (i.e., 103 in each condition), until the pre-established
data collection termination date of April 22nd, 2019.

2.3.3 Materials

Participants were presented with 27 studies, a subset of the studies included in the
Social Sciences Replication Project (SSRP; Camerer et al., 2018) and the Many
Labs 2 Project (ML2; R. Klein et al., 2018).

2.3.3.1 Study Selection Process

In the Description Plus Evidence condition, participants were provided with study
descriptions accompanied by information on the strength of the evidence provided
by the original study in the form of a Bayes factor. Therefore, one of the main crite-
ria when selecting the studies was that the original analysis allowed for a Bayesian
reanalysis using the Summary Stats module in JASP (JASP Team, 2021), that
is, the main analysis should be conducted using a paired samples or independent
samples t-test, a correlation test, or a binomial test.1 Details about the reanalyses
are provided in the Supplemental Material. We subsequently checked whether the
proportion of successful vs. unsuccessful replications was similar to the propor-
tions in the individual projects (i.e., 50% and 62%). This was the case; our subset
included 14 successful and 13 unsuccessful replications (52%).

1For some studies, the original articles reported F -values derived from ANOVA designs, but
as the crucial comparison was between only two groups, we converted the respective F -value to
a t-value, which was then entered in the Summary Stats module in JASP.

17



2. Laypeople Can Predict Which Social-Science Studies Will Be
Replicated Successfully

2.3.3.2 Presentation of Studies

For each study, participants read a short description of the research question,
its operationalization, and the key finding. The descriptions were inspired by
those provided in SSRP and ML2, but rephrased to make them comprehensible
for laypeople. In the Description Only condition, solely the descriptive texts were
provided; in the Description Plus Evidence condition, the Bayes factor and its ver-
bal interpretation (e.g., “moderate evidence”) for the original study were added to
the descriptions. The verbal interpretations were based on a classification scheme
proposed by Jeffreys (1939) and adjusted by Lee and Wagenmakers (2013, p. 105).
These verbal labels were added to assist the interpretation of the Bayes factors,
since the concept of evidence ratios might be difficult or ambiguous for laypeople
(Etz, Bartlema, Vanpaemel, Wagenmakers, & Morey, 2019). To prevent partici-
pants from reading up the replication outcomes of the original studies during the
survey itself, we ensured that the descriptions did not contain identifying infor-
mation, such as the names of the authors, the study titles, or any direct quotes.
In addition to the 27 study descriptions, participants were also presented with
one bogus item as an attention check. In the description of this item participants
were instructed to answer “No” to the question whether the study will replicate
and indicate a confidence of 75%. Participants from the Netherlands could choose
to read the study descriptions in English or Dutch. The translation of the En-
glish study descriptions into Dutch were assisted by the online translation software
DeepL (TechCrunch, 2019).

2.3.4 Procedure

The survey was generated using the online survey software Qualtrics (Qualtrics,
2021). Participants were randomly assigned to the Description Only or the De-
scription Plus Evidence condition. First, participants read an explanation of the
term ‘replication’ and its relevance in science: “You will be asked whether you think
that the described study will replicate. This means: if an independent lab will do
this study again with a large number of participants, using the same materials,
will they find convincing evidence for the same effect? If the effect really exists,
it should be found by a different lab. However, it seems that not all studies can
be replicated, because some results are based on coincidence, or poorly designed
or executed studies.” Participants in the Description Plus Evidence condition
additionally received a short explanatory text of the Bayes factor, including the
commonly used verbal interpretation categories for the strength of evidence (Lee
& Wagenmakers, 2013, p. 105). The explanation of the Bayes factor was: “A
Bayes factor (BF) is the degree to which evidence is found for the existence of the
effect, based on the data at hand. For instance, if BF = 2, the data suggest that
it is 2 times more likely that the effect is present, than that there is no effect.”2

2Unfortunately, this explanation fell prey to a prevalent misinterpretation of Bayes’ rule (e.g.,
Wagenmakers, Etz, Gronau, & Dablander, 2018); the example describes the posterior odds (i.e.,
p(H1|data)
p(H0|data)

) rather than the Bayes factor (i.e.,
p(data|H1)

p(data|H0)
). When prior odds are assumed to be

equal for the alternative and the null hypothesis –as is often assumed (e.g., Jeffreys, 1961)– the
posterior odds equal the Bayes factor.
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After the instructions, participants were presented with the 27 studies plus
the bogus attention check study. Each study was presented and rated on a sepa-
rate page. After reading the study description (and the Bayes factor plus verbal
interpretation in one condition), participants could select a tick box to indicate
that they did not understand that particular study description. Subsequently,
they indicated whether they believed that this study would replicate or not (yes
/ no), and expressed their confidence in their decision on a slider ranging from
0 to 100. The order in which the studies were presented was randomized across
participants.3 Finally, at the end of the survey, participants were asked whether
they were already familiar with the Many Labs 2 project and/or the Social Science
Replication project.

2.3.5 Data Exclusions

As stated in our preregistration, we excluded participants (1) if they had a PhD
in psychology (i.e., they qualified as experts rather than laypeople); (2) if they
indicated that they did not understand more than 50% of the descriptions; (3) if
they did not read the descriptions carefully (i.e., they failed the included attention
check); or (4) if they were already familiar with the replication projects by Camerer
et al. (2018) and/or R. Klein et al. (2018).

The current study applied a more stringent definition of experts than previous
prediction survey studies (i.e., Camerer et al., 2018; Dreber et al., 2015; Forsell
et al., 2018); whereas previous surveys defined ‘experts’ as researchers in psychol-
ogy, ranging from graduate students to full professors, the current study defined
experts as people with a PhD degree in psychology and hence classified graduate
students as laypeople.4 Participants who indicated to have a PhD in psychology
were immediately redirected to the end of the survey and could not complete the
actual study. As specified in our preregistration, participants passed the attention
check if they answered as explicitly instructed: selecting “No” for the dichoto-
mous replication question, and rating confidence in the interval between 70% and
80%. We excluded 3 participants because they indicated that they were familiar
with the replication projects, and 22 participants because they failed the atten-
tion check. No participants indicated that they understood less than 50% of the
study descriptions. In total, we excluded 1.6% (i.e., 99) of all predictions based on
participants indicating that they did not understand the study description. 72%
of participants (i.e., 167) understood all study descriptions.

2.3.6 Statistical Models

We constructed Bayesian (hierarchical) models to estimate and test the parame-
ters of interest for each hypothesis. For all analyses the outcome measures were

3Due to a programming error, the study descriptions were not randomized for the n = 12
participants who were recruited from social media and selected to take the survey in Dutch.

4This discrepancy had no discernible influence on our conclusions; subsequent exploratory
analyses suggested that the results did not change when excluding participants who were re-
cruited via Amazon Mechanical Turk or social media platforms and who reported having studied
psychology (at any level).
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chosen based on what was most relevant and informative for answering the re-
spective research questions. For the primary analysis we estimated accuracy rates
[0−1] as these afford the most intuitive and simple interpretation and are directly
comparable with previous prediction survey studies. The experimental effect of
Description Only vs. Description Plus Evidence was evaluated by means of Brier
scores, because here the unit of interest was the individual prediction performance,
which takes into account accuracy and confidence and is the most ‘sensitive’ mea-
sure for comparing people’s performance across conditions. In the correlation
analysis, the units of interest were the studies rather than participants, hence here
we looked at the confidence ratings per study (aggregated across participants).
All models and priors are described in detail in the Supplemental Material.

2.4 Results

2.4.1 Descriptive Pattern

Figure 2.1 displays participants’ confidence ratings concerning the replicability of
each of the 27 included studies, ordered according to the averaged confidence score.
Positive ratings reflect confidence in replicability, and negative ratings reflect con-
fidence in non-replicability, with −100 denoting extreme confidence that the effect
would fail to replicate. Note that these data are aggregated across the Description
Only and the Description Plus Evidence condition. The top ten rows indicate
studies for which laypeople showed relatively high agreement that the associated
studies would replicate. Out of these ten studies, nine replicated and only one
did not (i.e., the study by C. Anderson, Kraus, Galinsky, & Keltner, 2012; note
that light-grey indicates a successful replication, and dark-grey indicates a failed
replication). The bottom four rows indicate studies for which laypeople showed
relatively high agreement that the associated studies would fail to replicate. Con-
sistent with laypeople’s predictions, none of these four studies replicated. For
the remaining 13 studies in the middle rows, the group response was relatively
ambiguous, as reflected by a bimodal density that is roughly equally distributed
between the negative and positive end of the scale. Out of these 13 studies, five
replicated successfully and eight failed to replicate successfully. Overall, Figure 2.1
provides a compelling demonstration that laypeople are able to predict whether
or not high-profile social science findings will replicate successfully. In Figure 2.2
and Figure 2.3 Laypeople’s predictions are separately displayed for the Description
Only and the Description Plus Evidence condition, respectively.

Figure 2.4 provides a more detailed account of the data for three selected
studies. For the study in the top panel (i.e., Gneezy, Keenan, & Gneezy, 2014),
most laypeople correctly predicted that the effect would successfully replicate;
for the study in the middle panel (i.e., Tversky & Gati, 1978), laypeople showed
considerable disagreement, with slightly over half of the participants incorrectly
predicting that the study would replicate successfully; finally, for the study in the
bottom panel (i.e., Shah, Mullainathan, & Shafir, 2012), most laypeople correctly
predicted that the effect would fail to replicate.

Before conducting our preregistered confirmatory analyses, we first explorato-
rily investigated the relation between the Bayes factors of the original studies and
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Figure 2.1: Laypeople’s near unanimous judgments are highly predictive of repli-
cation outcomes. Light density distributions reflect studies that successfully repli-
cated, dark grey distributions reflect studies that did not replicate. Confidence
ratings are aggregated over both experimental conditions. Negative values reflect
the ‘does not replicate’ prediction, and positive values the ‘replicates’ prediction.
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Figure 2.2: Distribution of participants’ confidence ratings for each of the 27 stud-
ies, for the Description Only condition. The studies are ordered according to their
average confidence ratings. Light shading indicates that a study was successfully
replicated, and dark shading indicates that a study was not successfully replicated.
Negative values indicate a prediction of replication failure, and positive values in-
dicate a prediction of replication success.

22



2.4. Results

Gervais & Norenzayan (2012)

Shah et al. (2012)

Alter et al. (2007)

Shafir (1993)

Lee & Schwarz (2010)

Zaval et al. (2014)

Critcher & Gilovich (2008)

Kovacs et al. (2010)

Risen & Gilovich (2008)

Kidd & Castano (2013)

Giessner & Schubert (2007)

Zhong & Liljenquist (2006)

Morewedge et al. (2010)

Tversky & Gati (1978)

Balafoutas & Sutter (2012)

Nishi et al. (2015)

Pyc & Rawson (2010)

Sparrow et al. (2011)

Duncan et al. (2012)

Anderson et al. (2012)

Gneezy et al. (2014)

Bauer et al. (2012)

Karpicke & Blunt (2011)

Derex et al. (2013)

Wilson et al. (2014)

Hauser et al. (2014)

Aviezer et al. (2012)

-100 -50 0 50 100

Confidence Rating

Figure 2.3: Distribution of participants’ confidence ratings for each of the 27
studies, separately for the Description Plus Evidence condition. The studies are
ordered according to their average confidence ratings. Light shading indicates that
a study was successfully replicated, and dark shading indicates that a study was
not successfully replicated. Negative values indicate a prediction of replication
failure, and positive values indicate a prediction of replication success.
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Figure 2.4: Histograms of confidence ratings for three studies for which laypeople
were nearly unanimous in their belief that the study will either replicate (Gneezy
et al., 2014, top panel) or will not replicate (Shah et al., 2012, bottom panel) or
for which they are ambiguous (Tversky & Gati, 1978, middle panel). The vertical
dotted line shows the average confidence rating for the respective study (i.e., group
prediction).
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Figure 2.5: The evidence of the original studies (quantified by Bayes factors) is
positively associated with replication effect sizes. The dark grey dots indicate the
studies that did not replicate, the light grey dots indicate the studies that did
replicate.

the effect sizes of the replication studies. To a large extent our study was based
on the assumption that the Bayes factors of the original studies carry relevant
information about replicability. To verify this claim we computed a Spearman
correlation coefficient ρ between the log-transformed Bayes factors of the original
studies and the standardized effect sizes of the replication studies expressed as
correlation coefficients r.

The data provided overwhelming evidence in favor of a positive correlation
(BF+0 = 183).5 The median and 95% credible interval for the correlation co-
efficient ρ were 0.60 [0.30, 0.77], indicating that the Bayes factors of the original
studies indeed conveyed useful information (see Figure 2.5).

2.4.2 Preregistered Analyses

2.4.2.1 Quality Check

As preregistered, we implemented a quality check for the data that served as pre-
requisite for our confirmatory analyses. We considered the data inappropriate for
subsequent analyses in case the data provided strong evidence for the hypothe-
sis that overall laypeople performed worse than chance level when predicting the
replicability of empirical studies. An accuracy rate that is worse than chance level
(i.e., less than 50%) indicates that participants either did not understand or fol-
low the instructions correctly, or misinterpreted the presented information (i.e.,
the description of the study and the Bayes factor).

We tested the restricted hypothesis Hr1 that the overall accuracy of laypeople
is smaller than 50%, that is Hr1 : ω < 0.5, where ω is the mode of the Beta

5The subscripts on the Bayes factor to refer to the hypotheses being compared, with the first
and second subscript referring to the one-sided hypothesis of interest and the null hypothesis,
respectively.
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distribution for the group-level accuracy rate. This hypothesis was tested against
the encompassing hypothesis He which lets ω free to vary, that is He : ω ∼
Beta(1, 1). The Bayes factor in favor for the encompassing hypothesis, BFer1, was
computed using the encompassing prior approach (Klugkist, Kato, & Hoijtink,
2005). The evidence for the encompassing hypothesis was estimated to approach
“infinity”, that is BFer1 = ∞, which means that the data passed the quality
check.6

2.4.2.2 Difference in prediction performance between conditions

For the confirmatory analyses, we first investigated whether there was a difference
between the two study conditions. Specifically, we evaluated whether or not the
inclusion of the Bayes factor for the original effect increased prediction performance
as measured by individual Brier scores (Brier, 1950). The Brier score takes into
account both the accuracy and the indicated (un)certainty of the prediction; highly
certain correct predictions are rewarded and highly certain incorrect predictions
are punished, relative to uncertain predictions. As preregistered, individual Brier
scores were log-transformed to account for skewness in the distribution of Brier
scores.

We conducted a Bayesian independent samples t-test with the log Brier score
as dependent variable and the condition assignment as grouping variable. The
hypothesis of interest states that the Brier scores of participants in the Descrip-
tion Plus Evidence condition are lower than the Brier scores of participants in the
Description Only condition, with lower scores indicating better prediction perfor-
mance. This one-sided default alternative hypothesis was specified as effect size
δ for the difference being smaller than zero, that is H− : δ < 0. The hypothesis
was tested against the null hypothesis H0 that the effect size is exactly zero, that
is H0 : δ = 0. The results reveal overwhelming evidence that laypeople in the De-
scription Plus Evidence condition outperform laypeople in the Description Only
condition, BF−0 = 1.0× 1010. The median of the effect size distribution is −0.96,
with a 95% credible interval of [−0.68,−1.23] (see Figure 2.6 for a boxplot of the
data as well as the prior and posterior distribution of the effect size δ).

2.4.2.3 Group accuracy per condition

To investigate whether laypeople can adequately predict replication outcomes, we
tested whether the group-level accuracy rates7 are above chance level, that is,
higher than 50%. Here, we only considered the accuracy of predictions regardless
of raters’ confidence. We applied a Bayesian hierarchical model to analyze the
accuracy data. For each condition separately, we then tested the restricted hy-
potheses that accuracy rate ω (i.e., the mode of the group-level distribution) was

6When using the encompassing prior approach, we can obtain a Bayes factor estimated to
be “infinite” if no posterior samples are in accordance with the restricted hypothesis.

7Note that group-level accuracy refers to the accuracy for the ‘average’ individual, which is
estimated in a hierarchical model. A hierarchical model has the benefit that it shrinks individual
estimates towards the group-level mean, thereby reducing the influence of extreme cases. Note,
however, that the estimated group-level accuracy differs from the accuracy of the group as a
collective (the latter being simply the aggregate across people per study).
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Figure 2.6: The data and distribution of effect size δ of the Brier scores show
that laypeople who received both the study descriptions and information about
the strength of the evidence in the original study performed better than laypeople
who received the study descriptions only. Figures created in JASP (JASP Team,
2021).

higher than chance for laypeople in the the Description Only condition (denoted
as Hr2), and for laypeople in the Description Plus Evidence condition (denoted
as Hr3), that is, Hr2,Hr3 : ω > 0.5. The hypotheses Hr2 and Hr3 were tested
against the null hypothesis H0 stating that ω should be exactly equal to 0.5, which
would indicate chance level performance: H0 : ω = 0.5.

The data provide extreme support for the restricted hypothesis that laypeople
in the Description Only condition perform better than chance, BFr20 = 3.4× 108.
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The median and 95% credible interval for the parameter ω are 0.58 [0.57, 0.60],
which implies a 58% accuracy rate for laypeople in the Description Only condition
at the group level. The data also provide extreme support for the restricted hy-
pothesis that laypeople in the Description Plus Evidence condition perform above
chance level, BFr30 = 2.8 × 1024. The median and 95% credible interval for the
parameter ω are 0.67 [0.65, 0.69], implying a 67% accuracy rate for laypeople in
the Description Plus Evidence condition at the group level. The non-overlapping
credible intervals of the two conditions corroborate the results from the indepen-
dent samples t-test on the Brier scores; accuracy is higher in the Description Plus
Evidence condition than in the Description Only condition. The distributions of
both groups of laypeople are displayed in Figure 2.7.
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Figure 2.7: Accuracy rates of laypeople in both conditions. Posterior distributions
of the group-level accuracy rate for laypeople in the Description Only condition are
depicted in blue and those of laypeople in the Description Plus Evidence condition
are depicted in orange.

2.4.2.4 Correlation between laypeople’s confidence and replication
effect size

In addition to the analysis of laypeople’s binary predictions of replicability, we
assessed whether the confidence with which people make their decisions is indica-
tive of the size of the effect observed in the replication studies (cf. Camerer et al.,
2018). In other words, we tested whether laypeople are more certain about their
decisions if the replication effect size is large, and become less certain (i.e., more
certain about non-replicability) as the underlying replication effect size approaches
zero. The replication effect sizes were retrieved from Camerer et al. (2018) and
R. Klein et al. (2018). The data are plotted in Figure 2.8, displayed per condition.
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Figure 2.8: Relationship between the average confidence rating per study and the
replication effect size for the Description Only condition and the Description Plus
Evidence condition. The dotted line represents the cutoff between perceived confi-
dence in successful replication (i.e., positive values), and the perceived confidence
in failed replication (i.e., negative values). The dark dots indicate the studies that
did not replicate, and the light dots indicate the studies that did replicate.

We used a Bayesian Spearman correlation (van Doorn, Ly, Marsman, & Wa-
genmakers, 2018) to test the null hypothesis (i.e., H0 : ρ = 0) against the one-sided
restricted hypothesis that the correlation coefficient ρ is positive, for both the De-
scription Only condition (i.e., Hr4 : ρ > 0), and the Description Plus Evidence
condition (i.e., Hr5 : ρ > 0). The data provide extreme evidence for the re-
stricted hypothesis Hr4 of a positive correlation between the average confidence
ratings of laypeople and the replication effect sizes in both the Description Only
(BFr40 = 231) and the Description Plus Evidence condition (BFr50 = 7126).
For the Description Only condition the median and 95% credible interval for the
distribution of the Spearman correlation coefficient ρ are 0.60 [0.31, 0.76]. For the
Description Plus Evidence condition the median and 95% credible interval for the
distribution of ρ are 0.76 [0.56, 0.87]. Note that for studies that did not replicate,
the effect sizes -by definition- cluster around zero. Although the Spearman correla-
tion coefficient is a rank-based measure, the correlation should still be interpreted
with caution.

2.4.3 Exploratory Analyses

2.4.3.1 Disentangling discriminability and response bias

According to signal detection theory (SDT; Green & Swets, 1966; Tanner Jr &
Swets, 1954), binary decisions are driven by two main components: the ability
to distinguish between the response options (discriminability) and the a priori
tendency to prefer one option over the other (response bias). In an exploratory
analysis, we applied SDT to decompose laypeople’s predictions into discriminabil-
ity and bias. Here, the discriminability relates to the degree to which replicable
and unreplicable studies are distinguishable, which is influenced by characteris-
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tics of the stimuli (i.e., information provided about the studies) and by raters’
underlying ability (i.e., individual prediction skills). The bias reflects laypeople’s
overall tendency towards either predicting that a given study will replicate or pre-
dicting that it will not replicate, regardless of the information about the respec-
tive study. These parameters were estimated by applying a Bayesian hierarchical
equal-variance Gaussian SDT model Lee and Wagenmakers (p. 164 2013).

Figure 2.9 shows the group-level posterior distributions of the discriminabil-
ity and bias parameters based on the replication predictions, separately for the
two conditions. Larger values for discriminability (bottom panel) indicate higher
ability to distinguish replicable from unreplicable findings. Consistent with the
Brier score analysis reported above, the discriminability parameters show a clear
difference between conditions; people in the Description Plus Evidence condition
(blue in the figure) are better at separating replicable studies from unreplicable
studies than people in the Description Only condition (orange in the figure). The
enhanced discriminability for the Description Plus Evidence condition is also vi-
sualized in the top panels of Figure 2.10, which shows that the separation between
the distribution for replicable and unreplicable studies is larger for the Description
Plus Evidence condition than for the Description Only condition. For the bias pa-
rameter, the difference between conditions is less pronounced; the negative values
for bias (Figure 2.9, right panel) indicate that all laypeople in our sample tended
to overestimate replicability (i.e., they displayed a bias towards saying ‘the study
replicates’). This bias also becomes clear in the top panels of Figure 2.10: in both
conditions, the adopted criterion is located to the left of the optimal criterion.

The Receiver Operating Characteristic (ROC) curve is often used to interpret
the parameter values of the SDT. This curve reflects the proportion of hits (i.e.,
replication successes that were deemed replicable) and false alarms (i.e., replica-
tion failures that were deemed replicable) as a function of all possible levels of
bias, given the estimated discriminability. The further the curve moves away from
the diagonal (i.e., chance level), the better the classification performance. The
derived Area Under the Curve (AUC) metric is used to quantify the informa-
tion captured by the ROC curve; it reflects the probability that a given stimulus
(i.e., study) is correctly classified (i.e., replication successess as replicable and
replication failures as unreplicable). We created the ROC curves for laypeople’s
prediction performance in both conditions as derived from the estimated discrim-
inability (disregarding the estimated bias). The ROC curves in the lower panels
of Figure 2.10 again show that the ratio between hits and false alarms was better
for people in the Description Plus Evidence condition compared to people in the
Description Only condition. This is also quantified by the associated AUC met-
ric; the median and 95% credible interval were 0.62 [0.60, 0.65] for the Description
Only condition and 0.74 [0.72, 0.77] for the Description Plus Evidence condition.

Together, the SDT model indicates that access to the statistical evidence pre-
dominantly affected discriminability rather than bias. This suggests that the ev-
idence (i.e., the Bayes factor) provided information that enhanced laypeople’s
ability to correctly distinguish between replicable and unreplicable studies, rather
than making them simply more skeptical across the board. Note that we did not
conduct any tests, but solely estimated the discriminability and bias parameters
per condition, as well as the associated AUC metrics.
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Figure 2.9: Laypeople in both conditions are biased towards predicting that a
given study will replicate (as indicated by the posterior distributions of the bias
parameter in the right panel). In addition, the posterior distributions of the dis-
criminability parameter in the bottom panel show that laypeople in the Description
Plus Evidence condition (orange) have a higher ability to correctly discriminate
replicable from unreplicable studies than laypeople in the Description Only con-
dition (blue).

2.4.3.2 Estimating prediction accuracy of experts

In a second exploratory analysis, we applied a Bayesian hierarchical model to gen-
erate the posterior distributions of the accuracy rates for the experts’ predictions
that were measured by Camerer et al. (2018) and Forsell et al. (2018) for the
SSRP and ML2 project, respectively. Experts in the SSRP project showed the
highest accuracy rate; they were able to correctly predict almost three quarters
of the studies, that is, 0.72 [0.69, 0.74]. The median accuracy rate of the experts
in the ML2 project was 0.65 with a credible interval of [0.62, 0.68]. Both expert
and non-expert accuracy distributions (expressed as percentages) are presented in
Figure 2.11. The figure suggests that the prediction accuracy of laypeople who
were provided with a description and Bayes factor of the original study, is at least
as good if not better than the prediction accuracy of experts who anticipated
outcomes of the ML2 project (and who were also provided with statistics of the
original study).

It is important to note, however, that the performance of experts and laypeople
may not be completely comparable, as the included studies are only partly over-
lapping for the different populations (participants in the current study rated 17
studies from the SSRP and 10 from ML2). Unintentionally, the subset drawn from
the SSRP included 12 out of 17 studies that replicated successfully, whereas the
subset drawn from ML2 included only 2 out of 10 studies that replicated success-
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Figure 2.10: The top two panels demonstrate that the separation between the noise
distribution (white) and signal distribution (colored) is larger for the Description
Plus Evidence condition (top right panel; orange) than for the Description Only
condition (top left panel; blue). The dashed lines indicate the criteria adopted by
the forecasters and the dotted lines indicate the optimal criteria. In the bottom
panels, the group-level ROC curves with the 95% credible interval and the pos-
terior distributions of the Area Under the Curve (AUC) metric similarly indicate
that laypeople in the Description Plus Evidence condition have a better trade-off
between hits and false alarms. The dashed lines indicate chance-level performance.
Figure based on Selker et al. (2019).

fully. Because of these unequal proportions, that are also not representative for
the respective projects, we estimated accuracy rates for the full set of studies rated
by the experts in each project, rather than only the subsets that we presented to
laypeople.

2.5 Discussion

The present study showed that laypeople without a professional background in
the social sciences are able to predict replicability with above-chance accuracy,
even when provided solely with study descriptions. This suggests that intuitions
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Figure 2.11: Accuracy rates of laypeople and experts. Posterior distributions of
the group-level accuracy rates for laypeople in the Description Only condition are
displayed in blue and for laypeople in the Description Plus Evidence condition in
orange. Posterior distributions of the group-level accuracy rates for experts in the
Many Labs 2 Project and in the Social Sciences Replication Project are displayed
in grey.

about the plausibility of the targeted effects carry information about the likelihood
of a successful replication outcome. Prediction accuracy further increased with
access to the statistical evidence (i.e., the Bayes factor) for the original study. In
addition to accuracy in binary predictions, laypeople were able to derive a sense
of the magnitude of the targeted effects from the descriptions, as indicated by the
correlation between raters’ confidence in replicability and replication effect size.
Again, inclusion of information on the original evidence amplified the relation
between confidence ratings and replication effect sizes.

The notion that intuitive plausibility of scientific effects may be indicative of
replicability is not novel (nor counterintuitive). The Open Science Collaboration
(2015), for instance, already suggested that non-surprising studies are more repli-
cable than highly surprising ones. Wilson and Wixted (2018) built on the data
from the Open Science Collaboration (2015) replication project and found that
lower prior odds for the crucial effects explained the difference between replicabil-
ity rates in social and cognitive psychology; social psychological studies contained
more risky but potentially groundbreaking effects compared to cognitive psycho-
logical studies. The authors suggest that the key factor influencing prior odds of
an effect is “established knowledge, acquired either from scientific research or from
common experience (e.g., going without sleep makes a person tired)” (Wilson &
Wixted, 2018, p. 191). Our study sought to identify exactly this underlying fea-
ture of unreplicable studies derived from the latter source of knowledge, which we
called “intuitive plausibility”, “surprisingness”, or “unexpectedness”. Our results
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provided empirical support for the suggestion that intuitive (i.e., non-surprising)
studies are more replicable than highly surprising studies, in the sense that repli-
cable studies are in fact deemed more replicable by a naive group of laypeople.

In principle, we expect our results to generalize to most people, provided that
the instructions, explanation of replicability, and study descriptions are written in
plain language, avoiding technical terms. It is possible that prediction accuracy
may rise with increased expertise, for instance, graduate students may on average
outperform people without any expertise in social sciences. However, previous pre-
diction studies showed that weighting experts’ predictions based on self-reported
topical expertise did not improve average prediction accuracy, suggesting that at
least knowledge about a particular study’s topic may be irrelevant (Dreber et al.,
2015; Forsell et al., 2018).

An obvious downside is that generating predictions from laypeople narrows
the pool of studies that are suited for prediction surveys; complex psychophysics
experiments or fMRI studies may indeed not be comprehensible for laypeople and
be better evaluated by experts. However, for the majority of social science studies
and related disciplines (e.g., economics) targeting laypeople rather than experts
may be advantageous in terms of availability, accessibility, and the possibility to
include previously published studies (the results of which experts may already
be familiar with or simply look up). A further prerequisite is that the evaluated
replication studies should be of high quality (e.g., preregistered, high-powered,
featuring manipulation checks, et cetera) to ensure the validity of the accuracy
assessment. We have no reason to believe that the results depend on other char-
acteristics of the participants, materials, or context.

A final side-note on the generalizability of the findings concerns the wider
implications and scope of the results. Although participants in our study strongly
overestimated overall replicability, they still believed that approximately 20% of
the studies would not replicate. This does not necessarily imply, however, that
they will distrust the results of 1 in 5 studies they encounter in the media.

The presentation of Bayes factors in the Description Plus Evidence condition
could be interpreted as demand characteristics; the quantitative marker plus verbal
label may have steered participants’ judgments towards the correct conclusions. In
the current scenario, it may be practically and theoretically difficult to distinguish
between demand characteristics and information given to participants. We do
not deny that people may have developed strategies to derive their predictions
directly from the value of the Bayes factors. In fact, we assumed that they did so.
Although one may argue that this setup creates a confound, one can also conceive
it as a demonstration of the benefits of Bayes factors: they constitute a simple
metric that can effectively convey information about a study’s evidential value.
This is not a direct argument for Bayes factors over frequentist p-values and/or
effect sizes per se; in fact, we expect that the inclusion of frequentist statistics
may similarly enhance laypeople’s prediction performance.

We acknowledge that replication outcomes cannot be equated with the ‘truth’.
Although the projects by Camerer et al. (2018) and R. Klein et al. (2018) were
high-powered and followed detailed preregistration protocols, the replication out-
comes are not definitive or irrefutable. Moreover, there currently exists no consen-
sus on which decision rule is superior for determining replication success (Cum-
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ming, 2008; Open Science Collaboration, 2015; Simonsohn, 2015; Verhagen & Wa-
genmakers, 2014). We categorized studies into ‘successfully replicated’ and ‘failed
to replicate’ following the primary replication criteria used in the SSRP and the
ML2 project, which were based on finding a significant effect in the same direction
as the original study. However, it should be noted that R. Klein et al. (2018) and
Camerer et al. (2018) report additional indicators to evaluate replicability that
result in slightly different categorizations of replication success. The replication
outcomes should thus not be regarded as reflective of the absolute truth, but rather
of the current, tentative state of knowledge.

Along the same lines, laypeople’s predictions should also not be equated with
the truth. Although clearly above chance level, the prediction accuracy rates of
58% and 67% as found for laypeople in the Description Only and the Descrip-
tion Plus Evidence condition, respectively, are far from perfect. One reason for
laypeople’s moderate prediction success may arise from their tendency to overes-
timate the replicability of empirical findings; relative to the bleak reality of the
current replication rate in psychological science, laypeople are optimists. This
pattern becomes evident from Figure 2.1 and is corroborated by the signal detec-
tion analysis indicating that laypeople demonstrate a bias toward saying that a
given study will replicate. Notably, the optimistic perspective does not seem to
be unique to laypeople; experts similarly overestimated replicability in Dreber et
al. (2015), Camerer et al. (2016) and Forsell et al. (2018), though not in Camerer
et al. (2018). The biased responding may allow for possibilities to boost predic-
tion accuracy; the area under the curve metric indicated that if laypeople adopted
the optimal unbiased criterion, i.e., if they were more conservative, then accuracy
may be enhanced to 62% for predictions based on verbal descriptions only and
74% based on descriptions plus evidence in the original study. This suggestion is
speculative but could be assessed in future research, for instance by manipulating
expectations of baseline replicability rates.

Nevertheless, we believe laypeople’s predictions are more informative than is
captured by the estimated accuracy rates. This is exemplified by the prediction
pattern as displayed in Figure 2.1. The pattern suggests that there is a group
of studies for which laypeople as a collective were divided (characterized by the
symmetrical bi-modal distribution) and a group for which they were in agreement
(i.e., the top and bottom rows of the figure). For those studies for which laypeople
were nearly unanimous, the predictions were highly accurate. Moreover, as the
figure shows, when laypeople as a group predicted that a particular study would
fail to replicate, it failed to replicate.

These results emphasize that the scientific culture of striving for newsworthy,
extreme, and sexy findings is indeed problematic, as counterintuitive findings are
the least likely to replicate. This also relates to the aphorism that “extraordinary
(i.e., intuitively implausible) claims require extraordinary evidence”. Many studies
included in our sample were considered implausible and thus would have required
highly compelling evidence to establish the effects. However, the pattern of Bayes
factors in Figure 2.5 shows that many original findings were based on weak initial
evidence; of the included studies, 37% (10 studies) yielded a Bayes factor lower
than 3, evidence that is “not worth more than a bare mention” according to
Jeffreys’ 1939 criteria. The combination of low intuitive plausibility and weak
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initial evidence is remarkable and arguably worrisome, especially in the light of the
low replication rates in social science. To account for the extraordinary nature of a
claim, researchers should adjust the prior probability of the respective alternative
hypothesis and the null hypothesis. In the Bayesian framework, this means that
a higher Bayes factor is necessary to conclude that the effect is present; in the
frequentist framework, a lower p-value is necessary to reject the null hypothesis
(cf. Benjamin et al., 2018).

The notion of prediction surveys and markets as a valuable component of
replication research seems to be gaining momentum. The Replication Market plat-
form (https://www.replicationmarkets.com), for instance, invites researchers
as well as the general public to predict and bet on 3, 000 studies associated
with the SCORE project (https://www.darpa.mil/program/systematizing
-confidence-in-open-research-and-evidence). Although these predictions
yield valuable insights, we naturally do not advocate to replace replication studies
with judgments of the general public – nor with those of experts. Rather, people’s
predictions may be used to provide a quick snapshot of expected replicability. This
can facilitate the replication process by informing the selection of to-be-replicated
studies. The uni- versus bimodality of the distribution of replication predictions
by laypeople may for instance steer researchers’ confidence in whether the pre-
dictions are more or less reliable, respectively. Additionally, the relative ordering
of laypeople’s confidence in replicability for a given set of studies may provide
estimations of the relative probabilities of replication success.

If a replicator’s goal is to purge the literature of unreliable effects, he or she
may start by conducting replications of the studies for which replication failure is
predicted by naive forecasters. Alternatively, if the goal is to clarify the reliabil-
ity of studies for which replication outcomes are most uncertain, one could select
studies for which the distribution of the expected replicability is characterized by
a bi-modal shape. As such, prediction surveys may serve as ‘decision surveys’,
instrumental in the selection stage of replication research (cf. Dreber et al., 2015).
These informed decisions could not only benefit the replicator, but also optimize
the distribution of funds and resources for replication projects. This idea could
easily be extended to assessing prior plausibility of a proposed and yet to be empir-
ically investigated hypothesis in a systematic fashion, similar to the social science
prediction platform (DellaVigna & Vivalt, 2019). An interesting application would
be to use these assessments in conjunction with large collaborative research efforts
such as the Psychological Science Accelerator (Moshontz et al., 2018). As such,
laypeople’s predictions may not only contribute to replication research, but also
inform the prior plausibility of novel studies.
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Chapter 3

A Many-Analysts Approach to the
Relation Between Religiosity and

Well-being

Abstract

The relation between religiosity and well-being is one of the most re-
searched topics in the psychology of religion, yet the directionality and ro-
bustness of the effect remains debated. Here, we adopted a many-analysts
approach to assess the robustness of this relation based on a new cross-
cultural dataset (N = 10,535 participants from 24 countries). We recruited
120 analysis teams to investigate (1) whether religious people self-report
higher well-being, and (2) whether the relation between religiosity and self-
reported well-being depends on perceived cultural norms of religion (i.e.,
whether it is considered normal and desirable to be religious in a given
country). In a two-stage procedure, the teams first created an analysis plan
and then executed their planned analysis on the data. For the first research
question, all but 3 teams reported positive effect sizes with credible/confi-
dence intervals excluding zero (median reported β = 0.120). For the second
research question, this was the case for 65% of the teams (median reported
β = 0.039). While most teams applied (multilevel) linear regression models,
there was considerable variability in the choice of items used to construct the
independent variables, the dependent variable, and the included covariates.

This chapter is in press as The MARP Team. (2022). A Many-Analysts Approach to the
Relation Between Religiosity and Well-being. Religion, Brain & Behaviour.
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3. A Many-Analysts Approach to the Relation Between
Religiosity and Well-being

3.1 Introduction

The relation between religion and well-being has been a topic of debate for cen-
turies. While Freud considered religion a “universal obsessional neurosis” and
Nietzsche called Christianity “the greatest misfortune of humanity”, the recent sci-
entific literature has painted a more positive picture of religion’s effect on (mental)
health (e.g., Gebauer et al., 2017; George, Ellison, & Larson, 2002; Koenig & Lar-
son, 2001; Plante & Sherman, 2001; Seybold & Hill, 2001; Thoresen, 1999; Zimmer
et al., 2016). Individual religiosity has, for instance, been related to less depression
(T. B. Smith, McCullough, & Poll, 2003), more happiness (Abdel-Khalek, 2006;
Lewis & Cruise, 2006), higher life satisfaction (Lim & Putnam, 2010), and even
lower mortality (Ebert, Gebauer, Talman, & Rentfrow, 2020; Stavrova, 2015). At
the same time, the robustness, universality, and methodological specificity of the
religion–well-being relation remains an outstanding question. In this project, we
adopted a many-analysts approach to investigate two research questions using a
new large cross-cultural dataset featuring N = 10,535 participants from 24 coun-
tries. Specifically, we recruited 120 teams to conduct analyses in order to answer
the following two research questions: (1) “Do religious people self-report greater
well-being?”, and (2) “Does the relation between religiosity and self-reported well-
being depend on perceived cultural norms regarding religion?”. In the subsequent
sections, we will first introduce our theoretical framework, dataset, and the many-
analysts approach, before describing the key results with respect to the stated
research questions and the varying approaches taken by the many-analysts teams.
A general discussion of the project and the results is included in the closing article
(Hoogeveen, Sarafoglou, van Elk, & Wagenmakers, in preparation).

3.2 Theoretical Background

The literature on the psychology of religion is replete with positive correlations
between (self-rated) religiosity and mental health (Abdel-Khalek, 2006; George et
al., 2002; Koenig & Larson, 2001; Plante & Sherman, 2001; Seybold & Hill, 2001;
T. B. Smith et al., 2003; Thoresen, 1999; Zimmer et al., 2016; see Koenig, 2009
for a review). At the same time, meta-analyses indicate that the relation between
religion and well-being is often small (around r = .1; Bergin, 1983; Hackney &
Sanders, 2003; Koenig & Larson, 2001). In addition, it has been argued that pos-
itive associations are found only for particular measures and operationalizations
of these constructs (Hackney & Sanders, 2003; Poloma & Pendleton, 1989). A
recent meta-analysis of longitudinal studies reported that, out of eight religiosi-
ty/spirituality measures, only participation in public religious activities and the
importance of religion were statistically significantly related to self-rated men-
tal health, which was operationalized as distress, life satisfaction, well-being, and
quality of life (Garssen, Visser, & Pool, 2020).

Furthermore, the type of religiosity (i.e., intrinsic vs extrinsic; positive vs.
negative religious coping) and religious status (religious vs. uncertain) appear to
moderate the relationship between religion and mental well-being (T. B. Smith et
al., 2003; Villani, Sorgente, Iannello, & Antonietti, 2019). For instance, extrinsic
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religious orientation (i.e., when people primarily use their religious community as
a social network, whereas personal religious beliefs are secondary) and negative
religious coping (i.e., when people have internal religious guilt or doubts) have
been shown to be negatively related to well-being (Abu-Raiya, 2013; Weber &
Pargament, 2014). Yet other research suggests that it is precisely the social as-
pect of religious service attendance and congregational friendships that explains
how religiosity is positively associated with life satisfaction (Lim & Putnam, 2010).
Moreover, the direction of the religiosity–mental health relation remains unclear;
while engaging in religious activities might make people happier, people with bet-
ter mental health might also be more likely to engage in public, social events.

Additionally, there is large variability in the extent to which religion is in-
grained in culture and social identity across the globe (Kelley & de Graaf, 1997;
Ruiter & van Tubergen, 2009). Accordingly, when investigating the association
between religiosity and well-being, it may be necessary to take into account the cul-
tural norms related to religiosity within a society. Being religious may contribute
to self-rated health and happiness when being religious is perceived to be a socially
expected and desirable option (Diener, Tay, & Myers, 2011; Ebert et al., 2020;
Gebauer et al., 2017; Stavrova, 2015; Stavrova, Fetchenhauer, & Schlösser, 2013).
This makes sense from the literature on person-culture fit (Dressler, Balieiro,
Ribeiro, & Santos, 2007): a high person-culture fit indicates good agreement be-
tween one’s personal values and beliefs and the beliefs that are shared by one’s
surrounding culture. A fruitful way to measure cultural norms is through the
shared, intersubjective perception of the beliefs and attitudes that are prevalent
in a society (Chiu, Gelfand, Yamagishi, Shteynberg, & Wan, 2010; Zou et al.,
2009). Intersubjective norms of religiosity, for instance, refer to the shared per-
ception of the importance of religion within a society or culture. Rather than
expressing the importance of religious beliefs and behaviors in one’s own personal
life, intersubjective norms of religiosity (henceforth: cultural norms of religiosity)
uncover the perceived importance of religious beliefs and behaviors for the average
person within their culture. Religious individuals may be more likely to benefit
from being religious when their convictions and behaviors align with perceived cul-
tural norms. For countries in which religion is more trivial or even stigmatized, the
relation between religiosity and well-being may be absent or even reversed. Relat-
edly, in secular countries, religion might be practiced relatively often by minority
groups, which has been shown to attenuate the positive association between reli-
gious involvement and well-being (Hayward & Elliott, 2014; Huijts & Kraaykamp,
2011; May & Smilde, 2016; Okulicz-Kozaryn, 2010).

3.3 A Many-Analysts Approach

In the current project, we aim to shed light on the association between religion
and well-being and the extent to which different theoretically- or methodologically-
motivated analytic choices affect the results. To this end, we initiated a many-
analysts project, in which several independent analysis teams analyze the same
dataset in order to answer a specific research question (e.g., Bastiaansen et al.,
2020; Boehm et al., 2018; Botvinik–Nezer et al., 2020; Silberzahn et al., 2018; van
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Dongen et al., 2019). A many-analysts approach has been proposed as a way to
mitigate the influence of individual-researcher biases (e.g., confirmation bias by
the proponent of a theory or disconfirmation bias by the skeptic), especially since
the analysis teams are not typically invested in the outcome. More generally, a
many-analysts study is arguable less vulnerable to publication bias toward pub-
lishing only significant rather than null results, which may lower the (unconscious)
tendency toward p-hacking by individual analysts. A many-analysts approach can
balance out the effects of researcher bias while still allowing for expertise-based
analytic decisions such as reasonable preprocessing steps, variable exclusion, and
model specification. As such, it enables one to assess the robustness of outcomes
and quantify variability based on theory-driven analysis decisions and plausible
statistical models. Specifically, we believe that the more consistent the results
from different analysis teams are, the more confident we can be in the conclusions
we draw from the results. A many-analysts approach may be preferable to an ex-
haustive multiverse analysis (Steegen, Tuerlinckx, Gelman, & Vanpaemel, 2016)
that might simply include the full spectrum of options, including those that are
theoretically and methodologically unrealistic.

The idea of inviting different analysis teams to answer the same research ques-
tion using the same data is relatively novel (Silberzahn & Uhlmann, 2015; see Aczel
et al., 2021 for general guidelines); we are aware of three papers in neuroscience
(Botvinik–Nezer et al., 2020; Fillard et al., 2011; Maier-Hein et al., 2017), one in
microeconomics (Huntington-Klein et al., 2021), and eight in psychology, three of
which pertain to cognitive modeling (Boehm et al., 2018; Dutilh, Annis, et al.,
2019; Starns et al., 2019) while the remaining five are from other fields of psychol-
ogy (Bastiaansen et al., 2020; Salganik, Lundberg, Kindel, Ahearn, Al-Ghoneim,
et al., 2020; Schweinsberg et al., 2021; Silberzahn et al., 2018; van Dongen et al.,
2019). Most similar to the current work are the projects that applied a many-
analysts approach to perform statistical inference on the relation between two
variables, such as skin color and red cards in soccer (Silberzahn et al., 2018), sci-
entist gender and verbosity (Schweinsberg et al., 2021), or amygdala activity and
stress (van Dongen et al., 2019). While the exact focus of previous many-analysts
projects varied (e.g., experience sampling, fMRI preprocessing, predictive mod-
eling, proof of the many-analysts concept), the take-home messages were rather
consistent: all papers showed that different yet equally justifiable analytic choices
result in very different outcomes, sometimes with statistically significant effects
in opposite directions (e.g., Schweinsberg et al., 2021; Silberzahn et al., 2018).
In addition, it has proved difficult to pinpoint the exact sources of variability
due to the fact that analytic approaches differed in many respects simultaneously
(e.g., exclusion criteria, inclusion of covariates etc.). Nevertheless, the outcomes of
these previous projects suggest that choices of statistical model (Silberzahn et al.,
2018), statistical framework (van Dongen et al., 2019), (pre)processing software
(Botvinik–Nezer et al., 2020), and the variables themselves (Schweinsberg et al.,
2021) exert substantial effects on the results and conclusions.

We believe a many-analysts approach is uniquely suited to address various
concerns in the study of religion and well-being. First, the relation between re-
ligion and health has been researched for decades with hundreds of qualitative
reports, cross-sectional and longitudinal studies, and even randomized controlled
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trials with religious/spiritual interventions for mental health issues (Captari et al.,
2018; J. I. Harris et al., 2018; Koenig, Al-Zaben, & VanderWeele, 2020; Rosmarin,
Pargament, Pirutinsky, & Mahoney, 2010). Yet new studies keep emerging (e.g.,
M.-C. Chang et al., 2021; Luo & Chen, 2021; Simkin, 2020) and the debate seems
far from settled (see for instance the recent special issue in the International Jour-
nal for the Psychology of Religion; van Elk, 2021). Second, both ‘religion’ and
‘well-being’ are broad and multifaceted constructs that are sensitive to different
measures and operationalizations, which might result in both quantitatively and
qualitatively different conclusions (Hackney & Sanders, 2003; Poloma & Pendle-
ton, 1989). Third, the standard way to assess robustness of an effect or associa-
tion is often through meta-analysis, but the fragmentation of the literature on the
religion–health link and methodological heterogeneity between studies challenge
the use and validity of meta-analyses in this domain (Koenig, Hill, Pirutinsky, &
Rosmarin, 2021). In general, meta-analyses may suffer from several drawbacks
such as publication bias and sensitivity to arbitrary methodological choices (e.g.,
different meta-analytic techniques can result in different conclusions; de Vrieze,
2018; van Elk et al., 2015). Moreover, the estimated effect sizes in meta-analyses
might be as much as three times larger than in preregistered multiple-site replica-
tion studies (Kvarven, Strømland, & Johannesson, 2020). Fourth, the discussion
on the potential health-benefits of religion has been muddied by concerns about
researcher interests and biases. That is, it has been argued that scholars of re-
ligion might be biased by their own (religious) beliefs (Ladd & Messick, 2016;
Swigart, Anantharaman, Williamson, & Grandey, 2020; Wulff, 1998) or by the
fact that a substantial amount of research in the science of religion is funded by
religiously-oriented organizations such as the John Templeton Foundation (Bains,
2011; Wiebe, 2009).1 Inviting independent analysts from various backgrounds in-
cluding but not restricted to religious studies attenuates this potential concern.
Moreover, in addition to quantifying variability, with a sufficiently large number
of analysis teams one can also investigate factors that might explain observed vari-
ability, such as those related to theoretical or methodological expertise and prior
beliefs (Aczel et al., 2021).2

In addition to the theoretical rationale for using a many-analysts approach
to answer the research questions at hand, we also consider the current dataset
particularly appropriate for such an approach. That is, the complexity of the
data allows for many justifiable choices for the operationalization of the variables
and the statistical approach to be employed. While the questions posed to the
participants in the cross-cultural study could no longer be changed, the specific
method of derivation for the religiosity and well-being scores was at the discretion
of the many analysts. At the same time, the research questions and data struc-
ture (cross-sectional correlational data) were sufficiently intuitive and manageable
to inspire many researchers in the fields of (social) psychology, religious studies,

1Ironically, so is the present project.
2Note that we acknowledge that another important problem in the literature on religion

and well-being concerns the issue of causality. However, as our project uses non-experimental
cross-sectional data, this issue cannot immediately be addressed in the current study (but see
Grosz, Rohrer, & Thoemmes, 2020; Rohrer, 2018 for a perspective on causal inference in non-
experimental studies).
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health science, and general methodology to propose an analysis.
Finally, we believe that our project involves a combination of elements that

extend existing many-analysts work. First, we collected new data for this project
with the aim to provide new evidence for the research questions of interest, as
opposed to using an existing dataset that has been analyzed before. Second, we
targeted both researchers interested in methodology and open science, as well as
researchers from the field of the scientific study of religion and health to encourage
both methodologically sound and theoretically relevant decisions (see the section
‘Analysis teams’). Third, in comparison to previous many-analysts projects in
psychology, the current project includes a lot of teams (i.e., 120 vs. 4, 12, 14, 17,
27, 29, and 70 teams, though note that a machine learning project included 160
analyst teams; Salganik, Lundberg, Kindel, Ahearn, Al-Ghoneim, et al., 2020).
Fourth, we applied a two-step procedure that ensured a purely confirmatory sta-
tus of the analyses: in stage 1, all teams first either completed a preregistration
or specified an analysis pipeline based on a blinded version of the data. After
submitting the plan to the OSF, teams received the real data and executed their
planned analyses in stage 2 (see Sarafoglou, Hoogeveen, & Wagenmakers, 2022 for
more details on and an empirical investigation of preregistration vs. data blinding
based on the present data). Fifth, the many-analysts approach itself was preregis-
tered prior to cross-cultural data collection (see osf.io/xg8y5), although the details
of the processing and analysis of the many-analysts data were not preregistered.

3.4 The Dataset

The dataset provided to the analysts featured data from 10,535 participants from
24 countries collected in 2019. The data were collected as part of the cross-cultural
religious replication project (see also Hoogeveen et al., 2021; Hoogeveen & van Elk,
2018). The dataset contained measures of religiosity, well-being, perceived cultural
norms of religion, as well as some demographic items. The full dataset, the data
documentation file, and original questionnaire can be found on the OSF project
page (osf.io/qbdce/).

Participants Participants were recruited from university student samples, from
personal networks, and from (demographically representative) samples accessed by
panel agencies and online platforms (MTurk, Kieskompas, Sojump, TurkPrime,
Lancers, Qualtrics panels, Crowdpanel, and Prolific). Participants were com-
pensated for participation by financial remuneration, the possibility for a reward
through a raffle, course credits, or received no compensation. Everyone aged 18
years or above could participate.3

Participants were required to answer all multiple choice questions, and hence
there were no missing data (except for 36 people who did not provide a numeric
age and 995 people who chose not to answer the item on sexual satisfaction, as this
was the only item for which participants were not required to provide an answer.)
The countries were convenience-sampled (i.e., through personal networks), but

3Note that we did not exclude the 19 participants who indicated they were younger than 18
(but some of the analysis teams did exclude these participants).
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were selected to cover six continents and include different ethnic and religious ma-
jorities. The final sample included individuals who identified as Christian (31.2%),
Muslim (6.1%), Hindu (2.9%), Buddhist (2.0%), Jewish (1.0%), or were part of
another religious group (2.9%). Finally, 53.9% of participants did not identify with
any religion. See Tables B1 and B2 in the online appendix for the full descriptive
statistics of the dataset.

Measures Personal religiosity was measured using nine standardized self-report
items taken from the World Values Survey (WVS; World Values Survey, 2010),
covering religious behaviors (institutionalized such as church attendance and pri-
vate such as prayer/meditation), beliefs, identification, values, and denomina-
tion. The well-being measure consisted of 18 self-report items from the validated
short version of Quality of Life scale, as used by the World Health Organiza-
tion (WHOQOL-BREF; WHOQOL Group, 1998). Included items cover general
health and well-being, as well as the domains of physical health, psychological
health and social relationships. Specific items evaluated: the quality of life in
general, and satisfaction of overall health (general); pain, energy, sleep, mobility,
activities, dependence on medication, and work capability (physical domain); life
enjoyment, concentration, self-esteem, body-image, negative feelings, and mean-
ingfulness (psychological domain); as well as personal relationships, social support,
and sexual satisfaction (social domain). In addition to the raw scores for each item,
we also provided an overall mean, as well as three means per subscale, following
the calculation instructions in the WHOQOL-BREF manual. Cultural norms of
religiosity were measured with two items assessing participants’ perception of the
extent to which the average person in their country considers a religious lifestyle
and belief in God/Gods/spirits important (Wan et al., 2007). Finally, demograph-
ics were measured at the individual level (i.e., age, gender, level of education,
subjective socioeconomic status (SES), and ethnicity) whereas GDP per capita
(current US$, World Bank Group, 2017), sample type (e.g., university students,
online panels), and means of compensation (e.g., course credit, monetary reward)
were determined at the country/sample level. Items were reverse-coded when ap-
plicable. Personal religiosity items were additionally rescaled to the 0-1 range to
make them contribute equally to an average religiosity score since the items were
measured on different scales (e.g., a 1-8 Likert scale or a ‘yes/no’ item, which was
coded as ‘no’=0 and ‘yes’=1 ).4 GDP was provided as a raw value as well as
standardized at the country level.

3.5 Disclosures

3.5.1 Data, materials, and preregistration

At the start of this project we did not envision a particular statistical analysis to
be executed across the reported results from the individual teams, and therefore
we did not preregister any statistical inference procedure. However, at an earlier

4When teams indicated that they preferred the raw data, we provided the function to back-
transform the data.
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stage, we did preregister our own hypotheses regarding the research questions that
were posed to the analysis teams (see osf.io/zyu8c/). This preregistration also
anticipates the many-analysts approach, yet does not specify the exact details of
the project. In this preregistration document, we indicated that the analysis teams
would first receive a blinded version of the data, but we later decided that half
of the teams would work with blinded data and the other half would write their
own preregistration (see Sarafoglou et al., 2022). Note that we did not include our
own estimated effect sizes in the results as shown below. Our results, however,
do corroborate the overall pattern of results from the analysis teams. Interested
readers can access our preregistered analysis of the research questions on the OSF
(osf.io/vy8z7/).

All documents provided to the analysis teams (dataset, documentation, ques-
tionnaire), as well as the administered surveys, the anonymized raw and pro-
cessed data (including relevant documentation), and the R code to conduct all
analyses (including all figures), can be found on the project page on the OSF
(osf.io/vy8z7/). Identifying information (such as names, email-addresses, univer-
sities) was removed from all free-text answers. See also Table 3.2 for an overview
of all resources. Online appendices can be accessed via https://osf.io/9kpfu/.

3.5.2 Reporting

We report how we determined our sample size, all data exclusions, and all manip-
ulations in the study. However, it should be noted that this project also involved
an empirical evaluation of analysis blinding, which is reported in another paper
(i.e., Sarafoglou et al., 2022). Here, we only describe measures relevant to the the-
oretical research questions and the many-analysts approach. The description of
the remaining measures that were only used for the experimental analysis proposal
manipulation can be found in Sarafoglou et al. (2022).

3.5.3 Ethical approval

The study was approved by the local ethics board of the University of Amsterdam
(registration number: 2019-PML-12707). All participants were treated in accor-
dance with the Declaration of Helsinki. See the online appendix for details on the
ethical approval for the cross-cultural data collection.

3.6 Methods

3.6.1 Analysis Teams

The analysis teams were recruited through advertisements in various newsletters
and email lists (e.g., the International Association for the Psychology of Religion
(IAPR), International Association for the Cognitive Science of Religion (IACSR),
Society for Personality and Social Psychology (SPSP), and the Society for the
Psychology of Religion and Spirituality (Div. 36 of the APA)), on social media
platforms (i.e., blogposts and Twitter), and through the authors’ personal net-
work. We invited researchers of all career stages (i.e., from doctoral student to
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Table 3.1: Career Stages and Domains of Expertise Fea-
tured in the 120 Analysis Teams.

Percentage of teams

Career Stages
Doctoral Student 54 (45 %)
Post-doc 45 (37.50 %)
Assistant Professor 32 (26.67 %)
Associate Professor 26 (21.67 %)
Full Professor 20 (16.67 %)

Domains of Expertise
Social Psychology 43 (35.83 %)
Cognition 28 (23.33 %)
Methodology and Statistics 25 (20.83 %)
Religion and Culture 25 (20.83 %)
Psychology (Other) 19 (15.83 %)
Health 17 (14.17 %)

Note. Teams may include multiple members of the
same position and in the same domain.

full professor). Teams were allowed to include graduate and undergraduate stu-
dents in their teams as long as each team also included a PhD candidate or a
more senior researcher. Initially, N = 173 teams signed up to participate in the
many-analysts project. From those teams, N = 127 submitted an analysis plan
and N = 120 completed the project. The members from each analysis team were
offered co-authorship on the main manuscript. No individual researcher or team
was excluded from the study.

The number of analysts per team ranged from 1 to 7, with most teams con-
sisting of 1 (41%) or 2 (33%) analysts (median = 2). The different career stages
and domains of expertise featured in the analysis teams are given in Table 3.1. In
addition, Figure 3.1 shows the self-rated collective knowledge about the topic of
religion and well-being and about methodology and statistics. As becomes evident,
most of the analysis teams had more methodological and/or statistical expertise
than substantive expertise; 80% of the teams reported considerable expertise with
regard to methods and statistics compared to 31% with regard to religion and
well-being, 19% compared to 17% was neutral, and 3% compared to 50% reported
little to no knowledge, respectively.

3.6.2 Sampling Plan

For a separate component of the project (see Sarafoglou et al., 2022), the prereg-
istered sample size target was set to a minimum of 20 participating teams, which
was based on the recruited analysis teams in the many-analysts project from Sil-
berzahn et al. (2018). However, we did not set a maximum number of participating
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Figure 3.1: Responses to the survey questions on self-rated topical and method-
ological knowledge. The top bar represents the teams’ answers about their knowl-
edge regarding religion and well-being and the bottom bar represents the teams’
answers about their knowledge regarding methodology and statistics. For each
item, the number to the left of the data bar (in brown/orange) indicates the per-
centage of teams that reported little to no knowledge. The number in the center
of the data bar (in grey) indicates the percentage of teams that were neutral. The
number to the right of the data bar (in green/blue) indicates the percentage of
teams that reported (some) expertise.

teams. The recruitment of analysis teams was ended on December 22, 2020.

3.6.3 Materials

3.6.3.1 Surveys

The analysts received three surveys, here referred to as the pre-survey, the mid-
survey, and the post-survey. In the pre-survey, participating teams indicated the
career stages and domains of expertise featured in their team, self-rated their
(collective) theoretical and methodological knowledge (self-reported; 5-pt Likert
scale), and anticipated the likelihood of the effects of interest (7-pt Likert scale). In
the mid-survey, teams were asked about the experienced effort, frustration, work-
load in hours spent on the project, and the extent to which this workload was
lower or higher than expected for the analysis planning phase (i.e., stage 1; 7-pt
Likert scales). In the post-survey, the teams provided the results of their analyses
and again indicated their experiences during the analysis executing phase (i.e.,
stage 2). Specifically, per research question, teams were asked about their statisti-
cal approach, the operationalization of the independent variable(s) and dependent
variable(s), included covariates, analytic sample size, (unit of) effect size, p-value
or Bayes factor, and additional steps they took for the analysis. Furthermore,
for both research questions, the teams gave a subjective conclusion about the ev-
idence for the effect (i.e., “good evidence for a relation”, “ambiguous evidence”,
or “good evidence against a relation”), about the practical meaningfulness/rele-
vance of the effect (based on the data; “yes” or “no”), and indicated again the
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likelihood of the effects of interest (on a 7-pt Likert scale). Additionally, teams
indicated the appropriateness of their statistical approach (7-pt Likert scale), the
suitability of the dataset for answering each research question (7-pt Likert scale),
and whether or not they deviated from their planned analysis. In case this last
question was answered affirmatively, they specified with regard to which aspects
they deviated (i.e., hypotheses, included variables, operationalization of the in-
dependent variable(s), operationalization of the dependent variable(s), exclusion
criteria, statistical test, statistical model, direction of the effect). Finally, teams
again reported the experienced effort, frustration, workload in hours and the ex-
tent to which this workload was lower or higher than expected for stage 2 (on 7-pt
Likert scales).

3.6.4 Procedure

After signing up, participating teams received a document outlining the aim of
the project, the timeline, a short theoretical background with respect to the re-
search questions, and a description of the dataset. Then, after completing the
pre-survey, teams could access the full data documentation, the questionnaire as
presented to the participants of the cross-cultural study, and either a blinded ver-
sion of the data or a preregistration template, depending on which condition they
had been assigned to. Teams could then design their analysis and upload their
documents on their own team page on the OSF (deadline: December 22nd, 2020).
The project leaders ‘froze’ the stage 1 documents and sent the link to the mid-
survey. Upon completion of this survey, teams automatically received access to
the real data. They could execute and upload their final analysis scripts on the
OSF until February 28th, 2021. Teams were encouraged to also upload a docu-
ment summarizing their results, but this was not mandatory. Finally, all teams
completed the post-survey. See Table 3.2 for an overview of the procedure.

3.7 Results

Here, we report the key results of the project. Specifically, we evaluate the teams’
reported effect sizes and their subjective conclusions about the research ques-
tions (i.e., the primary results). In addition, we provide descriptive results about
the many-analysts aspect (i.e., the secondary results: variability in analytic ap-
proaches, included variables, and the teams’ experiences across the two different
stages). Finally, we assessed whether or not the reported effect sizes are related
to subjective beliefs about the likelihood of the research questions.

3.7.1 Primary Results

Teams could report any effect size metric of their choosing, but we noted that
we preferred a beta coefficient (i.e., a fully standardized coefficient; z-scored pre-
dictors and outcomes) to allow for a comparison between teams. As we correctly
anticipated that (1) most teams would conduct linear regression analyses (see
Table 3.3) and (2) both the (scale of the) independent and dependent variables
might vary across teams, we considered a beta coefficient the most suitable effect
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Table 3.2: Overview of Project Stages and Resources.

Process Link

Stage 1
Recruitment and sign-up osf.io/hpd6b
Pre-survey osf.io/kgqze
Access to data documentation, questionnaire

and either of:
a) preregistration form osf.io/a5ent
b) blinded data osf.io/ktvqw

Design analysis and upload plan OSF team pages
Mid-survey osf.io/kgqze

Stage 2
Access to data osf.io/6njsy
Execute analysis and upload script (optional:

+ report)
OSF team pages

Post-survey osf.io/kgqze
Lead team: summarize and write-up key results
Invite analysis teams to write commentary

Note. See osf.io/vy8z7 for an overview of all team pages.

size metric. Note that our request for beta coefficients as effect size metrics may
have affected the teams’ choice of statistical model and encouraged them to use
regression models that generate beta coefficients. For teams that did not provide
a (fully) standardized coefficient, we recalculated the beta based on the respective
team’s analysis script whenever possible. Specifically, for (multilevel) linear regres-
sion models we used the effectsize package or the jtools package to extract
standardized coefficients in R. For analyses in SPSS and non-standard models in
R, we standardized the data manually prior to executing the analyses. Finally,
many teams reported multiple effect sizes, as they either separately considered
multiple predictors (e.g., religious beliefs and religious behaviors) and/or multiple
dependent variables (e.g., psychological well-being and physical well-being). In
that case, we asked the teams to provide us with one primary effect size they con-
sidered most relevant to answer the research question or to select one randomly. In
the online appendix, we additionally list (1) effect sizes for the different subscales
of the well-being measure as reported by the teams and (2) effect sizes from teams
that could not provide a beta coefficient (e.g., machine learning models).

3.7.1.1 Research Question 1: “Do religious people self-report higher
well-being?”

We were able to extract 99 beta coefficients from the results provided by the 120
teams that completed stage 2.5 As shown in Figure 3.2, the results are remarkably

5One team misinterpreted the scoring of the items and hence miscoded the direction of the
effect. As they subsequently also based their subjective conclusions on the incorrect results,
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consistent: all 99 teams reported a positive beta value, and for all teams the 95%
confidence/credible interval excludes zero. The median reported beta is 0.120 and
the median absolute deviation is 0.036. Furthermore, 88% of the teams concluded
that there is good evidence for a positive relation between religiosity and self-
reported well-being. Notably, although the teams were almost unanimous in their
evaluation of research question 1, only eight of the 99 teams reported combinations
of effect sizes and confidence/credibility intervals that matched those from another
team (i.e., four effect sizes were reported twice). Do note that in contrast to the
unanimity in results based on the beta coefficients, out of the 21 teams for whom
a beta coefficient could not be calculated, 3 teams reported evidence against the
relation between religiosity and well-being: 2 teams used machine learning and
found that none of the religiosity items contributed substantially to predicting well-
being and 1 team used multilevel modeling and reported unstandardized gamma-
weights for within- and between-country effects of religiosity whose confidence
intervals included zero (see the online appendix).

Figure 3.3 displays the average prior and final beliefs about the likelihood
of the hypothesis. Researchers’ prior beliefs about religiosity being positively
related to self-reported well-being were already high (M = 4.90 on the 7-point
Likert scale), but were raised further after them having conducted the analysis
(M = 5.49 on the 7-point Likert scale). Specifically, before seeing the data, 72%
of the teams considered it likely that religiosity is related to higher self-reported
well-being. This percentage increased to 85% after having seen the data, while
11% were neutral and 3% considered it unlikely. Finally, 75% of teams indicated
the relation to be relevant or meaningful based on these data.

3.7.1.2 Research Question 2: “Does the relation between religiosity
and self-reported well-being depend on perceived cultural
norms of religion?”

Out of the 120 teams who completed stage 2 we were able to extract 101 beta
coefficients for research question 2. As shown in Figure 3.4 the results for research
question 2 are more variable than for research question 1; 97 out of 101 teams
reported a positive beta value and for 66 teams (65%) the confidence/credible
interval excluded zero. The median reported effect size is 0.039 and the median
absolute deviation is 0.022. Furthermore, 54% of the teams concluded that there
is good evidence for an effect of cultural norms on the relation between religiosity
and self-reported well-being. Again, most reported effect sizes were unique; only 3
out of the 101 reported combination of effect size and confidence/credible intervals
appeared twice.

Figure 3.5 shows the researchers’ average prior and final beliefs about the like-
lihood of the second hypothesis. As for research question 1, prior beliefs about the
hypothesis were rather high. However, in contrast to research question 1, conduct-
ing the analysis lowered beliefs about the likelihood of hypothesis 2. Specifically,
before seeing the data, 71% of the teams considered it likely that the relation be-
tween religiosity and self-reported well-being depends on perceived cultural norms

we excluded the reported effect sizes, subjective evaluation, and prior+final beliefs about the
likelihood of the hypotheses for this team.
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Figure 3.2: Beta coefficients for the effect of religiosity on self-reported well-being
(research question 1) with 95% confidence or credible intervals. Green/blue points
indicate effect sizes of teams that subjectively concluded that there is good evidence
for a positive relation between individual religiosity and self-reported well-being,
grey points indicate effect sizes of teams that subjectively concluded that the
evidence is ambiguous, and brown/orange points indicate effect sizes of teams
that subjectively concluded that there is good evidence against a positive relation
between individual religiosity and self-reported well-being. The betas are ordered
from smallest to largest.

of religion. This percentage dropped to 54% after having seen the data, while 19%
were neutral and 27% considered it unlikely. Finally, only about half of the teams
(49%) indicated the effect of cultural norms to be relevant or meaningful based on
these data.

3.7.2 Secondary Results

In addition to evaluating the overall results for the two main research questions, we
also assessed perceived suitability of the data and analytic approaches, variability
in analytical approaches (i.e., statistical models), variable inclusion, and teams’
experiences during the two stages of the project.

3.7.2.1 Perceived Suitability of Dataset

At the end of the project, all teams reported how suitable they found the current
dataset for answering the research questions. As shown at the top of Figure 3.6,
most teams considered the data (very) suitable for answering the research ques-
tions: for research question 1, 86% found the data suitable, 8% neutral, and 6%
unsuitable; for research question 2, 70% found the data suitable, 19% neutral, and
11% unsuitable.
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Figure 3.3: Responses to the survey questions about the likelihood of hypothesis 1.
The left side of the figure shows the change in beliefs for each analysis team. Fifty
percent of the teams considered the hypothesis somewhat more likely after having
analyzed the data than prior to seeing the data, 18% considered the hypothesis
less likely after having analyzed the data, and 32% did not change their beliefs.
Likelihood was measured on a 7-point Likert scale ranging from ‘very unlikely’
to ‘very likely’. Points are jittered to enhance visibility. The right side of the
figure shows the distribution of the Likert response options before and after having
conducted the analyses. The number at the top of the data bar (in green/blue)
indicates the percentage of teams that considered the hypothesis (very) likely, the
number in the center of the data bar (in grey) indicates the percentage of teams
that were neutral, and the number at the bottom of the data bar (in brown/orange)
indicates the percentage of teams that considered the hypothesis (very) unlikely.

3.7.2.2 Analytic Approaches

Table 3.3 displays the different statistical approaches used in the project, as well
as the percentage of teams that employed the respective approach. While a total
of 25 different statistical methods was mentioned, (multilevel) linear regression
was clearly the dominant approach. Specifically, 34% of the teams used linear
regression, another 45% used multilevel linear regression, and the remaining 21%
used a different approach.

In general, teams were confident that their chosen statistical approach was
appropriate for analyzing the research questions; as shown at the bottom of Fig-
ure 3.6, 89% of the teams indicated to be (very) confident, 4% was neutral, and
7% was not (at all) confident.6

6Note that out of the 8 teams reporting not being confident, 2 did not submit a final analysis
and 2 did not provide a usable effect size.
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Figure 3.4: Beta coefficients for the effect of cultural norms of the relation between
religiosity and self-reported well-being (research question 2) with 95% confidence
or credible intervals. Green/blue points indicate effect sizes of teams that subjec-
tively concluded that there is good evidence for the hypothesis that the relation
between individual religiosity and self-reported well-being depends on the per-
ceived cultural norms of religion, grey points indicate effect sizes of teams that
subjectively concluded that the evidence is ambiguous, and brown/orange points
indicate effect sizes of teams that subjectively concluded that there is good evi-
dence against the hypothesis that the relation between individual religiosity and
self-reported well-being depends on the perceived cultural norms of religion. The
betas are ordered from smallest to largest.

3.7.2.3 Variable Inclusion

For each team we coded which of the items provided in the dataset were included
as (1) dependent variable, (2) independent variable, and (3) covariates in the
analysis for each research question.7

Dependent Variable The subjective well-being measure consisted of three sub-
scales (psychological, physical, social), as well as two general items. In the dataset,
we provided responses for all 18 individual items as well as an overall mean and
one mean for each of the three subscales. Teams could decide to either use any of
the provided averages or combine specific items themselves (e.g., take the mean,
median, sum). In addition, some teams conducted a factor analysis and used one
or multiple extracted factors as the dependent variable. In this case, we coded
which items were used as input for the factor analysis. Figure 3.7 shows the in-
cluded items as dependent variable aggregated over all teams for research question

7Please see the document ‘variable mapping’ on the OSF (osf.io/qbdce/) for how the items
correspond to the item names in the datafile.
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Figure 3.5: Responses to the survey questions about the likelihood of hypoth-
esis 2. The left side of the figure shows the change in beliefs for each analysis
team. Twenty-seven percent of the teams considered the hypothesis somewhat
more likely after having analyzed the data than prior to seeing the data, 45%
considered the hypothesis less likely having analyzed the data, and 28% did not
change their beliefs. Likelihood was measured on a 7-point Likert scale ranging
from ‘very unlikely’ to ‘very likely’. Points are jittered to enhance visibility. The
right side of the figure shows the distribution of the Likert response options before
and after having conducted the analyses. The number at the top of the data bar
indicates the percentage of teams that considered the hypothesis (very) likely, the
number in the center of the data bar (in grey) indicates the percentage of teams
that were neutral, and the number at the bottom of the data bar (in brown/o-
range) indicates the percentage of teams that considered the hypothesis (very)
unlikely.

1 and research question 2. For research question 1, the most frequently used items
are enjoying life and meaningfulness (included by over 43% of the teams). Note
that all but four teams used the same dependent variable for research question 1
and 2.8 In the online appendix, we show the included items separately for each
team.

Independent Variable The religiosity measure consisted of 9 primary items
on response scales ranging from dichotomous to 8-points and the cultural norms
of religiosity measure consisted of two items on a 5-point scale. Averages were not
provided in the dataset, but could be created by the teams themselves. Figure 3.8
shows the included items as independent variable aggregated over all teams for
research question 1 and research question 2. In online appendix, we show the
included items separately for each team.

8Two of the four teams that did not use the same dependent variable for research question
1 and 2 only conducted an analysis for research question 1.
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Figure 3.6: Responses to the survey questions about the suitability of the dataset
for answering the research questions (top) and the teams’ confidence in their ana-
lytic approach (bottom). For question 1, the top bar represents the teams’ answers
with respect to research question 1 and the bottom bar represents the teams’ an-
swers for research question 2. For each item, the number to the left of the data
bar (in brown/orange) indicates the percentage of teams that considered the data
(very) unsuitable / were not (at all) confident in their approach. The number in
the center of the data bar (in grey) indicates the percentage of teams that were
neutral. The number to the right of the data bar (in green/blue) indicates the
percentage of teams that considered the data (very) suitable / were (very) confi-
dent in their approach.

For research question 1 (i.e., the relation between religiosity and self-reported
well-being), over 75% of the teams operationalized the independent variable by
including the items frequency of service attendance, belief in God/Gods, frequency
of prayer, belief in afterlife, personal importance of a religious lifestyle, or personal
importance of belief in God. The remaining three religiosity items were used less
frequently: 70% of the teams included the item religious status (religious/not
religious/atheist) and spirituality, while only 50% included religious membership.

For research question 2 (i.e., the effect of perceived cultural norms on the
relation between religiosity and self-reported well-being), all but four teams used
the interaction term between their chosen religiosity measure and their chosen
cultural norms measure as the independent variable.9 More teams operationalized
cultural norms using the item importance of a religious lifestyle in their country
(93%) than importance of belief in God/Gods in their country (89%). Here again,
over 75% of the teams operationalized the independent variable by including the
items frequency of service attendance, belief in God, frequency of prayer, belief

9The four teams that did not use an interaction in their evaluation of research question 2
either used the main effect of cultural norms on well-being or the main effect of religiosity on
well-being (while controlling for cultural norms).
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Table 3.3: Analytic Approaches Taken by the Analysis Teams.

Analytic Approach Percentage of teams

Multilevel Linear Regression 45/128 (35.16 %)
Linear Regression 36/128 (28.12 %)
Bayesian Multilevel Linear Regression 7/128 (5.47 %)
Structural Equation Model 6/128 (4.69 %)
ANOVA 5/128 (3.91 %)
T-test 4/128 (3.12 %)
Bayesian Linear Regression 3/128 (2.34 %)
Path Analysis 3/128 (2.34 %)
Bayesian Multilevel Ordinal Regression 2/128 (1.56 %)
Ordinal Logistic Regression 2/128 (1.56 %)
ANCOVA 1/128 (0.78 %)
Bayesian Additive Regression Trees 1/128 (0.78 %)
Bayesian ANOVA 1/128 (0.78 %)
Bayesian Multilevel Structural Equation Model 1/128 (0.78 %)
Correlation 1/128 (0.78 %)
Machine Learning 1/128 (0.78 %)
Meta-Analysis 1/128 (0.78 %)
Mixed-Effects ANOVA 1/128 (0.78 %)
Moderated Generalized Linear Regression 1/128 (0.78 %)
Multilevel Structural Equation Model 1/128 (0.78 %)
Multiverse Analysis 1/128 (0.78 %)
Multiverse Of Multilevel Linear Regression 1/128 (0.78 %)
Network Analysis 1/128 (0.78 %)
Non-linear Regression 1/128 (0.78 %)
Non-parametric Partial Correlation 1/128 (0.78 %)

Note. Some teams reported multiple statistical approaches.

in afterlife, personal importance of a religious lifestyle, or personal importance of
belief in God, whereas the items religious status (religious/not religious/atheist)
and spirituality were included by about 70% and 68% of the teams, respectively;
only 52% of the teams included religious membership. Note that almost all teams
used the same religiosity measure for research question 1 and research question 2.

Covariates Teams were free to include as covariates in their models any of the
measured demographic variables (e.g., age, socio-economic status), country-level
variables (e.g., gross domestic product – GDP) or sample characteristics (e.g.,
general public or student sample, means of compensation). Figure 3.9 displays
the included items as covariates aggregated over all teams for research question 1
and research question 2. The most frequently included covariates are age (59%),
socio-economic status (55%), gender (53%), and education (50%). Note that per
team the choice of covariates was largely equal across research questions, with the
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Figure 3.7: Items included as dependent variables for research question 1 (on the
left) and research question 2 (on the right). Note that the averages for the well-
being subscales (‘Mean Psychological’, ‘Mean Social’, ‘Mean Physical’), as well as
the overall average (‘Mean Overall’) were provided by the MARP team.

Figure 3.8: Items included as independent variables for research question 1 (on
the left) and research question 2 (on the right).
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Figure 3.9: Items included as covariates for research question 1 (on the left) and
research question 2 (on the right). Variables indicated as ‘external’ refer to co-
variates that are based on data not provided by the MARP team.

exception that the cultural norms items were occasionally added as covariates for
research question 1 while they were part of the independent variable for research
question 2.

3.7.2.4 Teams’ Experiences

Although most teams indicated that effort was (very) high, the majority also
reported that frustration was (very) low and that they spent as much time as
anticipated (see Figure 3.10). That is, in stage 1, 55% of the teams reported
(very) high effort, 17% were neutral, and 28% reported (very) low effort. For
stage 2, 48% of the teams reported (very) high effort, 18% were neutral, and 34%
reported (very) low effort. In stage 1, 17% of the teams reported (very) high
frustration, 23% were neutral, and 60% reported (very) low frustration. In stage
2, 18% of the teams reported (very) high frustration, 17% were neutral, and 65%
reported (very) low frustration. The median time spent on the analyses was 8
hours for both stages, although the range was quite wide: 1 to 80 hours for stage
1 and 30 minutes to 140 hours for stage 2. Most teams anticipated as much time
as they spent: 51% for stage 1 and 52% for stage 2. In stage 1, 36% spent (much)
more time than anticipated and 13% spent (much) less time. In stage 2, 33% spent
(much) more time than anticipated and 15% spent (much) less time.
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Figure 3.10: Responses to the survey questions about effort (top), frustration
(middle), and workload (bottom). For each question, the top bar represents the
teams’ answers about stage 1 (planning) and the bottom bar represents the teams’
answers about stage 2 (executing). For each item, the number to the left of the
data bar (in brown/orange) indicates the percentage of teams that considered
effort/frustration/workload (very) low. The number in the center of the data bar
(in grey) indicates the percentage of teams that were neutral. The number to
the right of the data bar (in green/blue) indicates the percentage of teams that
considered effort/frustration/workload (very) high.

3.7.2.5 Correlation between Effect Sizes and Subjective Beliefs

Following Silberzahn et al. (2018) we explored whether the reported effect sizes
were positively related to subjective beliefs about the plausibility of the research
question before and after analyzing the data. This hypothesis was tested against
the null-hypothesis that there is no relation between reported effect sizes and
subjective beliefs. As the subjective beliefs were measured on a 7-point Likert
scale, we used a rank-based Spearman correlation test with a Uniform[0, 1] prior
(van Doorn, Ly, Marsman, & Wagenmakers, 2020).

For research question 1, we obtained strong evidence against a positive relation
between prior beliefs about the plausibility of the research question and the re-
ported effect sizes: BF+0 = 0.03; BF0+ = 30.34, ρs = -0.21, 95% credible interval
[-0.37, -0.04]. In addition, we found moderate evidence against a positive relation
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between posterior beliefs about the plausibility of the research question and the
reported effect sizes: BF+0 = 0.31; BF0+ = 3.18, ρs = 0.10, 95% credible interval
[-0.08, 0.27].

For research question 2, we found moderate evidence against a positive rela-
tion between prior beliefs about the plausibility of the research question and the
reported effect sizes: BF+0 = 0.12; BF0+ = 8.55, ρs = 0.01, 95% credible interval
[-0.16, 0.18]. For the posterior beliefs, however, we obtained strong evidence in
favor of a positive relation between posterior beliefs about the plausibility of the
research question and the reported effect sizes: BF+0 = 67.39, ρs = 0.33, 95%
credible interval [0.15, 0.46].

To further investigate changes in belief over the course of the project, we as-
sessed the correlation between the reported effect sizes and the change in belief
(i.e., the difference between posterior and prior beliefs for both research ques-
tions). For research question 1, there was basically no evidence for or against a
positive relation between effect size and change in belief: BF+0 = 1.81, ρs = 0.18,
95% credible interval [0.01, 0.33]. For research question 2 on the other hand, we
obtained moderate evidence that effect sizes were positively related to change in
subjective belief about the plausibility of the hypothesis: BF+0 = 9.88, ρs = 0.24,
95% credible interval [0.07, 0.39].

These results regarding prior beliefs provide no indication that expectations
and confirmation bias influenced the teams’ results. For the posterior beliefs, on
the other hand, it seems that the teams updated their beliefs about the plausibility
of research question 2 based on the results of their analyses. Note, however, that
based on the scatterplot in Figure 3.11D, we should not put too much weight on
this finding, as it may be partly driven by two outliers. For research question 1,
the updating of beliefs may not have happened because prior beliefs about research
question 1 were already in line with the outcomes, i.e., most teams expected and
reported evidence for a positive relation between religiosity and well-being, with
little variation between teams.

Finally, we assessed whether reported effect sizes were related to self-reported
expertise. Here, we used a Uniform[−1, 1] prior and an undirected test. This hy-
pothesis was tested against the null-hypothesis that reported effect sizes and self-
reported expertise were not related. For research question 1, we found moderate
evidence against a correlation between effect sizes and methodological knowledge
(BF10 = 0.13; BF01 = 7.80, ρs = 0.03, 95% credible interval [-0.17, 0.21]) and
weak evidence against a correlation between effect sizes and theoretical knowledge
(BF10 = 0.48; BF01 = 2.09, ρs = -0.16, 95% credible interval [-0.31, 0.03]). For re-
search question 2, we again obtained moderate evidence against a relation between
effect sizes and methodological knowledge (BF10 = 0.12; BF01 = 8.00, ρs = 0.02,
95% credible interval [-0.17, 0.20]) and moderate evidence against a correlation
between effect sizes and theoretical knowledge (BF10 = 0.16; BF01 = 6.41, ρs =
-0.08, 95% credible interval [-0.24, 0.09]). See Figure 3.12 for scatterplots of the
data.
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Figure 3.11: Reported effect sizes (beta coefficients) and subjective beliefs about
the likelihood of the hypothesis. A. shows the relation between effect size and
prior beliefs for research question 1, B. shows the relation between effect size and
final beliefs for research question 1, C. shows the relation between effect size and
prior beliefs for research question 2, and D. shows the relation between effect
size and final beliefs for research question 2. Points are jittered on the x-axis to
enhance visibility. The dashed line represents an effect size of 0. The data are
separated by subjective evaluation of the evidence; green/blue points reflect the
conclusion that there is good evidence for the hypothesis, grey points reflect the
conclusion that the evidence is ambiguous, and brown/orange points indicate the
conclusion that there is good evidence against the hypothesis. Histograms at the
top represent the distribution of subjective beliefs and the density plots on the
right represent the distribution of reported effect sizes.

3.8 Summary

In the current project, 120 analysis teams were given a large cross-cultural dataset
(N = 10,535, 24 countries) in order to investigate two research questions: (1) “Do
religious people self-report higher well-being?” and (2) “Does the relation between
religiosity and self-reported well-being depend on perceived cultural norms of re-
ligion?”. In a two-stage procedure, the teams first proposed an analysis and then
executed their planned analysis on the data.
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Figure 3.12: Reported effect sizes (beta coefficients) and self-reported team ex-
pertise. A. shows the relation between effect size for research question 1 and
methodological knowledge, B. shows the relation between effect size for research
question 1 and theoretical knowledge, C. shows the relation between effect size and
for research question 2 and methodological knowledge, and D. shows the relation
between effect size for research question 2 and theoretical knowledge. Points are
jittered on the x-axis to enhance visibility. The dashed line represents an effect size
of 0. The data are separated by subjective evaluation of the evidence; green/blue
points reflect the conclusion that there is good evidence for the hypothesis, grey
points reflect the conclusion that the evidence is ambiguous, and brown/orange
points indicate the conclusion that there is good evidence against the hypothesis.
Histograms at the top represent the distribution of reported expertise and the
density plots on the right represent the distribution of reported effect sizes.

Perhaps surprisingly in light of previous many-analysts projects, results were
fairly consistent across teams. For research question 1 on the relation between
religiosity and self-reported well-being, all but three teams reported a positive
effect size and confidence/credible intervals that exclude zero. For research ques-
tion 2, the results were somewhat more variable: 95% of the teams reported a
positive effect size for the moderating influence of cultural norms of religion on
the association between religiosity and self-reported well-being, with 65% of the
confidence/credible intervals excluding zero. While most teams used (multilevel)
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linear regression, there was considerable variability in the choice of items used
to construct the independent variable, the dependent variable, and the included
covariates.

A further discussion of these results including limitations and broader impli-
cations, as well as a reflection on the many-analysts approach is covered in the
closing article (Hoogeveen et al., in preparation). There, we also address the
commentaries written by some of the analysis teams.
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Chapter 4

Many-Analysts Religion Project:
Reflection and Conclusion

This chapter is in press as Hoogeveen, E. J., Sarafoglou, A., van Elk, M., & Wagenmakers,
E. J. (2022). Many-Analysts Religion Project: Reflection and Conclusion. Religion, Brain &
Behaviour.
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4.1 Introduction

In the main article on the Many-Analysts Religion Project (MARP) the results
of the 120 analysis teams were summarized by taking each team’s reported effect
size and subjective assessment of the relation between religiosity and well-being,
and the moderating role of cultural norms on this relation (The MARP Team,
2022). The many-analysts approach allowed us to appraise the uncertainty of
the outcomes, which has been identified as one of the pillars of good statistical
practice (Wagenmakers et al., 2021). A downside of this approach, however, is
that a fine-grained consideration of the details and nuances of the results becomes
difficult. Summaries of the individual approaches are documented in the teams’
OSF project folders, but time and space did not permit the inclusion of details on
each of the individual analysis pipelines in the main article.

However, we believe the scope of the project and the effort of the analysis
teams justifies highlighting some more in-depth observations. Here, we aim to
address these supplementary findings, taking the points raised in the 17 commen-
taries written by various participating analysts as a guideline. We identified three
overarching themes in the commentaries and our own experiences. First, there
was a need for more focus on theoretical depth and specificity. We refer to this
aspect as “zooming in”. Second, multiple commentaries reflected on the broader
implications of our results, elaborating on robustness and (the limits of) general-
izability. We refer to this aspect as “zooming out”. Third, several commentaries
addressed the appropriateness of the analysts’ chosen statistical models given the
MARP data.

In the following sections, we will first zoom in and address the issue of theoreti-
cal specificity. We will then zoom out and discuss to what extent the MARP results
are robust and can be generalized. Subsequently, we discuss some methodological
concerns, mostly related to the structure of the data. Finally, we will reflect on
our experience of organizing a many-analysts project and highlight some lessons
learned.

4.2 Zooming In: Theoretical Specificity

The broad setup of the project inspired some analyst teams to dive deeper into the
data themselves in order to offer more nuanced interpretations and test additional
hypotheses (e.g., Atkinson et al.; Murphy and Martinez; Pearson, Lo, and Sasaki;
E. Smith; Vogel et al.). Others, however, criticized the lack of specificity and ques-
tioned whether the current setup has led to valid results. Specifically, some authors
argued that the broad formulation of the MARP research questions allowed for
different interpretations, thereby contributing to analytic flexibility and undesir-
able heterogeneity (Edelsbrunner et al.; Krypotos, Klein, and Jong; Murphy and
Martinez). For instance, the first research question “Do religious people report
higher well-being” might be understood as a causal effect or an observational ef-
fect, which also has consequences for the inclusion of covariates (Edelsbrunner et
al.). The authors called for more specific research questions in terms of the type of
effect, the structure of the data, and the level of analysis that is of focal interest.
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This concern was echoed by Murphy and Martinez, who argued that it is more
meaningful to ask which specific behaviors benefit certain well-being markers for a
specific population (e.g., “Does belief in God lead to a more meaningful life, when
controlling for the influence of socioeconomic status?”).

Similarly, Bulbulia emphasized the need for researchers to clearly specify the
outcome, the exposure, the contrasts, and the study design, in order to address
the causal questions of interest. Bulbulia showed that model-free inferences might
lead to implausible conclusions, such as that anxiety reduces service attendance.
Instead, the author demonstrates the advantage of the application of causal mod-
elling that yields alternative interpretations which are supported both by the data
and existing theories of religion (i.e., service attendance buffers anxiety). We be-
lieve this approach to causal inference for observational data is an important future
direction and think the workflow outlined by Bulbulia may serve as an example.

At the same time, other analysts suggested that the setup of the project was
in fact too constrained. For instance, Vogel et al. argued that our request to
provide only one effect size per research question may have led different teams to
converge toward the same operationalizations. Specifically, this setup may have
implicitly encouraged teams to focus on the broadest operationalizations possible
and discouraged teams to investigate the multifaceted nature of both religiosity
and well-being.

We acknowledge that the broad specification of the research questions may
have caused some confusion and/or promoted the use of the global indices instead
of specific items for the teams’ analyses. However, the lack of specificity was to
some extent intentional. Precisely because of the multifaceted nature of religiosity
and well-being and the different operationalizations found in the literature, we
did not want to restrict the researchers’ interpretation of these constructs (beyond
the limits of what the dataset contained). And indeed, the MARP results were
largely robust against the different analytic choices, suggesting that the exact
operationalization does not matter for the robustness of the general relationship.
At the same time, as pointed out in the commentaries, this approach leaves open
which aspects of religiosity specifically contribute to which aspects of well-being.

Here, we highlight some notable examples of more in-depth observations that
provide insight into the specificity of the religion–well-being relationship. First,
based on the follow-up analyses carried out by 19 teams, it appears that religios-
ity is most strongly related to psychological well-being, followed by social well-
being and not so much to physical well-being. Vogel et al. found that two items
of the physical well-being subscale, namely ‘pain’ and ‘dependence on medical
treatment’, were in fact negatively related to religiosity. Atkinson et al. similarly
showed that these two items and ‘mobility’ were not predicted by religiosity. Sec-
ond, E. Smith distinguished between the role of cultural norms at the individual
and at the country level: they found no moderation of cultural norms of religion
at the individual level (i.e., “individuals who see their country as more religious
than other individuals in the same country do not benefit more from being reli-
gious”) but a strong effect at the country-level (i.e., “individuals in countries that
are on average perceived as more religious benefit more from being religious than
individuals in countries where religion is less normative”). Third, Pearson et al.
further investigated the cultural match hypothesis, by assessing to what extent
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the cultural dimension of tightness-looseness and multiculturalism moderate the
influence of cultural norms on the relation between individual religiosity and well-
being. Drawing on additional country-level data, they found that the influence
of religiosity on psychological well-being may be greater when people perceive
their country to be more religious, but more so when that country is culturally
tighter. Fourth, Murphy and Martinez showed that two theoretically defensible
choices of operationalizing religiosity (e.g., Paloutzian, 2017) did not result in sig-
nificantly different outcomes; there was no difference in effect sizes between using a
composite measure of beliefs, practices, values, and identification or a single-item
self-identification measure (i.e., religious, non-religious, or atheist).

4.3 Zooming Out: Generalizability and Robustness

We believe that the comprehensiveness of the MARP data, which featured a large
number of participants, countries, and religious denominations, leads to conclu-
sions that are generalizable to other populations (e.g., new samples from the in-
cluded countries, samples from other countries). Moreover, the variety of statisti-
cal strategies and the consistency of the main results suggest that the outcomes are
robust against statistical decisions made by a different sample of analysis teams.

In addition, Atkinson et al. discussed how generalizability can be explored
within a certain analysis, for instance by either including an extensive random
effects structure or by applying cross-validation techniques. The authors found
that the results were overall stable, but also report some limits on generalizability.
That is, religiosity was not related to pain, medical dependence, and mobility
(as noted by Vogel et al. as well). Furthermore, including the covariates age,
socioeconomic status, and education were necessary to optimize the model fit
across different partitions of the data.

Two commentaries discussed the promise of multiverse analyses as an alterna-
tive way to assess uncertainty and robustness (Hanel and Zarzeczna; Krypotos et
al.). When conducting a multiverse analysis, a research team does not execute one
analysis to the data set, but rather the set of all plausible analysis pipelines. The
main advantage of multiverse analyses over the many-analysts approach is that
they allow for a systematic investigation over the entire decision space, without
relying on the involvement of many different researchers.

At the same time, a multiverse still requires theoretically-influenced decisions
as typically only one aspect (e.g., variable construction) can be systematically
varied while others are fixed (e.g., statistical model and data preprocessing). This
restriction is due to both limits on interpretability and practical feasibility (i.e., it
takes too much time and processing power to include the entire range of all com-
binations). The analysis reported by Hanel and Zarzeczna illustrates the limits of
a multiverse. The authors examined the effects of all possible operationalizations
of well-being and religiosity on the results, totaling more than 260, 000 analysis
pipelines. Not only were certain aspects of the analysis fixed (e.g., a simple cor-
relation was used without covariates), but the authors also executed the analysis
on only a subset of the data because analysing the entire data set was too time
consuming. A notable outcome of the multiverse analysis was that the well-being
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item measuring meaningfulness had the strongest impact on the results, which
resonates well with the observations from Vogel et al.).

A promising avenue might be to combine the advantages of multiverse analy-
sis and the many-analysts approaches (i.e., comprehensiveness and theoretical +
methodological expertise) in a hybrid format. Instead of a full multiverse that
may include implausible paths, Krypotos et al. proposed that an expert panel de-
cides on theoretically motivated restrictions on the analyses and the aspects that
require systematic investigation. We believe that this approach could be beneficial
for many-analysts projects for which (1) the research question has no strong the-
oretical boundaries in terms of the operationalization of variables and modeling
approach (thus resulting in a multitude of possible analyses), (2) the goal is to
investigate the impact of specific items (e.g., covariates) on the relationship, or
(3) the pool of qualified analysts is relatively small.

Another method to investigate the relative impact of specific items was dis-
cussed by van Lissa. The author applied machine learning techniques to identify
the strongest predictors of well-being in the MARP data. They found that socioe-
conomic status strongly outperformed religiosity as a predictor for well-being; a
result that is consistent with that of another team that applied machine learning.1

The goal of the MARP was not to optimise predictions but to explore a theory
and replicate evidence for an existing framework. However, we believe that ma-
chine learning techniques, in addition to the interpretation of effect sizes and the
subjective judgments of the teams, could be a useful tool in future studies, for
instance in determining which features (e.g., what aspects of religiosity) predict
well-being best.

In addition to investigating the robustness and generalizability of the current
dataset, Himawan, Martoyo, Himawan, Aditya, and Suwartono reviewed whether
the MARP results apply to other contexts. Specifically, they provided insight into
the results with respect to the Indonesian population. In the same spirit, Islam
and Lorenz offered a suggestion to further extend future projects: many analysts
analysing many data sets. In such an approach, analysts would be provided with
data collected from different projects. This way, generalizability across measures
and samples can be assessed. Alternatively, such external data could complement
the MARP data. For instance, Islam and Lorenz explored the inclusion of external
data on religious majorities as a covariate or moderator in the analysis on the
MARP data. (They found no effect, suggesting that well-being does not depend on
the match between one’s own religion and that of the majority in one’s country.)2

This approach is worth pursuing in future many-analysts projects on the topic
of religion and well-being: since there are many large-scale surveys covering both
constructs, this seems a feasible endeavor.

4.3.1 Methodological Appropriateness

Several commentaries focused on methodological and statistical appropriateness
of the models used in the MARP given the structure of the data. For instance,

1See https://osf.io/w8954/ for their analysis.
2This approach was also taken by Team 138 who used an external variable to operationalize

‘cultural norms’ for research question 2 https://osf.io/jafx6/.
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Schreiner et al. point out that measurement invariance is an important precondi-
tion for cross-cultural comparisons between any construct of interest, a view shared
by Ross, Sulik, Buczny, and Schivinski.3 Specifically, Schreiner et al. showed that
the religiosity construct does not have the same factor structure across all coun-
tries, potentially invalidating a statistical analysis of the relation between religios-
ity and well-being.

Furthermore, Balkaya-Ince and Schnitker highlight the nested structure in the
MARP data and therefore strongly advocate the use of multilevel regression mod-
els. Several commentaries, on the other hand, question their appropriateness of
ordinary multilevel linear regression models due to the distributional properties of
the items. That is, Schreiner et al. emphasize that categorical variables, as used
in the MARP, should not be treated as continuous scores and added to an average
score. They advise future projects to avoid providing precomputed means, as that
may (unjustifiably) encourage teams to use continuous measures where categor-
ical items are used. This concern is echoed by Lodder, who illustrate that the
results from the regression approaches in MARP might be misleading because the
ordered categorical items violate the normality assumption, in this case underes-
timating the size of the effect. Finally, McNamara agree that Likert scale data
–such as those in the MARP– should in principle not be treated as continuous.
However, they argue that the MARP results show that in practice, it may not
matter whether or not Likert data are treated as ordinal or interval, as the results
largely converged regardless of applying ordinal or linear models.

The fact that subjective analytic decisions did not qualitatively change the
conclusions is informative in itself; whether a single-item or composite religios-
ity measure was used, whether a country’s religious majority was accounted for,
whether the non-dependence of countries was taken into account, or the fact that
participants were from different countries in the first place, whether items were
treated as categorical or continuous, it appears that across all these defensible
strategies, the results largely converged. That is, for research question 1, all but
3 teams reported positive effect sizes with credible/confidence intervals excluding
zero and for the second research question, this was the case for 65% of the teams.
This is not to say that these decisions do not matter in principle–as scientists we
need to think critically about both theoretical and statistical assumptions when
conducting research. However, we believe that there is no “Best Model” but rather
many plausible alternative analytic approaches, each with their own theoretical
and statistical limitations.

4.4 Future Directions

Over the course of the project, we as the MARP core team have also gained im-
portant insights into the organisation of a many-analysts project. We were pleased
that the preregistration and analysis blinding components were well-received and

3Ross et al. challenged us to check how many teams did check for measurement invariance/-
construct validity. A quick scan through the submissions identified seven teams that mentioned
investigating measurement invariance, one of which concluded that their intended analyses could
not be carried out as the assumption of measurement invariance was violated.
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appreciated by the teams (see Sarafoglou et al. (2022) for the comparison of anal-
ysis blinding and preregistration in the MARP). The teams used OSF templates
for their preregistrations; future many-analysts projects whose analysis teams ex-
clusively use R may also opt for more elaborate preregistration techniques using
the R package WORCS (van Lissa, Peikert, & Brandmaier, 2021). WORCS allows anal-
ysis teams to (1) create a reproducible draft manuscript, (2) incorporate a version
control system for their manuscripts, and (3) document all dependencies required
software for a particular project (van Lissa).

A complex but critical aspect of orchestrating a many-analysts project is how
to best evaluate the outcomes. We asked the analysts to provide us with one
effect size measure per research question, but did not specify the type of effect
size. Rather, we allowed them to submit the effect size measure that naturally
followed from their analyses, since we did not want to influence the teams in their
analytic approach.

To make our results interpretable we then transformed these effect sizes into
standardized regression coefficients where possible. However, van Assen, Stoeven-
belt, and van Aert showed that in some cases this might lead to nonsensical effect
size estimates (though not necessarily in the MARP). Rather than combining
(transformed) effect size measures, the authors propose to summarise the results
differently, for instance, by focusing on the sign of the effect size, evidence against
the hypotheses (p-values) and evidence in favour of the hypotheses (e.g., Bayes
factors). Our main concern with this approach is that neither p-values nor Bayes
factors quantify the size of the effect.

While we acknowledge the drawbacks of transforming effect sizes, we currently
do not see a better alternative for this standard practice. Yet we underscore
that there is much to be gained in research on how to best summarize results
from different studies/analytic approaches, especially as meta-science projects are
becoming more common. Future studies might focus on either resolving problems
with respect to transforming effect sizes, creating a standardized output measure
(e.g., similar to a “number needed to treat” approach in medicine), or designing
a well-founded measure for subjective assessment of effect sizes.

When planning the MARP, we have long considered whether the quality of
the analyses should be reviewed, since it may suffer from a lack of theoretical or
methodological knowledge, or from a reduced sense of ownership by the analysis
teams as argued in Ross et al.. For these reasons, Silberzahn et al. (2018) evaluated
the quality of the submitted analyses in a kind of peer review system. A quality
control could also be established in other ways, for instance, by letting topical
and methodological experts assess the submissions. These assessments can be
implemented at the proposal stage (i.e., the experts act as consultants) or at the
end of the project. In the latter case, the results could be weighted according
to their quality, so that higher quality analyses have a greater impact on the
final results (e.g., when computing the mean effect size). One problem with this
approach is the subjectivity that is introduced: as apparent in the main article
and in the comments on the methodological appropriateness, analysts have strong
and sometimes conflicting opinions about which analysis method is best to answer
the research questions. Another problem with this approach is the additional
effort and time demanded from both the analysis teams and the organizing team,
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which might lead to delays and (presumably) a smaller number of teams starting
or completing the project. Ultimately, in the MARP we assumed that all teams
have principled arguments for choosing their specific analytic approach. However,
this is not a general guideline; each many-analysts project must evaluate the pros
and cons of implementing a quality control. Researchers interested in planning a
many-analysts project will find other helpful guidance in the recently published
article by Aczel et al. (2021).

4.5 Concluding Remarks

The main finding of the MARP is that religiosity and well-being are positively
associated. This relation was established in a strictly confirmatory manner and
seems robust against a plethora of different analytic decisions and strategies. In
addition, the positive relation between individual religiosity and well-being appears
stronger when religion is perceived to be normative in a particular country than
when it is perceived as less normative. This moderating effect of cultural norms
of religion was found consistently in the same direction, but appears less robust
than the main association between religiosity and well-being.

Many-analysts approaches are relatively new to the social sciences and we hope
that they will become more widely adopted in the coming years. We believe the
two main merits of a many-analysts approach are that it provides (1) an indica-
tion of the robustness of the effect of interest, and (2) a concrete demonstration of
the variety of theoretical angles and statistical strategies that may be added to re-
searchers’ toolboxes. We would recommend the many-analysts approach especially
for much-debated research questions that are tested using a fairly straightforward
design (e.g., simple associations or effects from an existing theory instead of com-
plex cognitive models for a new hypothesis).

We consider the MARP a positive example of team science and would like to
thank the analysis teams for their efforts. In fact, we are intrigued by the creative
contributions of the teams exploring different aspects of religiosity and well-being
beyond our imposed research questions. We hope the MARP can serve as an
inspiration for future many-analysts projects.
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Chapter 5

A Survey on How Preregistration
Affects The Research Workflow:
Better Science But More Work

Abstract

The preregistration of research protocols and analysis plans is a main re-
form innovation to counteract confirmation bias in the social and behavioral
sciences. While theoretical reasons to preregister are frequently discussed
in the literature, the individually experienced advantages and disadvantages
of this method remain largely unexplored. The goal of this exploratory
study was to identify the benefits and challenges of preregistration from the
researcher’s perspective. To this aim, we surveyed 355 researchers, 299 of
whom had used preregistration in their own work. The researchers indicated
the experienced or expected effects of preregistration on their workflow. The
results show that experiences and expectations are mostly positive. Re-
searchers in our sample believe that implementing preregistration improves
or is likely to improve the quality of their projects, and that preregistration
makes it easier to avoid questionable research practices. Criticism of prereg-
istration is primarily related to the increase in work-related stress and the
overall duration of the project. The majority of researchers with experience
in preregistration reported that the benefits outweigh the challenges. How-
ever, the majority of researchers without preregistration would not consider
preregistration for future projects or recommend the practice to colleagues.
Our interpretation of the results is that preregistration can have positive
side-effects as it adds an extra preparatory step in researchers’ workflow,
thus requiring researchers to think through the theoretical and practical as-
pects of their project.

This chapter has been submitted for publication as Sarafoglou, A., Kovacs, M., Bakos,
B. E., Wagenmakers, E. J., & Aczel, B. (2021). A survey on how preregistration affects the
research workflow: Better science but more work. Available as PsyArXiv preprint : https://

psyarxiv.com/6k5gr.
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5. A Survey on How Preregistration Affects The Research
Workflow: Better Science But More Work

A physicist had a horseshoe hanging on the door of his
laboratory. His colleagues were surprised and asked
whether he believed that it would bring luck to his
experiments. He answered: “No, I don’t believe in
superstitions. But I have been told that it works even if
you don’t believe in it.”

Jones (1973, p. 14)

5.1 Introduction

Over the past decade, the social sciences have undergone a methodological meta-
morphosis. In order to increase the quality and credibility of confirmatory em-
pirical research, both journals and researchers have adopted a series of method-
ological reform measures (Spellman, 2015; Spellman, Gilbert, & Corker, 2018).
Among these reform measures, preregistration is arguably the most consequential.
The preregistration of empirical studies entails the specification of the research de-
sign, the hypotheses, and the analysis plan before data is collected and analyzed.
Preregistration protects the confirmatory status of the reported results by pre-
venting biases –such as confirmation bias and hindsight bias– from contaminating
the statistical analysis (Munafò et al., 2017; Wagenmakers et al., 2012).

The concept of preregistration is not new; as early as 1878, Peirce (1878b,
p. 476) established three rules to guarantee that a hypothesis leads to a probable
result, the first rule being that a hypothesis should be explicitly stated before data
are collected to test its truth. In some research areas, such as medical clinical trials,
preregistration has long become scientific routine. For instance, in the world’s
highest impact journal, the New England Journal of Medicine, the registration of
clinical trials is a prerequisite for publication.

In the last ten years, preregistration has also found its way into psycho-
logical science. In fact, preregistration has become so widespread that some
believe that it is on its way to becoming the norm (Nosek & Lindsay, 2018).
The number of preregistrations has increased at “unprecedented and accelerating
rates” (Nosek & Lindsay, 2018, p. 19), online repositories have been created to
store preregistrations (e.g., the Open Science Framework (OSF; https://osf.io)
and AsPredicted.org), and several journals recognize preregistered studies with
badges (Kidwell et al., 2016). In addition, over 300 journals now offer the Regis-
tered Reports format as a submission option, allowing authors to integrate prereg-
istration with the peer-review process (Chambers, 2013; Nosek & Lakens, 2014;
https://osf.io/rr/).

In the course of its rapid spread, however, the effectiveness of preregistration
has been repeatedly questioned. When discussing ways to combat the crisis of con-
fidence, critics have argued that too heavy an emphasis is being placed on method-
ological reforms (e.g., Fiedler, 2018; Muthukrishna & Henrich, 2019; Oberauer &
Lewandowsky, 2019; Szollosi et al., 2020). Specifically, methodological reforms
such as preregistration should not be viewed as a silver bullet: if predictions were
derived from weak theories, even the application of the most rigid methodologies
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will not lead to reliable scientific findings. For instance, if theories do not ade-
quately define the conditions under which a particular phenomenon is observed, it
remains unclear whether a non-significant result constitutes evidence against the
theory or whether the chosen operationalizations were inappropriate (Oberauer
& Lewandowsky, 2019). Thus, preregistration critics have argued that instead of
focusing primarily on the prevention of questionable research practices, the dis-
cussion on how to improve psychological science should be dominated by topics
such as theory development, good experimental designs, and the proper statisti-
cal modelling of theoretical predictions (Fiedler, 2018; Oberauer & Lewandowsky,
2019).

In defense of preregistration, van ’t Veer and Giner-Sorolla (2016) argued that
while preregistration might not directly improve theory development, preregistra-
tion will help shift the research focus away from the evaluation of a consistent
and statistically significant pattern of results and toward the assessment of theory
and methods. In addition, van ’t Veer and Giner-Sorolla (2016) argue that pre-
registration may lead to positive side-effects that improve the overall quality of
the scientific product. For instance, since all team members need to approve and
scrutinize the hypotheses, methods, and analyses before data collection, study pre-
registration would improve the collaboration within the team and therefore yield
more carefully thought-out research plans. However, it is still unclear whether or
to what extent researchers actually perceive preregistered studies to be of higher
quality than non-preregistered studies. On the one hand, Alister, Vickers-Jones,
Sewell, and Ballard (2021) found that researchers reported that they would be
more confident that a finding would replicate when the original authors had ad-
hered to open science practices such as preregistration. On the other hand, a
study by Field et al. (2020) found only ambiguous evidence that researchers trust
in preregistered empirical findings more than non-preregistered ones.

It has been argued that the scrutiny associated with preregistration might
even harm certain aspects of the research workflow. For instance, preregistration
can be effortful and time-consuming (e.g., Nosek & Lindsay, 2018; van ’t Veer
& Giner-Sorolla, 2016). Open research practices were also found to have a small
but statistically significant association with work pressure (Gopalakrishna et al.,
2021). As recognized by Nosek et al. (2019) “[p]reregistration requires research
planning and it is hard, especially contingency planning. It takes practice to make
design and analysis decisions in the abstract, and it takes experience to learn what
contingencies are most important to anticipate. This might lead researchers to
shy away from preregistration for worries about imperfection” (p. 817). Note that
other researchers have claimed the exact opposite, namely that preregistration is
easy (Wagenmakers & Dutilh, 2016) and that the Registered Report format saves
time (Field et al., 2020).

To date there does not exist an empirical assessment about the experiences
and expectations that researchers have concerning the impact of preregistration
on their workflow. This study seeks to chart the perceived benefits and drawbacks
of preregistration to learn what motivates researchers to adopt this practice and
possibly also what prevents researchers from adopting it. At the same time, re-
searchers’ past experiences with preregistration may be informative for pragmatic
would-be adopters.
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This study concerns two groups of researchers: those who published both pre-
registered studies and non-preregistered studies and those who only published
non-preregistered studies.

5.2 Disclosures

5.2.1 Data, Materials, and Preregistration

The current study was preregistered on the Open Science Framework; in our
project folder, readers can access the preregistration, as well as all materials for
both the pilot and the main survey, the contact database used for the main sur-
vey, the anonymized raw and processed data (including relevant documentation),
and the R code to conduct all analyses (including all figures; see Table 5.1 for
an overview of URLs for the different resources). In our datasets, identifying in-
formation such as names and affiliations of the respondents were removed. Any
deviations from the preregistration are mentioned in this manuscript. Note that
we removed email addresses from the contact database for privacy reasons.

5.2.2 Reporting

We report how we determined our sample size, all data exclusions, all manipula-
tions, and all measures in the study.

5.2.3 Ethical Approval and Participant Compensation

The study was approved by the local ethics board of the University of Amster-
dam (registration number: 2019-PML-11423) and of the Eotvos Lorand University
(registration number: 2019/17). All participants were treated in accordance with
the Declaration of Helsinki. Researchers who participated in the survey were given
the opportunity to enter a raffle for a voucher from a webshop of their choice.

5.3 Methods

5.3.1 Pilot Study And Creating Materials

Before conducting the main survey, we conducted a pilot study to determine the
aspects of the research workflow that are most affected by preregistration. For
this pilot study we contacted 176 researchers from our database (described in the
following sections) and asked them how their preregistered studies differed from
their non-preregistered studies in terms of workflow, data management, and scien-
tific quality. Respondents were asked to list both advantages and disadvantages in
a free-text format. In total, we received answers from 49 researchers. The answers
were then categorized by three of the authors (A.S., B.A., and M.K.). In total,
nine aspects of the research process were identified as being especially impacted
by preregistration. These aspects of the research process were then included as
items in the main survey.
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Table 5.1: Overview of URLs to this Study’s Materials Available on the Open
Science Framework.

Resource URL

Project page https://osf.io/jcdvb/

Preregistration of main study https://osf.io/qezv5/

Preregistration of pilot study https://osf.io/g3fv7/

Data and analysis code https://osf.io/5ytpk/

Surveys https://osf.io/dzybn/

Ethics documents https://osf.io/atgb7/

5.3.2 Participants

The researchers in the preregistration group were recruited based on a contact
database of published preregistered studies. Initially, we created a collection of
711 research articles in which the authors referred to a preregistered analysis plan.
This collection of studies consisted of 404 preregistered and published articles that
were part of the bibliographical collection of published preregistered articles from
the Center of Open Science (COS), 128 articles mentioned in van den Akker et al.
(2021) which originated from a database of articles with open science badges by
Kambouris et al. (2020), 22 articles based on a collection from Schäfer and Schwarz
(2019), and 157 articles based on a non-systematic collection of the present au-
thors. From this initial collection of articles, we then excluded non-empirical
studies (e.g., meta-analyses), Registered Reports, articles that did not include a
URL to their preregistration, articles whose preregistration has been published on
platforms other than the OSF (e.g., AsPredicted.org), and duplicates. This left
a final sample of 487 articles from which we extracted the email-addresses of the
corresponding authors.

5.3.3 Sampling Plan

No sample size target was specified for the preregistration group; we contacted
all authors from our contact database. For the non-preregistration group, we
preregistered that data would be collected until we reached a sample size as large
as at least 90% of the sample size from the preregistration group. As will be
discussed in the section “Sample Characteristics”, we were unable to reach that
goal.

5.3.4 Materials

The survey was generated using the online survey software Qualtrics (Qualtrics,
2021). The items in the main survey were based on the results of the pilot study
and a discussion among the authors. The survey included questions about (1) the
nine aspects of the research process that were identified in the pilot study; (2)
the respondents’ general opinion about preregistration; and (3) the respondents’
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research background. Respondents from the preregistration group were instructed
to relate the questions to their own experience (i.e., “Please indicate below how
you believe preregistration has affected your work.”), whereas researchers from
the non-preregistration group were instructed to indicate their expectations about
preregistration (e.g., “Please indicate below how you believe preregistration would
affect your work.”). Finally, respondents also had the opportunity to give feedback
on the survey and provide us with free-text on the topic of preregistration.

5.3.4.1 Nine Aspects of Research Process

Respondents were asked to indicate whether preregistration has benefited or
harmed (preregistration group) or would benefit or harm (non-preregistration
group) the following nine aspects of the research process: (1) the formulation
of the research hypothesis; (2) the development of the experimental design; (3)
the development of the analysis plan; (4) the data management; (5) the project
workflow; (6) the collaboration in the team; (7) the preparatory work (e.g., pilot
or simulation studies); (8) the total project duration; and (9) the work-related
stress. The items concerning the first five aspects were answered using a 7-point
rating scale from 1 (less thought-through) to 7 (more thought-through). The item
concerning the sixth aspect (i.e., collaboration in the team) was answered using
a 7-point rating scale from 1 (got worse) to 7 (got better). The item concerning
the seventh aspect (i.e., preparatory work) was answered using a 7-point rating
scale from 1 (improved) to 7 (did not improve). The item concerning the eighth
aspect (i.e., total project duration) was answered using a 7-point rating scale from
1 (was longer) to 7 (was shorter). Finally, the item concerning the ninth aspect
(i.e., work-related stress) was answered using a 7-point rating scale from 1 (was
reduced) to 7 (was increased). For each question, respondents could also select
the options I do not know and Not applicable.

5.3.4.2 Opinion About Preregistration

Three items asked respondents about their general opinion concerning preregistra-
tion. The first item asked about whether respondents thought preregistration has
made it easier (preregistration group) or would make it easier (non-preregistration
group) to avoid questionable research practices. The item was answered using a
7-point Likert scale from 1 (Very Strongly Disagree) to 7 (Very Strongly Agree). In
addition, respondents could also select the options I do not know and Not applica-
ble. The second item asked how often respondents would consider preregistration
in their future work. The item was answered using a 7-point Likert scale from 1
(Always) to 7 (Never). The third item asked about whether respondents would
recommend preregistration to other researchers in their field. The item was an-
swered using a 7-point Likert scale from 1 (Very Strongly Disagree) to 7 (Very
Strongly Agree).

5.3.4.3 Respondents’ Research Background

Two items asked respondents about their research background. The first item
asked respondents to categorize their main research approach into either (1) hy-
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pothesis testing, (2) estimation, (3) modeling/simulations, (4) qualitative research,
or (5) other. The second item asked respondents to write down their specific re-
search background (e.g., developmental psychology) as free text.

5.3.5 Procedure

Responses from the preregistration group were elicited by contacting all authors
in our database (including the ones who participated in the pilot survey). Then,
for each author in the preregistration group we contacted up to five authors who
published a non-preregistered empirical study in the same journal, volume, and
issue. When we did not reach the desired sample size for the non-preregistration
group, we proceeded to contact authors who had published in previous issues of
the journals. This procedure was repeated several times and stopped when we had
invited almost 2,000 authors to our study.

In the main survey, respondents were first asked to indicate if they had ever (1)
preregistered a study that was not published; (2) preregistered a study that was
published; (3) published a study that was neither preregistered nor a Registered
Report; (4) created a Registered Report that was not published; or (5) published
a Registered Report. Based on their answers, the respondents were assigned to
groups. Respondents were assigned to the preregistration group if they had pub-
lished both preregistered and non-preregistered studies (i.e., they answered “yes”
to both option 2 and 3). Respondents were assigned to the non-preregistration
group if they had published exclusively non-preregistered studies (i.e., answered
“yes” to option 3 and “no” to all other options). In accordance with the prereg-
istration plan, we only analyze and report data from these two groups.

Respondents then answered the remaining survey items and one intermediate
attention check item (i.e., 2 + 2 = ?). The survey items and the attention check
were presented in fixed order to the participants. The median amount of time
respondents took to fill out the questionnaire was 3 minutes and 18 seconds.

5.3.6 Data Exclusions

As preregistered, we excluded respondents if (1) they were assigned neither to the
preregistered group nor to the non-preregistered group (n = 99); (2) they did not
answer all questions in the survey (n = 23); (3) they failed the attention check
(n = 18); (4) they indicated in the comment section that they could not provide
adequate responses or they did not accept the informed consent form (n = 0).
In total, we received 495 responses to our survey. After exclusion, 355 responses
remained for the analysis. Of these, 299 responses came from the preregistration
group and 56 responses came from the non-preregistration group.

5.3.7 Analysis

This is an exploratory study and therefore we present our results mainly through
descriptive statistics. For the questions relating to nine aspects of the research
process, we report both the means and 95% confidence intervals (Figure 5.1; note
that the presence of confidence intervals deviates from our preregistration, which

77



5. A Survey on How Preregistration Affects The Research
Workflow: Better Science But More Work

stated that no inferential procedure was going to be used). For the questions on the
respondents’ opinion on preregistration, we visualize the frequency distributions
of the survey responses (Figure 5.2). We preregistered the intention to compare,
both within the preregistration group and non-preregistration group, the answers
of those who choose hypothesis testing as their empirical approach to the answers
of those who choose a different approach (i.e., estimation, modeling/simulations,
qualitative research, or other). Due to low response rate in the non-preregistration
group we could execute the intended comparison only within the preregistration
group. We present the results of this comparison in Appendix B. To foreshadow
the results, the answers from the hypothesis testing group did not differ notably
from those of the other group. For our analyses, we excluded responses that
indicated I do not know and Not applicable.

5.4 Results

5.4.1 Sample Characteristics

We first sent 487 e-mail invitations to our contact database of researchers with
experience in preregistration (see the Method section for a description). Out of
these 487 e-mails, 30 bounced (i.e., there was an automatic failure to deliver the
e-mail, for instance, because an address was no longer active), yielding a total of
457 successfully delivered requests. Removing incomplete surveys and respondents
who failed the attention check left a total sample of 299 respondents who had
experience with preregistration (i.e., a response rate of 65.43%).

Next we invited a total of 1,999 researchers who had published only non-
preregistered studies. Out of these 1,999 e-mails, 146 bounced, yielding a total of
1,853 successfully delivered requests. The response rate for the non-preregistration
group was lower than anticipated; receiving 56 responses from 1,999 authors yields
a response rate of only 2.80%. Due to this low response rate, we were unable to
reach the preregistered target sample size, that is, for the non-preregistration
group we only reached 18.7% of the number of responses from the preregistration
group instead of the preregistered target of 90%.

Most respondents had a background in psychological science. Specifically, out
of the 389 reported research backgrounds (some respondents reported more than
one), 112 could be classified as social psychology (28.79%), 104 as experimental
and cognitive psychology (26.74%), 36 as developmental and educational psychol-
ogy (9.25%), 32 as personality psychology (8.23%), 17 as neurophysiology and
physiological psychology (4.37%), 15 as applied psychology (3.86%), 12 as clinical
psychology (3.08%), and 4 as methodology and statistics (1.03%). The remaining
57 responses (14.7%) could not be categorized into one of the areas above (e.g.,
anesthesiology).

Out of the combined total of 355 respondents, 291 respondents indicated that
hypothesis testing was their primary research approach, 21 indicated estimation,
25 indicated modeling/simulations, 3 indicated qualitative research, and 15 re-
spondents indicated other approaches.
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5.4.1.1 Nine Aspects of Research Process

Figure 5.1 illustrates how preregistration was perceived to influence the nine dif-
ferent aspects of the research process. Overall, both groups have a positive opinion
on how preregistration influenced or would influence the different aspects of the
research process, with the preregistration group generally being more positive than
the non-preregistration group. Specifically, respondents were most positive about
the benefits of preregistration regarding the analysis plan, the hypotheses, and the
study design. For two aspects, however, respondents perceived preregistration to
be disadvantageous: specifically, respondents indicated that preregistration would
increase both work-related stress and total project duration.

The preregistration group and the non-preregistration group differed mostly in
their opinion on how preregistration influences the analysis plan and preparatory
work. Although both groups reported that preregistration would benefit these
aspects, respondents with preregistration experience were more enthusiastic. That
is, the preregistration group reported that preregistration had made the analysis
plan more thought-through (M = 6.01 [5.88, 6.14] versus M = 4.98 [4.54, 5.42])
and that preregistration improved the preparatory work of the project (M =
5.37 [5.23, 5.51] versus M = 4.55 [4.14, 4.96]).

In four aspects of the research process, that is, research hypothesis, experimen-
tal design, work-related stress, and total project duration, the groups showed the
smallest differences of opinion. Whereas both groups perceived preregistration
to benefit the experimental design (M = 5.34 [5.20, 5.48] in the preregistration
group versus M = 4.76 [4.37, 5.15] in the non-preregistration group) and the re-
search hypothesis (M = 5.63 [5.49, 5.77] in the preregistration group versus M =
5.06 [4.63, 5.49] in the non-preregistration group), preregistration was perceived
to be a disadvantage with respect to work-related stress (M = 3.73 [3.59, 3.87] in
the preregistration group versus M = 3.14 [2.71, 3.57] in the non-preregistration
group) and total project duration (M = 3.07 [2.93, 3.21] in the preregistration
group versus M = 2.96 [2.60, 3.32] in the non-preregistration group).

One aspect in which both groups gave qualitative different answers based
on the group means was the influence of preregistration on the collaboration
in the team. While respondents in the preregistration group indicated that it
had improve the collaboration in the team (M = 4.57 [4.45, 4.69]), respondents
in the non-preregistration group indicated that it would be a slight disadvantage
(M = 3.84 [3.57, 4.11]).

5.4.1.2 Opinion About Preregistration

Figure 5.2 summarizes the general opinion about preregistration among respon-
dents. The vast majority of respondents in the preregistration group had a positive
overall opinion about the practice. Over 80% agreed with the statement that com-
pared to their non-preregistered work, preregistration had helped avoid question-
able research practices and would recommend the practice to other researchers in
their field. In addition, 83% of the respondents in the preregistration group would
consider preregistration in their future work. The results are somewhat more am-
biguous in the group of respondents without preregistration experience. Although
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Figure 5.1: Respondents’ opinion on how preregistration influenced different as-
pects of the research process. Grey dots represent the mean ratings from respon-
dents who have experience with preregistration and white dots represent the mean
ratings from respondents who have no experience with preregistration. The square
skewers represent 95% confidence intervals. Ratings above and below 4 indicate
that preregistration helped and harmed a certain research aspect, respectively.

70% agreed with the statement that preregistration would make it easier to avoid
questionable research practices, only 45% would recommend the practice to other
researchers in their field. Preregistration is also not seen as desirable for future
research projects: only 7% in the non-preregistration group would consider this
practice in their future work.

5.5 Constraints on Generality

The present study surveyed researchers who have experience with preregistering
studies and those who did not. Our sample consisted exclusively of researchers
in the field of psychology, presumably from differing career stages. The biggest
concern regarding generalizability is that our sample was subject to self-selection.
Since participation in the survey was voluntary, researchers who already had a
strong opinion about preregistration might have been more likely than others to
participate.

Since the proportion of respondents in the preregistration group was relatively
high with 65.43%, we assume that our sample therefore reflects the population of
these researchers relatively well. Therefore, we expect the results from respondents
in the preregistration group to generalize to other researchers within the field of
psychology who have experience with preregistration.

The results from the non-preregistration group, on the other hand, might gen-
eralize poorly to other researchers in the field since the proportion of respondents in
the non-preregistration group was very low (2.80%). In this case the self-selection
might have had a stronger effect on the results. However, it should be noted
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Figure 5.2: Respondents’ general opinion about preregistration. The top bar
represents answers from respondents who have experience with preregistration,
and the bottom bar represents answers from respondents who have no experience
with preregistration. For each survey question, the number to the left of the
data bar (in brown/orange) indicates the percentage who (slightly or strongly)
disagreed or who would recommend preregistration occasionally or less frequently.
The number in the center of the data bar (in grey) indicates the percentage who
responded with “neither agree or disagree” or “neutral”. The number to the right
of the data bar (in green/blue) indicates the percentage who (slightly or strongly)
agreed or who would recommend preregistration frequently or more.

that despite the low response rates in the non-preregistration group the general
response pattern (that is, the ranking of the research aspects) is consistent in both
groups. This systematicity might indicate that we were not dealing with a select
subgroup.

5.6 Discussion

In the last decade, preregistration has been advocated as a tool to prevent re-
searchers’ biases and expectations from contaminating the statistical analyses.
It has also been argued that preregistration may have secondary effects on the
research process. The current study sought to unveil these expectations and ex-
periences.

Our results suggest that researchers find preregistration to benefit their work
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in most aspects of the research process. Researchers in our sample reported that
preregistration improved the theoretical aspects of the project (e.g., the gener-
ation of the research hypothesis, the research design, and the analysis plan) as
well as practical aspects of the project (e.g., the design and execution of pilot or
simulation studies, and the general project workflow). However, disadvantages of
preregistration also became apparent; preregistering a study had increased or was
expected to increase the total project duration and the work-related stress.

The increase in time and effort to publish a preregistered study had been
acknowledged in the literature (e.g., Nosek & Lindsay, 2018; van ’t Veer & Giner-
Sorolla, 2016). However, some statements made previously on the influence of pre-
registration on work-related stress contradict our findings. For instance, Franken-
huis and Nettle (2018, p.441) write: “From hearsay and our own experience, we
think that scholars find it relaxing not to have to make [...] critical decisions after
having seen the data, accompanied by a lingering sense of guilt, while cognizant
of some of their biases and frustratingly unaware of others.”

Although researchers with preregistration experience reported that this prac-
tice increased the total project duration and work-related stress, the vast majority
of this group also indicated that they would recommend the practice to other re-
searchers in their field, and continue to use it for their own research projects. As
one respondent mentioned in the free-text comments: “Pre-Reg improves quality,
which causes more work, as it should be”. For researchers without preregistration
experience, the equation does not seem to add up: the majority of this group
would not recommend the practice to their peers, or consider this practice for
themselves in the future.

How can researchers benefit from the secondary effects of preregistration?
Whether or not preregistration improves the secondary aspects of the research
process depends largely on the quality of the preregistration document. That
is, the thoroughness of the preregistration protocol determines how carefully re-
searchers need to think about the study design and analysis plan. A high-quality
preregistration document features detailed information about the experimental
conditions, the materials and stimuli used, and a comprehensive analysis plan
(preferably featuring a mock data set and analysis code). To ensure that prereg-
istration protocols meet these quality standards without considerable extra effort,
researchers can fall back on a range of checklists, guidelines, and preregistration
templates. Preregistration templates for the standard experimental framework can
be found, for instance, on the websites aspredicted.org or on the Open Science
Framework (https://osf.io/zab38/). The number of preregistration templates
and tutorials for other research areas and more complex methods is increasing and
includes cognitive modeling (Crüwell & Evans, 2019), secondary data analysis of
pre-existing data (Mertens & Krypotos, 2019; Van den Akker et al., 2021), stud-
ies using experience sampling methods (Kirtley, Lafit, Achterhof, Hiekkaranta, &
Myin-Germeys, 2021), and qualitative research (Haven et al., 2020; Haven & van
Grootel, 2019). Finally, the recently developed Transparency Checklist is a quick
way to check whether the preregistration and the accompanying paper comply
with the current transparency standards (Aczel, Szaszi, et al., 2020).

Some researchers might also prefer alternative methods to preregistration. One
of these alternatives that allows for more flexibility while still safeguarding the
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confirmatory status of the research is analysis blinding (Dutilh, Sarafoglou, &
Wagenmakers, 2019; MacCoun, 2020; MacCoun & Perlmutter, 2015; MacCoun &
Perlmutter, 2018). With analysis blinding, researchers are in principle not re-
quired to write a preregistration document. Instead, they collect their experiment
data as usual and develop their analysis plan based on an altered version of the
data in which the effect of interest is hidden (e.g., by shuffling the outcome vari-
able). Another alternative would be to minimize bias by trying to map out the
uncertainty in the analyses with various statistical practices (Wagenmakers et al.,
2021). For instance, researchers could explore the entire universe of outcomes
through multiverse analyses (in which all theoretically sensible data-preprocessing
steps are explored; Steegen et al., 2016) or multi-analysts approaches (in which
multiple analysis teams answer the same research question based on the same
dataset; Aczel et al., 2021; Silberzahn & Uhlmann, 2015).

The aim of this study was to obtain an overview of the experienced and ex-
pected advantages and disadvantages of the practice of preregistration. Our sur-
vey shows that relying on intuition alone when developing open research practices
might not be enough. Only if we know how the conceptual advantage of pre-
registration weighs against the individual experienced benefits and challenges can
we find suitable means to improve the methodology so that it finds wider accep-
tance among researchers or encourage skeptics to try preregistration in their future
research endeavors.
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5.A Summary of Free-Text Comments

In our survey, respondents both completed the questionnaire and had the oppor-
tunity to provide comments on preregistration in an open-ended format. This
section summarizes these comments. For this purpose, the authors A.S. and M.K.
have divided the comments into different topics and evaluated whether they were
positive, negative, or neutral statements. Comments on other topics than prereg-
istration (e.g., comments on the survey) are not here. The full list of comments
is available in our online repository at https://osf.io/5ytpk/. We would like
to emphasize that the results should be interpreted with caution. The comments
evaluated below are based on only a fraction of the respondents. Therefore, the
overview given here is not necessarily representative of the opinions in our sample.

78 researchers provided us with free-text comments on preregistration. These
comments highlighted both the advantages and disadvantages of preregistration:
20 comments were exclusively positive, 22 comments were negative, and 36 com-
ments were mixed. The comments could be categorized roughly into five top-
ics. The topics were (1) the additional workload of preregistration (mentioned by
n = 24 respondents); (2) the effectiveness of preregistration in solving the crisis of
confidence (mentioned by n = 19); (3) the impact of preregistration on one’s ca-
reer (mentioned by n = 16 respondents); (4) how preregistration might contribute
to inequality and stigmatization in different research areas (mentioned by n = 13
respondents); (5) and the difficulties in the compliance with the preregistration
protocol (mentioned by n = 11 respondents).

5.A.1 Additional workload of preregistration: harder, but
worthwhile?

Proponents of preregistration argue that despite the additional workload prereg-
istration cases, it is still “worthwhile” (e.g., Nosek & Lindsay, 2018). But do
researchers agree with that statement? Not necessarily. From the n = 24 respon-
dents who mentioned the additional workload, n = 11 respondents believed that
preregistration was harder and worthwhile while seven respondents believed that it
was harder, but not worthwhile–six respondents mentioned the increased workload
without any further judgement. For respondents who thought preregistration was
hard, but worthwhile, the added benefit of improved overall quality outweighed
the added workload or was perceived as necessary consequence (e.g., “Pre-Reg im-
proves quality, which causes more work, as it should be”). Others recognized the
theoretical value of preregistration, but did not see the benefits translating into
practice. For instance, one respondent wrote: “I think preregistration is great in
theory, but in practice it serves only to increase the red tape and time until pub-
lication. In today’s hyper-competitive publish-or-perish job market, it amounts
to time wasted”. The added time it takes to write a preregistration even seems
to scare researchers from trying out the practice: “I understand the importance
of [preregistration], but the amount of time and effort needed to preregister is
probably the biggest reason I have avoided it in the past”.
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5.A.2 Effectiveness of preregistration in solving the crisis of
confidence

19 respondents mentioned that preregistration improved the credibility of their
results and the overall quality of their work. Seven respondents, however, ques-
tioned whether preregistration was a suitable tool to address the crisis of confi-
dence. Besides the need for theory development and exploratory research, lack of
methodological knowledge, and possibilities to cheat the system (by creating multi-
ple preregistration documents) were mentioned. In addition, multiple respondents
criticized the incentive structure in science, which is designed to reward research
output and thus discourages the adoption of preregistration (e.g.,“[U]nless we rid
science from the publication for-profit industry and educate our universities not to
use the incentive structure that still very much determines who gets hired and who
gets promoted based on where researchers publish rather than what they publish,
I am afraid we have left the big elephant in the room untouched.”; “[T]he speed at
which our institutions expect us to pump through graduate students often means
that pre-reg cannot happen for their work [...].”).

5.A.3 Influence of preregistration on the career

16 respondents reported how preregistration influenced their career. Two respon-
dents indicated that embracing open science practices helped their career, for
instance, by giving them an advantage during the hiring process. With respect
to research output, five respondents reported that publishing preregistered studies
was easier while six respondents reported that it was harder. The main arguments
as to why preregistered articles were easier to publish was that the respondents
felt that a preregistration was expected by the journals, or they described that
the “in principle acceptance” granted for Registered Reports made the publication
process easier. On the other hand, respondents also described how reviewers or
editors rejected papers if authors did not adhere to their preregistered plan, or
that they pushed them towards rewriting their manuscripts to present polished
narratives (e.g., “[R]eviewers sometimes have even criticized that I report non-
significant results”; “[I] often encounter editors who still seem to want my team to
change a priori aspects of manuscripts to better fit with a we knew it all along or
in the context of competing hypothesis situations, favor the hypothesis that was
ultimately supported by the data”).

5.A.4 Inequality and stigmatization

In our survey, 13 respondents addressed disadvantages preregistration can have
in research fields outside of psychology and for descriptive and exploratory study
designs. As mentioned by some respondents, when working in fields outside of
psychology (e.g., animal research) or when the research area has interfaces with
industry, preregistration is relatively unknown which makes preregistered studies
harder to publish (e.g., “[...] My field (animal research) is substantially behind
the curve. To date, of the preregistered studies I have attempted to publish, no
reviewer has commented on the preregistration as a positive aspect of the study
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[...]. Rather, the reviewers who have mentioned it have used the preregistration to
point out deviations (which we take care to explicitly point out in the methods)
and thus has led to more challenges with publication rather than fewer. I am of
the opinion that if I had submitted identical studies without preregistration, they
would have been easier to publish. [...]”)

In addition, respondents perceived that preregistration went to the detriment
of descriptive and exploratory research. For instance, one respondent argues that
confirmatory and preregistered experimental studies are currently perceived as
“the gold standard [...] which leaves behind other kinds of exploratory and de-
scriptive studies.” Another respondent argues that psychology “needs a clearer dis-
tinction between confirmatory and exploratory work, and wider recognition of the
value of exploratory, descriptive research that can form the basis for well-specified
hypotheses”. Lastly, five respondents critiqued that preregistration causes stigma-
tization for studies that have not been preregistered. In their comments, respon-
dents critiqued that the reviewers often prematurely condemn a non-preregistered
study, without considering its individual peculiarities. As suggested by one of the
respondents, the scientific community should place more emphasis on positive rein-
forcement rather than harsh judgement (e.g., “I am still in favor of pre-registration
and open science and I plan to pre-register the studies that I lead. At the same
time, I wish that the movement was more moderate and based more on positive
reinforcement”).

5.A.5 Problems with data exploration and compliance with
the preregistration protocol

11 respondents commented that preregistration would limit creativity, that it dis-
courages researchers to explore the data and that adherence with the preregistra-
tion protocol was problematic, especially for early career researchers “who are still
learning as they go”, or when working with complex models (e.g., “In my work
it’s hard or sometimes impossible to know how the data should be analysed before
seeing its structure, distribution, etc etc - and there is no way of accounting for
every possibility in the prereg.”).
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Figure 5.3: Respondents’ opinion on how preregistration influenced different as-
pects of the research process. Grey dots represent the mean ratings from the
respondents who indicated that their empirical approach was hypothesis testing
and white squares represent the mean ratings from respondents who indicated a
different empirical approach. The square skewers represent 95% confidence inter-
vals. Ratings above and below 4 indicate that preregistration helped or harmed a
certain research aspect, respectively.

5.B Hypothesis Testing and Exploratory Research

The following section we takes a closer look at the responses within the preregis-
tration group. Specifically, we were interested in whether a researcher’s empirical
approach influences perceptions of preregistration, for instance, in that researchers
who primarily test hypotheses view preregistration as more beneficial than re-
searchers with other empirical approaches.

Within the preregistration group, 250 respondents indicated that hypothe-
sis testing was their main empirical approach while 49 respondents indicated that
their main empirical approach was a different one (e.g., estimation, modeling/sim-
ulations, qualitative research, other).

Figure 5.3 illustrates how preregistration was perceived to influence the nine
different aspects of the research process. Overall, both groups have a positive opin-
ion on how preregistration influenced the different aspects research process. The
pattern resembles that of the preregistration group in general, with the analysis
plan benefiting the most from preregistration while the total project duration and
work-related stress have been negatively affected by the practice. Respondents
who do hypothesis-testing seemed to be somewhat more negative than respon-
dents with a different empirical approach. The biggest difference in opinion was
regarding work-related stress. Here, the hypothesis-testing group perceived pre-
registration to be a disadvantage (M = 3.67 [3.52, 3.81]), while respondents with
a different empirical approach were neutral (M = 4.08 [3.77, 4.40]).

Figure 5.4 illustrates the general opinion about preregistration among the re-
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Figure 5.4: Respondents’ general opinion about preregistration. The top bar rep-
resents answers from respondents whose main empirical approach was hypothesis-
testing, the bottom bar represents answers from respondents whose main empirical
approach was different. For each survey question, the number to the left of the
data bar (in brown/orange) indicates the percentage who (slightly or strongly)
disagreed or who would recommend preregistration occasionally or less frequently.
The number in the center of the data bar (in grey) indicates the percentage who
responded with “neither agree or disagree” or “neutral”. The number to the right
of the data bar (in green/blue) indicates the percentage who (slightly or strongly)
agreed or who would recommend preregistration frequently or more.

spondents. The two groups do not show meaningful differences in opinion. In
both groups, more than 75% agreed with the statement that compared to their
non-preregistered work preregistration helped them avoid questionable research
practices and more than 85% would recommend the practice to other researchers
in their field. Finally, over 85% of the respondents who do hypothesis-testing
would consider preregistration in their future work and 73% percent of the re-
spondents with a different empirical approach would consider it in their future
work.
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Chapter 6

Flexible Yet Fair: Blinding Analyses
in Experimental Psychology

Abstract

The replicability of findings in experimental psychology can be im-
proved by distinguishing sharply between hypothesis-generating research and
hypothesis-testing research. This distinction can be achieved by preregistra-
tion, a method that has recently attracted widespread attention. Although
preregistration is fair in the sense that it inoculates researchers against hind-
sight bias and confirmation bias, preregistration does not allow researchers
to analyze the data flexibly. To alleviate this concern we discuss how re-
searchers may conduct blinded analyses (MacCoun & Perlmutter, 2015).
As with preregistration, blinded analyses break the feedback loop between
the analysis plan and analysis outcome, thereby preventing cherry-picking
and significance seeking. However, blinded analyses retain the flexibility to
account for unexpected peculiarities in the data. We discuss different meth-
ods of blinding, offer recommendations for blinding of popular experimental
designs, and introduce the design for an online blinding protocol.

This chapter is published as Dutilh, G., Sarafoglou, A., & Wagenmakers, E. J. (2021).
Flexible yet fair: Blinding analyses in experimental psychology. Synthese, 198, 5745–5772.
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When extensive series of observations have to be made, as in
astronomical, meteorological, or magnetical observatories,
trigonometrical surveys, and extensive chemical or physical
researches, it is an advantage that the numerical work should be
executed by assistants who are not interested in, and are perhaps
unaware of, the expected results. The record is thus rendered
perfectly impartial. It may even be desirable that those who perform
the purely routine work of measurement and computation should be
unacquainted with the principles of the subject.

W. Stanley Jevons, 1874/1913

In recent years, large-scale replication studies revealed what some had foreseen
(e.g., Ioannidis, 2005): psychological science appears to suffer from a replication
rate that is alarmingly low. For instance, the Open Science Collaboration (2015)
showed that out of 100 replication studies, only 39 supported the conclusions
that were drawn in the original article (but see Etz & Vandekerckhove, 2016;
see also Camerer et al., 2018). Similarly disappointing results were obtained for
specific subfields (e.g., R. Klein et al., 2018; Marsman et al., 2017; Nosek & Lakens,
2014), and for particular effects (e.g., de Molière & Harris, 2016; Eerland, Sherrill,
Magliano, & Zwaan, 2016; C. R. Harris, Coburn, Rohrer, & Pashler, 2013; Matzke,
Nieuwenhuis, et al., 2015; Meyer et al., 2015; Shanks et al., 2013; Unsworth et al.,
2015; Wagenmakers et al., 2016, among many others).

One of the contributing factors to the low replication rate is that researchers
generally do not have to state their data analysis plans beforehand. Consequently,
the reported hypothesis tests run the risk of being misleading and unfair: the
tests can be informed by the data, and when this happens the tests lose their
predictive interpretation, and, with it, their statistical validity (e.g., Chambers,
2017; De Groot, 1956/2014; Feynman, 1998; Gelman & Loken, 2014; Goldacre,
2009; Munafò et al., 2017; Peirce, 1878a, 1883; Wagenmakers et al., 2012).1 In
other words, researchers may implicitly or explicitly engage in cherry-picking and
significance seeking. To break the feedback loop between analysis plan and analysis
outcome, and thus prevent hindsight bias from contaminating the conclusions, it
has been suggested that researchers should tie their hands and preregister their
studies by providing a detailed analysis plan in advance of data collection (e.g.,
De Groot, 1969). In this article, we argue that in addition to preregistration,
blinding of analyses can play a crucial role in improving the replicability and
productivity of psychological science (e.g., Heinrich, 2003; MacCoun & Perlmutter,
2015; MacCoun & Perlmutter, 2018).

6.0.1 Preregistration

The preregistration of analysis plans ensures that statistical analyses are designed
independently of specific data outcomes. Preregistration is an important compo-

1In the frequentist paradigm, exploratory analyses introduce a multiple comparisons problem
with the number of comparisons unknown; in the Bayesian paradigm, exploratory analyses are
vulnerable to a double use of the data, where an informal initial update is used to select a relevant
hypothesis, and a second, formal update is used to evaluate the selected hypothesis.
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nent of the Transparency and Openness Promotion guidelines (Nosek et al., 2015;
see also Munafò et al., 2017) that over 800 journals and societies currently have
under consideration. Moreover, the journal Psychological Science has adopted a
preregistration badge, and in a recent editorial, Steve Lindsay stated that “Per-
sonally, I aim never again to submit for publication a report of a study that was
not preregistered.” (Lindsay, 2015, p. 1827).

Preregistration comes in different forms, ranging from unreviewed preregistra-
tion, where researchers upload their plans to an online archive with time stamp,
to Chris Chambers’ “Registered Report” format (Chambers, 2013, 2015; Lindsay,
Simons, & Lilienfeld, 2016; van ’t Veer & Giner-Sorolla, 2016) which over 300
journals have now adopted.2 This especially attractive form of preregistration
allows authors to initially submit for publication their introduction and method
section together with a detailed data analysis plan. After review and successful
revision the authors obtain “In Principle Acceptance”, which ensures that the
eventual publication of the paper does not depend on the critical outcome (but
it does depend on the data being of sufficiently high quality, where “quality” is
unambiguously defined up front). This way the Registered Report prevents both
data-dependent analyses as well as publication bias while rewarding researchers
for ideas and execution rather than outcome.

6.0.2 Lack of Flexibility in Preregistration

Preregistration is a powerful and increasingly popular method to raise the relia-
bility of empirical results. Nevertheless, the appeal of preregistration is lessened
by its lack of flexibility: once an analysis plan has been preregistered, that plan
needs to be executed mechanically. The advantage of such a mechanical execution
is that it prevents significance seeking; the disadvantage is that it also prevents
the selection of statistical models that are appropriate in light of the data. Con-
sider the scenario where the data violate the statistical assumptions underlying
the planned analyses in one or more unexpected ways. For instance, sequences
of response times may show a pronounced and unanticipated fatigue effect. It is
evident that modeling the fatigue effect is good statistical practice, but the pres-
ence of a fatigue effect was not foreseen in the preregistered analysis plan. This
deviation from the analysis plan means that the appropriate statistical analysis
has to be downgraded from confirmatory to exploratory.

Two recent high-profile examples of studies where the preregistered analyses
had to be discarded due to unexpected peculiarities of the data come from the Re-
producibility Project: Cancer Biology, organized by the Open Science Framework.
First, Horrigan et al. (2017) investigated if a specific antibody treatment reduces
the growth of tumors in mice. The results of their replication attempt could not
be interpreted because the authors had to deviate from the preplanned analyses
since several mice showed spontaneous tumor regressions and therefore had to be
excluded from the analysis. Second, Aird, Kandela, Mantis, and Reproducibil-
ity Project: Cancer Biology (2017) attempted to replicate the clinical benefit of

2For an overview see https://osf.io/rr/; for a discussion of various forms of preregistration
see https://osf.io/crg29/.
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a specific cancer treatment. The authors planned to compare medical parame-
ters from mice that received the treatment with untreated controls by means of
a paired analysis. However, due to unexpected early deaths in the control group
the authors had to move from the preregistered paired analysis to an unpaired
analysis.

The core problem is that preregistration does not discriminate between “signifi-
cance seeking” (which is bad) and “using appropriate statistical models to account
for unanticipated peculiarities in the data” (which is good). Preregistration paints
these adjustments with the same brush, considering both to be data-dependent
and hence exploratory.

6.0.3 An Alternative to Preregistration: Blinding Analyses

To address the lack of flexibility inherent to preregistration, we follow MacCoun
and Perlmutter (2015) and argue for the broader adoption of a technique known
as analysis blinding. Similar to preregistration, analysis blinding serves to prevent
significance seeking and to inoculate researchers against hindsight bias and confir-
mation bias (e.g., Conley et al., 2006). But in contrast to preregistration, analysis
blinding does not prevent the selection of statistical models that are appropriate in
light of the observed data. We believe that blinding, in particular when combined
with preregistration, makes for an ideal procedure that allows for flexibility in
analyses while retaining the virtue of truly confirmatory hypothesis testing. The
remainder of this article is organized as follows. We first comment on how biases
can enter the research process, and then list the different types of blinding that
have been proposed to prevent this from happening. Next we propose specific
implementations of blinding for popular experimental designs, and illustrate the
use of blinding with a hypothetical example study. Finally, we propose an online
registration protocol for blinding procedures.

6.1 How Biases Enter the Research Process

In the classic text “Experimenter Effects in Behavioral Research”, Rosenthal
(1966) discusses how a researcher’s biases can influence the result of a study.
On the one hand, such biases can influence the behavior of participants: through
study design and task instructions, researchers may transmit and impose their
own biases onto their participants. On the other hand, a researcher’s biases can
also influence the conclusions that are drawn from the observations: researchers
project their biases while observing and coding behavior, analyzing and interpret-
ing data. These biases might exert their effects outside of researchers’ awareness,
which makes them particularly insidious.

Researchers’ biases can harm the reliability of results at different stages of a
study (L. E. Miller & Stewart, 2011; Schulz & Grimes, 2002). During the data
production stage, participants can be influenced, intentionally or not, to behave
according to expectations (Orne, 1962). During the measurement stage, for ex-
ample when the observed data are submitted to a coding scheme, expectations of
the coders can influence the results (Hróbjartsson et al., 2012). For both stages at
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which biases lurk, blinding procedures have been proposed as a remedy (Barber,
1976): If neither the participant, nor the experimenter knows which experimental
condition is administered, biases at the data production and measurement stage
can be prevented. Such double blind designs are the gold standard in medical
trials and are recommended in the widely adopted guidelines provided by the
International Council for Harmonisation (ICH).

A third stage at which biases can influence a study’s result is the analysis stage.
Researchers may unwittingly compromise the interpretation of their results by
cherry-picking among conditions, variables (Bakker, van Dijk, & Wicherts, 2012;
Bohannon, 2015), variable transformations, analyses, statistical thresholds, outlier
criteria, and samples sizes (i.e., optional stopping; but see Rouder, 2014a). Such
cherry-picking can turn statistical analysis into “a projective technique, such as the
Rorschach, because the investigator can project on the data his own expectancies,
desires, or biases and can pull out of the data almost any ‘finding’ he may desire”
(Barber, 1976, p. 20).

For the purpose of this article, it is irrelevant whether cherry-picking is per-
formed intentionally, as suggested by the term “p-hacking” (Bakker & Wicherts,
2011; Head, Holman, Lanfear, Kahn, & Jennions, 2015; Simmons et al., 2011), or
whether researchers have the best intention but nevertheless get lost in what Gel-
man and Loken (2014) termed “the garden of forking paths”, where the data take
control over the analysis and steer it in a direction that appears worth pursuing.
Regardless of whether or not bias was introduced intentionally, its end effect is
the same: an overly optimistic impression of a study’s result.

6.2 Preventing Bias by Analysis Blinding

All methods of analysis blinding aim to hide the analysis outcome from the an-
alyst. Only after the analyst has settled upon a definitive analysis plan is the
outcome revealed. A blinding procedure thus requires at least two parties: a data
manager who blinds the data and an analyst who designs the analyses. By inter-
rupting the feedback loop between results and outcomes, blinding eliminates an
important source of researcher bias. The unbiased nature of the blinding proce-
dure is symbolized by Lady Justice in Figure 6.1. A detailed cartoon of a blinding
procedure is presented in the appendix.

The idea of blinding analyses goes back several decades. Indeed, as early
as 1957, Sainz, Bigelow, and Barwise (1957) introduced to medicine the term
“triple blind” design, referring to the procedure in which the participants, the
experimenter, as well as the analyst are blind to the experimental manipulations.
Blinding analyses has not become as widespread as single and double blind de-
signs, but it is commonly advocated as a tool in medical research, for example
in the CONSORT reporting guidelines (D. Moher et al., 2010; see also Gøtzsche,
1996). In nuclear and particle physics, blinding of data in the analysis stage is
common practice (Heinrich, 2003). In other fields, including psychology, blinding
of analyses is exceedingly rare. In experimental psychology, our literature search
revealed only a handful of studies reporting blinded analyses (Dutilh et al., 2017a;
J. Moher, Lakshmanan, Egeth, & Ewen, 2014; van Dongen-Boomsma, Vollebregt,
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Figure 6.1: Lady Justice weighs the evidence in favor of each of two competing
hypotheses. The blindfold symbolizes the unbiased nature of the evaluation.

Slaats-Willemse, & Buitelaar, 2013).

6.3 Methods of Analysis Blinding

Analyses may be blinded in various ways and the selection of the appropriate
blinding methodology requires careful thought. As Conley et al. (2006, p. 10)
write: “[...] the goal is to hide as little information as possible while still acting
against experimenter bias.” Thus, a first consideration is how much to distort a
variable of interest. The distortion should be strong enough to hide any existing
effects of key interest, yet small enough to still allow for sensible selection of an
appropriate statistical model. A second consideration is that some relationships
in the data may need to be left entirely untouched. For example, in a regression
design it is important to know about the extent to which predictors correlate.
If this collinearity is not part of the hypothesis, the applied blinding procedure
should leave it intact.

Below we outline different blinding procedures and discuss their advantages
and limitations. We then propose the blinding methods that are most suitable for
popular designs in experimental psychology.
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6.3.0.1 Method 1. Masking a subset

Figure 6.2: Blinding method 1: Masking a subset. The analysis plan is designed
using a subset of the data while the remainder of the data have been masked by
the data manager.

Each blinding method is illustrated using a fictitious example featuring data
of students from different schools who performed a math test. For each of the
students, an estimate of their IQ is also available (Figure 6.2).

Blinding can be achieved when the data manager splits the data into a cal-
ibration set and a test set (Figure 6.2), similar to what happens in the model-
selection technique known as cross-validation (e.g., Browne, 2000; Yarkoni & West-
fall, 2017). For the design of an appropriate analysis plan, the analyst is given
access only to the calibration set. Once the analyst has committed to a specific
analysis plan, the data manager provides the data from the test set, and the pro-
posed analysis plan is then applied mechanically, without any adjustment, on the
test set. Importantly, the final conclusions depend exclusively on the analysis
outcome for the test set.

A special case of this procedure is an exact replication study: the complete
analysis procedure is defined by the original experiment and is applied unchanged
to data from the replication attempt. The main benefit of masking a subset is
that it can be executed with relatively little effort, and that it is certain to prevent
any feedback from results to analysis.

One drawback of this procedure, which is shared by cross-validation as a model-
selection technique, is that it is not clear how to determine the relative size of the
calibration and test set. A second drawback is that, once the relative size has
been decided upon, the data manager should resist the temptation to examine the
two sets and ‘correct’ perceived imbalances in particular characteristics. The third
and main drawback of this procedure is that the construction of the calibration
set costs data. For example, a study initially thought to have sufficient power (or
sufficiently high probability of finding compelling evidence, see Stefan, Gronau,
Schönbrodt, & Wagenmakers, 2019), may become underpowered in light of a split-
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half cross-validation technique in which 50% of the data have to be sacrificed to
construct the calibration set.

One way to alleviate this problem is to simulate data based on a small calibra-
tion set and design the analyses on the basis of these simulated data (Heinrich,
2003). This simulation procedure, however, involves a range of non-trivial choices
that might lower the representativeness of the simulated calibration set.

In conclusion, the advantage of masking a subset is particularly pronounced
for the analysis of large data sets with ample opportunity for significance seeking.
In such cases, the costs of subset-masking are low (as the test set will still be suffi-
ciently large so as to draw confident conclusions) and the benefits are substantial.

6.3.0.2 Method 2. Adding Noise

Figure 6.3: Blinding method 2: Adding noise. The analysis plan is designed using
a ‘Blinded score’, a version of the dependent variable to which the data manager
has added noise.

A straightforward method of blinding is where the data manager adds random
noise to all values of the dependent variable. For example, in Figure 6.3, noise is
added to the dependent variable ‘Score’. The proper amount of noise will mask
any real effects in the data, such that, when executed on the contaminated data,
the blinded analysis is unlikely to show the predicted effect. After the analyst has
settled on a data analysis plan, the data manager supplies the original data and
the analysis plan is mechanically executed on the original data.

For this blinding method, the precise amount of noise is of critical importance.
For example, consider a researcher who compares test scores of children on different
schools (dummy data presented in Figure 6.3). When the added noise is drawn
from a uniform distribution between, say, −.1 and .1, this would not hide existing
effects. On the other extreme, when the added noise is drawn from a uniform
distribution between, say, −1000 and 1000, not only would all effects be hidden,
but the noise would also dramatically alter the distributional properties of the
score variable. As a result, the analyst is no longer able to define a sensible
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outlier removal protocol or choose an appropriate transformation for the test score
variable.

6.3.0.3 Method 3. Masking Labels

Figure 6.4: Blinding method 3: Masking labels. The analysis plan is designed on a
data set for which the data manager has masked the labels of the factor levels. In
this example, school labels A, B, and C are replaced by Z, Y, and X, respectively.

Another straightforward method of blinding is achieved by masking or shuffling
the level labels of an experimental factor. By masking the condition labels, the
data stay entirely intact but the analyst does not know whether the effects she
finds are in the expected direction. Figure 6.4 illustrates how the labels of the
different schools have been masked by the data manager before the analyst is
allowed to access the data.

One drawback of this method is that the analyst is still able to see whether or
not there are significant effects between the cells. If the researcher prefers to find
any effect over no effect, this method will not stop this bias from influencing the
results. Practically, this drawback disappears when factors with many levels are
studied. For example, an anthropologist who studies in which countries people
are the most generous might use this blinding method and mask the country
indicators.

6.3.0.4 Method 4. Adding Cell Bias and Equalizing Means

A relatively subtle method of blinding is to add the same random number to all
observations within the same cell of an experimental design in order to “shift
the answer” (Heinrich, 2003). Consider the researcher who studies the difference
between test scores from students on three different schools (Figure 6.5). To blind
the data analysis, the data manager could change the means in each condition
by adding a random number to each of the observations, for instance +10 to all
observations from condition A, −15 to all observations from condition B, and +3
to all observations from condition C. This implementation of cell bias leaves the
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Figure 6.5: Blinding method 4: Adding cell bias. The analysis plan is designed
using a ‘Blinded score’, a version of the dependent variable to which the data
manager has added cell-specific bias.

distribution of test scores for the three schools intact. At the same time, the right
amount of bias will obscure the differences between the groups. The analyst is
unable to search for significance, because the available group differences may just
reflect cell bias that was injected by the data manager. As for the method of
adding noise, the distribution from which these cell biases are chosen is crucial.
Specifically, too little noise will not blind the analyses. In addition, adding cell bias
obscures only the location of the dependent variable. If the mean of the dependent
variable is correlated with its spread (e.g., for a response time distribution, the
standard deviation generally increases with the mean; Wagenmakers & Brown,
2007), then the data analyst can use the spread to discover the hidden information
about the mean.

A special way to shift the answer is by removing all effects that are present
in the data set such that the mean is equal for all cells. This equalizing of means
results in a blinded data set in which the null-hypothesis is true by construction.
One advantage of the equalizing of means method is that a biased analyst cannot
p-hack data that were blinded in this way. On the contrary, the imposed truth
of the null hypothesis can serve as a sanity check: any analysis that supports an
effect of the experimental manipulation here must be reconsidered.

Note that when the means of the criterion variable have been equalized, an
absolute outlier exclusion rule can no longer be used for this variable. For instance,
consider a situation in which response time is the criterion variable. The blinding
prevents the analyst from knowing the absolute response times. This lack of
knowledge makes it impossible to argue from the data that, say, 1200 milliseconds
is a good cutoff for outlier removal. Instead, the analyst needs to either formulate
a relative outlier criterion, for instance removing the 1% slowest responses, or to
formulate an absolute criterion based on theoretical grounds.

Still, no form of adding cell bias provides a bullet-proof solution, as the true
ordering of means may sometimes be reconstructed from aspects of the data that
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the means are correlated with (e.g., the ordering of the standard deviations).

6.3.0.5 Method 5. Shuffling of Variables

Figure 6.6: Blinding method 5: Shuffle variables. The analysis plan is designed
using ‘Shuffled Rows’, a version of the dependent variable that was shuffled by the
data manager.

A versatile and effective method of blinding is to shuffle the key variables, while
leaving the remaining variables untouched. This procedure can be applied to both
correlational and factorial designs.

Shuffling variables in a correlational design For correlation or regression
analyses, both predictor or criterion variables can be shuffled. Any correlation
with a shuffled variable is based on chance, which breaks the results–analysis
feedback loop. When the design is bivariate, it does not matter which variable is
shuffled. However, in the case of a multiple regression, it is preferable to shuffle
the criterion variable, so that eventual collinearity of the predictors stays intact
and can be accounted for. An example of such blinding is performed in Dutilh et
al. (2017a), who studied whether people’s scores on a working memory task can
be predicted by response time and accuracy on a simple two-choice task. Only
the criterion variable (i.e., score on a working memory test) was shuffled, whereas
the collinearity of the predictor variables (i.e., response time and accuracy) could
be explicitly accounted for by a cognitive model. Relative to blinding methods
that add noise to observations, shuffling of a variable has the advantage that the
distributional properties of the variable stay intact.

Shuffling variables in a factorial design For a factorial design, one can shuf-
fle the predictor variable(s) across observations, that is, randomly permute the
condition labels for all participants. The result is a blinded data set in which all
differences between cells of the factorial design are based on chance. Shuffling fac-
torial predictors, however, might lead to a misrepresentation of the distributional
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properties of the original data set. Consider the analyst who plans to perform an
ANOVA comparing the test scores on three different schools. Assume that the
test scores from the three schools are very different, but within each school, there
is a highly skewed distribution of test scores, violating the normality assumptions
of an ANOVA. When the analyst would model the data without blinding, he
or she would rightfully decide to transform the test scores before executing the
ANOVA. With the condition indicator shuffled, however, the true skew of the test
scores for the individual schools might be warped by mixing the three differently
skewed distributions. As a result, the analyst may recommend an inappropriate
transformation.

6.3.0.6 Method 6. Cloned Data Analyses

This overarching method addresses a potential problem with many of the blind-
ing methods described above, namely that particular aspects of the blinded data
are defined by chance. Depending on chance, the blinding procedure might elim-
inate existing effects, induce effects where none exist, or change the direction of
effects. Consequently, some of the blinded data sets may not be representative
for the original data and hence provoke the stipulation of an analysis plan that
is inappropriate. For example, the blinding method might have distorted the
distributional shape of the data.

To address this issue, MacCoun and Perlmutter (2018) proposed a procedure
that we call cloned data analysis. Here the analyst works with multiple data sets
(e.g., six), one of which is the original data set. A suitable blinding method makes
it impossible to reliably identify the original data set from among the blinded
clones. By working with multiple blinded data sets as well as the original data
set, the analysis that is planned is certain to be appropriate for the original data
set.3

6.4 Application to Standard Designs in Experimental
Psychology

The various blinding procedures come with advantages and disadvantages, the
relative importance of which depends on the experimental design. Below we rec-
ommend specific blinding methods for the three standard inferential situations in
psychology and the social sciences more generally: regressions, contingency tables,
and ANOVA designs. Our recommendations are meant as a starting point, as the
specifics of the research design sometimes require tailor–made methods. Only
when more studies apply blinded analysis techniques will we learn what methods
(or what combination of methods) are most appropriate.

3This is why we believe it is important that the original data set is always among the set
of clones; instead, MacCoun and Perlmutter (2018) propose to let chance determine whether or
not the original data set is included.

100



6.4. Application to Standard Designs in Experimental Psychology

6.4.1 Regression Designs

When one or more continuous variables are assumed to predict a criterion variable
we argue that the best method of blinding is to shuffle the criterion variable Y
and leave the predictors intact (i.e., method 5 ‘shuffling of variables’ above).

Consider again the study by Dutilh et al. (2017a), who set out to test whether
elementary processing speed (as measured from performance on a perceptual two-
choice task) predicts working memory capacity. Performance on the perceptual
task was measured by response time and accuracy, whereas working memory ca-
pacity was measured by a single composite score obtained from a battery of mem-
ory tests. The data manager blinded the analysis by shuffling the working memory
capacity variable and then sent the shuffled data set to the analyst. The analyst
was free to explore different ways to model the relation between response time and
accuracy. The analyst was also free to account for peculiarities in the distribu-
tion of working memory capacity (e.g., eliminate outliers). Once the analyst was
satisfied with the statistical procedure, he shared the intended analysis plan with
the co-authors by publishing it online. The blind was then lifted and the planned
procedure was applied without any changes to the original version of the working
memory variable.

A similar situation often occurs in neuroscience, when researchers seek to
study the correlation between behavior and particular measures of brain acti-
vation. Much like in the example above, there is a need for flexibility of analysis
on one side of the regression equation. For example, when functional MRI signals
are to be correlated with behavioral measures, the rich fMRI data first need to
be preprocessed and compressed, and this can be done in many different plausible
ways (Carp, 2012; Poldrack et al., 2017). When behavior is measured with one
variable such as a test score, the easiest way to blind the analyses is to shuffle this
test score variable. The analyst is then free to explore different ways to process
the fMRI data without unduly and unwittingly influencing the results concerning
the correlation with the criterion variable.

The situation becomes only slightly more complicated when there is a need for
flexibility at both sides of the regression equation. Consider for instance a study
that aimed to relate activity in certain brain regions to behavior as expressed by
the parameters of a cognitive model (e.g., Forstmann et al., 2008). Here, both the
neural analyses and the cognitive modeling require flexibility of analysis. In this
case, the solution is to keep the variables of interest intact for each participant
at each side of the equation. Blinding is achieved by shuffling the case identifier,
thereby destroying the connection between the brain activity and behavior.

6.4.2 Contingency Tables

For fully categorical data, we again recommend to shuffle the dependent vari-
able. For example, when studying whether class attendance (‘always’, ‘sometimes’,
‘never’) predicts whether students ‘pass’ or ‘fail’ a course, it is convenient to shuffle
the pass/fail variable. Table 6.1 shows fictitious original data. Table 6.2 shows
how this table could look after shuffling the pass/fail variable.
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Table 6.1: Fictitious data for students who pass or fail a course depending on their
class attendance.

Outcome

Class Attendance Pass Fail Total

‘Always’ 30 3 33
‘Sometimes’ 10 20 30
‘Never’ 3 6 9
Total 43 29 72

Table 6.2: Fictitious data for students who pass or fail a course depending on their
class attendance, with shuffled outcome variable.

Outcome

Class Attendance Pass Fail Total

‘Always’ 17 16 33
‘Sometimes’ 19 11 30
‘Never’ 7 2 9
Total 43 29 72

Note that this shuffling assures that the margin counts are kept intact. This
way the analyst is given access to the total number of students who pass and fail,
and the total number of students who reported to attend class never, sometimes,
and always. The analyst is then free to decide on sensible outlier removal crite-
ria and variable transformations without having to fear that unconscious biases
unduly influence the analysis outcome. For example, the analyst might want to
merge two very similar categories since one of these has very few counts.

6.4.3 ANOVA Designs

The ANOVA design is ubiquitous in experimental psychology. In the simplest
scenario, the ANOVA concerns a comparison between the means of two groups.
For example, a researcher may seek to study whether people who hold a pen
between their teeth perceive cartoons to be funnier than do people who hold the
pen between their lips (Wagenmakers et al., 2016). In this design, it is essential
to use a blinding technique that distorts the mean perceived funniness in each
group. Distortion of the cell means could be achieved by shuffling the condition
indicators (holding a pen or not).

However, because this shuffling of condition indicators will also distort the form
of the within-cell distributions of the dependent variable, we propose for ANOVA
designs to equalize the cell means. This way, the effects of interest are masked
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while the distribution of the data is left intact. The easiest way to equalize cell
means is by setting them all to zero, i.e., subtracting the cell mean from each
observation. Importantly, the coordinator does not adjust variables that are not
the focus of the hypothesis, thereby allowing the analyst the freedom to use these
extra variables sensibly. For example, the answers to an exit interview can be used
to exclude participants.

Still, even after equalizing the means a particularly determined analyst may
still try and learn the identity of the conditions (e.g., by considering the spread
of the distributions), after which the resulting analyses are again susceptible to
bias. Therefore, in addition to equalizing means, we recommend to shuffle the
labels of the factor levels. For instance, in the pen study the analyst would not
know whether a particular participant was in the ‘teeth’ condition or in the ‘lips’
condition.

6.5 Blinding as Integral Part of Preregistration

Below we analyze fictitious data to illustrate the strength of blinding when com-
bined with preregistration. The example shows how blinding can prevent a real and
substantial effect from being downgraded from a confirmatory to an exploratory
finding.4

6.5.1 Blinding and Preregistration in a Hypothetical Research
Project

Consider the following hypothetical research project, preregistered but without
a blinding procedure: An experimental psychologist aims to test the hypothesis
that priming participants with the concept of god makes them more willing to
help others (Shariff & Norenzayan, 2007). More interestingly, the psychologist
hypothesizes that this positive effect is attenuated by paying participants for their
participation, a speculation motivated by Deci, Koestner, and Ryan (1999) who
suggested that monetary incentives decrease participants’ intrinsic motivation. To
test this hypothesis, the psychologist measures helpfulness as the amount of time
that a participant voluntarily commits to perform extra tasks for the experimenter.
The design features two factors with two levels each: god prime vs. no god prime
and monetary reward vs. no reward. The hypothesis is defined as an interaction,
such that the size of the boost in helpfulness due to the god prime depends on
whether or not participants get payed for their participation.

In order to protect herself from publication bias in case the results turn out in
favor of the null-hypothesis, the psychologist submits her proposal as a Registered
Report (https://osf.io/rr/). The preregistration protocol includes a sampling
plan (i.e., testing 50 participants in each cell of the design for a total of 200
participants) and an analysis plan (i.e., a two-factor ANOVA, where the dependent
variable is the time that participants voluntarily commit). The protocol states that
the hypothesis is said to be supported when the ANOVA interaction of god prime
and payment condition shows a p value lower than .05. Similar studies in the past

4The .jasp file for this example is accessible via: https://osf.io/p7nkx/.
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Figure 6.7: Raw data (left hand panels) and log–transformed data (right hand
panels). For each payment × god–prime condition, the raw data are heavily
skewed. After log–transformation, the distributions look approximately normal.

had performed the exact same analysis. The preregistered proposal is reviewed
and eventually accepted by the editor, who rewards the psychologist with “In
Principle Acceptance” conditional on a data quality check involving a significant
(p < .05) main effect of the god-prime manipulation. 5

The collected data are depicted in the four left-most histograms of Figure 6.7
(simulated data). The researcher notices that the data are heavily skewed but is
required to execute the preregistered analysis plan, which produces the ANOVA
output shown in Table 6.3.

The psychologist is disappointed to find that none of the effects is significant at

5Both the psychologist and the editor are unaware that the ANOVA harbors a hidden mul-
tiplicity problem, as explained in Cramer et al. (2016).
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Figure 6.8: Means and 95% confidence intervals based on the raw data (upper
panel) and log–transformed data (lower panel).

the .05 level. She decides to deviate from the preregistered analysis plan and per-
form a log-transformation on the dependent variable (i.e., the number of minutes
volunteered) to account for the obvious skew. The right four histograms of Fig-
ure 6.7 show that the transformation indeed removed the skew of the dependent
variable. The means and their 95% confidence intervals for both the raw and the
log-transformed data are shown in Figure 6.8. The ANOVA on the log-transformed
data leads to the result in the Table 6.4.

The ANOVA on the transformed data shows the effect precisely as predicted:
the data quality check is met (i.e., there is a significant main effect of the god-
prime manipulation with p = .0031) and, more importantly, there is a significant
interaction between the payment and god-prime manipulations (i.e., p = .0222) in
the expected direction, supporting the hypothesis that the payment reduces the
effect of the god prime on helpfulness.6

6The psychologist is inconvenienced by recent arguments that p-values higher than .005 pro-
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Table 6.3: ANOVA results from a hypothetical Registered Report investigating
the interaction between god-priming and monetary reward on willingness to help.

Cases Sum of Squares df Mean Square F p
payment 270.657 1 270.657 1.214 0.272
godprime 847.498 1 847.498 3.801 0.053
payment × godprime 106.296 1 106.296 0.477 0.491
Residual 43700.868 196 222.964

Note. ANOVA table based on the raw data from Figure 6.7.

Table 6.4: ANOVA results based on the log-transformed data.

Cases Sum of Squares df Mean Square F p
payment 4.065 1 4.065 1.931 0.166
godprime 18.865 1 18.865 8.959 0.003
payment × godprime 11.183 1 11.183 5.311 0.022
Residual 412.709 196 2.106

Note. ANOVA table based on data from Figure 6.7 after a log-
transformation.

The psychologist now has a serious problem: the analysis with the log-
transformation cannot be reported as a preregistered confirmatory analysis. In-
stead, in the results section of the preregistered study, the researcher has to con-
clude that the confirmatory test did not show support for the hypothesis. In the
section “exploratory results”, the ANOVA on the log-transformation is reported
with the encouragement to carry out a confirmatory test of this hypothesis in
future work.

This unsatisfactory course of events could have been prevented by including
a blinding protocol in the preregistered analyses plan. The blinding protocol
could outline that in the blinded data set the cell means will be equalized and
the condition labels will be shuffled, as we recommended above. This blinding
procedure would have enabled the analyst to observe the extreme right skew of the
data, while offering the flexibility to explore several transformations before settling
on a definite analysis plan. Because these transformations were all applied on a
properly blinded version of the data, the results could still have been presented as
truly confirmatory.

6.6 Incentivizing Blinding

The example above illustrates that, in addition to guarding against bias, blinding
can also prevent confirmatory findings from being demoted to exploratory findings.
Thus, for preregistered studies there is a strong incentive to include a blinding

vide only suggestive evidence (Benjamin et al., 2018) and therefore decides that these arguments
are not compelling and can best be ignored.
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protocol. In studies that are not preregistered, however, the incentive to apply
blinding may not be readily apparent, and the blinding procedure itself may seem
relatively involved. We now present the structure of an online blinding protocol
that facilitates blinded analyses.

6.6.1 Online Blinding Protocol

We propose an online blinding protocol that allows researchers to declare the
blinding procedure they follow and receive a certificate. The protocol kills two
birds with one stone: The protocol serves science by making explicit the difference
between exploration and confirmation, and it serves the scientist by convincing
editors, reviewers, and colleagues that the reported results are untainted by bias.

The protocol is easy to follow. The only requirement is that there are two
actors involved: (1) the data manager, who has the access to the original data
set and (2) the analyst, who designs the analyses and has no direct access to the
original data set. The protocol consists of three steps, preferably preceded by a
preregistration step (see Figure 6.9).

Phase 0 In case of a Registered Report, the study’s method and analysis plan
are preregistered, including the blinding protocol. All of this is peer-reviewed and
revised if required.

Phase 1 The data manager creates a project on the online blinding portal. She
uploads the raw data that is kept private until Phase 3. Then, she uploads the
blinded data, which become publicly available. By signing an online contract, she
declares that she did not share the raw data or sensitive information about the
blinding procedure with the analyst.

Phase 2 The analyst downloads the blinded data and designs the analyses based
on that data. When she is satisfied with the analysis plan, she uploads it to the
online blinding portal. By signing an online contract, she declares that she did not
have access to the raw data or sensitive information about the blinding procedure
when designing the analyses.

Phase 3 The raw data is revealed to the analyst, so that she can apply her
analysis plan. If both data manager and analyst agree, at this point the data
is also made publicly available. A blinding certificate is issued in the form of
an online document that describes the blinding procedure followed. The data
manager and author can include a link to this certificate in the manuscript that
reports the results.

Thanks to the blinding certificate, the reader of the eventual report can trust
that specific analyses were performed without knowledge of the outcome. This is
important, since only when an article precisely reports how analyses are performed
(as advocated in D. Moher et al., 2010), can the results be interpreted appropri-
ately. Sadly, the reader of psychological articles is currently most often blind to
which analyses, data transformations, and exclusion criteria have been tried before
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Figure 6.9: An online protocol for data blinding. In three steps, the blinding
procedure is standardized and registered. The full transparency is awarded with
a blinding certificate.

the authors settled upon the reported analyses. Thus, the online blinding protocol
presents a promising opportunity to unblind the reader.

Signing the contract does of course not prevent cheating. In principle, re-
searchers could sign the contract, but still perform all the hazardous post-hoc
practices described earlier. Thanks to the signing of the contract, however, these
questionable research practices are now clearly classified as fraud and cannot be
engaged in unwittingly.
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6.7 Discussion and Conclusion

This article advocates analysis blinding and add it to the toolbox of improved
practices and standards that are currently revolutionizing psychology. We believe
that the blinding of analyses is an intuitive procedure that can be achieved in
almost any study. The method is of particular interest for preregistered studies,
because blinding keeps intact the virtue of true confirmatory hypothesis testing,
while offering the flexibility that an analyst needs to account for peculiarities of a
data set. Nonetheless, for studies that are not preregistered, blinding analyses can
substantially improve the rigor and reliability of experimental findings. Blinding
allows a sharp distinction between exploratory and confirmatory analyses, while
allowing the analyst almost complete flexibility in selecting appropriate statistical
models.

We are aware that, as any other method to improve the reliability of science,
blinding is not a silver-bullet solution. In addition, blinding has to be performed
honestly and accurately.

6.7.1 Honesty

First of all, blinding brings the acclaimed virtues only when performed honestly.
Claiming that you have performed analyses blinded although you peeked at the
data is of course highly questionable. It is, however, not always easy to abstain
from doing so. Data is most often collected in the same lab as where it is analyzed.
A discussion during lunch between the data manager and the analyst might supply
the analyst with information he or she did not want to know. As a partial solution
to this problem, the proposed online registration of a blinding protocol increases
the awareness of sticking to the rules.

6.7.2 Errors in Analysis Discovered After Unblinding

Another potential problem that can occur when data analyses are designed blindly,
is that they simply turn out not to work when the blind is lifted. For example, in
spite of a careful choice of the blinding method, the analyses turn out not to be
able to account for a crucial property of the data, e.g., bimodality of a variable’s
distribution. Also, it is possible that simple coding errors are only discovered
after the blind is lifted. Such mistakes are frustrating: the analyses cannot be
interpreted as purely confirmatory anymore.

When analyses turn out not to work on the unblinded data, there are two
possible solutions. First, one can simply describe what went wrong and include
a description of both the planned and the corrected analyses in the manuscript.
Another solution is to go one step further and get a second analyst involved and
repeat the blinding procedure.

We want to stress that without blinding, the chances of ending up with ex-
ploratory analyses is much larger. Researchers often try a number of analyses on
the real data before settling on the analysis to be described in the eventual article
(John et al., 2012). The analyses they eventually present should often be labeled
exploratory.
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6.7.3 Can Blinding Really Improve Reproducibility?

As we noted above, analysis blinding is already being employed in other fields such
as medicine and physics. Meta studies have revealed that experiments in which a
blinding technique is applied show on average fewer positive results (Hróbjartsson
et al., 2014) and report smaller effect sizes (Bello et al., 2014; Holman, Head,
Lanfear, & Jennions, 2015) than studies without blinding procedure. These re-
sults should be viewed in relation to the findings from the reproducibility project
by Open Science Collaboration (2015), who reported that only 39% of the effects
found in the original articles were qualitatively replicated, and that the average
effect size of the replication studies was about half as large as the average effect
sizes reported in the original studies. These and other results suggest that blind-
ing (and other procedures to tighten the methodological screws) can increase the
reproducibility and reliability of results reported in experimental psychology.

6.7.4 Get Excited Again

We want to finish our plea for analysis blinding on a personal note. We know many
students and colleagues who analyze their data inside and out. So much time is
spent on the analysis, iterating between analysis and outcome, that the eventual
results can hardly be called exciting. We ourselves have had this experience too.
Now, having used a blinding protocol in our own work, we have experienced how
blinding can bring back the excitement in research. Once you have settled on a
particular set of analyses, lifting the blind is an exciting event – it can reveal the
extent to which the data support or undermine your hypotheses, without having
to worry about whether the analysis was either biased or inappropriate.
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Chapter 7

Comparing Analysis Blinding with
Preregistration in the Many-Analysts

Religion Project

Abstract

In psychology, preregistration is the most widely used method to ensure
the confirmatory status of analyses. However, the method has disadvantages:
not only is it perceived as effortful and time consuming, but reasonable devi-
ations from the analysis plan demote the status of the study to exploratory.
An alternative to preregistration is analysis blinding, where researchers de-
velop their analysis on an altered version of the data. In this study, we
compare the reported efficiency and convenience of the two methods in the
context of the Many-Analysts Religion Project. In this project, 120 teams
answered the same research questions on the same dataset, either prereg-
istering their analysis (n = 61) or using analysis blinding (n = 59). Our
results provide strong evidence (BF = 11.40) for the hypothesis that anal-
ysis blinding leads to fewer deviations from the analysis plan and if teams
deviated they did so on fewer aspects. Contrary to our hypothesis, we found
strong evidence (BF = 13.19) that both methods involved approximately
the same amount of work. Finally, we found no and moderate evidence
on whether analysis blinding was perceived as less effortful and frustrating,
respectively. We conclude that analysis blinding does not mean less work,
but researchers can still benefit from the method since they can plan more
appropriate analyses from which they deviate less frequently.

This chapter has been submitted for publication as Sarafoglou, A., Hoogeveen, S., & Wagen-
makers, E. J. (2022). Comparing Analysis Blinding With Preregistration In The Many-Analysts
Religion Project. Available as PsyArXiv preprint : https://psyarxiv.com/6dn8f/
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7. Comparing Analysis Blinding with Preregistration in the
Many-Analysts Religion Project

7.1 Introduction

The “crisis of confidence” in psychological science (Pashler & Wagenmakers, 2012)
inspired a variety of methodological reforms that aim to increase the quality and
credibility of confirmatory empirical research. Among these reforms, preregistra-
tion is arguably the most vigorous and widespread. Preregistration protects the
confirmatory status of the study by restricting the researchers’ degrees of freedom
in conducting a study and analyzing the data (e.g., Chambers, 2017; Munafò et al.,
2017; Wagenmakers et al., 2012). When preregistering studies, researchers specify
in detail the study design, sampling plan, measures, and analysis plan before data
collection. By specifying these aspects beforehand, researchers protect themselves
against their (subconscious) tendencies to select favorable –that is, statistically
significant– results.

Preregistration is fair in the sense that it restricts the researchers’ degrees of
freedom. However, this implies that researchers must anticipate all possible pe-
culiarities of the data and define analysis paths for each scenario, which can be
perceived as effortful and time-consuming (Nosek & Lindsay, 2018; Sarafoglou,
Kovacs, Bakos, Wagenmakers, & Aczel, 2021). Indeed, it is rare for researchers
to adhere fully to their preregistration plan. When comparing preregistrations to
published manuscripts, two recent studies found that only a small minority did not
contain any deviations from the preregistration: two out of 27 in Claesen, Gomes,
Tuerlinckx, and Vanpaemel (2021) and seven out of 20 in Heirene et al. (2021).
More serious still is the dilemma that preregistration does not distinguish between
significance seeking and selecting appropriate methods to analyze the data. Re-
searchers face a harsh penalty for reasonable deviations from their preregistered
analysis plan, for instance, by removing outliers, transforming skewed data, or
account for measurement invariance. By adjusting the analysis plan to properties
of the data, the analysis will be demoted from “confirmatory” to “exploratory”
even when the adjustments were entirely appropriate and independent from any
significance test that was entertained. This makes preregistration a challenge for
research that includes any sort of non-trivial statistical modeling (e.g., Dutilh et
al., 2017b).

An alternative to preregistration is analysis blinding (Dutilh, Sarafoglou, &
Wagenmakers, 2019; MacCoun, 2020; MacCoun & Perlmutter, 2015; MacCoun
& Perlmutter, 2018). Just like preregistration, analysis blinding safeguards the
confirmatory status of the analysis. However, the analyst does not specify their
analysis before data collection. Instead, the analyst develops their analysis plan
based on a blinded version of the data, that is, a dataset in which a collaborator
or an independent researcher has removed any potentially biasing information.

One can create a blinded version of the data, for instance, by providing the
analyst with a subset of the data (i.e., data that only feature a subset of partici-
pants, or data in which the key outcome measure is removed), by shuffling the key
outcome measures in regression designs, or by equalizing the group means across
experimental conditions in factorial designs (see Dutilh, Sarafoglou, & Wagen-
makers, 2019 for an overview on different blinding techniques for common study
designs in experimental psychology). Then, the analyst creates an analysis script
that preprocesses the blinded data (e.g., explores the factor structure of relevant
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measure, identifies outliers, handles missing cases) and executes the appropriate
statistical analysis. After the analyst is satisfied with their analysis plan they
receive access to the real data and execute their script without any changes. To
make this process transparent, the analyst may choose to publish their analytic
script to a public repository such as the Open Science Framework (OSF; Center
for Open Science, 2021) before accessing the data.

The benefit of analysis blinding is that it offers the flexibility to explore the
data and fit statistical models to its idiosyncrasies, yet preventing an analysis that
is tailored to the outcomes. In addition, it could save researchers time and effort
since the additional step of creating a preregistration document is omitted.

7.1.1 Current Study

The current study assesses the potential benefits of analysis blinding over the
preregistration of analysis plans in terms of efficiency and convenience. As part of
the Many-Analysts Religion Project (MARP; The MARP Team, 2022), we invited
teams to answer two research questions on the relationship between religiosity and
well-being. Specifically, the teams investigated (1) whether religious people self-
report higher well-being, and (2) whether the relation between religiosity and
self-reported well-being depends on perceived cultural norms of religion. Relevant
to this study is that we assigned the teams to two conditions, that is, they either
preregistered their analysis plan or used analysis blinding.

To complete the project, the teams had to go through two distinct stages. In
stage 1 the teams had to conceptualize, write, and submit their analysis plan. They
did so either by submitting a completed preregistration template, or by submitting
an executable analysis script based on the blinded version of the data. In stage 2,
the teams were granted access to the real dataset to execute their planned analysis.
After the sign-up and after each stage of the project, the teams completed brief
surveys on their experiences with planning and executing the analysis and on how
their change of beliefs on the two MARP research questions.

7.1.2 Research Question and Hypotheses

Our overarching research question was: Does analysis blinding have benefits over
preregistration in terms of workload and convenience? We predicted four benefits
of analysis blinding, which led to the following hypotheses:

1. The total workload spent on planning and executing the analysis is higher
for teams in the preregistration condition than for teams in the analysis
blinding condition

2. The perceived effort for planning and executing the analysis is higher for
teams in the preregistration condition than for teams in the analysis blinding
condition

3. The perceived frustration when planning and executing the analysis is higher
for teams in the preregistration condition than for teams in the analysis
blinding condition.
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Table 7.1: Overview of URLs to this Study’s Materials Available on the Open
Science Framework.

Resource URL

Project page https://osf.io/vy8z7/

Preregistration https://osf.io/2cdht/

Data and analysis code https://osf.io/gkxqy/

Stage 1 materials for preregistration teams https://osf.io/a5ent/

Stage 1 materials for analysis blinding teams https://osf.io/ktvqw/

Surveys and ethics documents https://osf.io/kgqze/

MARP data https://osf.io/6njsy/

4. Teams in the preregistration condition deviate more often from their planned
analysis than teams in the analysis blinding condition and when they deviate
from their analysis plan, teams in the preregistration condition deviate on
more items than teams in the analysis blinding condition.

7.2 Disclosures

7.2.1 Preregistration and Analysis Blinding

Prior to collecting data, we preregistered the intended analyses on the Open Sci-
ence Framework. These analyses were then verified and adjusted –if necessary–
based on the blinded version of the data. The author SH acted as data manager
(i.e., blinded the dataset) and author AS verified and adjusted the data analysis.
The final analysis pipeline was uploaded to the OSF project page, before the anal-
ysis on the real data was carried out. Any deviations from the preregistration are
mentioned in this chapter.

7.2.2 Data and Materials

Table 7.1 shows an overview of important resources of the study. Readers can
access the preregistration, the materials for the study, the blinded and real data
(including relevant documentation), and the R code to conduct all analyses (in-
cluding all figures), in our OSF folder at: https://osf.io/vy8z7/.

7.2.3 Reporting

We report how we determined our sample size, all data exclusions, and all manip-
ulations in the study. However, since this project was part of the MARP we will
not describe all measures in this study. Here, we only describe measures relevant
to the research question. The description of the remaining measures can be found
in The MARP Team (2022).

118

https://osf.io/vy8z7/
https://osf.io/2cdht/
https://osf.io/gkxqy/
https://osf.io/a5ent/
https://osf.io/ktvqw/
https://osf.io/kgqze/
https://osf.io/6njsy/
https://osf.io/vy8z7/


7.3. Methods

7.2.4 Ethical approval

The study was approved by the local ethics board of the University of Amster-
dam (registration number: 2019-PML-12707). All participants were treated in
accordance with the Declaration of Helsinki.

7.3 Methods

7.3.1 Participants and Recruitment

The analysis teams were recruited through advertisements in various newsletters
and email lists (e.g., the International Association for the Psychology of Religion
(IAPR), Cognitive Science of Religion (CSR), Society for Personality and Social
Psychology (SPSP), and the Society for the Psychology of Religion and Spirituality
(Div. 36 of the APA)), on social media platforms (i.e., blogposts and Twitter),
and through the authors’ personal network. We invited researchers from all career
stages (i.e., from doctoral student to full professor). Teams were allowed to include
graduate and undergraduate students in their teams as long as each team also
included a PhD candidate or a more senior researcher. Initially, N = 173 teams
signed up to participate in the MARP. From those teams, N = 127 submitted an
analysis plan and N = 120 completed the whole project. Out of the final sample of
N = 120 teams, 61 had been assigned to the preregistration condition, and 59 had
been assigned to the analysis blinding condition. As compensation, the members
from each analysis team were included as co-authors on the MARP manuscript.
No teams were excluded from the study.

7.3.2 Sampling Plan

The preregistered sample size target was set to a minimum of 20 participating
teams, which was based on the number of recruited teams in the many analysts
project from Silberzahn and Uhlmann (2015). However, we did not set a maximum
number of participating teams. The recruitment of teams was ended on December
22, 2020.

7.3.3 Study Design

The current design was a between-subjects design (at the team level). Our depen-
dent variables were (1) total workload in hours, (2) perceived effort, (3) perceived
frustration, and (4) deviation from the analysis plan. Our independent variable
was the assigned analytic strategy which had two levels (preregistration, analysis
blinding).

7.3.4 Randomization

The assignment of teams to conditions was done with block randomization. After
sign-up, each analysis team was randomly assigned to one of the two conditions
in blocks of four so that the groups were approximately equally sized at all times.
In four cases, members from different teams requested to collaborate. When those
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teams were assigned to different conditions and they had not yet submitted an
analysis plan, they were instructed not to fill out the preregistration template but
to follow the instructions of the analysis blinding condition instead.

7.3.5 Materials

In stage 1 each team received the research questions, a project description and
a brief summary of the theoretical background on the relationship between reli-
giosity and well-being, the original materials, the documentation for the MARP
data, and instructions specific to their assigned condition. In stage 2, teams were
granted access to the MARP data. After sign-up, and after completing stage 1
and 2, the teams were instructed to fill out surveys, further referred to as pre-
survey, mid-survey, and post-survey. The pre-survey included questions about the
background of the teams. The mid-survey and the post-survey included questions
about the workload and about their perceived level of frustration and effort during
the process. The post-survey also inquired whether and how the teams deviated
from their submitted analysis plan. Only one survey per analysis team was re-
quired and the teams were instructed to either sum up the responses from each
team member (for workload items) or give joint answers depending on the consen-
sus within the team. The pre-survey, mid-survey, and post-survey were generated
using Google Forms.

7.3.5.1 Project Description and Theoretical Background

Teams received a 5 page document with an overview of the MARP, the research
questions, two paragraphs on the theoretical background on the relationship be-
tween religiosity and well-being, and a description of the measures and some fea-
tures in the MARP data (i.e., number of participants, number of countries).

7.3.5.2 Original Materials

The teams received the cross-cultural survey used to collect the MARP data. This
survey was provided in English and contained all items and answer options.

7.3.5.3 MARP Data and Data Documentation

The MARP data featured information of 10,535 participants from 24 countries
collected in 2019. The data were collected as part of the cross-cultural religious
replication project (see also Hoogeveen et al., 2021; Hoogeveen & van Elk, 2018).
The MARP data contained measures of religiosity, well-being, perceived cultural
norms of religion, as well as some demographics.

To achieve analysis blinding, we shuffled the key outcome variable, that is the
well-being scores. In the blinded data, we ensured that the scores on a country level
remained intact to facilitate hierarchical modeling and outlier detection. That is,
we shuffled well-being within countries so that the average well-being score for each
country was the same in the real and blinded data. In addition, we ensured that
the well-being scores within each individual remained intact, that is, well-being
scores associated with one individual were shuffled together.
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The data documentation featured a detailed description for each of the 46
columns in the data. It disclosed the scaling of the items and whether and how
many missing values there were in each variable.

7.3.5.4 Independent Variable: Assigned Analytic Strategy

Teams were randomly assigned to the preregistration condition or to the analysis
blinding condition. These conditions differed with respect to the instructions and
materials they received in stage 1. Teams in the preregistration condition received
a document which briefly explained preregistration and a preregistration template
(see appendix). The template was a shortened version of the “OSF Preregistra-
tion” template from the Center of Open Science. It entailed only the aspects of
preregistration related to the analysis plan that is the (1) operationalization of the
variables, (2) the analytic approach, (3) outlier removal and handling of missing
cases, and (4) inference criteria.

Teams in the analysis blinding condition received a document which briefly
explained analysis blinding and a blinded version of the MARP data. Participants
received the following information about the blinded data:
In this blinded dataset, we made sure that

• The relationship between well-being and all other independent variables is
destroyed.

• Data on the country level are intact. This means that, for instance, the mean
religiosity we measured in Germany is identical in the blinded version of the
data as well as in the real data.

• All well-being scores are intact within a person.

• All religiosity scores are intact within a person.

7.3.5.5 Dependent Variables: Experienced Workload, Experienced
Effort, Experienced Frustration, and Deviations From the
Planned Analysis

In the mid-survey and in the post-survey we asked participants to indicate their
experienced, effort, and frustration to accomplish the tasks from stage 1 (i.e.,
writing and submitting the analysis plan) and stage 2 (i.e., executing the analysis),
respectively.

One item asked to indicate how many hours it took the team to accomplish the
tasks at the respective stage of the project. The teams could respond by giving
numerical values and were instructed to add up the work hours for each team
member.

One item asked to indicate how hard the team had to work to accomplish the
task during the respective stage. This item was answered using a 7-point Likert-
type scale from 1 (Effort was very low) to 7 (Effort was very high). Lastly, one item
asked to indicate how frustrated the team was during the respective stage (i.e.,
whether they felt insecure, discouraged, irritated, stressed, or annoyed). This item
was answered using a 7-point Likert-type scale from 1 (Frustration was very low)
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to 7 (Frustration was very high). The items concerning the perceived effort and
frustration were inspired by Hart (2021). The measures “Workload”, “Perceived
effort”, and “Perceived frustration” were computed by summing up the indicated
values for stage 1 and stage 2 for each team.

In the post-survey, we asked teams whether they deviated from their analysis
plan after they received the real data. If they answered “Yes” to that question,
they indicated out of a catalogue of eight aspects which aspects they deviated on.
These aspects were: (1) hypothesis, (2) included variables, (3) operationalization
of dependent variables, (4) operationalization of independent variables, (5) ex-
clusion criteria, (6) statistical test, (7) statistical model, and (8) direction of the
effect.

The items concerning the deviations from the analysis plan were based on a
subset of the catalogue presented in Claesen et al. (2021). In addition, the teams
could describe in a text field which peculiarities caused them to deviate from their
analysis plan.1

7.3.5.6 Anticipated Workload

As an additional exploratory variable we measured whether the indicated work
hours were more time than the team had anticipated. This item was answered
using a 5-point Likert-type scale from 1 (No, much less) to 5 (Yes, much more).
We computed the measure “Anticipated Workload” by summing up the indicated
values for stage 1 and stage 2 for each team.

7.3.5.7 Respondents’ Research Background

In the pre-survey, five items asked respondents about their research background.
The first item asked how many people the analysis team consists of. In the fi-
nal dataset, this number was updated for teams that requested to collaborate,
meaning that in these cases the number of team members were summed. The
second item asked to describe the represented subfield(s) of research in the team.
The third item asked about what positions were represented in the team. The
answer options were (1) doctoral student, (2) post-doc, (3) assistant professor, (4)
associate professor, and (5) full professor. The fourth item asked the teams to
rate their theoretical knowledge on the topic of religion and well-being. The fifth
item asked the teams to rate their knowledge on methodology and statistics. The
fourth and fifth item were answered using a 5-point Likert-type scale from 1 (No
knowledge) to 5 (Expert). The teams were instructed that if they participated as
a team that they should indicate their collective knowledge.

7.3.6 Procedure

We started advertising MARP on September 11, 2020. After teams had signed-up
to the project we asked them to complete the pre-survey. The teams then received
their analysis team number, access to their OSF project folder, and all materials

1Four teams indicated that they deviated from their analysis plan, but selected “no” to all
the options. These teams were coded to have one deviation.
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and instructions needed to complete stage 1 of the project. To complete stage
1, the teams had to upload their analysis plans to their OSF project page and
complete the mid-survey. We then “checked-out” the submitted analysis plans
(i.e., created a file in their OSF project folder that cannot be edited or deleted).
The deadline to complete stage 1 was December 22, 2020. In stage 2, the teams
then were granted access to the real data. To finalize stage 2 of the project, the
teams had to complete the post-survey. We also encouraged the teams to upload
all relevant files, together with a brief “ReadMe” document and a summary of
their results to their project folder. We discouraged the open communication of
analysis strategies or results (e.g., through Twitter) until after the official deadline
of stage 2 of the project, which was February 28, 2021.

7.3.7 Statistical Model

We used Bayesian inference for all statistical analyses. As preregistered, we aimed
to collect at least strong evidence (i.e., a Bayes factor of at least 10) in favor
for our hypotheses. Each hypothesis was tested against the null hypothesis that
the respective outcomes are the same under both conditions. To test hypothesis
1 and 2, we conducted one-sided Bayesian independent samples t-tests. To test
hypothesis 3, we conducted a one-sided Bayesian Mann-Whitney U test. For
hypothesis 1 and 2, we additionally conducted a robustness analysis to check
how different prior specifications influence the results and a sequential analysis to
check how the evidence changes as the data accumulates. For all three analyses,
we assigned a one-sided Cauchy prior distribution with scale 0.707 to the effect
size (i.e., δ ∼ Cauchy−(0, 0.707)). These analyses were conducted in JASP (JASP
Team, 2021).

To test hypothesis 4, we fitted two zero-inflated Poisson regression models as
defined by Lambert (1992) and implemented in McElreath (2016). This model as-
sumes that with probability θ a team will report zero deviations and with probabil-
ity 1−θ the number of reported deviations (i.e., zero or higher) are estimated using
a Poisson(λ) distribution. The first model included “analysis method” as predic-
tor, the second model did not. McElreath (2016) expressed the logit-transformed
parameter θ′ as the additive term of an intercept and a predictor variable. Follow-
ing their recommendations, we assigned a standard normal distribution as prior
to both the intercept parameter and the predictor variable. Similarly, McElreath
(2016) expressed the log-transformed parameter λ′ as the additive term of an in-
tercept and a predictor variable, to which we assigned a Normal(0, 10) distribution
and a standard normal distribution as prior, respectively.

We then estimated the log marginal likelihoods of these models using bridge
sampling and computed the Bayes factor for these two models (Gronau et al.,
2017; Gronau, Singmann, & Wagenmakers, 2020). This Bayes factor compared
the null hypothesis to the encompassing hypothesis which lets all parameters free
to vary. Afterwards, we applied the unconditional encompassing method on the
first model to estimate the proportion of prior and posterior samples in agreement
with our hypothesis and again computed a Bayes factor (Gelfand, Smith, & Lee,
1992; Hoijtink, 2011; Klugkist, 2008; Klugkist et al., 2005; Sedransk, Monahan,
& Chiu, 1985). This Bayes factor compared hypothesis 4 to the encompassing
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hypothesis which lets all parameters free to vary. Finally, we received the Bayes
factor comparing hypothesis 4 to the null hypothesis by multiplying the two Bayes
factors. The analysis was conducted in R (R Core Team, 2021).

Deviations from the Preregistration In our preregistration, we mentioned
that the catalogue listing on which aspects the teams deviated on would span
six items. However, when preparing the study materials we decided to split the
aspects “operationalization of variables” into “ operationalization of dependent
variables” and “operationalization of independent variables” and to add the aspect
“statistical test”.

We preregistered that we would exclude no teams from the analyses. However,
some teams did not complete all surveys and thus we were unable to calculate all
relevant outcome measures. These teams were excluded from the analysis of those
hypotheses for which no outcome measures could be calculated.

Concerning hypothesis 1, we preregistered to conduct a one-sided Bayesian in-
dependent samples t-test with “total workload” as dependent variable and “anal-
ysis method” as independent variable. We preregistered that we did not plan to
transform any variables. However, after inspecting the blinded data, we decided to
log transform the variable “total workload” since this variable was heavily right-
skewed.

Concerning hypothesis 2, we preregistered to conduct a one-sided Bayesian
Mann-Whitney test with “perceived effort” as dependent variable and “analysis
method” as independent variable. After inspecting the blinded data, we decided
that a Bayesian independent samples t-test would be more appropriate since we
treated the variable “perceived effort” as continuous.

Concerning hypothesis 3, we preregistered that we test this hypothesis using a
one-sided Bayesian Mann-Whitney test with “perceived frustration” as dependent
variable and “analysis method” as independent variable. We did not change the
preregistered analysis plan. Even though we treat the variable “perceived frus-
tration” as continuous, a Mann-Whitney test seemed most appropriate since the
variable did not meet the normality assumption even after we applied transforma-
tions.

7.4 Results

7.4.1 Sample Characteristics

The career stages and research backgrounds featured in each team are shown in
Table 7.2. As apparent from Figure 7.1, for both conditions the teams reported less
knowledge on the topic of religion and well-being (left panel; 25% and 31% of teams
reported to have (some) expertise on this topic in the preregistration and analysis
blinding condition, respectively) than on their knowledge on methodology and
statistics (right panel; 75% and 89% of teams reported to have (some) expertise
on this topic in the preregistration and analysis blinding condition, respectively).
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Figure 7.1: Responses to the survey questions on the teams’ reported knowledge
regarding religion and well-being (top panel) and knowledge regarding methodol-
ogy and statistics (bottom panel). In each panel, the top bar represents responses
from teams who preregistered and the bottom bar represents responses from teams
who did analysis blinding. For each item, the number to the left of the data bar
(in brown/orange) indicates the percentage of teams that reported little to no
knowledge. The number in the center of the data bar (in grey) indicates the per-
centage of teams that were neutral. The number to the right of the data bar (in
green/blue) indicates the percentage of teams that reported (some) expertise.

125



7. Comparing Analysis Blinding with Preregistration in the
Many-Analysts Religion Project

Table 7.2: Positions and domains featured in the analysis teams per
condition.

Preregistration Analysis Blinding

Positions
Doctoral Student 24/61 (39.34 %) 30/59 (50.85 %)
Post-doc 19/61 (31.15 %) 26/59 (44.07 %)
Assistant Professor 18/61 (29.51 %) 14/59 (23.73 %)
Associate Professor 16/61 (26.23 %) 13/59 (22.03 %)
Full Professor 7/61 (11.48 %) 10/59 (16.95 %)

Domains
Social Psychology 24/61 (39.34 %) 19/59 (32.2 %)
Cognition 14/61 (22.95 %) 14/59 (23.73 %)
Religion and Culture 14/61 (22.95 %) 14/59 (23.73 %)
Methodology and Statistics 11/61 (18.03 %) 11/59 (18.64 %)
Health 9/61 (14.75 %) 10/59 (16.95 %)
Psychology (Other) 9/61 (14.75 %) 8/59 (13.56 %)

Note. Teams may include multiple members of the same position
and in the same domain.

7.4.2 Exclusions

One team in the analysis blinding condition and one team in the preregistration
condition did not fill in the stage 1 survey therefore could not be included in the
analysis. In addition, one team in the preregistration condition did not report
their perceived effort in the survey from stage 1 and was therefore excluded from
the analysis regarding hypothesis 2. Note that one team did not report deviations
because they did not submit a final analysis.

7.4.3 Confirmatory Analyses

Workload Hypothesis 1 stated that the total workload of planning and exe-
cuting the analysis is lower for teams in the analysis blinding condition than for
teams in the preregistration condition. We collected strong evidence for the null
hypothesis, that is, that both teams take the same amount of time, with a Bayes
factor of BF0− = 13.19. Figure 7.2 illustrates the responses of the reported work-
load. Based on the descriptives, the effect seems to go in the direction opposite
to our predictions, that is, the total hours spent on executing the task was in
fact lower for teams in the preregistration condition (M = 23.94, SD = 24.90;
log-transformed M = 2.79, SD = 0.88) than for teams in the analysis blinding
condition (M = 33.12, SD = 35.34; log-transformed M = 3.08, SD = 0.89). The
results are robust against different prior settings. A sequential analysis showed
that as the data accumulate, the evidence in favor for the null hypothesis gradually
increases.

Figure 7.3 illustrates the responses of the reported workload separately for
stage 1 and stage 2. The difference in total workload spend was the largest in
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Figure 7.2: Reported total workload of stage 1 and stage 2 for each analysis
team. The top panel depicts the workload on the log scale, the bottom panel on
the original scale. The upper panel shows (in orange) responses of teams in the
preregistration condition. The lower panel shows (in green) responses of teams
in the analysis blinding condition. The data suggests strong evidence in favor of
the null hypothesis that both teams take an equal amount of time planning and
executing the analysis. Points are jittered to enhance visibility.
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Figure 7.3: Reported total workload of stage 1 (top) and stage 2 (bottom) for
each analysis team. The upper panel shows (in orange) responses of teams in the
preregistration condition. The lower panel shows (in green) responses of teams
in the analysis blinding condition. In stage 1, teams required more time on cre-
ating an executable script based on the blinded data than teams who created a
preregistration. In stage 2, teams in both conditions required approximately the
same amount of time for executing their analysis. Points are jittered to enhance
visibility.

stage 1 of the project, that is, when preregistering the analysis or analyzing the
blinded data. Here, teams in the analysis blinding condition took about twice as
much time (M = 19.25) than teams in the preregistration condition (M = 8.90).

For stage 1, 25.0% of teams who preregistered reported that completing the
task was more work than anticipated, compared to 48.3% of teams who did analysis
blinding. When executing the analysis (i.e., stage 2 of the project), teams in both
conditions approximately needed 15 hours to complete the task. For stage 2, 29.5%
of teams who preregistered reported that this was more work than anticipated,
compared to 35.6% of teams who did analysis blinding.
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Perceived Effort and Frustration Hypothesis 2 stated that the perceived
effort of planning and executing the analysis is lower for teams in the analysis
blinding condition than for teams in the preregistration condition. The data were
inconclusive. We found no evidence either in favor or against our hypothesis, with
a Bayes factor of BF−0 = 0.41. These results are not robust against different
prior settings. Depending on the prior choices, the evidence in favor of the null
hypothesis fluctuates between being completely uninformative (i.e., BF0− = 0.92)
to being moderately high (i.e., BF0− = 4.52). As the data accumulates, the
evidence in favor for H0 fluctuates, suggesting that more data is needed to draw
an informative conclusion. The left panel in Figure 7.4 illustrates the responses
of teams concerning the perceived effort. Both groups reported perceived effort
to be moderate to somewhat high, with an average of M = 8.78, SD = 2.17 for
teams in the preregistration condition and M = 8.44, SD = 2.46 for teams in the
analysis blinding condition.

Hypothesis 3 stated that the perceived frustration when planning and executing
the analysis is lower for teams in the analysis blinding condition than for teams in
the preregistration condition. We collected moderate evidence for the null hypoth-
esis, with a Bayes factor of BF0− = 5.00. The right panel in Figure 7.4 illustrates
the responses of teams concerning the perceived frustration. Both groups reported
perceived frustration to be somewhat low, with an average of M = 5.97, SD = 2.22
for teams in the preregistration condition and M = 5.98, SD = 2.66 for teams in
the analysis blinding condition.

Deviation from Analysis Plan Hypothesis 4 stated that teams in the prereg-
istration condition deviate more often from their planned analysis than teams in
the analysis blinding condition and when they deviate from their analysis plan,
teams in the preregistration condition deviate on more aspects than teams in the
analysis blinding condition. An overview of the reported deviations are given
in Table 7.3. We collected strong evidence in favor for our hypothesis, that is,
BFr0 = 11.40. The estimated probability that a team would deviate from their
analysis plan was almost twice as high for for teams who preregistered (i.e., 38%)
compared to team who did analysis blinding (i.e., 20%).

The aspect most teams deviated from was their exclusion criteria (11 teams),
the included variables in the model (9 teams), the operationalization of the in-
dependent variables (8 teams) and the statistical model (8 teams). A difference
between teams who did analysis blinding and preregistration was most apparent in
the exclusion criteria; from eleven teams, 10 were in the preregistration condition.
Also in the operationalization of the independent variable, almost all deviations
were reported by teams who preregistered (8 out of 9).

7.4.4 Exploratory Analysis

We conducted an exploratory analysis to test whether the effect of workload goes
in the direction opposite to our predictions, that is, whether the total workload
to plan and execute the task is higher for teams in the analysis blinding condition
than for teams in the preregistration condition. The data suggests inconclusive
evidence for this hypothesis, BF+0 = 1.511.
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Figure 7.4: Responses to the survey questions about the perceived effort (top
panel) and frustration (bottom panel) of planning and executing the analysis.
The top panel shows responses of teams in the preregistration condition. The bot-
tom panel shows responses of teams in the analysis blinding condition. The data
suggests no and moderate evidence on whether analysis blinding was perceived as
less effortful and frustrating, respectively. Points are jittered to enhance visibility.
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Table 7.3: Reported deviations form planned analysis per condition.

Preregistration Analysis Blinding

Nr. of Teams Reporting Deviations 24/61 (39.34 %) 10/59 (16.95 %)
Aspects

Exclusion Criteria 10/61 (16.39 %) 1/59 (1.69 %)
Included Variables 5/61 (8.20 %) 4/59 (6.78 %)
Operationalization of IV 8/61 (13.11 %) 1/59 (1.69 %)
Statistical Model 4/61 (6.56 %) 4/59 (6.78 %)
Statistical Test 5/61 (8.20 %) 1/59 (1.69 %)
Operationalization of DV 2/61 (3.28 %) 1/59 (1.69 %)
Hypothesis 0/61 (0 %) 0/59 (0 %)
Direction of Effect 0/61 (0 %) 0/59 (0 %)

Note. Teams may report multiple deviations.

Figure 7.5: Reported deviations from planned analysis per condition. The green
bars represent teams in the analysis blinding condition, the orange bars represent
teams in the preregistration condition. More teams in the analysis blinding condi-
tion reported no deviations from their planned analysis and if they had deviated,
they did so on less aspects than teams in the preregistration condition.

131



7. Comparing Analysis Blinding with Preregistration in the
Many-Analysts Religion Project

7.5 Constraints on Generality

The outcomes of this study might be dependent on the complexity of the data
and hypotheses researchers are investigating. Specifically, we expect data with a
simpler structure than the MARP data (i.e., non-nested structure, no composite
measures) to lead to fewer deviations from the analysis plans, whereas data with
a more complex structure (e.g., requiring an extensive amount of preprocessing,
such as in fMRI analyses) to magnify the present results.

7.6 Discussion

The current study investigated whether analysis blinding has benefits over the
preregistration of the analysis plan in terms of efficiency and convenience. We an-
alyzed data from 120 teams participating in the Many-Analysts Religion Project
who either preregistered their analysis or created a reproducible script based on
blinded data. We hypothesized that analysis blinding would save researchers time,
and reduce their perceived effort and frustration to complete the project. Addi-
tionally, we hypothesized that analysis blinding would lead to fewer deviations
from the analysis plan.

One of the four hypotheses was supported. Compared to teams who preregis-
tered, teams who did analysis blinding deviated less often from the analysis plan
and if they did, they did so for fewer aspects. Teams in the analysis blinding
condition better anticipated their final analysis strategies, particularly with re-
spect to exclusion criteria and operationalization of the independent variable. We
regard the finding that analysis blinding has a protective effect against deviations
as good news for the field of meta-science, since (fear of) deviation is a well-known
problem of preregistration (Claesen et al., 2021; Heirene et al., 2021; Nosek et al.,
2019).

Contrary to our prediction, we found strong evidence against our hypothesis
that analysis blinding would reduce workload. Teams who did analysis blinding
and teams who preregistered spent approximately the same amount of time plan-
ning and executing the analysis. We assumed that teams who preregistered had
a higher workload since they were required to create a preregistration document
in stage 1 and write and execute this plan in stage 2. Teams who did analysis
blinding wrote their analysis scripts already in stage 1 and only had to execute
it in stage 2. This workload benefit for analysis blinding was expected especially
since some of the proposed analyses were quite complex (including factor analyses,
structural equation models, and hierarchical regression models).

Lastly, we cannot draw conclusions about the hypotheses on perceived effort
and frustration since the data did not provide strong evidence either in favor of or
against our hypotheses. Our data suggested moderate evidence for the hypothesis
that teams in both conditions experienced equal amounts of frustration and no
evidence either in favor or against the hypothesis that analysis blinding would be
experienced as less effortful.

Why was workload approximately equal under preregistration versus analysis
blinding? Descriptives on stage 1 showed that teams who preregistered were in
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fact quicker than teams who did analysis blinding. In itself, this result is not
surprising: one would expect preregistration to be somewhat faster in stage 1 and
that the expected benefit of analysis blinding would mostly occur in stage 2. What
was surprising, however, was how much faster the teams who preregistered were
in stage 1: they took only about half as much time than teams who did analysis
blinding.

One explanation is be that in the current study the preregistration of the anal-
ysis was particularly simple. The literature is recommending structured workflows
and templates to assist researchers with their preregistrations (Nosek et al., 2019;
van ’t Veer & Giner-Sorolla, 2016). That applied to the MARP in that the re-
searchers adhered to a highly structured workflow. That is, the research questions
were fixed, the teams were provided with a preregistration template, and they had
access to the theoretical background of the research question and a comprehensive
data documentation. In addition, since the teams analyzed preexisting data, they
preregistered only their analysis plan instead of all aspects of the study (i.e., study
design, sampling plan, materials).

Descriptives on stage 2 showed that teams who preregistered and teams who
did analysis blinding took about the same amount of time to execute the analysis.
We speculate that this result may be due to an improper communication to the
teams. To complete stage 2, the teams were instructed to execute their planned
analyses on the real data and fill out the post-survey to indicate their conclusions
and summarize their results. We also provided teams with the type of information
required to fill in the post-survey and recommendations about how to organize
their OSF folder. These recommendations included to add a “ReadMe” file that
documents the uploaded files and a brief summary of the main conclusions. The
time associated with creating these files might have distorted our workload mea-
sure. It may be that in stage 2 most of the time was spent not on conducting
the analyses but on writing the report, so that differences in workload related to
the execution of the analysis may have gone undetected. If true, this would imply
that differences between the two methods may not be as relevant in real-world
research, where again most of the time may be spent on writing up the results
rather than executing the analyses. To gain more insight into the time it takes
teams to execute the analysis, future research should provide teams with instruc-
tions on how to document their files and results (or more generally speaking how
to complete the project) only after workload is measured.

Lastly, future research could assess whether the quality of preregistrations
is sufficiently high, or whether the quality of analyses plans are equal in both
conditions. We consider an analysis plan to be of high quality if it is “specific,
precise, and exhaustive” (J. M. Wicherts et al., 2016, p. 2). The quality of
the submitted preregistrations could be rated with the coding protocol used by
C. Veldkamp et al. (2017). However, to our knowledge there exists no comparable
coding protocol for submitted analysis code, checking, for instance, its clarity and
reproducibility. Such a protocol would still have to be developed and validated so
that the assessments of preregistrations and analysis scripts are comparable. Along
the same lines, future research could assess the quality of the final analysis, for
instance, by letting participating teams rate the work of their peers. However, such
a quality check should be done with caution: assessing the quality of an analysis
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imposes significant additional work on participating teams, is highly sensitive to
subjective analytic preferences, and ignores theoretical considerations.

The current study mainly focused on planning and executing a confirmatory
analysis. However, preregistration and analysis blinding involve other aspects as
well. Specifically, we cannot draw conclusions about the perceived workload and
convenience when researchers are required to preregister the whole study, including
the study design, sampling plan, and materials, or when researchers need to blind
a dataset first themselves, before they are handed to the analysts. Additionally,
we are unable to determine how analysis blinding and preregistration compare to
standard research. We deliberately decided not to include such a baseline condition
since the teams answered a theoretically relevant research question and thus we
saw the necessity to safeguarded the confirmatory status of all analyses.

We would like to emphasize that researchers do not have to choose between
preregistration and analysis blinding but they can use them in combination. In
a survey by Sarafoglou, Kovacs, et al. (2021) researchers reported that preregis-
tration benefited multiple aspects of the research process, including the research
hypothesis, study design, and preparatory work. We therefore regard it as most
beneficial if researchers preregister the study but finalize the statistical analysis
on a blinded version of the data–in fact this was the procedure we used in the
present report.

To our knowledge, this is the first study that sought to investigate analysis
blinding empirically. Analysis blinding ties in with current methodological re-
forms for more transparency since it safeguards the confirmatory status of the
analyses while simultaneously allowing researchers to explore peculiarities of the
data and account for them in their analysis plan. Our results showed that anal-
ysis blinding and preregistration imply approximately the same amount of work
but that in addition, analysis blinding reduced deviations from analysis plans.
As such, analysis blinding constitutes an important addition to the toolbox of
effective methodological reforms to combat the crisis of confidence.
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Chapter 8

Evaluating Multinomial Order
Restrictions with Bridge Sampling

Abstract

Hypotheses concerning the distribution of multinomial proportions typ-
ically entail exact equality constraints that can be evaluated using standard
tests. Whenever researchers formulate inequality constrained hypotheses,
however, they must rely on sampling-based methods that are relatively inef-
ficient and computationally expensive. To address this problem we developed
a bridge sampling routine that allows an efficient evaluation of multinomial
inequality constraints. An empirical application showcases that bridge sam-
pling outperforms current Bayesian methods, especially when relatively little
posterior mass falls in the restricted parameter space. The method is ex-
tended to mixtures between equality and inequality constrained hypotheses.

This chapter is published as Sarafoglou, A., Haaf, J. M., Ly, A., Gronau, Q. F., Wagen-
makers, E. J., & Marsman, M. (2021). Evaluating multinomial order restrictions with bridge
sampling. Psychological Methods.
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8.1 Introduction

In many scientific fields the analysis of categorical variables is of major impor-
tance. Applications range from the analysis of declared numeric values in forensic
accounting, auditing, and fraud detection (M. Nigrini, 2012; Rauch, Göttsche,
Brähler, & Engel, 2011), the analysis of descriptive measures in survey studies
(e.g., Haberman, 1978; Nuijten, Hartgerink, van Assen, Epskamp, & Wicherts,
2016; Sedransk et al., 1985; C. L. Veldkamp, Nuijten, Dominguez-Alvarez, van As-
sen, & Wicherts, 2014), the analysis of gut microbiome composition (Song, Zhao,
& Wang, 2020), to the validation of model assumptions and axioms in the field of
psychometrics (see e.g., Cavagnaro & Davis-Stober, 2014; Davis-Stober, 2009; Guo
& Regenwetter, 2014; J. Myung, Karabatsos, & Iverson, 2005; Regenwetter et al.,
2018; Regenwetter, Dana, & Davis-Stober, 2011; Tijmstra, Hoijtink, & Sijtsma,
2015). The breadth and depth of these examples underscore the importance of
having efficient tools for their analysis readily available.

In each of the examples above, researchers are interested in quantifying evi-
dence for hypotheses that impose certain restrictions on the underlying category
proportions. These hypotheses often predict that all category proportions are ex-
actly equal (e.g., the prevalence for a statistical reporting error is equal across
different psychological journals; C. L. Veldkamp et al., 2014), or that they are
fixed and follow a specific pattern (e.g., the digit proportions in non-fraudulent
auditing data conform to Benford’s law; Benford, 1938; M. Nigrini, 2012). How-
ever, research hypotheses also often stipulate ordinal expectations among category
proportions (e.g., students with higher abilities have a higher chance to solve any
particular item correctly; Grayson, 1988), or a mix of equality and inequality pa-
rameter constraints (e.g., according to the recognition heuristic, when laypeople
predict which sports team will win a tournament they assign a higher probability
of winning to more familiar teams and equal but lower probabilities to unknown
teams; Goldstein & Gigerenzer, 2002).

Ordinal expectations about underlying category proportions are a regular oc-
currence in scientific theories. However, the evaluation of hypotheses that go be-
yond exact equality constraints is not very popular, particularly among researchers
who use frequentist statistics (Iverson, 2006). As motivating example, consider the
study conducted by Uhlenhuth, Lipman, Balter, and Stern (1974), who surveyed
735 adults to investigate the association between symptoms of mental disorders
and experienced life stress. To measure participants’ life stress, the authors asked
them to indicate, out of a list of negative life events, life stresses, and illnesses,
which event they had experienced during the last 18 months prior to the inter-
view. A subset of these data was reanalyzed by Haberman (1978, p. 3). Haberman
noted that retrospective surveys tend to fall prey to the fallibility of human mem-
ory, causing participants to report primarily those negative events that happened
most recently. He therefore investigated the 147 participants who reported only
one negative life event over this time span and tested whether the frequency of
the reported events was equally distributed over the 18 month period. However,
Haberman did not directly test the ordinal pattern implied by his assumption of
forgetting, namely that the number of reported negative life events decreases as a
function of the time passed. Figure 8.1 shows the frequency of reported negative
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life events in Haberman’s sample.
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Figure 8.1: Frequency of reported negative life events over the course of the 18
months prior to the interview for Haberman’s (1978) sample of the data collected
by Uhlenhuth et al. (1974).

To evaluate ordinal multinomial patterns such as the one hypothesized by
Haberman (1978) we focus on Bayesian methods. In the Bayesian statistical frame-
work, researchers may quantify the evidence for or against a specific restriction
on the model parameters using the Bayes factor (Jeffreys, 1935; Kass & Raftery,
1995). The Bayes factor is defined as the relative predictive performance of the
models with and without the restriction, which is reflected in the ratio of their
normalizing constants. For the usual scenario of equal or fixed underlying cate-
gory proportions, the Bayes factor is available analytically. This is not the case,
unfortunately, when inequality constraints are in play. In these cases, the Bayes
factor can be approximated using the encompassing prior approach which defines
the Bayes factor as the ratio of the prior and posterior probabilities that the in-
equality constraints hold (Klugkist et al., 2005). In the following, we highlight
two particularly popular implementations of the encompassing prior approach.
The first implementation is the unconditional encompassing method which uses
straightforward sampling from the unrestricted (i.e., encompassing) distributions
to compute the Bayes factor (Haaf, Merkle, & Rouder, 2020; Haaf & Rouder,
2017, 2021; Hoijtink, 2011; Hoijtink, Klugkist, & Boelen, 2008; Klugkist et al.,
2005; Schnuerch, Nadarevic, & Rouder, 2020; van der Lans, Cremers, Klugkist, &
Zwart, 2020). The second implementation is the conditional encompassing method
which decomposes the Bayes factor into a product of conditional probabilities (Gu,
Mulder, Deković, & Hoijtink, 2014; Laudy, 2006; Mulder, 2014, 2016; Mulder et
al., 2009) and is implemented in the R packages multinomineq (Heck & Davis-
Stober, 2019), bain (Gu, Hoijtink, Mulder, & Rosseel, 2019), BFpack (Mulder et
al., 2021), and the software program BIEMS (Mulder, Hoijtink, & de Leeuw, 2012).1

1For more examples in which the conditional encompassing method has been used, see the
website of the R software package bain (Gu et al., 2019) at https://informative-hypotheses

.sites.uu.nl/software/bain/.
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The main disadvantage of both methods is computational: the approximation
of the Bayes factor becomes harder (i.e., more time-consuming and less accurate)
as researchers are interested in a smaller part of the parameter space. For the
unconditional encompassing method the problem is that the probability of sam-
ples falling within the parameter space of the restricted distribution is very low,
making it practically impossible to obtain accurate estimates of the Bayes factor
by sampling from the unrestricted distribution.

For instance, in the Haberman example the ordinal restrictions on the
18 categories are associated with a minuscule prior mass of 1/18! or 1 over
6, 402, 373, 705, 728, 000. Consequently, a single posterior draw that obeys the
restriction will catapult the Bayes factor to extreme values unless the number of
draws is impractically large. For instance, with 5 million draws a single posterior
draw that obeys the restriction will yield an estimated Bayes factor of 1.28× 109,
massively favoring the inequality-constrained hypothesis. On the other hand, if
none of the 5 million draws obeys the restriction, the estimated Bayes factor shows
infinite support against the inequality-constrained hypothesis. This illustrates
that in order to obtain a precise estimate of the Bayes factor, researchers need
to draw millions of samples from the posterior. These ratios become increasingly
problematic as the models become more complex (Mulder et al., 2009; Sedransk
et al., 1985).

By decomposing the Bayes factor into a product of conditional probabilities,
the conditional encompassing method is more stable than the unconditional en-
compassing method. However, the increased stability of the conditional encom-
passing method is accompanied by a steep increase in runtime. This increase has
three reasons. The first reason follows directly from the sequential evaluation of
the individual constraints. To refer again to our motivating: Since the associated
model features seventeen constraints, seventeen sets of prior and posterior samples
must be drawn for the evaluation. The resulting runtime is thus seventeen times
higher than that of the unconditional encompassing method. The second reason is
that even though the method is more stable, there is still the risk that the relative
size of the restricted area for each individual restriction is too small to effectively
sample from it (but see Gu et al., 2019 who estimate these conditional probabilities
more efficiently). The third reason is the implementation of the conditional en-
compassing method. When evaluating the individual constraints it is not enough
to simply draw samples from the unrestricted distribution; this is only possible
for the first constraint. For each additional constraint, samples are drawn from
distributions that are conditional on previous constraints, with a new constraint
added at each step. Thus, we need to draw samples from restricted distributions
using Markov chain Monte Carlo (MCMC), and this is slower than the standard
Monte Carlo methods used in the unconditional encompassing method.

To overcome the above limitation we present a bridge sampling routine (e.g.,
Gronau et al., 2017; Meng & Wong, 1996) to estimate the Bayes factor for multino-
mial inequality constraints. The advantage of the bridge sampling routine is that
its efficiency does not suffer when the size of the restricted parameter space de-
creases. The resulting Bayes factor estimates are relatively unbiased and precise.
In addition, the bridge sampling approach has a fixed cost in terms of runtime,
which makes it appealing for the implementation in standard statistical software
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packages. The bridge sampling method outlined in this chapter can be used to
evaluate hypotheses that postulate (a) a monotonic increase or decrease for (a
subset of) multinomial parameters (e.g., θ1 < θ2 < θ3 or θ1 > θ2 > θ3); (b) mix-
tures of inequality constraints and equality constraints (e.g., θ1 < θ2 = θ3); (c)
mixtures of inequality constraints and free parameters (e.g., θ1 < θ2, θ3); and (d)
mixtures of the first three cases (e.g., θ1 < (θ2 = θ3), θ4).

The outline of this chapter is as follows. First, we introduce the basic theo-
retical concepts of Bayesian parameter estimation and the computation of Bayes
factors for the multinomial model featuring equality constrained hypotheses. We
then extend these concepts to inequality constrained hypotheses to a mixture of
equality and inequality constrained hypotheses. Third, we show how the bridge
sampling approach compares to the established methods such as the unconditional
encompassing method and the conditional encompassing method in terms of pre-
cision and efficiency by applying the methods to our motivating example. The
last section contains a short discussion and the appendix compares the accuracy
of the bridge sampling approach to the established methods.

8.2 Bayesian Analysis of Multinomial Variables

This section introduces the theoretical concepts of Bayesian inference for the multi-
nomial model, that is, Bayesian parameter estimation using posterior distributions
and Bayesian hypothesis testing using Bayes factors. We denote the number of
observations in a category k with xk, and the total number of observations with
N =

∑K
k=1 xk. The multinomial distribution is a generalization of the binomial

distribution to variables that can take values in K ≥ 2 categories, and it assigns
the following probabilities to the different ways that N observations distribute
across the K categories,

p(x | θ) = p(x1, x2, . . . , xK | θ1, θ2, . . . , θK) =

(
N

x1, x2, . . . , xK

) K∏
k=1

θxk

k ,

where the first factor in the likelihood denotes an extension of the binomial coef-
ficient known as the multinomial coefficient. The parameters of the multinomial
model, θk, reflect the probability of observing a value in a particular category,
and need to sum to one. Note that due to the sum-to-one constraint, the K-th
parameter is sometimes expressed as θK = 1 −

∑K−1
k=1 θk.

8.2.1 Prior and Posterior Distribution Without Inequality
Constraints

Bayesian parameter estimation concerns the expression of a posterior distri-
bution for model parameters capturing a priori information and information
from the data (i.e., the likelihood). For the vector of probability parameters,
θ = (θ1, θ2, . . . , θK), we choose a Dirichlet distribution with concentration pa-
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rameters (α1, α2, . . . , αK), where each element in α is larger than zero:

p(θ) = p(θ1, θ2, . . . , θK) =
Γ
(∑K

k=1 αk

)
∏K

k=1 Γ(αk)

K∏
k=1

θαk−1
k .

The concentration parameters αk of the Dirichlet distribution have an intuitive
interpretation: they may be interpreted as a priori category counts, and their
exact values determine both the relative values of category probabilities and their
variability. For the problem at hand, the posterior is also a Dirichlet distribution
of the form

p(θ | x) =
Γ
(
N +

∑K
k=1 αk

)
∏K

k=1 Γ(xk + αk)

K∏
k=1

θxk+αk−1
k ,

with the updated concentration parameters α′
k = xk + αk (O’Hagan & Forster,

2004). The concentration parameters of the posterior Dirichlet distribution can
be interpreted as a posteriori category counts, the sum of the prior and observed
category counts.

8.2.2 Bayes Factor Hypothesis Testing Without Inequality
Constraints

When stipulating exact equality constraints on the parameters of interest, re-
searchers formulate a point null hypothesis H0 that assigns expected values c to
the underlying category proportions θ, that is H0 : θ = c. We first consider the
Bayes factor

BF0e =
p(x | H0)

p(x | He)
,

which is defined as the ratio of normalizing constants of the null hypothesis and
the encompassing hypothesis. Here, the hypothesis H0 stipulates exact values for
all of the model parameters, i.e., H0 : θ = c. In the standard multinomial test
the null hypothesis states that all model parameters are exactly equal. Since the
parameters are sum-to-one constrained, it follows that all elements in c are set
equal to 1/K. We test the null hypothesis against the encompassing hypotheses
which states that all category proportions are free to vary without any ordinal
restrictions. We call this hypothesis the encompassing hypothesis He, since it
encompasses all possible orders of the parameters. The parameter space of the
encompassing hypothesis is denoted as Re. When stipulating exact equality con-
straints, it is assumed that there is no prior uncertainty about the model param-
eters, and the marginal likelihood of the null hypothesis is simply a multinomial
distribution. Due to the conjugacy of the Dirichlet distribution to the parameters
of the multinomial model, the marginal likelihood for the encompassing hypoth-
esis has a simple, closed-form solution. Thus, if all model parameters of the null
hypothesis are a priori specified, the Bayes factor BF0e is equal to

BF0e =
K∏

k=1

cxk

k ×
∏K

k=1 Γ (αk)

Γ
(∑K

k=1 αk

) ×
Γ
(
N +

∑K
k=1 αk

)
∏K

k=1 Γ (αk + xk)
,

142



8.2. Bayesian Analysis of Multinomial Variables

as derived already by Good (1967). There is another way to express the Bayes
factor, which relates the Bayes factor to Bayesian parameter estimation. By re-
arranging Bayes’ rule the marginal likelihood of the encompassing hypothesis can
be expressed as:

p(x | He)︸ ︷︷ ︸
marginal
likelihood
of He

=

likelihood︷ ︸︸ ︷
p(x | θ, He)

prior
density︷ ︸︸ ︷

p(θ | He)

p(θ | x, He)︸ ︷︷ ︸
posterior
density

,

which is known as Chib’s identity (Chib, 1995). Chib’s identity allows us to arrive
at an alternative characterization of the Bayes factor that only requires the prior
and posterior distribution under the alternative hypothesis at c:

BF0e =
p(x | H0)

p(x | He)
=

p(x | θ = c, He)

p(x|θ=c, He) p(θ=c|He)

p(θ=c|x, He)

=

Height of posterior density of He
at θ = c︷ ︸︸ ︷

p(θ = c | x,He)

p(θ = c | He)︸ ︷︷ ︸
Height of prior density of He

at θ = c

.

This expression is known as the Savage-Dickey density ratio (Dickey, 1971; Dickey
& Lientz, 1970; O’Hagan & Forster, 2004; Verdinelli & Wasserman, 1995). The
underlying principle of the Savage-Dickey density ratio is to compute the Bayes
factor by dividing the height of the posterior density under He at the point of
interest (i.e., c) by the height of the prior density under He at the same point.

For concreteness, we will demonstrate the Bayesian multinomial test for exact
equality constraints by reanalyzing the research question of Habermann (1978).
The null hypothesis entails that the probability of reporting a negative life event
is equally distributed over the 18 months prior to the interview. In particular, the
expected category proportions under H0 are

c : θ1, θ2, · · · , θK = 1/K.

Assuming that every parameter value is equally likely before we see any data,
we assign a uniform prior distribution across the parameter vector θ, such that,
p(θ | He) ∼ Dirichlet(α) with all concentration parameters set to 1. Using the
observed frequencies from Haberman (1978), that is,

x = (15, 11, 14, 17, 5, 11, 10, 4, 8, 10, 7, 9, 11, 3, 6, 1, 1, 4)′,

the Bayes factor comparing the null and encompassing hypotheses is:

BF0e =
p(θ = c | x,He)

p(θ = c | He)
=

Γ
(∑K

k=1 αk + xk

)
∏K

k=1 Γ(αk + xk)

∏K
k=1 θ

xk+αk−1
k

Γ
(∑K

k=1 αk

)
∏K

k=1 Γ(αk)

∏K
k=1 θ

αk−1
k

=
1

27.1
.
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This result indicated that the data are about 27 times more likely under He (in
which the parameters are free to vary) than under H0 (in which the parameters
are constrained to be equal).

Sometimes it is desirable to compare the null hypothesis H0 not against the
encompassing hypothesis He, but against a more informed hypothesis H1 that
makes specific theoretically-motivated predictions. With Bayes factors against
the encompassing hypotheses in hand, the desired comparison between the null
and the informed alternative can be obtained through transitivity:

BF01 =
BF0e

BF1e
=

p(x | H0)

p(x | He)

p(x | H1)

p(x | He)

=
p(x | H0)

p(x | H1)
.

This transitivity property is especially relevant when comparisons are made with
restricted hypotheses, since it is more challenging to compute BF01 directly. Fur-
thermore, we can use posterior model probabilities to compare the relative plau-
sibility of any number of hypotheses (Berger & Molina, 2005). Assuming that
all hypotheses are equally likely a priori, the posterior model probability for a
particular hypothesis H1 is defined as:

p(H1 | x) =
p(x | H1)∑I
i=1 p(x | Hi)

=
BF1e∑I
i=1 BFie

.

Here we have outlined how to express the prior and posterior distribution for
the multinomial model using a Dirichlet prior. In addition, we expressed the Bayes
factor in terms of the change of belief about the parameter value and outlined how
to compare multiple hypotheses by utilizing the transitivity property of the Bayes
factor and posterior model probabilities. A related expression for the Bayes factor
can be derived in the case of inequality constraints, to which we turn next.

8.2.3 Prior and Posterior Distribution With Inequality
Constraints

When stipulating inequality-constrained hypotheses we can predict, for instance,
an increasing trend of the first two categories, Hr : θ1 < θ2. We refer to such
inequality-constrained hypotheses as Hr. Here, the parameter space, Rr is a
subset of Re by restrictions imposed on θ, that is, Rr = {θ ∈ Re ; Hr}. The prior
and posterior distributions of the parameters subject to an inequality-constrained
hypothesis Hr thus take the following form:

p(θ | Hr) =
p(θ | He) I(θ ∈ Rr)

p(θ ∈ Rr | He)
(8.1)

p(θ | x, Hr) =
p(θ | x, He) I(θ ∈ Rr)

p(θ ∈ Rr | x, He)
, (8.2)

where I(θ ∈ Rr) is an indicator function that is one for parameter values θ in the
restricted space Rr and zero otherwise. As apparent from the equations above,
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the prior and posterior distributions under an inequality-constrained hypothesis
are proportional to their unconstrained counterparts. In principle, whenever the
concentration parameters in the Dirichlet distribution are natural numbers for ev-
ery k, thus, αk ∈ N, we are able to achieve an exact result for the normalizing
constants for the restricted prior and posterior distribution (see our online ap-
pendix for a description of the exact procedure).2 However, the exact procedure
is far more inefficient than sampling-based methods, especially as the number of
categories in the model and the number of observations for a fixed K increases.
Here, we were only able to obtain exact results for simple cases, involving models
with no more than K = 6 categories and no more than N = 63 observations.
For this reason, in the following we limit our descriptions of Bayesian parameter
estimation and the computation of Bayes factors to sampling-based procedures.

In general researchers rely on Monte Carlo sampling methods to compute the
normalizing constants of the restricted prior and posterior distribution. In the
simplest case we can use rejection sampling to simulate values from the uncon-
strained prior and posterior distributions and only keep those values that conform
to the restrictions. The proportion of the retained samples to the total number
of samples is then an approximation for the normalizing constant of the restricted
distribution. Unfortunately, when many inequality constraints are proposed, the
approach outlined above, although intuitive, can be terribly inefficient. For in-
stance, in the Haberman example, when drawing from a uniform prior only 1 in
over 18! = 6.4 × 1015 samples will obey the restriction. As an alternative, we can
use a MCMC approach, that allows us through random variable transformation
to simulate the values directly from the restricted distribution. Devroye (1986, p.
594), for instance, shows that one can simulate values from a Dirichlet distribu-
tion by first simulating K independent random variables γk with a Gamma(αk, 1)
density, for k = 1, . . . , K, and then setting

θk =
γk∑K
k=1 γk

.

The variables θk that are generated in this way follow the desired Dirichlet(α)
distribution (see Klugkist, Laudy, & Hoijtink, 2010 for an application in the con-
text of contingency tables). Note that with the transformation from θ to γ the
sum-to-one constraint is conveniently removed. Additionally, this MCMC method
is suitable for drawing values from the restricted distribution because the trans-
formation between θ and γ is order-preserving. Thus, an inequality-constrained
hypothesis Hr : θ1 < θ2 on the category probabilities translates into the inequality-
constrained hypothesis Hr : γ1 < γ2 on the gamma variables. If we simulate the
gamma variables consistent with the order restrictions imposed by Hr, that is,
p(γ | Hr), the transformed gamma variables then generate Dirichlet variables
that are consistent with Hr, that is, p(θ | Hr).

To draw gamma variables that obey the order imposed by the inequality-
constrained hypotheses we use the Gibbs sampling algorithm proposed by Damien

2Whenever the concentration parameters are natural numbers and we express the problem
in terms of stick-breaking parameters the computations involve integrating polynomials, which
makes the result exact. For general α, however, we do not have polynomials and thus an exact
result is not expected.
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and Walker (2001). Their Gibbs sampling algorithm assumes fixed upper and lower
bounds for each parameter. However, the algorithm can easily be generalized to
cases where we wish to draw from gamma variables whose upper and lower bounds
are not known, but are itself random variables (as it is the case for inequality-
constrained hypotheses).

Instead of simulating values directly from the multivariate distribution of
gamma variables that are subject to inequality constraints —p(γ | Hr)—, the
Gibbs sampler operates by iteratively simulating values from the full-conditional
posterior distributions, that is, the distribution of one gamma variable given the
remaining gamma variables and inequality constraints —p(γk | γ(k), Hr), where
γ(k) refers to the vector of gamma variables with the kth parameter removed. If
there is no constraint on a gamma variable γk then the full conditional is simply
the regular Gamma(αk, 1) density. However, if γk is subject to a constraint, for
instance, γj < γk < γq, then the gamma variable γk has the bounded support
[γj , γq] instead of [0, ∞). This implies that the full conditional distribution of γk
subject to an inequality constraint is a truncated gamma distribution:

p(γk | γ(k), Hr) = p(γk | γj < γk < γq) =

1
Γ(γk)

γαk−1
k e−γk I(γk ∈ [γj , γq])

p(γk ∈ [γj , γq])
.

For gamma variables with bounded support [γj , γq], the bounds at iteration t are
calculated using the current values of the parameters. After the gamma variables
have been simulated in this manner, they can be transformed back into category
probabilities to yield samples from the Dirichlet distribution. Sampling from the
prior and posterior is useful when we wish to estimate the parameters or when
draws from restricted distributions are required to compute the Bayes factor, as
is the case with the conditional encompassing method and the bridge sampling
method.

8.2.4 Bayes Factor Hypothesis Testing for Inequality
Constraints

We consider the Bayes factor

BFre =
p(x | Hr)

p(x | He)
,

where the hypothesis Hr stipulates inequality constraints on the model parame-
ters, for instance,

Hr : θ1 < · · · < θK .

In order to obtain the marginal likelihood of the inequality-constrained hypothesis
we need to integrate over the restricted parameter space Rr, which makes the
Bayes factor BFre difficult to compute:

p(x | Hr) =

∫
Re

p(x | θ) p(θ | Hr) dθ. =

∫
Rr

p(x | θ) p(θ | He) dθ

p(θ ∈ Rr | He)
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It is nevertheless possible to arrive at an intuitive expression of the Bayes factor.
This expression is a generalization of the Savage-Dickey density ratio mentioned
above and follows from an alternative characterization of p(x | Hr):

p(x | Hr) =
p(θ ∈ Rr | x, He) p(x | He)

p(θ ∈ Rr | He)
,

which was derived in Klugkist et al. (2005). With this characterization the Bayes
factor amounts to

BFre =

p(θ∈Rr|x, He) p(x|He)

p(θ∈Rr|He)

p(x | He)
=

Proportion of posterior parameter
space consistent with the restriction︷ ︸︸ ︷

p(θ ∈ Rr | x, He)

p(θ ∈ Rr | He)︸ ︷︷ ︸
Proportion of prior parameter

space consistent with the restriction

. (8.3)

Like the Savage-Dickey density ratio, this presents the Bayes factor as the change
of belief that the parameters lie in the restricted parameter space Rr (see also
Wetzels, Grasman, & Wagenmakers, 2010 and Mulder et al., 2009). We discuss
two established procedures to approximate the Bayes factor BFre in the next
section.

8.2.5 Established Procedures to Estimate the Bayes Factor For
Inequality-Constraints

One popular method to estimate the Bayes factor for inequality-constrained hy-
potheses is the unconditional encompassing method which relies on simple Monte
Carlo estimates (Gelfand et al., 1992; Klugkist et al., 2005; Sedransk et al., 1985).
This method estimates the Bayes factor in Equation 8.3 by considering the propor-
tion of the prior and posterior distributions of the unrestricted distribution that
are in agreement with the constraints. That is, the numerator can be estimated
by sampling from the encompassing posterior density and then calculating the
proportion of draws in accordance with the restrictions imposed by the inequality-
constrained hypothesis. Likewise, the denominator can be estimated by sampling
from the encompassing prior density and then calculating the proportion of draws
in accordance with the restrictions:

BFre =
p(θ ∈ Rr | x, He)

p(θ ∈ Rr | He)

≈
1
S

∑S
s=1 I(θ

′
s ∈ Rr)

1
S

∑S
s=1 I(θ

∗
s ∈ Rr)

,

where θ∗
s and θ′

s denote the s-th sample from the encompassing prior and pos-
terior distribution, respectively, for samples s = 1, . . . , S. The simplicity of the
method has stimulated application to numerous statistical scenarios, ranging from
contingency tables and the analysis of variance and covariance models (Hoijtink
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et al., 2008), to item response theory (Haaf et al., 2020), to meta-analysis mod-
els (Haaf & Rouder, 2021), to linear mixed models (Haaf & Rouder, 2017), and
to circular mixed effects models (van der Lans et al., 2020). However, it is also
widely recognized that this method is not particularly efficient for models with an
increasing number of independent constraints (J. Myung, Karabatsos, & Iverson,
2008; Sedransk et al., 1985). The same holds true for models with a small number
of constraints that are extremely restrictive or models for which the data do not
align with the inequality-constrained hypothesis. This is the case because the effi-
ciency of the method relies on the relative size of the restricted area: if prior and
posterior samples almost never fall inside the area of interest, a large number of
samples is required to estimate the proportions accurately (Gelfand et al., 1992;
Hoijtink, 2011).

A method that is more stable for larger models is the conditional encompass-
ing method (Mulder et al., 2009; for an application to multinomial models, see
Heck & Davis-Stober, 2019). The conditional encompassing method also utilizes
the identity in Equation 8.3. But instead of estimating the normalizing constants
of the constrained distribution based on a single set of samples from the encom-
passing distribution, Mulder et al. (2009) proposed a stepwise approach. For
instance, when evaluating a hypotheses concerning K = 4 ordered parameters
Hr : θ1 < θ2 < θ3 < θ4, the proportion of prior parameter space consistent with
the restriction can be factored as follows:

p(θ ∈ Rr | He) = p(θ1 < θ2 | He) × p(θ2 < θ3 | θ1 < θ2,He) × p(θ3 < θ4 | θ1 < θ2 < θ3,He).

The proportion of posterior samples consistent with the restriction are estimated
in a similar fashion, which yields the Bayes factor:

BFre =
p(θ ∈ Rr | x, He)

p(θ ∈ Rr | He)

=
p(θ1 < θ2 | x,He) × · · · × p(θ3 < θ4 | θ1 < θ2 < θ3,x, He)

p(θ1 < θ2 | He) × · · · × p(θ3 < θ4 | θ1 < θ2 < θ3,He)
,

where each Bayes factor is estimated independently. By evaluating the constraints
sequentially, the conditional encompassing method yields better results for models
featuring larger numbers of constraints (Mulder et al., 2009). It is noteworthy that
the conditional encompassing method was first used to evaluate almost-equality
constraints: using the transitivity property of the Bayes factor, Laudy (2006, p.
115) and Klugkist (2008) proposed to approximate the Bayes factor for almost-
equality constraints by evaluating a series of hypotheses of increasing narrowness,
such that for each pair of parameters θ1 ≈ θ2 the distance between the them
approaches zero (i.e., | θ1 − θ2 |→ 0).3 However, care must be taken not to set
the values for the distance | θ1 − θ2 | too small, or otherwise the method becomes
inefficient (Klugkist, 2008).

3Wetzels et al. (2010) showed that the proposed almost-equality constrained method approx-
imates the Savage-Dickey density ratio.
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8.2.6 A Bridge Sampling Routine to Estimate the Bayes Factor

The main limitations of the unconditional encompassing method and the con-
ditional encompassing method–lack of precision, lack of scalability, and long
runtimes–come from the effort to estimate the proportion of the encompassing
parameter space in accordance with the constraint. In contrast, bridge sampling
(C. H. Bennett, 1976; Meng & Wong, 1996) estimates the Bayes factor using a
different approach. The basic principle of bridge sampling is that the ratio be-
tween two normalizing constants operating on the same parameter space can be
estimated by the following identity:

BF12 =
p(x | H1)

p(x | H2)
=

EH2
(p(x | θ,H1)p(θ | H1)h(θ))

EH1
(p(x | θ,H2)p(θ | H2)h(θ))

, (8.4)

where the term h(θ) refers to a bridge function that ensures that the denominator
is non-zero. In this case we choose the optimal bridge function as proposed by
Meng and Wong (1996). Instead of estimating the Bayes factor directly, we use
a modified form of the bridge identity proposed by Overstall and Forster (2010)
which estimates only a single normalizing constant instead of the Bayes factor to
further increase the precision of the estimates (for a tutorial on the bridge sampling
method, see Gronau et al., 2017). The modified form of the bridge identity requires
that the second distribution is chosen such that it has overlapping support with
the target distribution and has a known normalizing constant. In the following, we
will refer to this distribution as proposal distribution g(θ). The modified identity
then becomes:

p(x | H1) =
Eg(θ) (p(x | θ)p(θ | H1)h(θ))

EH1
(g(θ)h(θ))

, (8.5)

where p(x | H1) indicates a normalizing constant we wish to estimate, that is,
the normalizing constant of the constrained prior distribution, or the normalizing
constant of the constrained posterior distribution, that is, p(θ ∈ Rr | He) or
p(θ ∈ Rr | x, He), respectively. Since these normalizing constants are of the form∫

Rr

p(θ | He) dθ and

∫
Rr

p(θ | x, He) dθ

the bridge sampler can be used to estimate them, if the support of the proposal
distribution g(θ) is Rr. That is, the restricted distribution and the proposal
distribution need to operate on the same parameter space. As we will discuss in
the next section, we will facilitate this overlapping support by applying a series of
transformation on the parameters of the restricted distribution.

To arrive at the expression for the bridge sampling identity for the normalizing
constant of the constrained prior distribution we now simply replace the terms
related to H1. Specifically, since

p(θ | Hr) =
p(θ | He) I(θ ∈ Rr)

p(θ ∈ Rr | He)
,
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we can replace the term for the unnormalized density under H1 in the numerator
of Equation 8.5 (i.e., p(x | θ)p(θ | H1)) by the corresponding term for the con-
strained prior distribution, that is, p(θ | He) I(θ ∈ Rr). Thus, the resulting bridge
sampling identity can be described as follows:

p(θ ∈ Rr | He) =
Eg(θ) (p(θ | He)I(θ ∈ Rr)h(θ))

Eprior (g(θ)h(θ))
. (8.6)

The normalizing constant for the constrained posterior distribution can be de-
scribed similarly. Based on this identity, we can now define the corresponding
estimator. We substitute the expectations by sample averages, using N1 samples
from the constrained prior distribution, that is, θ∗ ∼ p(θ | Hr) and N2 samples
from a suitable proposal distribution, that is θ̃ ∼ g(θ). Then, we can estimate
p(θ ∈ Rr | He) by:

p̂(θ ∈ Rr | He) ≈

1

N2

∑N2

m=1 p(θ̃m | He)I(θ̃m ∈ Rr)h(θ̃m)

1

N1

∑N1

n=1 g(θ∗
n)h(θ∗

n)

. (8.7)

There are many possible choices for h(θ). Meng and Wong (1996) suggested the
use of a bridge function that has been shown to minimize the relative mean square
error of the estimate. However, when following this recommendation, the specific
choice for h(θ) depends on the unknown normalization constant:

h(θ) = c×
1

s1p(θ | He)I(θ ∈ Rr) + s2p(θ ∈ Rr | He)g(θ)
,

where s1 = N1

N2+N1
, s2 = N2

N2+N1
and c is a constant that has no influence on

the results. To be able to estimate the normalizing constant of the constrained
prior distribution we use the iterative scheme proposed by Meng and Wong (1996).
Thus, we yield the following formula for the bridge sampling estimator at iteration
t + 1:

p̂(θ ∈ Rr | He)
(t+1) ≈

1

N2

∑N2

m=1

ℓ2,m

s1ℓ2,m + s2p(θ̃m ∈ Rr | He)(t)

1

N1

∑N1

n=1

1

s1ℓ1,n + s2p(θ∗
n ∈ Rr | He)(t)

, (8.8)

where ℓ1,n =
p(θ∗

n | He)I(θ∗
n ∈ Rr)

g(θ∗
n)

and ℓ2,m =
p(θ̃m | He)I(θ̃m ∈ Rr)

g(θ̃m)
.4 We then

run the iterative scheme until a predefined tolerance criterion is reached. We follow

4Equation 8.8 illustrates another advantage of bridge sampling: its robustness to the tail
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the suggestion by Gronau et al. (2017) to use a tolerance criterion of

| p̂(θ ∈ Rr | He)
(t+1) − p̂(θ ∈ Rr | He)

(t) |
p̂(θ ∈ Rr | He)(t+1)

≤ 10−10,

while setting p̂(θ ∈ Rr | He)
(1) = 0 as initial guess. To summarize, we can use

bridge sampling to separately estimate the normalizing constants for the restricted
prior distribution and the restricted posterior distribution. Then, we can use these
two estimates to compute the Bayes factor:

BFre ≈
p̂(θ ∈ Rr | x, He)

p̂(θ ∈ Rr | He)
.

8.2.7 Transformations To Facilitate Bridge Sampling

Since the bridge function is defined on the common support of the proposal and
target distribution, both distributions have to operate on the same parameter
space. In addition, the normalizing constant of the proposal distribution must be
known, which means that we cannot choose another constrained Dirichlet distri-
bution. To resolve this problem we move the prior and posterior draws from the
probability space to the real line using a probit transformation. This transfomation
aims to eliminate the constraints inherent to the restricted Dirichlet distribution,
namely the sum-to-one constraint and the inequality constraints. Furthermore,
the transformation enables us to choose a convenient proposal distribution that is
easy to sample from and easy to evaluate, for instance, the multivariate normal
distribution (Overstall & Forster, 2010).

The general idea is as follows: θ is a probability vector, therefore, its elements
must sum to one. As a result, the vector is completely determined by its first
K − 1 elements. For the transformation we therefore only consider the first K − 1
elements and transform them to K−1 elements of a new vector ξ with ξ ∈ RK−1.
To retain the inequality constraints imposed on the parameters, we need to account
for the lower bound lk and the upper bound uk of each θk. These bounds can be
determined by adapting a stick-breaking approach (Frigyik, Kapila, & Gupta,
2010; Stan Development Team, 2021). The stick-breaking approach represents θ
as a stick of length one which we subsequently break into K elements. Assuming
θk−1 < θk, for k ∈ {1 · · · ,K}, the lower bound for any element in θ is defined as

lk =

{
0 if k = 1

θk−1 if 1 < k < K.
(8.9)

The upper bound is defined as

behavior of the proposal distribution. Since both the numerator and denominator are bounded,
samples from the tail region of the distributions cannot dominate the bridge sampling estimate.
In this sense the bridge sampler improves on other estimation methods —such as the impor-
tance sampling estimator or the generalized harmonic mean estimator— whose variance depend
on ratios that are potentially unbounded for poorly chosen proposal distributions (Frühwirth-
Schnatter, 2004; Gronau et al., 2017).
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uk =


1

K
if k = 1

1 −
∑

j<k θj

K + 1 − k
if 1 < k < K,

(8.10)

where 1 −
∑

j<k θj represents the length of the remaining stick and K + 1 − k
is the number of elements in the remaining stick. Let ϕ denote the density of
a normal variable with a mean of zero and a variance of one, Φ its cumulative
density function, and Φ−1 its inverse cumulative density function. Then, the
transformation of θ is given by:

ξk = Φ−1

(
θk − lk

uk − lk

)
.

=



Φ−1

(
θk

1/K

)
if k = 1

Φ−1

 θk − θk−1

1 −
∑

j<k θj

K + 1 − k
− θk−1

 if 1 < k < K − 1.

The inverse transformation is given by:

θk = (uk − lk)Φ(ξk) + lk

=


1

K
Φ(ξk) if k = 1(
1 −

∑
j<k θj

K + 1 − k
− θk−1

)
Φ(ξk) + θk−1 if 1 < k < K.

In the inverse transformation θk depends only on the first k elements of ξ. There-
fore, we know that the Jacobian matrix will be lower triangular, and the deter-
minant of the Jacobian matrix will be the product of the diagonal entries given
by:

∂θk

∂ξk
=


1

K
ϕ(ξk) if k = 1

(uk − lk)ϕ(ξk) if 1 < k < K.

Therefore, the Jacobian can be computed using the upper and lower bounds
for all samples determined in the transformation step:

|J | =
1

K
ϕ(ξ1)

K−1∏
k=2

((uk − lk)ϕ(ξk)) .

Taking this transformation into account the bridge sampling estimator com-
putes ℓ1,n and ℓ2,m as follows:
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ℓ1,n =
p(θ∗

n | He)I(θ∗
n ∈ Rr)

g(ξn
∗)

,

ℓ2,m =
p(θ̃m | He)I(θ̃m ∈ Rr)

g(ξ̃m)
,

where ξn
∗ = Φ−1

(
θ∗
n − l

u− l

)
, and θ̃m = ((u− l)Φ(ξ̃m) + l) |J |).

Taken together, to apply the proposed bridge sampling routine the following
three conditions must be met. First, we need to be able to sample directly from
the constrained prior and posterior densities, which can be achieved by using the
adapted version of the Gibbs sampling method by Damien and Walker (2001)
described above. Second, we need to select a suitable proposal distribution for
the bridge sampling algorithm; here we choose a multivariate normal distribution
that achieves sufficient overlap with our target distribution by moving the samples
from the restricted Dirichlet distribution to the real line. Third, we need to choose
a bridge function; here, we have chosen the bridge function proposed in Meng and
Wong (1996) which has the favorable property that it minimizes the estimated
relative mean-squared error.

Given that bridge sampling only requires draws of the restricted distribution
and the proposal distribution, this method is more efficient than the unconditional
encompassing method (because fewer samples are typically needed) and the con-
ditional encompassing method (because fewer instances of the Gibbs sampler are
needed). In addition, the precision of the bridge sampling estimator depends not
on the relative size of the restricted parameter space, but on the overlap between
the target and proposal distribution; when the proposal distribution resembles the
target distribution more closely, the resulting estimates are more accurate (Meng
& Wong, 1996).

8.3 Bayes Factors for Mixed Constraints

In addition to pure equality-constrained and pure inequality-constrained hypothe-
ses, researchers may want to specify hypotheses with some parameters that are
exactly equal to each other while others can vary freely and again others are or-
dered (see e.g., Pericchi Guerra, Liu, & Torres, 2008). However, it is not intuitively
clear how to compute Bayes factors when parametric constraints are mixed. With-
out loss of generality, we first consider a mixed hypothesis Hm where the first j
category parameters are constrained to be exactly equal and where the remaining
K − j parameters are increasing:

Hm : (θ1 = θ2 = · · · = θj) < θj+1 < · · · < θK .
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As shown in Equation (8.3), the Bayes factor of restricted hypotheses against the
encompassing hypothesis can be formulated as

BFme =
p(θ ∈ Rm | x, He)

p(θ ∈ Rm | He)
.

The mixed hypothesis stipulates the following set of constraints

Rm : (θ1 = · · · = θj) ∩ (θj < · · · < θK) = R0 ∩Rr.

The first set of constraints, which we denote with R0, are the equality constraints,
and the second set of constraints, which we denote with Rr, are the inequality
constraints. Using this notation, the Bayes factor can be reformulated as

BFme =
p(θr ∈ Rr | θ0 ∈ R0, x, He)

p(θr ∈ Rr | θ0 ∈ R0, He)︸ ︷︷ ︸
BFre

× p(θ0 ∈ R0 | x, He)

p(θ0 ∈ R0 | He)︸ ︷︷ ︸
BF0e

,

that is, a conditional Bayes factor for the inequality constraints given the equality
constraints and a Bayes factor for the equality constraints. The latter is similar
to the Savage-Dickey ratio that we discussed before, but involves a correction for
marginalization.

The probabilities above crucially depend on the marginal probabilities p(θ0 ∈
R0 | He) and p(θ0 ∈ R0 | x, He), which are derived from the prior and posterior
Dirichlet distributions, respectively. Since the derivations and results are the same
for the prior and posterior probabilities, we derive it here for the prior distribution.
The prior probability is of the form

p(θ0 ∈ R0 | He) =
1

B(α)

∫
Re\R0

θ
∑j

k=1 αk−j
j

K−1∏
k=j+1

θαk−1
k

1 − jθj −
K−1∑
k=j+1

θk

αK−1

dθr,

and involves a Dirichlet integral, except that the first j probabilities are now
collapsed. Here, we have used Re \ R0 to denote the unconstrained parameter
space for the parameters θr = (θj , . . . , θK−1)T. We introduce a change of variable
λj = jθj , and λk = θk, for k = j + 1, . . . , K − 1, with |J |= 1/j, such that

p(θ0 ∈ R0 | He) =
1

jB(α)

∫
Re\R0

(
λj

j

)∑j
k=1 αk−j K−1∏

k=j+1

θαk−1
k

1 − λj −
K−1∑
k=j+1

θk

αK−1

dλr

=
1

B(α)

(
1

j

)∑j
k=1 αk−j+1

B

(
j∑

k=1

αk − j + 1, αj+1, . . . , αK

)
,

which allows us to express the (marginal) Bayes factor for the equality constraints
as

BFe0 =
B(α)

B(α + x)

(
1

j

)∑j
k=1 xk B

(∑j
k=1(αk + xk) − j + 1, αj+1 + xj+1, . . . , αK + xK

)
B
(∑j

k=1 αk − j + 1, αj+1, . . . , αK

) ,
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where the latter factor introduces a correction for marginalizing which originates
from the marginalization of the remaining free parameters, including the collapsed
category parameter. If it is the case that no free parameters are involved, that is,
H0 assigns expected category proportions to the entire parameter vector θ (such as
in the multinomial test), then the Bayes factor for the equality constraints corre-
sponds to the Savage-Dickey density ratio.5 It readily follows that the conditional
Bayes factor of inequality constraints given the equality constraints now involves
expectations over the conditional Dirichlet distributions

p(θr | θ0 ∈ R0, He) = Dirichlet

(
j∑

k=1

αk − j + 1, αj+1 . . . , αK

)

and

p(θr | θ0 ∈ R0, x, He) = Dirichlet

(
j∑

k=1

(αk + xk) − j + 1, αj+1 + xj+1 . . . , αK + xK

)
,

which can be computed, as before, using bridge sampling. To generalize the above
derivations for any set of mixed constraints, we note that the conditional Dirichlet
distribution adds the parameters for the collapsed categories and corrects for the
change in degrees of freedom by subtracting the degrees of freedom it lost; j − 1
degrees of freedom are lost if j categories are collapsed. Thus, for mixed hypotheses
of the form

Hm : θ1 < θ2 = θ3 < θ4 = θ5 = θ6,

we find the following conditional Dirichlet distribution p(θr | θ0 ∈ R0, He) =
Dirichlet (α1, α2 + α3 − 1, α4 + α5 + α6 − 2), which has two sets of collapsed cat-
egories, and we lose one degree of freedom for the first, and lose two degrees for
the second collapsed category.

The marginal probability has two corrections. First, a uniform probability is
stipulated for the collapsed categories, i.e., 1/j if j categories are collapsed. Its
concentration parameter is equal to the sum of the collapsed categories minus
the change in degrees of freedom. Second, a multivariate beta function is intro-
duced that incorporates the corrected concentration parameters. For the mixed
hypothesis

Hm : θ1 < θ2 = θ3 < θ4 = θ5 = θ6,

we readily find the following marginal probability

B (α1, α2 + α3 − 1, α4 + α5 + α6 − 2)

B(α)

(
1

2

)α2+α3−1 (
1

3

)α4+α5+α6−2

,

5When stipulating exact equality constraints on all parameters, it is assumed that there is no
prior uncertainty about the model parameters, and the likelihood of the constrained hypothesis
marginalized over the parameter space is simply a multinomial distribution. This expression
follows from the fact that the prior distribution under H0 is

p(θ | H0) =
p(θ | He) I(θ = c)∫

Re
p(θ | He) I(θ = c) dθ

=
p(θ = c | He)

p(θ = c | He)
= 1,

for θ = c and 0 otherwise.
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and marginal Bayes factor,

BFe0 =
B(α)

B(α′)

(
1

2

)x2+x3
(

1

3

)x4+x5+x6 B (α′
1, α′

2 + α′
3 − 1, α′

4 + α′
5 + α′

6 − 2)

B (α1, α2 + α3 − 1, α4 + α5 + α6 − 2)

where we have used α′
k = αk + xk. Note that this result has also been established

for a specific case, albeit for a more general set of hypotheses, in Mulder, Wagen-
makers, and Marsman (in press). What the above analysis of the Bayes factor for
the mixed hypotheses Hm shows is that we are, in general, able to factor the hy-
potheses and associated likelihoods. This factorization is beneficial since it allows
us to compute Bayes factors for parametric constraints with the methods described
in the main text, even if these constraints are mixed. Intuitively, parameters that
vary freely in both hypotheses do not affect the resulting Bayes factor, since the
associated part of the marginal likelihood can be split off from both the mixed
and encompassing hypotheses.

8.4 Disclosures

8.4.1 Data, and Code

Readers can access the data from the empirical example, our online appendix,
and the R code all analyses (including the creation of all figures), in our OSF
folder at: https://osf.io/59tce/. The R package multibridge which im-
plements the proposed bridge sampling method can be downloaded from the
Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/

package=multibridge.

8.4.2 Ethical approval

The study was approved by the local ethics board of the University of Amsterdam.

8.5 Empirical Application: Memory of Negative Life
Events

In this section we investigate the precision and efficiency of the estimation methods
when applied to a real data set published in Uhlenhuth et al. (1974). Specifically,
we conduct a Bayesian reanalysis of Haberman’s sample to test whether the re-
ported negative life events decrease over time as a function of forgetting. We
test this inequality-constrained hypothesis against the encompassing hypothesis
without constraints:

Hr : θ1 > θ2 > · · · > θ18

He : θ1, θ2, · · · , θ18.
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8.6. Discussion

8.5.1 Method

We obtained the Bayes factor using the bridge sampling approach, the conditional
encompassing method, and the unconditional encompassing method. To assess
the precision and efficiency we computed Bayes factors in favor of Hr 100 times
for the same data set and for each method and recorded the respective values and
the runtime to produce a result. We assigned a uniform prior distribution to our
parameters of interest, such that we could compute the prior probability of the
constraint, p(θ ∈ R | He), analytically. For the bridge sampling method, we drew
20, 000 samples from the constrained posterior distribution. For the conditional
encompassing method the marginal probabilities of each constraint holding were
estimated using 40, 000 draws from the posterior distribution, resulting in a total
of 40, 000 × 18 draws. For the unconditional encompassing method, we drew 5
million samples from the unconstrained posterior distribution.

8.5.2 Results

The estimated Bayes factors BFre are displayed in Figure 8.2. Bayes factors
based on the bridge sampling method and the conditional encompassing method
are centered around the same value (M = 168.88 and M = 168.55, respectively);
however, the bridge sampling estimates varied far less (SD = 1.873) than the
estimates produced by the conditional encompassing method (SD = 22.23). To
understand the reasons for these differences in variability, we investigated the
autocorrelation and the influence of chain length on the Bayes factor estimates,
but could not identify a consistent pattern. We suspect that the variability stems
from the Monte Carlo error that increases with each sequential evaluation of the
individual constraint. If it were possible to estimate the conditional probabilities
more efficiently the variability in the estimates might reduce. Such an improved
algorithm has been developed by Gu et al. (2019) for continuous variables but is
not yet available for categorical data.

Regarding computational efficiency, the bridge sampling method had the lowest
runtimes with a mean of M = 29.11(SD = 0.39) seconds. The conditional encom-
passing method on the other hand had mean runtimes of M = 375.84 (SD = 5.04)
seconds, which is more than 6 minutes to estimate one Bayes factor, compared to
less than half a minute for the bridge sampling method. In sum, the empirical
example demonstrates that the bridge sampling routine outperforms both the con-
ditional encompassing method and the unconditional encompassing method. The
bridge sampling estimates are considerably more precise than those of the condi-
tional encompassing method, and are obtained more quickly. The unconditional
encompassing method fails to estimate any Bayes factor altogether.

8.6 Discussion

In this chapter we describe a precise, scalable, and efficient bridge sampling routine
to estimate Bayes factors for inequality constrained hypotheses on multinomial
data. Bridge sampling is a promising alternative to current methods that sample
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Figure 8.2: Bayes factors for the bridge sampling method (black), the conditional
encompassing method (dark grey), and the unconditional encompassing method
(light grey) for the test of an order-restriction in Haberman’s (1978) data on the
reporting of negative life events. Each dot represents one Bayes factor estimate in
favor of Hr obtained by the respective method. The bridge sampling method yields
more precise Bayes factor estimates than the conditional encompassing method;
the unconditional encompassing method fails to estimate any Bayes factor.

from the unconstrained parameter space and hence may yield imprecise results
and long runtimes.

The main reason why the bridge sampling method achieves relatively high
precision –even for a model with many categories– is that it does not sample
from the unconstrained or increasingly restricted parameter space. Instead, bridge
sampling combines the draws from the restricted target distribution with samples
from a proposal distribution to estimate the marginal likelihood efficiently. As a
result, the precision of the bridge sampling estimate does not depend on the prior
probability of the constraint, but rather depends on the similarity between the
proposal distribution and the target distribution. Meng and Schilling (2002, p.
584) note that by using more sophisticated methods (e.g., by using warp bridge
sampling) to create more overlap between the proposal distribution and the target
distribution “[...] we can achieve better and better estimation efficiency based on
the same set of draws, and it seems there is no lower bound on the Monte Carlo
error”. To achieve sufficient overlap between the two distributions, we applied
random variable transformation and used the method of moments to construct a
suitable proposal distribution.

Compared to existing methods, the bridge sampling routine requires more ef-
fort to implement. As with the conditional encompassing method, researchers who
wish to use bridge sampling to evaluate inequality constrained hypotheses need
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to implement a Gibbs sampling algorithm to draw samples from the constrained
prior and posterior distribution. In addition, functions must be implemented
to perform the required variable transformations and to apply the bridge sam-
pling algorithm. In order to maximize the accessibility of the proposed method,
we developed the R package multibridge which can be downloaded from the
Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/

package=multibridge. In the near future we also plan to make the analysis avail-
able in the user-friendly statistical software program JASP (JASP Team, 2021).
Using JASP does not require any programming experience whatsoever.

At this point we would like to address some discussion points that repeat-
edly arise in the context of estimating Bayes factors for order restrictions. First,
we chose to compare the restricted hypothesis to the encompassing hypothesis in
which all parameters are free to vary. This comparison was central in the early
work on the encompassing prior approach (e.g., Klugkist et al., 2005). However,
this comparison can be critiqued since the encompassing hypothesis overlaps with
the restrictive hypothesis (Morey & Rouder, 2011; but see Lee et al., 2019). An
alternative comparison pits the restricted hypothesis against its complement (i.e.,
the part of the encompassing hypothesis that excludes the restricted hypothesis;
e.g., Gu et al., 2019; Heck & Davis-Stober, 2019; Hoijtink, 2011; Mulder et al.,
2012). Although our implementation is designed to compare against the encom-
passing hypothesis by default, researchers can easily obtain the comparison to the
complement by exploiting the fact that the Bayes factor is transitive (i.e., dividing
BFre by BF¬re).

Secondly, our method involves a Dirichlet prior distribution, which allows re-
searchers to specify values for the concentration parameters. Alternative Bayesian
approaches are fully automatic in the sense that the prior distribution is deter-
mined by (part of) the sample data (e.g., fractional Bayes factors and adjusted
fractional Bayes factors; for details see Böing-Messing & Mulder, 2016; Gu et al.,
2019; Mulder, 2014; Mulder et al., 2021; Mulder, Hoijtink, & Klugkist, 2010).
These alternative approaches have not yet been applied to multinomial models.

The method proposed here is relatively general and may be extended to prob-
lems of higher dimension and increasing sophistication. For instance, the bridge
sampling framework could be expanded to multinomial models with complex lin-
ear restrictions (e.g., Heck & Davis-Stober, 2019). This would allow researchers
to test more complex hypotheses, such as ordinal expectations on the size ratio
of the parameters of interest (e.g., Hr : θ1 > 3 × θ2), on the differences between
category proportions (e.g., Hr : (θ1 − θ2) < (θ3 − θ4)), or on odds ratios for
data that are summarized in contingency tables (e.g., Hr : θ1

(θ1+θ2)
< θ3

(θ3+θ4)
).

Another generalization of the presented methods concerns the application to hier-
archical models, for cases where participants repeatedly choose a response option
and therefore category proportions are nested within participants. The bridge
sampling routine may also benefit the field of psychometrics, for instance, when
evaluating ordinal rating scales (Schnuerch, Haaf, Sarafoglou, & Rouder, 2021),
or ordinal item-response theory models (possible applications include Haaf et al.,
2020; Karabatsos, 2001; Karabatsos & Sheu, 2004; J. Myung et al., 2005; Tijm-
stra & Bolsinova, 2019; Tijmstra et al., 2015; see also Meng & Schilling, 1996 for
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an early use of bridge sampling in the context of IRT modeling). Finally, in the
field of cognitive psychology, the bridge sampling routine could be used to test
ordinal hypotheses in multinomial processing tree models (e.g., W. Batchelder
& Riefer, 1991; Erdfelder et al., 2009; Erdfelder, Hu, Rouder, & Wagenmakers,
2020; Kuhlmann, Erdfelder, & Moshagen, 2019) and in discrete choice models
(T. R. Johnson, 2007).

Here we used bridge sampling to evaluate order constraints for the multinomial
model, which is associated with categorical data. However, bridge sampling might
also benefit the evaluation of order constraints in models associated with continu-
ous data, for instance regression models or analysis of variance (ANOVA) models.
The key to using bridge sampling for these applications is to bring the integral
over the restricted parameter space into a form that works with standard bridge
sampling. For the current application to multinomial data, we used a series of
transformations to ensure that (1) the support of one parameter does not depend
on other parameters and (2) that the support of the parameters are in a range
that matches the one of the multivariate normal proposal distribution. If one can
accomplish these goals for any particular problem, then standard bridge sampling
immediately applies. As this strategy can be applied to a wide range of problems,
we expect bridge sampling to be generalized to other models in the future.

Our results demonstrate that bridge sampling offers considerable improvements
in precision and efficiency over existing methods. As our empirical application
showed, for multinomial models it is common to have a relatively high number of
categories (i.e., K > 10) which can easily lead to extreme values of the Bayes fac-
tors, if the data either speak for or against the restriction. In other disciplines, such
as microbiology, we even find multinomial models with up to K = 46 categories,
as a study of the relationship between gut microbiome and BMI showed (Song et
al., 2020). In these scenarios we believe that the benefit of the bridge sampling
routine is particularly apparent. To conclude, the bridge sampling routine of esti-
mating Bayes factors for inequality constraints in multinomial models constitutes
a promising tool to evaluate ordinal expectations reliably and efficiently.
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8.A Simulation Study: Accuracy of Estimation Methods

To illustrate the accuracy of the estimation methods we conducted two simulation
studies. The first simulation study features eight different data sets, given in
Table 8.1, for which it is possible to obtain the exact normalizing constants of
the restricted prior and posterior distributions (and hence the Bayes factors).
These data sets were relatively small with 5 and 6 categories. The normalizing
constant of the restricted prior distribution was readily available as we assigned
a uniform Dirichlet prior on the model parameters. The exact computations for
the restricted posterior distributions exploited the fact that integrating an order
restriction expressed in the stick-breaking parameterization amounts to integrating
a polynomial whenever the Dirichlet parameters are integers (for details see the
online appendix). The exact Bayes factors were then compared to the estimated
Bayes factors from the bridge sampling method, the conditional encompassing
method, and the unconditional encompassing method.

The second simulation study features five different data sets for which the
exact normalizing constants could not be obtained. These data sets featured 18
categories. We compared the variability of the Bayes factor estimates from the
bridge sampling method to those from the conditional encompassing method. The
comparison did not include the unconditional encompassing method because the
prior probability of a sample obeying the restriction is minuscule. As a result,
the Bayes factors from this method are liable to be staggeringly overestimated as
outlined in the main text.

8.A.1 Models with a small number of categories

8.A.1.1 Methods

The eight data sets and exact results are summarized in Table 8.1. To quantify
accuracy, we estimated the Bayes factors 100 times using the bridge sampling
method, the conditional encompassing method, and the unconditional encompass-
ing method. For all data sets, we estimated the Bayes factor in favor of the
inequality-constrained hypothesis Hr that the probabilities of each category are
increasing against the encompassing hypothesis He that allows all probabilities to
vary freely:

Hr : θ1 < θ2 < · · · < θK

He : θ1, θ2, · · · , θK .

For the bridge sampling method, we drew 20, 000 samples from the constrained
posterior distribution. For the conditional encompassing method the marginal
probabilities of each constraint holding were estimated using 40, 000 draws from
the posterior distribution, resulting in a total of 200, 000 draws for x1 and x3 – x7,
and 240, 000 draws for x2 and x8. For the unconditional encompassing method,
we drew 5 million samples from the unconstrained posterior distribution.

161



8. Evaluating Multinomial Order Restrictions with Bridge
Sampling

0.90

0.95

1.00

1.05

1.10

bridge
sampling

conditional
encompassing

method

unconditional
encompassing

method

Estimation Method

B
F

re

Distribution of Bayes factors for each estimation method for x1 for
which the exact Bayes factor BFre is 1.

0

5 × 10
5

10 × 10
5

15 × 10
5

20 × 10
5

25 × 10
5

bridge
sampling

conditional
encompassing

method

Estimation Method

B
F

e
r

Distribution of Bayes factors for each estimation method for x2 for
which the exact Bayes factor BFer is 452, 373. For these data, the
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Figure 8.3: Violin plots display the estimated Bayes factors for the bridge sam-
pling method (black), the conditional encompassing method (dark grey), and the
unconditional encompassing method (light grey) for data sets x1 and x2. The
dashed horizontal line indicates the exact Bayes factor. Note that the y-axis al-
ways shows the Bayes factor in favor of the preferred hypothesis.
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Figure 8.4: Violin plots display the estimated Bayes factors for the bridge sampling
method (black), the conditional encompassing method (dark grey), and the uncon-
ditional encompassing method (light grey) for data sets x3 and x4. The dashed
horizontal line indicates the exact Bayes factor. The Bayes factor estimates of
the conditional encompassing method and the encompassing prior method are less
variable if the data provides evidence for the restricted hypothesis (top) than if
the data provides evidence for the encompassing hypothesis (bottom).
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Figure 8.5: Violin plots display the estimated Bayes factors for the bridge sampling
method (black), the conditional encompassing method (dark grey), and the uncon-
ditional encompassing method (light grey) for data sets x5 and x6. The dashed
horizontal line indicates the exact Bayes factor. The Bayes factor estimates of
the conditional encompassing method and the encompassing prior method are less
variable if the data provides evidence for the restricted hypothesis (top) than if
the data provides evidence for the encompassing hypothesis (bottom).
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Figure 8.6: Violin plots display the estimated Bayes factors for the bridge sam-
pling method (black), the conditional encompassing method (dark grey), and the
unconditional encompassing method (light grey) for data sets x7 and x8. The
dashed horizontal line indicates the exact Bayes factor.
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Table 8.1: Data Sets, Exact Normalizing Constant of the Restricted Posterior
Distribution, and Corresponding Bayes Factors (Rounded to Two Decimals) in
Favor of and Against the Inequality-Constrained Hypotheses that the Parameters
are Increasing.

Observations p(θ ∈ Rr | x, He) BFer BFre

x1 = (0, 0, 0, 0, 0)′ 0.0083 1 1
x2 = (18, 15, 12, 9, 6, 3)′ 3.07023 × 10−9 452, 373 2.21 × 10−6

x3 = (3, 6, 8, 7, 7)′ 0.0347872 0.24 4.17
x4 = (3, 6, 9, 6, 3)′ 0.00196566 4.24 0.24
x5 = (3, 6, 9, 12, 10)′ 0.0937483 0.089 11.25
x6 = (3, 6, 9, 8, 2)′ 0.000707877 11.78 0.085
x7 = (3, 6, 9, 12, 15)′ 0.255149 0.033 30.62
x8 = (3, 6, 9, 12, 15, 18)′ 0.149099 0.01 107.35

Note. The exact normalizing constant of the restricted prior dis-
tribution is 0.008333 for x1 and x3 – x7, and 0.001389 for x2 and
x8.

8.A.1.2 Results

Figures 8.3 – 8.6 show violin plots that display the Bayes factors for the three
estimation methods for the eight data sets. Two results stand out in this sim-
ulation: First, in general, all estimation methods approximate the exact Bayes
factor, with the conditional encompassing method showing the highest variability.
Second, the advantage of bridge sampling becomes most evident for data sets that
show evidence for the encompassing hypothesis. Especially for data set x2, which
provides extreme evidence against the inequality-constrained hypothesis, bridge
sampling is able to accurately estimate the exact Bayes factor, whereas the condi-
tional encompassing method yields highly variable results and the encompassing
prior method fails to estimate any realistic Bayes factor at all: none of the poste-
rior draws were consistent with the restrictive hypothesis, yielding a Bayes factor
of 0 for all 100 estimates (bottom panel in Figure 8.3). For x6 the variability
of the Bayes factors in the conditional encompassing method might even lead to
different statistical decisions: the range of the Bayes factors is between 8 (which
is considered moderate evidence) to 18 (which is considered strong evidence, see
bottom panel in Figure 8.5).

8.A.2 Models with a higher number of categories

8.A.2.1 Methods

To further understand how the behavior of the bridge sampling method and the
conditional encompassing method differ with increasing model size, we estimated
Bayes factors for a model with K = 18 categories as applied to five additional

166



8.A. Simulation Study: Accuracy of Estimation Methods

Table 8.2: Data Sets, Bayes Factor Types and Mean Bayes Factors For Models
with 18 Categories.

Data Set Bayes factor Bridge Sampling Conditional Encompassing
Method

x9 BFre M = 1.00 [0.98, 1.01] M = 0.99 [0.77, 1.32]
x10 BFre M = 3.63 [3.55, 3.71] M = 3.75 [2.00, 7.40]
x11 BFer M = 3.02 [2.95, 3.08] M = 3.19 [1.84, 5.82]
x12 BFre M = 10.96 [10.72, 11.20] M = 11.02 [4.94, 17.25]
x13 BFer M = 15.23 [14.87, 15.55] M = 17.03 [7.68, 38.33].

Note. Square brackets indicate the minimum and maximum Bayes factor
estimate.

data sets:

x9 : (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)′

x10 : (1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 8, 7, 6, 5, 4, 3, 5, 6)′

x11 : (1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 8, 7, 6, 5, 4, 4, 4, 3)′

x12 : (1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 8, 7, 6, 5, 4, 3, 6, 7)′

x13 : (1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 8, 7, 6, 5, 3, 2, 4, 4)′

As in the first simulation study we drew 20, 000 samples from the constrained
posterior distribution for the bridge sampling method. For the conditional en-
compassing method the marginal probabilities of each constraint holding were
estimated using 40, 000 draws from the posterior distribution, resulting in a total
of 720, 000 draws.

8.A.2.2 Results

For each of the five data sets, Table 8.2 shows the means and range of the Bayes
factors for the two estimation methods. The overall results are consistent with
those from the first simulation study. Specifically, the bridge sampling method
provides estimates that are less variable than those of the conditional encompass-
ing method. Here again, for the data sets that provide evidence in favor of the
encompassing hypothesis (i.e., x11 and x13), the variability of the Bayes factors
in the conditional encompassing method might lead to different statistical deci-
sions: the Bayes factors for x11 range between 1.8 (which is considered anecdotal
evidence) to 5.8 (which is considered moderate evidence) and the Bayes factors
for x13 range between 7.7 (which is considered moderate evidence) to 38 (which is
considered strong evidence). For comparison, with bridge sampling the estimated
Bayes factor for x13 ranged between 14.9 and 15.5. In general, for both methods
the variability in the estimates increases with the strength of the evidence, either
in favor or against the inequality-constrained hypothesis.
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8.A.3 Conclusion

In two simulation studies we assessed the accuracy of the bridge sampling
method, the conditional encompassing method, and the unconditional encompass-
ing method. In the first simulation study, we obtained the exact Bayes factor for
eight data sets and then estimated the Bayes factor using the three estimation
methods. In the second simulation study, we specified a larger model and esti-
mated Bayes factors for five additional data sets using bridge sampling and the
conditional encompassing method. The first simulation shows that the uncondi-
tional encompassing method is the most accurate for four of the eight data sets.
However, the performance of this method depends heavily on the size of the model:
for a model with 18 categories the unconditional encompassing method could not
be applied anymore. The method also quickly deteriorates when the data show ev-
idence against the inequality-constrained hypothesis. In contrast, the conditional
encompassing method is more responsive to fluctuations in evidence. To improve
the accuracy of the method one could increase the number of samples. However,
one should take into account that an increase in the number of samples comes at
the expense of runtime, which is already many times higher than that of the other
two methods.

Based on the recommendation of one of the reviewers we used the bridge sam-
pling method to compute Bayes factors for models with 30 and 50 categories,
in order to assess runtime and check whether accuracy decreases with increasing
dimensionality. Even in these relatively extreme scenarios the variability of the
bridge sampling estimates remained relatively low: in the 30 category scenario the
mean Bayes factor was M = 11.01 and ranged between 10.55 and 11.45 whereas
in the 50 category scenario the mean Bayes factor was M = 9.51 and ranged
between 8.71 and 10.24. Regarding computational efficiency, the model with 30
categories took an average of about 65 seconds to compute a Bayes factor, whereas
the model with 50 categories took an average of about 1 minute and 43 seconds
to compute a Bayes factor. The increase in runtime between the 30 and the 50
category scenarios was largely due to the increase in time it takes to sample from
the restricted distribution.

Overall, the bridge sampling routine shows a relatively good trade-off between
accuracy and efficiency. The variability of the estimates remain in an accept-
able range and bridge sampling outperforms the other methods especially when
the data provides evidence against the inequality-constraint and when the models
feature many categories. The reliability of bridge sampling, which was already
on display in the empirical application, was again confirmed in these simulation
studies. At this point, we would like to refer the interested reader to our online
appendix for a more extended simulation study. This additional simulation study
further describes under which conditions the unconditional encompassing method
and sometimes even the conditional encompassing method fail to estimate a real-
istic Bayes factor.
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Chapter 9

multibridge: An R Package to
Evaluate Informed Hypotheses in
Binomial and Multinomial Models

Abstract

The multibridge R package allows a Bayesian evaluation of informed
hypotheses Hr applied to frequency data from an independent binomial or
multinomial distribution. multibridge uses bridge sampling to efficiently
compute Bayes factors for the following hypotheses concerning the latent
category proportions θ: (a) hypotheses that postulate equality constraints
(e.g., θ1 = θ2 = θ3); (b) hypotheses that postulate inequality constraints
(e.g., θ1 < θ2 < θ3 or θ1 > θ2 > θ3); (c) hypotheses that postulate mixtures
of inequality constraints and equality constraints (e.g., θ1 < θ2 = θ3); and
(d) hypotheses that postulate mixtures of (a)–(c) (e.g., θ1 < (θ2 = θ3), θ4).
Any informed hypothesis Hr may be compared against the encompassing
hypothesis He that all category proportions vary freely, or against the null
hypothesis H0 that all category proportions are equal. multibridge facili-
tates the fast and accurate comparison of large models with many constraints
and models for which relatively little posterior mass falls in the restricted
parameter space. This chapter describes the underlying methodology and
illustrates the use of multibridge through fully reproducible examples.

This chapter has been submitted for publication as Sarafoglou, A., Aust, F., Wagenmakers,
E. J., & Haaf, J. M. (2021). multibridge: An R Package To Evaluate Informed Hypotheses in
Binomial and Multinomial Models. Available as PsyArXiv preprint : https://psyarxiv.com/

qk4cy.
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The most common way to analyze categorical variables is to conduct either
binomial tests, multinomial tests, or chi-square goodness of fit tests. These tests
compare the encompassing hypothesis to a null hypothesis that all underlying
category proportions are either exactly equal, or follow a specific distribution.
Accordingly, these tests are suitable when theories predict either the invariance
of all category proportions or specific values. For instance, chi-square goodness
of fit tests are commonly used to test Benford’s law, which predicts the distri-
bution of leading digits in empirical datasets (Benford, 1938; Newcomb, 1881).
Often, however, the predictions that researchers are interested in are of a differ-
ent kind. Consider for instance the weak-order mixture model of decision-making
(Regenwetter & Davis-Stober, 2012). The theory predicts that individuals’ choice
preferences are weakly ordered at all times, that is, if they prefer choice A over B
and B over C then they will also prefer A over C (Regenwetter et al., 2011)—a
well-constrained prediction of behavior. The theory is, however, silent about the
exact values of each choice preference. Hence, the standard tests that compare
He to H0 are unsuited to test the derived predictions. Instead, the predictions
need to be translated into an informed hypothesis Hr that reflects the predicted
ordinal relations among the parameters. Only then is it possible to adequately
test whether the theory of weakly-ordered preference describes participants’ choice
behavior. Of course, researchers may be interested in more complex hypotheses,
including ones that feature combinations of equality constraints, inequality con-
straints, and unconstrained category proportions. For instance, Nuijten et al.
(2016) hypothesized that articles published in social psychology journals would
have higher error rates than articles published in other psychology journals. As in
the previous example, the authors had no expectations about the exact error rate
distribution across journals. Here, again, the standard tests are inadequate. Gen-
erally, by specifying informed hypotheses researchers and practitioners are able
to “add theoretical expectations to the traditional alternative hypothesis” (Hoi-
jtink et al., 2008, p. 2) and thus test hypotheses that relate more closely to their
theories (Haaf et al., 2019; Rijkeboer & van den Hout, 2008).

In the Bayesian framework, researchers may test hypotheses of interest by
means of Bayes factors (Jeffreys, 1935; Kass & Raftery, 1995). Bayes factors
quantify the extent to which the data change the prior model odds to the posterior
model odds, that is, the extent to which one hypothesis outpredicts the other.
Specifically, Bayes factors are the ratio of marginal likelihoods of the respective
hypotheses. For instance, the Bayes factor for the informed hypothesis versus the
encompassing hypothesis is defined as:

BFre =

Marginal likelihood
under Hr︷ ︸︸ ︷
p(x | Hr)

p(x | He)︸ ︷︷ ︸
Marginal likelihood

under He

,

where the subscript r denotes the informed hypothesis and e denotes the en-
compassing hypothesis. Several available R packages compute Bayes factors for
informed hypotheses. For instance, the package multinomineq (Heck & Davis-
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Stober, 2019) evaluates informed hypotheses for multinomial models as well as
models that feature independent binomials. The package BFpack (Mulder et al.,
2021) evaluates informed hypotheses for statistical models such as univariate and
multivariate normal linear models, generalized linear models, special cases of linear
mixed models, survival models, and relational event models. The package BAIN
(Gu et al., 2019) evaluates informed hypotheses for structural equation models.
Outside of R, the Fortran 90 program BIEMS (Mulder et al., 2012) evaluates
informed hypotheses for multivariate linear models such as MANOVA, repeated
measures, and multivariate regression. All these packages rely on one of two im-
plementations of the encompassing prior approach (Klugkist et al., 2005; Sedransk
et al., 1985) to approximate order constrained Bayes factors: the unconditional
encompassing method (Hoijtink, 2011; Hoijtink et al., 2008; Klugkist et al., 2005)
and the conditional encompassing method (Gu et al., 2014; Laudy, 2006; Mulder,
2014, 2016; Mulder et al., 2009). Even though the encompassing prior approach is
currently the most common method to evaluate informed hypotheses, it becomes
increasingly unreliable and inefficient as the number of restrictions increases or
the parameter space of the restricted model decreases (Sarafoglou, Haaf, et al.,
2021).

As alternative to the encompassing prior approach, Sarafoglou, Haaf, et al.
(2021) recently proposed a bridge sampling routine (C. H. Bennett, 1976; Meng
& Wong, 1996) that computes Bayes factors for informed hypotheses more re-
liably and efficiently. This routine is implemented in multibridge (https://
CRAN.R-project.org/package=multibridge) and is suitable to evaluate inequal-
ity constraints for multinomial and binomial models. When an informed hy-
pothesis includes mixtures of equality and inequality constraints, the core func-
tions in multibridge split the hypothesis to compute Bayes factors separately
for equality constraints (for which the Bayes factor has an analytic solution)
and inequality constraints (for which the Bayes factor is estimated using bridge
sampling). The core functions of multibridge, that is mult bf informed and
binom bf informed, return the Bayes factor estimate in favor of or against the
informed hypothesis (see Table 9.2 for a summary of the basic required argu-
ments of the two core functions). In addition, users can visualize the posterior
parameter estimates under the encompassing hypothesis using the plot-method,
or get more detailed information on how the Bayes factor is composed using the
summary-method. For hypotheses that include mixtures between equality and in-
equality constrained hypotheses the bayes factor method separately returns the
Bayes factor for the equality constraints and the conditional Bayes factor for the
inequality constraints given the equality constraints. The informed hypothesis
can be conveniently specified using a string or character vector. Furthermore, the
transitivity property of Bayes factors can be used to test two informed hypotheses
against each other (see Example 1 for an illustration). The general workflow of
multibridge is illustrated in Figure 9.1. A list of all currently available functions
and data sets is given in Table 9.1.

This chapter showcases how the proposed bridge sampling routine by
Sarafoglou, Haaf, et al. (2021) can be applied in a user-friendly way with multib-
ridge. In the remainder of this chapter, we will describe the Bayes factor identity
for informed hypotheses in binomial and multinomial models, and briefly describe
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Figure 9.1: The multibridge workflow. When calling mult bf informed or
binom bf informed, the user specifies the data values (x and n for binomial mod-
els and x for multinomial models, respectively), the informed hypothesis (Hr), the
α and β parameters of the binomial prior distributions (a and b) or the concen-
tration parameters for the Dirichlet prior distribution (a), respectively, and the
category labels of the factor levels (factor levels). The functions then return
the estimated Bayes factor for the informed hypothesis relative to the encompass-
ing or the null hypothesis. Based on these results different S3 methods can be
used to get more detailed information on the individual components of the analy-
sis (e.g., summary, bayes factor), and parameter estimates of the encompassing
distribution (plot).
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Table 9.1: Core functions available in multibridge.

Function Name(s) Description

mult bf informed Evaluates informed hypotheses on multino-
mial parameters.

mult bf inequality Estimates the marginal likelihood of a con-
strained prior or posterior Dirichlet distri-
bution.

mult bf equality Computes Bayes factor for equality con-
strained multinomial parameters using the
standard Bayesian multinomial test.

mult tsampling Samples from constrained prior or posterior
Dirichlet density.

lifestresses, peas Data sets associated with informed hy-
potheses in multinomial models.

binom bf informed Evaluates informed hypotheses on binomial
parameters.

binom bf inequality Estimates the marginal likelihood of con-
strained prior or posterior beta distribu-
tions.

binom bf equality Computes Bayes factor for equality con-
strained binomial parameters.

binom tsampling Samples from constrained prior or posterior
beta densities.

journals Data set associated with informed hypothe-
ses in binomial models.

generate restriction list Encodes the informed hypothesis.

the bridge sampling method. Then, we illustrate the core functions of multib-
ridge package using two examples and end with a brief summary.

9.1 Methods

In this section we formalize multinomial models and models that feature inde-
pendent binomial probabilities as they have been implemented in multibridge.
In the multinomial model, we assume that the vector of observations x in the K
categories follows a multinomial distribution in which the parameters of interest,
θ, represent the underlying category proportions. Since the K categories are de-
pendent, the vector of probability parameters is constrained to sum to one, such
that

∑K
k=1(θ1, · · · , θK) = 1. Therefore, a suitable choice for a prior distribution

for θ is the Dirichlet distribution with concentration parameter vector α:

173



9. multibridge: An R Package to Evaluate Informed Hypotheses in
Binomial and Multinomial Models

x1, · · · , xK ∼ Multinomial(
K∑

k=1

xk, θ1, · · · , θK) (9.1)

θ1, · · · , θK ∼ Dirichlet(α1, · · · , αK), (9.2)

where α can be interpreted as vector of a priori category counts. The formalization
of the model for independent binomial probabilities is similar since the multinomial
model above constitutes a generalization of the binomial model (for K ≥ 2). In the
binomial model, we assume that the elements in the vector of successes x and the
elements in the vector of total number of observations n in the K categories follow
independent binomial distributions. As in the multinomial model, the parameter
vector of the binomial success probabilities θ contains the underlying category
proportions, however, in this model we assume that categories are independent
which removes the sum-to-one constraint. Therefore, a suitable choice for a prior
distribution for θ is a vector of independent beta distributions with parameters α
and β:

x1 · · ·xK ∼
K∏

k=1

Binomial(θk, nk) (9.3)

θ1 · · · θK ∼
K∏

k=1

Beta(αk, βk), (9.4)

where α can be interpreted as vector of a priori successes that observations fall
within the various categories and β can be interpreted as vector of a priori failures.

9.2 Bayes factor

multibridge features two different methods to compute Bayes factors: one
method computes Bayes factors for equality constrained parameters and one
method computes Bayes factors for inequality constrained parameters. Both meth-
ods will be outlined below. In cases where informed hypotheses feature mixtures
between inequality and equality constraints, we compute the overall Bayes factor
BFre by multiplying the individual Bayes factors for both constraint types. This
is motivated by the fact that the Bayes factor for mixtures will factor into a Bayes
factor for the equality constraints and a conditional Bayes factor for the inequality
constraints given the equality constraints (see Sarafoglou, Haaf, et al., 2021, for
the proof).

9.2.1 The Bayes Factor For Equality Constraints

In multibridge the Bayes factor for the equality constraints can be com-
puted analytically both for binomial and multinomial models using the functions
binom bf equality and mult bf equality. For binomial models, assuming that
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the all binomial probabilities in a model are exactly equal, the Bayes factor is
defined as:

BF0e =

∏K
k=1 B(αk, βk)∏K

k=1 B(αk + xk, βk + nk − xk)
×

B(α+ + x+ + 1, β+ + n+ − x+ + 1)

B(α+ + 1, β+ + 1)
,

where B(·) denotes the beta function and α+ =
∑K

k=1 αk, β+ =
∑K

k=1 βk, x+ =∑K
k=1 xk and n+ =

∑K
k=1 nk. If all binomial probabilities in a model are assumed

to be exactly equal and equal to a predicted value θ0, the Bayes factor is defined
as:

BF0e =

∏K
k=1 B(αk, βk)∏K

k=1 B(αk + xk, βk + nk − xk)
× θ

x+

0 (1 − θ0)n+−x+ .

Note that multibridge only supports the specification of one predicted value
for all binomial probabilities. The package does not support the specification of
different predicted values for different binomial probabilities. The reason for this is
theoretical: we believe that such hypotheses are better tested using a hierarchical
structure (thus modeling the binomial probabilities as dependent).

For multinomial models, assuming that all category proportions in a model are
equality constrained, the Bayes factor BF0e is defined as:

BF0e =
B (α1, . . . , αK)

B (α1 + x1, . . . , αK + xK)
× B(α + x)

B(α)
×

K∏
k=1

θxk

0k ,

where θ0k represent the predicted category proportions. When all category pro-
portions are assumed to be exactly equal all θ0k are set to 1

K . Otherwise, θ0 is
replaced with the user-specified predicted values.

9.2.2 The Bayes Factor For Inequality Constraints

To approximate the Bayes factor for informed hypotheses, Klugkist et al. (2005)
derived an identity that defines the Bayes factor BFre as the ratio of proportions
of posterior and prior parameter space consistent with the restriction. This iden-
tity forms the basis of the encompassing prior approach. Recently, Sarafoglou,
Haaf, et al. (2021) highlighted that these proportions can be reinterpreted as the
marginal likelihoods (i.e., the normalizing constants) of the constrained posterior
and constrained prior distribution:

BFre =

Marginal likelihood of
constrained posterior distribution︷ ︸︸ ︷

p(θ ∈ Rr | x, He)

p(θ ∈ Rr | He)︸ ︷︷ ︸
Marginal likelihood of

constrained prior distribution

. (9.5)

The benefit of reinterpreting the identity by Klugkist et al. (2005) is that we
can estimate the Bayes factor by utilizing numerical sampling methods such as
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bridge sampling. For that we only need to be able to sample from the constrained
densities. Crucially, when using bridge sampling, it does not matter how small the
constrained parameter space is in proportion to the encompassing density. This
gives the method a decisive advantage over the encompassing prior approach in
terms of accuracy and efficiency especially (1) when binomial and multinomial
models with moderate to high number of categories (i.e., K > 10) are evaluated
and (2) when relatively little posterior mass falls in the constrained parameter
space.

The bridge sampling algorithm implemented in multibridge estimates one
marginal likelihood at the time (cf., Gronau et al., 2017; Overstall & Forster,
2010). Specifically, we separately estimate the marginal likelihood for the con-
strained prior distribution and the marginal likelihood of the constrained poste-
rior distribution. Here we describe how to estimate the marginal likelihood for the
constrained prior distribution; the steps presented can then be applied accord-
ingly to the posterior distribution. It should be noted that the bridge sampling
algorithm implemented in multibridge is an adapted version of the algorithm
implemented in the R package bridgesampling (Gronau et al., 2020) and allows
for the specification of informed hypotheses on probability vectors.1 The bridge
sampling identity for the marginal likelihood of the constrained prior distribution
is defined as:

p(θ ∈ Rr | He) =
Eg(θ) (p(θ | He)I(θ ∈ Rr)h(θ))

Eprior (g(θ)h(θ))
, (9.6)

where the term h(θ) refers to the bridge function proposed by Meng and Wong
(1996), g(θ) refers to a so-called proposal distribution, and p(θ | He)I(θ ∈ Rr)
is the part of the prior parameter space under the encompassing hypothesis that
is in accordance with the constraint. To estimate the marginal likelihood, bridge
sampling requires samples from the target distribution, that is, the constrained
Dirichlet distribution for multinomial models and constrained beta distributions
for binomial models, and samples from the proposal distribution which in princi-
ple can be any distribution with a known marginal likelihood; in multibridge the
proposal distribution is the multivariate normal distribution. Samples from the
target distribution are generated using the Gibbs sampling algorithms proposed
by Damien and Walker (2001). For binomial models, we apply the suggested
Gibbs sampling algorithm for constrained beta distributions. In the case of the
multinomial models, we apply an algorithm that simulates values from constrained
Gamma distributions which are then transformed into Dirichlet random variables.
To sample efficiently from these distributions, multibridge provides a C++ imple-
mentation of this algorithm. Samples from the proposal distribution are generated
using the standard rmvnorm-function from the R package mvtnorm (Genz et al.,
2020).

The efficiency of the bridge sampling method is optimal only if the target and
proposal distribution operate on the same parameter space and have sufficient

1In addition, the function to compute the relative mean square error for bridge sampling
estimates in multibridge is based on the code of the error measures-function from the bridge-
sampling package.

176



9.2. Bayes factor

overlap. We therefore probit transform the samples of the constrained distri-
butions to move the samples from the probability space to the entire real line.
Subsequently, we use half of these draws to construct the proposal distribution
using the method of moments. Details on the probit transformations are provided
in Appendix A.

The numerator in Equation 9.6 evaluates the unnormalized density for the
constrained prior distribution with samples from the proposal distribution. The
denominator evaluates the normalized proposal distribution with samples from
the constrained prior distribution. Using this identity, we obtain the bridge sam-
pling estimator for the marginal likelihood of the constrained prior distribution by
applying the iterative scheme proposed by Meng and Wong (1996):

p̂(θ ∈ Rr | He)
(t+1) ≈

1

N2

∑N2

m=1

ℓ2,m

s1ℓ2,m + s2p(θ̃m ∈ Rr | He)(t)

1

N1

∑N1

n=1

1

s1ℓ1,n + s2p(θ∗
n ∈ Rr | He)(t)

,

where N1 denotes the number of samples drawn from the constrained distribution,
that is, θ∗ ∼ p(θ | Hr), N2 denotes the number of samples drawn from the proposal
distribution, that is θ̃ ∼ g(θ), s1 = N1

N2+N1
, and s2 = N2

N2+N1
. The quantities ℓ1,n

and ℓ2,m are defined as follows:

ℓ1,n =
q1,1

q1,2
=

p(θ∗
n | He)I(θ∗

n ∈ Rr)

g(ξn
∗)

, (9.7)

ℓ2,m =
q2,1

q2,2
=

p(θ̃m | He)I(θ̃m ∈ Rr)

g(ξ̃m)
, (9.8)

where ξn
∗ = Φ−1

(
θ∗
n − l

u− l

)
, and θ̃m = ((u− l)Φ(ξ̃m) + l) |J |). The quantity q1,1

refers to the evaluations of the constrained distribution for constrained samples
and q1,2 refers to the proposal distribution evaluated at the probit-transformed
samples from the constrained distribution, respectively. The quantity q2,1 refers
to evaluations of the constrained distribution at the inverse probit-transformed
samples from the proposal distribution and q2,2 refers to the proposal evaluations
for samples from the proposal, respectively. Note that the quantities ℓ1,n and ℓ2,m
have been adjusted to account for the necessary parameter transformations to
create overlap between the constrained distributions and the proposal distribution.
multibridge runs the iterative scheme until the tolerance criterion suggested by
Gronau et al. (2017) is reached, that is:

| p̂(θ ∈ Rr | He)
(t+1) − p̂(θ ∈ Rr | He)

(t) |
p̂(θ ∈ Rr | He)(t+1)

≤ 10−10.

The sampling from the target and proposal distribution, the transformations and
computational steps are performed automatically within the core functions of
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multibridge. The user only needs to provide the functions with the data, a
prior and a specification of the informed hypothesis. As part of the standard out-
put of binom bf informed and mult bf informed, the functions return the bridge
sampling estimate for the log marginal likelihood of the target distribution, its as-
sociate relative mean square error, the number of iterations, and the quantities
q1,1, q1,2, q2,1, and q2,2.

9.3 Usage and Examples

In the following, we will outline two examples on how to use multibridge to com-
pare an informed hypothesis to a null or encompassing hypothesis. The first exam-
ple concerns multinomial data and the second example concerns independent bino-
mial data. Additional examples are available as vignettes (see vignette(package

= "multibridge")). The two core functions of multibridge—mult bf informed

and the binom bf informed— can be illustrated schematically as follows:

mult_bf_informed(x, Hr, a, factor_levels)

binom_bf_informed(x, n, Hr, a, b, factor_levels)

To compute a Bayes factor, the core functions require the observed counts, the
informed hypothesis, the parameters of the prior distribution under He, and the
category labels. An overview of these arguments are provided in Table 9.2.

The package also includes S3 methods that, among other things, summarize
the results, plot the parameter estimates under He, or extract the Bayes factors.
Table 9.3 summarizes all S3 methods currently available in multibridge.

9.3.1 Disclosures

9.3.1.1 Availability of data and code

The source code of the R package is available at: https://github.com/

ASarafoglou/multibridge/. In addition, readers can access the code for repro-
ducing all analyses and plots via our project folder on the Open Science Frame-
work: https://osf.io/2wf5y/.

9.3.1.2 Ethical Approval

This is a methodological contribution which requires no ethical approval.

9.3.2 Example 1: Applying A Benford Test to Greek Fiscal
Data

The first-digit phenomenon, otherwise known as Benford’s law (Benford, 1938;
Newcomb, 1881) states that the expected proportion of leading digits in empirical
data can be formalized as follows: for any given leading digit d, d = (1, · · · , 9) the
expected proportion is approximately equal to

Eθd = log10((d + 1)/d).
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Table 9.2: To estimate the Bayes factor in favor for or against the specified
informed hypothesis, the user provides the core functions mult bf informed

and binom bf informed with the basic required arguments listed below.

Argument Description

x numeric. Vector with data (for multinomial models) or a
vector of counts of successes, or a two-dimensional table
(or matrix) with 2 columns, giving the counts of successes
and failures, respectively (for binomial models).

n numeric. Vector with counts of trials. Must be the same
length as x. Ignored if x is a matrix or a table. Included
only in binom bf informed.

Hr string or character. String or vector with the user spec-
ified informed hypothesis. Parameters may be referenced
by the specified factor levels or by numerical indices.

a numeric. Vector with concentration parameters of Dirich-
let distribution (for multinomial models) or α parameters
for independent beta distributions (for binomial models).
Must be the same length as x. Default sets all parameters
to 1.

b numeric. Vector with β parameters. Must be the same
length as x. Default sets all β parameters to 1. Included
only in binom bf informed.

factor levels character. Vector with category labels. Must be the
same length as x.

This means that in an empirical data set, numbers with smaller leading digits are
more common than numbers with larger leading digits. Specifically, a number has
leading digit 1 in 30.1% of the cases, and leading digit 2 in 17.61% of the cases;
leading digit 9 is the least frequent digit with an expected proportion of only
4.58% (see Table 9.4 for an overview of the expected proportions). Empirical data
for which this relationship holds include population sizes, death rates, baseball
statistics, atomic weights of elements, and physical constants (Benford, 1938). In
contrast, artificially generated data, such as telephone numbers, do in general not
obey Benford’s law (Hill, 1995). Given that Benford’s law applies to empirical
data but not artificially generated data, a so-called Benford test can be used in
fields like accounting and auditing to check for indications for poor data quality
(for an overview, see e.g., Durtschi, Hillison, & Pacini, 2004; M. Nigrini, 2012;
M. J. Nigrini & Mittermaier, 1997). Data that do not pass the Benford test, should
raise audit risk concerns, meaning that it is recommended that they undergo
additional follow-up checks (Nigrini, 2019).

Below we discuss four possible Bayesian adaptations of the Benford test. In
a first scenario we simply conduct a Bayesian multinomial test in which we test
the point-null hypothesis H0 which predicts a Benford distribution against the
encompassing hypothesis He. In a second scenario we test the null hypothesis
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Table 9.3: S3 methods available in multibridge.

Function Name(s) S3 Method Description

mult bf informed,
binom bf informed

print Prints model specifications and
descriptives.

summary Prints and returns the Bayes fac-
tor and associated hypotheses for
the full model, and all equality
and inequality constraints.

plot Plots the posterior median and
credible interval of the parame-
ter estimates of the encompass-
ing model. Default sets credible
interval to 95%.

bayes factor Contains all Bayes factors and
log marginal likelihood estimates
for inequality constraints.

samples Extracts prior and posterior
samples from constrained densi-
ties (if bridge sampling was ap-
plied).

bridge output Extracts bridge sampling output
and associated error measures.

restriction list Extracts restriction list and as-
sociated informed hypothesis.

mult bf inequality,
binom bf inequality

print Prints the bridge sampling esti-
mate for the log marginal likeli-
hood and the corresponding per-
centage error.

summary Prints and returns the bridge
sampling estimate for the log
marginal likelihood and associ-
ated error terms.
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against an alternative hypothesis, denoted as Hr1, which predicts a decreasing
trend in the proportions of leading digits. The hypothesis Hr1 exerts considerably
more constraint than He and provides a more sensitive test if our primary goal
is to test whether data comply with Benford’s law or whether the data follow a
similar but different trend. In the next two scenarios, our main goal is to identify
fabricated data. The third scenario therefore tests the null hypothesis against the
hypothesis that all proportions occur equally often. This hypothesis Hr2 could be
considered if it is suspected that the data were generated randomly. In a fourth
scenario we test the null hypothesis against a hypothesis which predicts a trend
that is characteristic for manipulated data. This hypothesis, which we denote as
Hr3, could be derived from empirical research on fraud or be based on observed
patterns from former fraud cases. For instance, Hill (1995) instructed students
to produce a series of random numbers; in the resulting data the proportion of
the leading digit 1 occurred most often and the digits 8 and 9 occurred least
often which is consistent with the general pattern of Benford’s law. However, the
proportion for the remaining leading digits were approximately equal. Note that
the predicted distribution derived from Hill (1995) is not currently used as a test
to detect fraud. However, for the sake of simplicity, if we assume that this pattern
could be an indication of manipulated auditing data, the Bayes factor BF0r3 would
quantify the evidence of whether the proportion of first digits resemble authentic
or fabricated data.

9.3.2.1 Data and Hypothesis

The data we use to illustrate the computation of Bayes factors were originally pub-
lished by the European statistics agency Eurostat and served as basis for reviewing
the adherence to the Stability and Growth Pact of EU member states. Rauch et
al. (2011) conducted a Benford test on data related to budget deficit criteria, that
is, public deficit, public dept and gross national products. The data used for this
example features the proportion of first digits from Greek fiscal data in the years
between 1999 and 2010; a total of N = 1,497 numerical data were included in
the analysis. We choose this data, since the Greek government deficit and debt
statistics states has been repeatedly criticized by the European Commission in
this time span (European Commision, 2004, 2010). In particular, the commission
has accused the Greek statistical authorities to have misreported deficit and debt
statistics. For further details on the data set see Rauch et al. (2011). The observed
and expected proportions are displayed in Table 9.4; the expected proportions
versus the posterior parameter estimates under the encompassing hypothesis are
displayed in Figure 9.2.

In this example, the parameter vector of the multinomial model, θ1, · · · , θK ,
reflects the probabilities of a leading digit in the Greek fiscal data being a number
from 1 to 9. The hypotheses introduced above can then be formalized as follows.
The null hypothesis specifies that the proportions of first digits obeys Benford’s
law:

H0 : θ0 = (0.301, 0.176, 0.125, 0.097, 0.079, 0.067, 0.058, 0.051, 0.046).
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Table 9.4: Observed counts, observed proportions, and expected propor-
tions of first digits in the Greek fiscal data set. The total sample size was
N = 1,497 observations. Note that the observed proportions and counts
deviate slightly from those reported in Rauch et al. (2011) (probably
due to rounding errors).

Leading
digit

Observed
Counts

Observed
Proportions

Expected Proportions:
Benford’s Law

1 509 0.340 0.301
2 353 0.236 0.176
3 177 0.118 0.125
4 114 0.076 0.097
5 77 0.051 0.079
6 77 0.051 0.067
7 53 0.035 0.058
8 73 0.049 0.051
9 64 0.043 0.046

This null hypothesis can then be tested against each of the following four alterna-
tive hypotheses:

He : θ ∼ Dirichlet(1),

Hr1 : θ1 > θ2 > θ3 > θ4 > θ5 > θ6 > θ7 > θ8 > θ9,

Hr2 : θ0 =

(
1

9
,

1

9
,

1

9
,

1

9
,

1

9
,

1

9
,

1

9
,

1

9
,

1

9

)
,

Hr3 : θ1 > (θ2 = θ3 = θ4 = θ5 = θ6 = θ7) > (θ8, θ9).

The comparison of any two informed hypotheses with one another follows from the
fact that Bayes factors are transitive. For instance, the Bayes factor comparison
between H0 and Hr1 can be obtained by first computing BFe0 and BFer1, and
then dividing out the common hypothesis He:

BF0r1 =
BFe0

BFer1
.

An overview of the relative plausibility of all M = 5 models simultaneously
may be obtaining by presenting the posterior model probabilities p(Hi |x) (Berger
& Molina, 2005). Denoting the prior model probability for model Hi by p(Hi),
the posterior model probability for H0 is given by:

p(H0 | x) =

p(x | H0)

p(x | He)
× p(H0)

M∑
i=1

p(x | Hi)

p(x | He)
× p(Hi)

.
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When all hypotheses are equally likely a priori, this simplifies to:

p(H0 | x) =
BF0e

BF0e + BFr1e + BFr2e + BFr3e + BFee
.

9.3.2.2 Method

Both BF0e and BFr2e may be readily computed by means of a Bayesian multino-
mial test which is implemented in the function mult bf equality. This function
requires (1) a vector with observed counts, (2) a vector with concentration param-
eters of the Dirichlet prior distribution under He, and (3) the vector of expected
proportions under H0 and under Hr2. We do not incorporate specific expectations
about the distribution of leading digits in the Greek fiscal data and therefore set
all concentration parameters under He to 1 (i.e., we assign θ a uniform Dirichlet
prior distribution).

# Observed counts

x <- c(509, 353, 177, 114, 77, 77, 53, 73, 64)

# Prior specification for Dirichlet prior distribution under H_e

a <- rep(1, 9)

# Expected proportions for H_0 and H_r2

p0 <- log10((1:9 + 1)/1:9)

pr2 <- rep(1/9, 9)

# Execute the analysis

results_H0_He <- mult_bf_equality(x = x, a = a, p = p0)

results_Hr2_He <- mult_bf_equality(x = x, a = a, p = pr2)

logBFe0 <- results_H0_He$bf$LogBFe0

logBFer2 <- results_Hr2_He$bf$LogBFe0

The hypotheses Hr1 and Hr3 contain inequality constraints, and this neces-
sitates the use of the function mult bf informed to compute the Bayes factors
BFr1e and BFr3e. This function requires (1) a vector with observed counts, (2) a
vector with concentration parameters of the Dirichlet prior distribution under He,
(3) labels for the categories of interest (i.e., leading digits), and (4) the informed
hypothesis Hr1 or Hr3 (e.g., as a string). In addition to the basic required argu-
ments, we use two additional arguments here. The first argument sets the Bayes
factor type, that is, whether the output should print the Bayes factor in favor of
the informed hypothesis (i.e., BFre) or in favor of the encompassing hypothesis
(i.e., BFer). It is also possible to compute the log Bayes factor in favor of the
hypothesis, which is the setting we choose for this example. The purpose of the
second argument seed is to make the results reproducible:

# Observed counts

x <- c(509, 353, 177, 114, 77, 77, 53, 73, 64)

# Prior specification for Dirichlet prior distribution under H_e

a <- rep(1, 9)

# Labels for categories of interest
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Table 9.5: Prior model probabilities, posterior
model probabilities, and Bayes factors for five rival
accounts of first digit frequencies in the Greek fis-
cal data set.

Hypothesis p(H.) p(H. | x) log(BF.0)
H0 0.2 1.27 × 10−11 0
Hr1 0.2 0.9994 25.09
He 0.2 0.0006 17.67
Hr3 0.2 9.46 × 10−79 -154.57
Hr2 0.2 2.71 × 10−212 -462.06

factor_levels <- 1:9

# Specifying the informed hypotheses as a string

Hr1 <- c(’1 > 2 > 3 > 4 > 5 > 6 > 7 > 8 > 9’)

Hr3 <- c(’1 > 2 = 3 = 4 = 5 = 6 = 7 > 8 > 9’)

# Execute the analysis

results_He_Hr1 <- mult_bf_informed(x = x, Hr = Hr1, a = a,

factor_levels = factor_levels,

bf_type = ’LogBFer’, seed = 2020)

logBFer1 <- summary(results_He_Hr1)$bf

results_He_Hr3 <- mult_bf_informed(x = x, Hr = Hr3, a = a,

factor_levels = factor_levels,

bf_type = ’LogBFer’, seed = 2020)

logBFer3 <- summary(results_He_Hr3)$bf

We may now exploit transitivity to compare all alternative hypotheses to the
Benford null hypothesis H0. We also compute the posterior model probabilities
for all hypotheses. The results are shown in Table 9.5.

The results indicate strong support for Hr1 –the model in which the proportions
are assumed to decrease monotonically– over all other models. The log Bayes
factor of Hr1 against Benford’s law H0 is an overwhelming 25.09; the evidence
for Hr1 is even stronger when it is compared against models that feature equality
constraints (i.e., Hr2 and Hr3). Finally, Hr1 also outperforms model He, the
unconstrained model in which all parameters are free to vary. The latter result
demonstrates how a parsimonious model that makes precise predictions can be
favored over a model that is more complex (e.g., Jefferys & Berger, 1992). The
strong Bayes factor support for Hr1 translates to a relatively extreme posterior
model probability of 0.9994.

To summarize, the data offer overwhelming support for hypothesis Hr1, which
postulates a decreasing trend in the digit proportions. This model outperformed
both simpler models (e.g., the Benford model) and a more complex model in
which the proportions were free to vary. Detailed follow-up analyses are needed
to discover why the data follow a monotonically decreasing pattern but not any
of the two specific patterns that were put to the test (M. J. Nigrini, 2019).
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Figure 9.2: Predictions from Benford’s law (in grey) show together with the pos-
terior medians (black circles) for the category proportions estimated under the
encompassing model He. The circle skewers show the 95% credible intervals. Only
three of nine intervals encompass the expected proportions, suggesting that the
data do not follow Benford’s law. This plot was created using the plot-S3-method
for summary.bmult objects in multibridge.

9.3.3 Example 2: Prevalence of Statistical Reporting Errors

This section illustrates how multibridge may be used to evaluate models for
independent binomial data rather than multinomial data. Our example concerns
the prevalence of statistical reporting errors across eight different psychology jour-
nals. In any article that uses null hypothesis significance testing, there is a chance
that the reported test statistic and degrees of freedom do not match the reported
p-value, possibly because of copy-paste errors. To flag these errors, Epskamp
and Nuijten (2016) developed the R package statcheck, which scans the PDF
of a given scientific article and automatically detects statistical inconsistencies.
This package allowed Nuijten et al. (2016) to estimate the prevalence of statistical
reporting errors in the field of psychology. In total, the authors investigated a
sample of 30,717 articles (which translates to over a quarter of a million p-values)
published in eight major psychology journals between 1985 to 2013: Developmen-
tal Psychology (DP), the Frontiers in Psychology (FP), the Journal of Applied
Psychology (JAP), the Journal of Consulting and Clinical Psychology (JCCP),
Journal of Experimental Psychology: General (JEPG), the Journal of Personality
and Social Psychology (JPSP), the Public Library of Science (PLoS), Psychological
Science (PS).

Based on several background assumptions, Nuijten et al. (2016) predicted that
the proportion of statistical reporting errors is higher for articles published in the
Journal of Personality and Social Psychology (JPSP) than for articles published
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in the seven other journals.

9.3.3.1 Data and Hypothesis

Here we reuse the original data published by Nuijten et al. (2016), which we also
distribute with the package multibridge under the name journals.

data(journals)

The Nuijten et al. (2016) hypothesis of interest, Hr, states that the prevalence
for statistical reporting errors is higher for JPSP than for the other journals.2 We
will consider two specific versions of the Nuijten et al. (2016) Hr hypothesis. The
first hypothesis, Hr1, stipulates that JPSP has the highest prevalence of reporting
inconsistencies, whereas the other seven journals share a prevalence that is lower.
The second hypothesis, Hr2, also stipulates that JPSP has the highest prevalence
of reporting inconsistencies, but does not commit to any particular structure on
the prevalence for the other seven journals.

The multibridge package can be used to test Hr1 and Hr2 against the null hy-
pothesis H0 that all eight journals have the same prevalence of statistical reporting
errors. In addition, we will compare Hr1, Hr2, and H0 against the encompassing
hypothesis He that makes no commitment whatsoever about the prevalence of
reporting inconsistencies across the eight journals. In this example, the parameter
vector of the binomial success probabilities, θ, reflects the probabilities that arti-
cles contain at least one statistical reporting inconsistency across journals. Thus,
the above hypotheses can be formalized as follows:

H0 : θJAP = θPS = θJCCP = θPLOS = θDP = θFP = θJEPG = θJPSP

Hr1 : (θJAP = θPS = θJCCP = θPLOS = θDP = θFP = θJEPG) < θJPSP

Hr2 : (θJAP, θPS, θJCCP, θPLOS, θDP, θFP, θJEPG) < θJPSP

He : θJAP · · · θJPSP ∼
K∏

k=1

Beta(αk, βk).

9.3.3.2 Method

To compute the Bayes factor BF0r we need to specify (1) a vector with observed
successes (i.e., the number of articles that contain a statistical inconsistency), (2)
a vector containing the total number of observations (i.e., the number of arti-
cles), (3) a vector with prior parameter αk for each binomial proportion of the
beta prior distribution under He, (4) a vector with prior parameter βk for each
binomial proportion of the beta prior distribution under He, (5) the category la-
bels (i.e., journal names), and (6) the informed hypothesis Hr1 or Hr2 (e.g., as
a string). We also change the Bayes factor type to LogBFr0 so that the function

2Nuijten et al. (2016) did not report inferential tests because they had sampled the entire
population. We do report inferential tests here because we wish to learn about the latent data-
generating process.
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Table 9.6: Prior model probabilities, posterior model
probabilities, and Bayes factors for four hypotheses
concerning the prevalence of statistical reporting er-
rors across psychology journals.

Hypothesis p(H.) p(H. | x) log(BF.0)
H0 0.25 1.6073 × 10−69 0
Hr2 0.25 0.8814 158.28
He 0.25 0.1186 156.27
Hr1 0.25 1.9517 × 10−37 73.88

returns the log Bayes factor in favor for the informed hypothesis compared to the
null hypothesis. Since we have no specific expectations about the distribution of
statistical reporting errors in any given journal, we set all parameters αk and βk

to one which corresponds to uniform beta distributions. With this information,
we can now conduct the analysis with the function binom bf informed.

# Since percentages are rounded to two decimal values, we round the

# articles with an error to obtain integer values

x <- round(journals$articles_with_NHST *

(journals$perc_articles_with_errors/100))

# Total number of articles

n <- journals$articles_with_NHST

# Prior specification for beta prior distributions under H_e

a <- rep(1, 8)

b <- rep(1, 8)

# Labels for categories of interest

journal_names <- journals$journal

# Specifying the informed Hypothesis

Hr1 <- c(’JAP = PS = JCCP = PLOS = DP = FP = JEPG < JPSP’)

Hr2 <- c(’JAP , PS , JCCP , PLOS , DP , FP , JEPG < JPSP’)

# Execute the analysis for Hr1

results_H0_Hr1 <- binom_bf_informed(x = x, n = n, Hr = Hr1, a = a, b = b,

factor_levels = journal_names,

bf_type = ’LogBFr0’, seed = 2020)

# Execute the analysis for Hr2

results_H0_Hr2 <- binom_bf_informed(x = x, n = n, Hr = Hr2, a = a, b = b,

factor_levels = journal_names,

bf_type = ’LogBFr0’, seed = 2020)

LogBFe0 <- results_H0_Hr1$bf_list$bf0_table[[’LogBFe0’]]

LogBFr10 <- summary(results_H0_Hr1)$bf

LogBFr20 <- summary(results_H0_Hr2)$bf
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Figure 9.3: Posterior medians for the prevalence of statistical reporting incon-
sistencies across eight psychology journals, as obtained using the encompassing
model. The circle skewers show the 95% credible intervals. Analysis based on
data from Nuijten et al. (2016). This plot was created using the plot-S3-method
for summary.bmult objects.

As the evidence is extreme in all four cases, we again report all Bayes factors on
the log scale. The Bayes factor log(BFr20) indicates overwhelming evidence for the
informed hypothesis that JPSP has the highest prevalence for statistical reporting
inconsistencies compared to the null hypothesis that the statistical reporting errors
are equal across all eight journals; log(BFr20) = 158.28. For a clearer picture about
the ordering of the journals we can investigate the posterior distributions for the
prevalence rates obtained under the encompassing model.

LogBFe0 <- results_H0_Hr1$bf_list$bf0_table[[’LogBFe0’]]

LogBFr10 <- summary(results_H0_Hr1)$bf

LogBFr20 <- summary(results_H0_Hr2)$bf

plot(summary(results_H0_Hr2), xlab = "Journal")

The posterior medians and 95% credible intervals are returned by the summary-
method and are shown in Figure 9.3. The figure strongly suggests that the preva-
lence of reporting inconsistencies is not equal across all eight journals. This impres-
sion may be quantified by comparing the null hypothesis H0 to the encompassing
hypothesis He. The corresponding Bayes factor equals log(BFe0) = 156.27, which
confirms that the data dramatically undercut the null hypothesis that the preva-
lence of statistical reporting inconsistencies is equal across journals.
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9.4. Summary

The data offer most support for the Nuijten hypothesis Hr2, which posits that
JPSP has the highest prevalence but does not commit to any restriction on the
prevalences for the remaining seven journals. This hypothesis may be compared
to the encompassing hypothesis He, which yields log(BFr2e) = 2.01. This means
that the observed data are exp(2.01) ≈ 7.45 times more likely under Hr2 than
under He; this is moderate evidence for the restriction suggested by Nuijten et al.
(2016). Under equal prior probability for the models, this Bayes factor translates
to a posterior probability on He of 0.119, an amount that researchers may deem
too large to discard in an all-or-none fashion.

To summarize, the data provide moderate evidence for the hypothesis stated
by Nuijten et al. (2016) that the prevalence of statistical reporting inconsistencies
in JPSP is higher than that in seven other psychology journals.

9.4 Summary

The R package multibridge facilitates the estimation of Bayes factors for informed
hypotheses in both multinomial and independent binomial models. The efficiency
gains of multibridge are particularly pronounced when the parameter restrictions
are highly informative or when the number of categories is large.

multibridge supports the evaluation of informed hypotheses that feature
equality constraints, inequality constraints, and free parameters, as well as mix-
tures between them. Moreover, users can choose to test the informative hypothesis
against an encompassing hypothesis that lets all parameters vary freely or against
the null hypothesis that states that category proportions are exactly equal. Beyond
the core functions currently implemented in multibridge, there are several nat-
ural extensions we aim to include in future versions of this package. For instance,
to compare several models with each other we plan to implement functions that
compute the posterior model probabilities. Another extension is to facilitate the
specification of hierarchical binomial and multinomial models which would allow
users to analyze data where responses are nested within a higher-order structure
such as participants, schools, or countries. Hierarchical multinomial models can
be found, for instance, in source memory research where people need to select a
previously studied item from a list (e.g., Arnold, Heck, Bröder, Meiser, & Boywitt,
2019). In addition, we aim to enable the specification of informed hypotheses that
are more complex, including hypotheses on the size ratios of the parameters (e.g.,
θ1 < 2 × θ2) of interest or the difference between category proportions such that
informed hypotheses can also be specified on odds ratios (e.g., θ1

(θ1+θ2)
< θ3

(θ3+θ4)
).
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9.A Transforming an Ordered Probability Vector to the
Real Line

The bridge sampling routine in multibridge uses the multivariate normal distri-
bution as proposal distribution, which requires moving the target distribution θ
to the real line. Crucially, the transformation needs to retain the ordering of the
parameters, that is, it needs to take into account the lower bound lk and the up-
per bound uk of each θk. To meet these requirements, multibridge uses a probit
transformation, as proposed in Sarafoglou, Haaf, et al. (2021), and subsequently
transforms the elements in θ, moving from its lowest to its highest value. In the
binomial model, we move all elements in θ to the real line and thus construct a new
vector y ∈ RK . For multinomial models it follows from the sum-to-one constraint
that the vector θ is completely determined by its first K − 1 elements, where θK
is defined as 1 −

∑K−1
k=1 θk. Hence, for multinomial models we will only consider

the first K − 1 elements of θ and we will transform them to K − 1 elements of a
new vector y ∈ RK−1.

Let ϕ denote the density of a normal variable with a mean of zero and a
variance of one, Φ denote its cumulative density function, and Φ−1 denote the
inverse cumulative density function. Then for each element θk, the transformation
is

ξk = Φ−1

(
θk − lk
uk − lk

)
,

The inverse transformation is given by

θk = (uk − lk)Φ(ξk) + lk.

To perform the transformations, we need to determine the lower bound lk and
the upper bound uk of each θk. Assuming θk−1 < θk for k ∈ {2 · · · ,K} the lower
bound for any element in θ is defined as

lk =

{
0 if k = 1

θk−1 if 1 < k < K.

This definition holds for both binomial models and multinomial models. Dif-
ferences in these two models appear only when determining the upper bound for
each parameter. For binomial models, the upper bound for each θk is simply 1. For
multinomial models, however, due to the sum-to-one constraint the upper bounds
depend on the values of smaller elements as well as on the number of remaining
larger elements in θ. To be able to determine the upper bounds, we represent
θ as unit-length stick which we subsequently divide into K elements (Frigyik et
al., 2010; Stan Development Team, 2021). By using this so-called stick-breaking
method we can define the upper bound for any θk as follows:

uk =


1

K
if k = 1

1 −
∑

i<k θi

ERS
if 1 < k < K,

(9.9)
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where 1−
∑

i<k θi represents the length of the remaining stick, that is, the propor-
tion of the unit-length stick that has not yet been accounted for in the transforma-
tion. The elements in the remaining stick are denoted as ERS, and are computed
as follows:

ERS = K − 1 + k.

The transformations outlined above are suitable only for ordered probability
vectors, that is, for informed hypotheses in binomial and multinomial models
that only feature inequality constraints. However, when informed hypotheses also
feature equality constrained parameters, as well as parameters that are free to
vary we need to modify the formula. Specifically, to determine the lower bounds
for any θk, we need to take into account how many parameters were set equal to
it (denoted as ek) and how many parameters were set equal to its preceding value
θk−1 (denoted as ek−1):

lk =

{
0 if k = 1
θk−1

ek−1
× ek if 1 < k < K.

(9.10)

The upper bound for parameters in the binomial models still remains 1. To de-
termine the upper bound for multinomial models we must, additionally for each
element θk, take into account the number of free parameters that share common
upper and lower bounds (denoted with fk). The upper bound is then defined as:

uk =


1 − (fk × lk)

K
=

1

K
if k = 1(

1 −
∑

i<k θi − (fk × lk)

ERS

)
× ek if 1 < k < K and uk ≥ max(θi<k),(

2 ×
(

1 −
∑

i<k θi − (fk × lk)

ERS

)
− max(θi<k)

)
× ek if 1 < k < K and uk < max(θi<k).

(9.11)

The elements in the remaining stick are then computed as follows

ERS = ek +
∑
j>k

ej × fj .

The rationale behind these modifications will be described in more detail in the fol-
lowing sections. In multibridge, information that is relevant for the transforma-
tion of the parameter vectors is stored in the generated restriction list which
is returned by the main functions binom bf informed and mult bf informed but
can also be generated separately with the function generate restriction list.
This restriction list features the sublist inequality constraints which encodes
the number of equality constraints collapsed in each parameter in nr mult equal.
Similarly the number of free parameters that share common bounds are encoded
under nr mult free.

9.A.1 Equality Constrained Parameters

In cases where informed hypotheses feature a mix of equality and inequality con-
strained parameters, we compute the Bayes factor BFre, by multiplying the indi-
vidual Bayes factors for both constraint types with each other:
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BFre = BF1e × BF2e | BF1e,

where the subscript 1 denotes the hypothesis that only features equality con-
straints and the subscript 2 denotes the hypothesis that only features inequality
constraints. To receive BF2e | BF1e, we collapse all equality constrained param-
eters in the constrained prior and posterior distributions into one category. This
collapse has implications on the performed transformations.

When transforming the samples from the collapsed distributions, we need to
account for the fact that the inequality constraints imposed under the original pa-
rameter values might not hold for the collapsed parameters. Consider, for instance,
a multinomial model in which we specify the following informed hypothesis

Hr : θ1 < θ2 = θ3 = θ4 < θ5 < θ6,

where samples from the encompassing distribution take the values
(0.05, 0.15, 0.15, 0.15, 0.23, 0.27). For these parameter values the inequality
constraints hold since 0.05 is smaller than 0.15, 0.23, and 0.27. However, the
same constraint does not hold when we collapse the categories θ2, θ3, and θ4
into θ∗. That is, the collapsed parameter θ∗ = 0.15 + 0.15 + 0.15 = 0.45 is now
larger than 0.23 and 0.27. In general, to determine the lower bound for a given
parameter θk we thus need to take into account both the number of collapsed
categories in the preceding parameter ek−1 as well as the number of collapsed
categories in the current parameter ek. Thus, lower bounds for the parameters
need to be adjusted as follows:

lk =

{
0 if k = 1
θk−1

ek−1
× ek if 1 < k < K,

which leads to Equation 9.10. In this equation, ek−1 and ek refer to the number
of equality constrained parameters that are collapsed in θk−1 and θk, respectively.
In the example above, this means that to determine the lower bound for θ∗ we
multiply the preceding value θ1 by three, such that the lower bound is

(
0.05
1

)
×3 =

0.15. In addition, to determine the lower bound of θ5 we divide the preceding value
θ∗ by three, that is,

(
0.45
3

)
×1 = 0.15. Similarly, to determine the upper bound for

a given parameter value θk, we need to multiple the upper bound by the number
of parameters that are collapsed within it:

uk =


1

ERS
× ek if k = 1

1 −
∑

i<k θi

ERS
× ek if 1 < k < K,

(9.12)

where 1−
∑

i<k θi represents the length of the remaining stick and the number of

elements in the remaining stick are computed as follows: ERS =
∑K

k ek. For the

example above, the upper bound for θ∗ is
1 − 0.05

5
× 3 = 0.57. The upper bound

for θ5 is then
(1 − 0.05 − 0.45)

2
× 1 = 0.25.
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9.A.2 Corrections for Free Parameters

Different adjustments are required for a sequence of inequality constrained param-
eters that share upper and lower bounds. Consider, for instance, a multinomial
model in which we specify the informed hypothesis

Hr : θ1 < (θ2 , θ3) < θ4.

This hypothesis specifies that θ2 and θ3 have the shared lower bound θ1 and
the shared upper bound θ4, however, θ2 can be larger than θ3 or vice versa. To
integrate these cases within the stick-breaking approach one must account for these
potential changes of order. For these cases, the lower bounds for the parameters
remain unchanged. To determine the upper bound for θk, we need to subtract
from the length of the remaining stick the lower bound from the parameters that
are free to vary. However, only those parameters are included in this calculation
that have not yet been transformed:

uk =


1 − (fk × lk)

K
if k = 1

1 −
∑

i<k θi − (fk × lk)

ERS
if 1 < k < K,

(9.13)

where fk represents the number of free parameters that share common bounds with
θk and that have been not yet been transformed. Here, the number of elements in
the remaining stick is defined as the number of all parameters that are larger than
θk: ERS = 1 +

∑
j>k fj . To illustrate this correction, assume that samples from

the encompassing distribution take the values (0.15, 0.29, 0.2, 0.36). The upper
bound for θ1 is simply 1

4 . For θ2, we need to take into account that θ2 and θ3
share common bounds. To compute the upper bound for θ2, we subtract from the

length of the remaining stick the lower bound of θ3:
1 − 0.15 − (1 × 0.15)

1 + 1
= 0.35.

A further correction is required if a preceding free parameter (i.e., a parameter
with common bounds that was transformed already) is larger than the upper
bound of the current parameter. For instance, in our example the upper bound for

θ3 would be
1 − 0.44 − 0

1 + 1
= 0.28, which is smaller than the value of the preceding

free parameter, which was 0.29. If in this case θ3 would actually take on the value
close to its upper bound, for instance θ3 = 0.275, then—due to the sum-to-one
constraint—θ4 would violate the constraint (i.e., 0.15 < (0.29 , 0.275) ≮ 0.285). In
these cases, the upper bound for the current θk needs to be corrected downwards.
To do this, we subtract from the current upper bound the difference to the largest
preceding free parameter. Thus, if uk < max(θi<k), the upper bound becomes:

uk = uk − (max(θi<k) − uk) (9.14)

= 2 × uk − max(θi<k). (9.15)

For our example the corrected upper bound for θ3 would become 2×0.28−0.29 =
0.27 which secures the proper ordering for the remainder of the parameters. If in
this case θ3 would take on the value close to its upper bound, for instance θ3 =
0.265, θ4—due to the sum-to-one constraint—would take on the value 0.295 which
would be in accordance with the constraint (i.e., 0.15 < (0.29, 0.265) < 0.295).
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Chapter 10

Theory-Informed Refinement of
Bayesian MPT Modeling

Abstract

Multinomial processing tree (MPT) models are a broad class of statis-
tical models used to test sophisticated psychological theories. The research
questions derived from these theories often go beyond simple condition ef-
fects on parameters and involve ordinal expectations (e.g., bias is higher
in one condition than another) or disordinal expectations (e.g., the effect
reverses in one experimental condition). Here we argue that by refining
common modeling practices, Bayesian hierarchical models are well suited to
estimate and test these expectations. Concretely, we show that the default
priors proposed in the literature lead to nonsensical predictions for individ-
uals and the population distribution, leading to problems not only in model
comparison but also in parameter estimation. Rather than relying on these
priors, we argue that MPT modelers should determine priors that are con-
sistent with their theoretical knowledge. In addition, we demonstrate how
Bayesian model comparison may be used to test ordinal and disordinal in-
teractions by means of Bayes factors. We apply the techniques discussed to
two case studies with empirical data from Bell, Mieth, and Buchner (2015)
and Symeonidou and Kuhlmann (2021).

This chapter is under preparation as Sarafoglou, A., Kuhlmann, B. G. Aust, F., & Haaf, J.
M. Theory-Informed Refinement of Bayesian MPT Modeling.
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10.1 Introduction

Multinomial processing tree (MPT) models are a broad class of statistical mod-
els to estimate probabilities of latent cognitive processes underlying observed be-
haviour (W. Batchelder & Riefer, 1999; Riefer & Batchelder, 1988). In psychology,
MPT models are used to test sophisticated theories of memory, judgement and
decision making, and reasoning (for a review on the literature, see Erdfelder et
al., 2009). These sophisticated theories make predictions for data from experi-
mental tasks and in many cases these predictions are very specific. For instance,
based on aging theories, researchers may predict that memory retrieval is more
affected by an experimental manipulation for older adults than for younger adults.
This prediction is a specific ordinal interaction, however, specifying a statistical
model for this prediction is not entirely trivial. We argue that while hierarchical
Bayesian MPT modeling is well suited to test these nontrivial predictions, cur-
rent Bayesian MPT modeling practices leave room for refinement. In particular,
we will argue that Bayesian model comparison may be used to easily test spe-
cific ordinal interactions, and that the most commonly used priors (Klauer, 2010;
Matzke, Dolan, Batchelder, & Wagenmakers, 2015) are simultaneously too vague
and too informative for most applications. We will elaborate these arguments
using a MPT model that instantiates a psychological theory of source memory,
namely the 2-High-Threshold Source Monitoring (2HTSM) model.

Source memory captures a person’s ability to remember contextual details
that accompanied a piece of learned information (M. K. Johnson, Hashtroudi, &
Lindsay, 1993). A typical paradigm to study source memory consists of a study
phase and a test phase (e.g., W. Batchelder & Riefer, 1990; M. K. Johnson et al.,
1993). In the study phase, participants are presented with items stemming from
one of several sources (e.g., words spoken by a female or male voice). In the test
phase, participants are presented with the learned items again along with new
items. Participants must then decide for each item whether it is a new item or
has been presented before, and if so, by what source.

While the source memory paradigm is fairly simple, multiple psychological
processes are most likely at play. Suppose someone correctly identified an item
as old, and also correctly identified the source of the item. Then this correct
identification could be due to actual mnemonic information about the item and
the source, or it could be due to guessing. Note that two guessing processes—about
the item and the source—might be at play here. The interlocking of guessing and
memory processes on several levels are the reason why MPT modeling is so popular
in the source memory literature (Erdfelder et al., 2009).

Traditionally, MPT models are specified in the classical frequentist framework.
However, Bayesian modeling has increasingly become the tool of choice in the MPT
literature, since it facilitates the specification of complex models. For instance, it
is reasonable to assume that cognitive processes such as guessing vary across indi-
viduals, an assumption that can be easily implemented in the Bayesian framework
by extending MPT models as hierarchical models (Rouder & Lu, 2005; Rouder,
Morey, & Pratte, 2017).

Within the Bayesian framework the specification of an MPT model requires
three steps. The first step is routine for most MPT modelers: specifying the MPT
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model equations within one experimental condition. These equations formalize
assumptions about the cascade of distinct cognitive processes that contribute to
the behavior of interest. Each process is associated with a model parameter that
controls the probability with which the process is engaged. These equations are
often communicated as tree-like diagrams as in Figure 10.1. The second step is
to specify the statistical model on parameters within one experimental condition.
This step includes the formulation of general model assumptions, such as how
variability of items or participants are modeled, but also the specification of ad-
equate prior distributions on the MPT parameters. The third step concerns the
expected effects on the model parameters across experimental conditions. In most
cases, this step corresponds to the specification of the main research question as
competing statistical models. Here, we will focus on steps two and three.

10.1.1 Specifying Theory-Informed Prior Distributions

Just as the model equation, the prior distributions implemented in step two are a
crucial part of the theory. Since the model parameters correspond to psychological
variables, their distributions identify values that are permissible, likely, unlikely,
or non-permissible according to the theory (Lee & Vanpaemel, 2018). Parameter
priors therefore formalize theoretical knowledge and need to be determined from
the theory itself, based on prior literature, expert knowledge, or informed guesses
(Lee, 2018; Lee & Vanpaemel, 2018; Stefan, Evans, & Wagenmakers, 2020; Stefan
et al., 2019; Vanpaemel, 2010). However, researchers are often reluctant to utilize
their own expertise in determining prior distributions for fear that they may spoil
their model evaluation (Kass & Raftery, 1995), or other researchers could criticize
the choice. However, instead of viewing prior specification as a burden or a nec-
essary evil, many Bayesians have been advocating a change in perspective: when
researchers work with quantitatively instantiated theories—which MPT models
undoubtedly are—prior distributions along with model equations, are an oppor-
tunity to fully describe all aspects captured by theory (e.g., Dienes, 2011; Rouder,
Morey, & Wagenmakers, 2016; Vanpaemel, 2010; Vanpaemel & Lee, 2012).

In this chapter, we show why the prior distributions proposed by Matzke,
Dolan, et al. (2015) and based on Klauer (2010) may be problematic, despite their
wide used in the MPT literature. These Matzke-Klauer priors were intentionally
designed not to embody any psychological theory, resulting in diffuse distribu-
tions with a broad range on the latent space. Using the 2HTSM model (Bayen,
Murnane, & Erdfelder, 1996) we will demonstrate that predictions made from
mathematical models with diffuse priors on the latent space—even if they feature
sophisticated model equations—are at odds with basic intuitions about possible
data patterns. These priors are therefore inappropriate for testing theory, and
may under some conditions even be problematic for parameter estimation.

10.1.2 Model Comparison for Bayesian Hierarchical MPT
Models

Theories that are tested with MPT models are oftentimes quite sophisticated,
thus requiring complex experimental designs. In turn, MPT models need to be
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specified to account for a rich set of predictions of experimental effects on cognitive
parameters. These predictions often concern ordinal expectations (e.g., bias is
higher in one condition than in another) or disordinal expectations (e.g., the effect
reverses in one experimental condition) of multiple interaction effects.

In step three of model specification, these predictions are implemented. Tra-
ditionally, competing models are implemented in the frequentist framework, and
an encompassing model is tested against a model with constraints on parameters
across experimental conditions. These constraints can be equality constraints or
ordinal constraints, and they are implemented by changing the likelihood of the
model, for example using reparameterization (Klauer, Singmann, & Kellen, 2015;
Knapp & Batchelder, 2004). More recently, Bayesian model comparison using
Bayes factors has also gained traction in MPT modeling, mainly due to computa-
tional progress (Gronau, Wagenmakers, Heck, & Matzke, 2019). However, Bayes
factor model comparison is not yet common practice, in part because it is challeng-
ing to specify MPT models that correspond to specific hypotheses and to evaluate
to what extend they are supported by the data. The success of this endeavor de-
pends entirely on how well the researcher succeeds in building their mathematical
model. Here, we provide a simple solution to incorporate a set of equality and
ordinal constraints on parameters across experimental conditions, and to testing
these constraints using Bayes factors.

The structure of the chapter is as follows. First, we introduce the Bayesian
implementation of the hierarchical 2HTSM model. Second, we describe how pre-
dictions from the 2HTSM model aid model specification, including the selection
of appropriate prior distributions. Third, we show how to compare MPT models
by means of the Bayes factor. The models under consideration include predictions
about the order of processes across experimental predictions, that is, ordinal and
disordinal interactions. We show that instead of reparameterizing the models to
implement the constraints (i.e., modify their likelihood) the constraints can be
implemented directly in the prior distributions. Finally, we illustrate our meth-
ods with two case studies using empirical data from Symeonidou and Kuhlmann
(2021) and Bell et al. (2015).

10.2 The Two-High Threshold Model for Source
Monitoring

We start with the first step MPT modelers go through to express their theory by
a mathematical model. This step concerns the formulation of the model equation
and the formulation of general model assumptions. The 2HTSM model proposed
by Bayen et al. (1996) assumes four independent cognitive processes to contribute
to a response in a source memory paradigm. According to the model, participants
need to cross two thresholds to be able to fully remember an item and its source.
To cross the first threshold, participants have to remember an item as old which
is represented by the parameter D. The second threshold depends on the par-
ticipants’ source memory, that is, the probability to remember the source of an
item. This probability is represented by parameter d. If either of these thresholds
is not crossed, guessing processes will partially or fully determine the response
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Figure 10.1: Tree architecture for a paradigm of the 2HTSM model. In a source
memory task, participants are presented with items that they have previously
learned and that either stem from source A, source B (top two trees), or are new
items (bottom tree). They then have to distinguish previously learned items from
new items and must decide for the previously learned items from which source
they originate. The 2HTSM model assumes that participants responses’ depend
on four cognitive processes: item memory D, source memory d, item guessing b,
and source guessing g.

behaviour. Parameter b describes the probability of correctly guessing whether
an item has already been learned (item guessing), and parameter g describes the
probability of correctly guessing the source of an item (source guessing). In Fig-
ure 10.1 we illustrate the tree architecture of the 2HTSM model. Note, however,
that the architecture is typically adapted to the specific experimental paradigms
used in a study (e.g., using the graphical model builder in Moshagen, 2010).

10.2.1 Specification Of The Statistical Model

The second step of model specification involves the specification of the statistical
model within one experimental condition. This specification includes the treat-
ment of participants and items. Arguably, when experimental materials are stan-
dardized and validated in pilot studies, item heterogeneity can be well controlled,
justifying aggregation across items. The assumption of homogeneity of individ-
uals on the other hand is more problematic (e.g., Rouder & Lu, 2005; Rouder,
Lu, Morey, Sun, & Speckman, 2008; Webb & Lee, 2004, but see Matzke, Dolan,
et al., 2015 and J. B. Smith & Batchelder, 2008). Since MPT parameters reflect
psychological processes (e.g., memory performance) which depend on individual
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participant characteristics (e.g., age, response biases, stereotypes), it is useful to
allow for individual differences in the model. Within the Bayesian framework,
two model classes have been established to account for individual differences, the
beta-MPT model (J. B. Smith & Batchelder, 2010), and the latent-trait model
(Klauer, 2010).

The beta-MPT model assumes that individual level MPT parameters stem
from independent group-level beta distributions. As MPT parameters are modeled
in the probability space on the individual level and the group level, prior selection
is intuitive. In contrast, the latent-trait model, transforms the parameter space
to a latent continuous space. The benefit of a latent continuous space is that
intuitions from generalized linear models are appropriate here, simplifying the
development of regression models on specific parameters. In addition, the latent-
trait model allows for the specification of a covariance matrix that models the
correlation across participants and allows for more hierarchical shrinkage. Since
hierarchical shrinkage is necessary to avoid overestimating individual differences,
we will focus on the latent-trait model in the remainder of the chapter. The full
mathematical specification of the latent-trait models discussed in this chapter are
provided in Appendix A.

In the latent-trait approach, assuming item homogeneity, participant responses
are aggregated over items in each experimental condition. The category frequen-
cies are assumed to follow a multinomial distribution with the underlying category
probabilities resulting from the MPT model equation. In this model, all parame-
ters are probit-transformed to a latent space. Then, individual differences in MPT
parameters are modelled in this unbounded (latent) parameter space. Specifically,
it is assumed that the transformed parameters are normally distributed and may
be correlated with other parameters (i.e., transformed parameters follow a multi-
variate normal distribution). The means of the multivariate distribution represent
group-level parameters and the variance-covariance matrix determines the mag-
nitude of individuals’ deviations around said group-level parameters and their
correlation.

10.2.2 The Problem with Default MPT Priors

After establishing the model equation and the statistical model, we now turn to
determining adequate prior distributions for the model priors. Priors are needed
on the group-level parameters as well as the variance-covariance matrix.

When translating source memory theory into MPT models, the priors we place
on the multivariate normal distribution (i.e. means, variances, and covariances)
deserve careful consideration. These parameters determine which MPT parame-
ter values are deemed plausible both at the group level and the individual level.
Thus, carefully chosen prior distributions should (1) be theoretically justified,
(2) faithfully reflect expectations about group- and individual-level parameters in
their original probability scale, and by extension (3) imply sensible predictions of
group- and individual-level response rates.

However, these requirements are not met for seemingly vague and uninfor-
mative prior distributions such as those proposed by Klauer (2010) and Matzke,
Dolan, et al. (2015) and implemented in the R package TreeBUGS (Heck, Arnold,
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Figure 10.2: The 2HTSM model implemented with Matzke-Klauer priors on the
group-level leads to nonsensical and extreme predictions on the individual level
(left panel; purple). The right panel shows (right panel; green) predictions of
the 2HTSM model with theory-informed prior distributions. The top rows show
for one participant prior predictions for the source guessing and source memory
parameter. The bottom row depicts for one participant the prior predictions of
the probabilities of responding that an item from source A stemmed from source
A (left), source B (middle), or is a new item (right).

& Arnold, 2018). On the contrary: they imply highly informative and nonsensi-
cal predictions particularly about individual-level parameter values and response
rates. Note that the specifications in Klauer (2010), Matzke, Dolan, et al. (2015),
and Heck et al. (2018) differ with respect to their vagueness. While specification
in Klauer (2010) was the most vague in that it allowed for the most participant
variability, Matzke, Dolan, et al. (2015) proposed priors that were slightly more
constrained. Heck et al. (2018) implemented in TreeBUGS the model proposed by
Matzke, Dolan, et al. (2015), but constrained participant variability even further.
In the following, when discussing Matzke-Klauer priors, we refer to the default
implementation in TreeBUGS.

Let us consider the Matzke-Klauer prior on the group-level means of the MPT
parameters—a standard normal distribution. This prior is popular since it trans-
lates to a uniform distribution on the probability space implying that all values are
equally likely a priori. However, since specific prior distributions can be derived
from many psychological theories, the standard normal distribution is not ideal
for many cases. For instance, if sources appeared equally often and were randomly
assigned to items, source guessing g is most likely to be at or near chance level
(i.e., .5) rather than strongly biased towards one source. The same applies to
source memory d which is recollection based and difficult, thus not likely to be
near 1.

A less obvious problem is a vague prior on the variance-covariance matrix. It
seems natural to assume that vague priors on the group-level means in combination
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with high participant variability will lead to vague priors at the individual level.
Yet, when moving from the latent space to the probability space, these vague
group-level priors combine to highly informative priors for individual participants.

The left panel in Figure 10.2 illustrates the individual-level predictions of par-
ticipants’ source memory parameter and source guessing parameter as well as the
predicted category probabilities to answer “A”, “B”, or “New” given that the
correct source was Source A. These predictions indicate that the Matzke-Klauer
priors place an outsized amount of prior probability mass on implausible extreme
values, a perhaps unexpected result for many users of these models (Lee, 2018
illustrated a similar case in the field of psychophysics). The prior distribution
on individual-level g parameters posits that a participant is most likely to either
never guess correctly or to always guess incorrectly. Similarly, the prior distribu-
tion on individual-level d parameters posits that a participant is most likely to
either have perfect source memory or no source memory at all. Based on these
priors, any plausible group-level parameter values may correspond to (symmetric
or asymmetric) bimodal distributions of individual participant parameters. These
priors clearly do not express theoretically sensible expectations about individual
participants’ behavior.

Moreover, these priors are at odds with typical assumptions about the popu-
lation distribution. A key motivation for using hierarchical models, such as the
latent-trait model, is that they assume that participants belong to a relatively
homogeneous population and that therefore the estimates of any one participant
partially inform estimates of all other participants from the same population. In
the original probability scale, the prior predictions of the Matzke-Klauer priors,
however, implement an assumption that is antithetical to the assumption of a com-
mon population: a mixture of several different populations. The composition of
this mixture is illustrated in Figure 10.3. The figure shows the multivariate prior
distribution for the individual-level g and d parameters of the 2HTSM model. The
left panel shows the distribution for Matzke-Klauer priors. Here, the density is
localized in the corners of the plot implying four populations of participants: (1)
perfect source memory and never guessing correctly; (2) perfect source memory
and always guessing correctly; (3) no source memory and never guessing correctly;
and (4) no source memory and always guessing correctly. (In general, the model
will predict a mixture of 2k populations, where k is the number of parameters.)
This pattern seems undesirable; after all, priors in line with MPT-modelers’ ex-
pectations would spread prior mass more evenly across all combinations of the two
parameters instead of the extremes. Thus, the Matzke-Klauer priors neither yield
sensible predictions for any single individual nor for the population distribution.

The predicted mixture distribution works against the generally desired hier-
archical shrinking of individual parameter estimates (i.e., partial pooling) and
instead leads to prior shrinking (i.e., estimates are pushed the extremes). As a
result, the peaked and extreme prior distributions requires more data to be over-
powered. In fields such as memory research, the problem may be particularly
serious. As memory capacity is limited, participants are presented often with no
more than 30 items per source (which is one reason why data in this field are of-
ten aggregated; Chechile, 2009). In scarce data environment, extreme priors may
influence posterior estimates, especially the individual estimates.
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Figure 10.3: Illustration of the bivariate population distribution of participants for
the source memory (d) and source guessing (g) parameters of the 2HTSM model
with Matzke-Klauer priors (left panel; purple) and theory-informed priors (right
panel; green). Darker colors indicates a higher density. When assigning Matzke-
Klauer priors, the model predicts a mixture of four populations. Each population
realizes one extreme combination of guessing and source memory. In contrast,
theory-based priors cover the space of possible values for d and g more evenly,
that is, extreme values are favored less.

10.2.3 Refinement No. 1: Determine Theory-Informed
Parameter Priors

To prevent parameter priors from jeopardizing the modeling process, researchers
need to pay due attention to their specification (Barnard, McCulloch, & Meng,
2000; Lee & Vanpaemel, 2018). Part of the model specification should be to place
appropriate theory-based restrictions on the priors for group-level MPT parame-
ters and on the variability between participants encoded in the covariance matrix.
Importantly, we do not advertise any particular alternative default priors. As Van-
paemel (2010, p. 495) states: “No formal guidelines about how to capture theory
into a prior exist, just like there are no formal guidelines about how to capture
theory into a model equation. Model building crucially depends on the skill and
the creativity of the modeler and cannot be automated.” Instead of proposing
default priors, we advice using visualizations of prior predictions at the group and
individual level to guide the development of appropriate models (Gabry, Simpson,
Vehtari, Betancourt, & Gelman, 2019; Schad, Betancourt, & Vasishth, 2021; Wa-
genmakers et al., 2021). An example for this practice in MPT research can be
found, for instance, in Gronau et al. (2019).

Based on the above considerations, we have made the following adjustments
to the Matzke-Klauer priors for the 2HTSM model. First, we replaced the uni-
form prior distribution for the guessing parameter with a prior distribution that
mildly favors values around the nominal guessing level. Additionally, to counter-
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act the extreme predictions about the population distribution, we placed stronger
constraints on the participant variability encoded in the covariance matrix. To de-
termine the exact prior distributions we proceeded as follows. First, we explored
a set of prior distributions that adequately implemented our assumption that par-
ticipants are relatively similar, resulting in 48 plausible prior settings. Then, we
conducted a small simulation study in which we visualized the predictions for data
from these priors. We settled on priors that yielded individual-level predictions
that were uninformative and had little bimodality. The set of priors that resulted
in the best model predictions is the one depicted on the right panel in Figure 10.2
and 10.3. In this model, small deviations from the group-level means are favored
over large ones, resulting in a more homogeneous population. In addition, our
priors favor moderate to low correlations between MPT parameters in the range
of [−0.5, 0.5] over anything more extreme. By imposing these restrictions, the
predictions of the model are now better in line with domain knowledge.

10.3 Testing Theory-Informed Ordinal Predictions

The previous section outlined the role of theory-informed prior distributions for
the general model specification. This section explains how to make use of theory-
informed prior distributions for model comparisons in the context of a particular
study design. That is, we further adjusted parameter priors across experimental
conditions so that they conform to theory-derived hypotheses. In particular, we
focus on hypotheses on specific orderings of parameters across conditions, that is,
ordinal or disordinal interactions.

A disordinal interaction was predicted, for instance, in Bell et al.’s study on
biases. Specifically, the authors investigated how appearance-based biases would
affect person memory. The authors were interested in a directional model which
predicted that unexpected information should be remembered easier than expected
information. Furthermore, this effect should be larger if the unexpected informa-
tion was negative than if the unexpected information was positive.

An example of ordinal interactions that extend over several factors can be found
in the study by Symeonidou and Kuhlmann (2021). Symeonidou and Kuhlmann
(2021) proposed a test which measures source memory more accurately than com-
mon testing methods. The authors predicted therefore that their test would out-
perform the standard test. In addition, they predicted that this added benefit was
influenced by how often subjects were allowed to repeat source-item pairs and by
the types of sources used. Overall, then, predictions were made about the ordinal
relations between one main effect and two interactions (i.e., the benefits of the
novel test should be larger in one condition than another).

Frequentist approaches test ordinal and disordinal interactions through
reparametrization of the MPT parameters (Knapp & Batchelder, 2004) but so
far have only been applied for non-hierarchical models and interactions between
no more than two factors (e.g., Kuhlmann et al., 2019; Moshagen, 2010; see
Klauer et al., 2015 for an application to confidence or Likert scales). In prin-
ciple, within the Bayesian framework disordinal interactions can be implemented
through reparametrization. However, this technique adds a layer of complexity
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to the assignment of appropriate prior distributions, since the reparameterized
model requires adjusted priors that are coherent on the original scale (Heck &
Wagenmakers, 2016). Moreover, so far the literature on Bayesian MPT models
has focused primarily on parameter estimation methods but not on model com-
parison by means of the Bayes factor (Jeffreys, 1935; Kass & Raftery, 1995).

10.3.1 Refinement No. 2: Specify Ordinal Expectations As
Competing Statistical Models

Computing the Bayes factor for cognitive models is computationally complicated.
However, when expectations are expressed in the parameter priors directly and
they concern either point null hypotheses or directional hypotheses (e.g., interac-
tions), the problem can be greatly simplified. The methods discussed here have
three important advantages over the frequentist method. First, there is no need
to reparameterize the MPT parameters in order to represent interaction effects,
which facilitates the interpretation of the estimates and the assignment of prior
distributions. Second, the methods are suited for hierarchical models, thus tak-
ing into account participant heterogeneity and hierarchical shrinkage. Third, the
methods are able to test theories directly. Interaction effects such as the ones
predicted in Bell et al. (2015) and Symeonidou and Kuhlmann (2021) are typi-
cally tested in a traditional ANOVA approach. That is, seeking to reject the null
hypothesis that there is no interaction, which carries no information about the
validity of the model. Only when subsequently analyzing the contrasts between
the conditions it becomes evident whether or not the data adhere to the predicted
pattern. To maximize efficiency and theoretical information, however, it is desir-
able to test the predicted pattern simultaneously. The model comparison method
described here is able to do so.

For model comparisons between a point null and the encompassing model (i.e.,
a model that imposes no constraints on the parameters), the Bayes factor sim-
plifies to the Savage-Dickey density ratio (Dickey, 1971; Dickey & Lientz, 1970).
For model comparisons between a directional prediction and the encompassing
model, the Bayes factor simplifies to the unconditional encompassing Bayes factor
(Gelfand et al., 1992; Klugkist et al., 2005; Sedransk et al., 1985).

The Savage-Dickey Bayes factor is defined as the ratio of prior and posterior
density under the encompassing model at the point of interest. To illustrate the
approach consider Bell et al.’s null model predicting that source memory is equal
for unexpected and expected information in both experimental conditions. That
is, for each condition the difference between the source-level parameters is zero.

10.3.1.1 Testing Equality Constraints

We first explain how to quantify the evidence for the prediction that source mem-
ory is equal for unexpected and expected information in one experimental condi-
tion. For that, we need the prior and posterior density of the difference between
the source memory parameters for unexpected and expected information. Then,
we compute the height of this density at zero. If the height of the density at zero
is larger for the prior density than for the posterior density, it implies evidence
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against the hypothesis. In this case, the data have caused more density to be
allocated to a different part of the distribution. If the height of the density at
the zero point is lower for the prior density than for the posterior density, this
is evidence in favor of the hypothesis. In this case, the data have caused values
around the zero point to become more likely.

In some cases (mostly for prior densities) the height of the distribution at the
point of interest is available in closed form and can thus be computed directly.
In cases where the distributions cannot be obtained in closed form (i.e., poste-
rior densities) the density at the point of interest needs to be approximated using
Markov Chain Monte Carlo (MCMC) samples. The approximated density can
then be calculated, for instance, using logspline nonparametric density estimates
(Kooperberg, 2020; Stone, Hansen, Kooperberg, & Truong, 1997), or by fitting a
normal distribution to the MCMC samples using the methods of moments (Morey,
Rouder, Pratte, & Speckman, 2011). In the study by Bell et al. (2015) we can
compute the Savage-Dickey Bayes factor for each experimental condition. Assum-
ing that these conditions are independent, the Bayes factor for the joint point null
model to the encompassing model is the product of these quantities.

Computing the Savage-Dickey Bayes factor, requires that the point null model
can be derived from truncating the prior distribution of the encompassing model.
Furthermore, the test-relevant parameters should be independent of all other pa-
rameters in the model (Heck, 2019; Wetzels et al., 2010). In MPT research this
requirement is met when (1) expectations concern group-level MPT parameters
(e.g., group-level source memory under different experimental conditions) and (2)
independent priors are assigned to these parameters, as is the case of the current
instance of the 2HTSM model. Caution should be taken when testing parameters
at a lower level, for instance, individual-level MPT parameters.

10.3.1.2 Testing Ordinal Constraints

Let us turn to directional hypotheses. The unconditional encompassing Bayes
factor is defined as the proportion of prior and posterior density in agreement
with the prediction. The Bayes factor identity of this method is a generalization
of the Savage-Dickey density ratio (Wetzels et al., 2010). For this method, it is
not necessary to approximate the prior or posterior densities. Instead, the uncon-
ditional encompassing method is a simple counting method. The unconditional
encompassing Bayes factor is defined as the ratio of the sample proportions of the
prior and posterior draws of the encompassing model that match the restriction.
Thus, only the number of prior and posterior MCMC samples obtained from the
encompassing model satisfying the constraint need to be counted.

Consider Bell et al.’s directional model that unexpected information should be
remembered easier than expected information and that this effect should be larger
in one experimental condition than the other. When we have MCMC samples
available across all conditions, we can evaluate whether the prediction is true for
each iteration. Concretely whether the difference in the source memory parameter
for unexpected information and expected information is positive (implying that
unexpected information is remembered easier) and that the difference between the
source memory parameters is larger in one experimental condition than the other.
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Here again, if the proportion of prior samples in agreement with the constraint
is larger than the of proportion of samples in agreement with the constraint, it
implies evidence against the hypothesis. Vice versa, if the proportion of prior
samples in agreement with the constraint is smaller than the of proportion of
posterior samples in agreement with the constraint, it implies evidence in favor of
the hypothesis.

10.4 Case studies

In this section we illustrate parameter estimation and model comparison using
theory-informed priors for two published studies on source memory. The first
study by Bell et al. (2015) embedded source memory in a theory on schema-
congruence. The second study by Symeonidou and Kuhlmann (2021) examined
whether source memory improves when participants are assessed with a test newly
developed by the authors and designed to facilitate source retrieval compared to
the currently used source memory test.

10.4.1 Disclosures

10.4.1.1 Availability of Data and Code

Readers can access the R code to reproduce all analyses (including the prior simula-
tion study and the creation of all figures), in our OSF folder at: https://osf.io/
bpgc5/. The data needed to run the reanalysis from Bell et al. (2015) were kindly
provided by the authors and can be accessed in in OSF folder. The data needed
to run the reanalysis from Symeonidou and Kuhlmann (2021) are openly available
on the OSF repository of the authors at https://osf.io/6nzjs/.

10.4.1.2 Ethical Approval

This is a non-empirical study and therefore did not require ethical approval.

10.4.2 Models

Both case studies implemented slightly adapted versions of the 2HTSM model. In
contrast to the model presented in Figure 10.1, Bell et al. (2015) assumed that the
item memory D and the source memory d for sources A and B are not necessarily
equivalently good. Thus, their model estimated these parameters separately for
the respective source. In contrast, item memory for new items was defined as the
average item memory of source A and source B, that is, DNew = (DA + DB)/2.
In addition, the authors estimated separate MPT parameters in each of the two
within-subjects conditions. Thus, for each participant, twelve MPT parameters
were estimated, that is, two pairs of item memory and source memory parameters
and two guessing parameters in each condition.

Symeonidou and Kuhlmann (2021) adhered to the structure of Figure 10.1,
but estimated separate MPT parameters in each of the four between-subjects
conditions and the two within-subjects conditions. Thus, for each participant,
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eight MPT parameters were estimated, two pairs of item memory and source
memory parameters and two pairs of guessing parameters.

We implemented the hierarchical 2HTSM model with the modifications out-
lined in the previous sections and detailed in the appendix. That is, we assumed
item homogeneity, assigned a Normal(0, 0.28) prior distribution to the group-level
guessing parameters, a LKJ(1) prior distribution to the correlation matrix, and a
Gamma(2, 3) prior distribution to the individual shift parameters.

10.4.3 Method

Parameter estimation and model comparison was based on 30,000 samples from
the posterior distribution of the encompassing model with 6,000 samples as burn-
in. In both case studies, the relevant comparison was between the null model
and the restricted model expressing ordinal predictions. In addition, we report
the Bayes factor between the encompassing model and the restricted model as a
“bookend” comparison. Bookends in model comparison have been suggested as a
proxy of model adequacy, that is, a model is only considered adequate if it can
outperform the most restrictive model (i.e., the null model) as well as the most
vague model (i.e., the encompassing model; Lee et al., 2019).

We derived the Bayes factors for these comparisons as follows. The quantities
related to the prior distributions, that is the height of the prior density at the point
of interest and the proportion of the prior parameter space that conformed to the
constraints, were available in analytic form. This follows from the fact that the
prior distributions of the group-level source memory parameters are known and
simple (i.e., standard normal distributions). For instance, assume a null model
which predicts that in source memory is the same in the within-subjects condi-
tions. The distribution of this difference yields a Normal(0,

√
2) distribution (i.e.,

difference between two standard normal distributions) and evaluating this density
at zero yields 0.282. Similarly, assume a restricted model which predicts that
source memory is greater in one within-subjects condition than the other. Since
the Normal(0,

√
2) distribution is symmetric at zero, half of the prior mass satis-

fies the prediction, yielding 0.5 as the proportion of prior density in accordance
with the constraint. The quantities related to the posterior distributions were not
available in analytic form and instead were approximated using MCMC samples.
The posterior samples were used to approximate the logspline nonparametric den-
sity estimates which were evaluated at the points of interest, and to calculate the
proportion of draws in agreement with the constraints.

With the Savage-Dickey Bayes factor and the unconditional encompassing
Bayes factor at hand, the desired comparison between the null and the restricted
hypothesis was obtained through transitivity. For the main hypothesis (i.e., the
hypothesis concerning group-level parameters) we computed the Bayes factor 100
times to quantify the uncertainty of the Bayes factor estimates (i.e., repeatedly
sampled from the posterior distribution). Bayes factors used to illustrate a con-
cept (i.e., Matzke-Klauer Bayes factors, and Bayes factors assessing individual
differences) were computed only once.
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10.4.4 Reanalysis of Bell et al. 2015

To illustrate our approach for the case of disordinal interactions, we conducted a
reanalysis of the data from Experiment 1 and 2 presented in Bell et al. (2015).
Both experiments investigated how appearance-based first impressions affect per-
son memory. Figure 10.4 shows a schematic illustration of the experimental setup.
Participants were instructed to memorize person information, that is, pictures of
faces and short behaviour descriptions. Importantly, the faces were chosen to be
either pleasant looking or disgusting looking. Similarly the behaviour descrip-
tions were categorized as being either pleasant or disgusting. In the subsequent
test phase, participants were presented with pictures of faces again. Their task
was to indicate whether they had seen these faces before and if so, whether their
behaviour had been pleasant or disgusting.

10.4.4.1 Data

The individual-level data for the study were kindly provided by the authors. The
experiments feature data from 138 and 114 participants, respectively. Each par-
ticipant was instructed to learn 40 face-behaviour pairs randomly drawn from an
item pool, with 10 falling into each of the four cells of the experimental design.
In the test phase, 40 additional faces were introduced. Thus, each participant
provided a total of 80 data points.

10.4.4.2 Hypothesis

The authors hypothesized that inconsistent information should be memorized eas-
ier than consistent information and that the effect should be larger in the disgust-
ing behaviour condition than in the pleasant behaviour condition (see Figure 10.5).
This hypothesis was based on the findings by Bell, Buchner, Kroneisen, and Giang
(2012) who suggested the existence of a cognitive mechanism which emphasizes
events that contradict expectations. The predicted interaction was based on the
assumption of a negativity or threat bias, that is, unexpected negative information
would be remembered easier than unexpected positive information (e.g., Bell &
Buchner, 2010). We compared the restricted model to the null model which pre-
dicts that the source memory parameters are equal for both behaviour descriptions
and the encompassing model which makes no predictions (i.e., all parameters are
free to vary).

10.4.4.3 Results

For both experiments, the group-level parameter estimates and the individual-
level parameter estimates are displayed in Figure 10.6. For Experiment 1, the
data suggests weak evidence in favor for the null model relative to the restricted
model. The Bayes factor centers around 2.86 and ranges from 2.60 to 3.18. This
result is consistent with the Bayes factor estimate obtained from the Matzke-
Klauer prior. Using this prior, we obtained a Bayes factor of 3.03 in favor of the
null hypothesis.
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Figure 10.4: Schematic illustration of the experimental procedure in Bell et al.
(2015) relevant to the reanalysis. In the study phase (top), participants were
shown faces and behaviour descriptions of persons that were either disgusting or
pleasant. In the test phase (bottom), participants were presented with faces again.
If participants indicated that they had already seen the faces in the study phase,
they had to indicate whether the person’s behavior was disgusting or pleasant.
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Figure 10.5: Schematic representation of the group-level source memory parameter
d under the restricted model (left) and the null model (right). The restricted
model makes predictions both about the ordering of the source memory parameters
within the behaviour description conditions but also in within the faces conditions.
The null hypothesis predicts that the source memory should be equal for both
behaviour descriptions.

Table 10.1: Estimates for the group-level source memory parameter d for the data
of Experiment 1 and 2 in Bell et al. (2015). The column “Reported” shows the
estimates as reported in the original manuscript using frequentist estimation on
aggregated data. The columns “Theory-Informed” and “Matzke-Klauer” show the
median estimates and 95% credible intervals when using Bayesian hierarchical ap-
proaches.

Source Memory d

Face Behavior Theory-Informed Reported Matzke-Klauer

Exp. 1 Pleasant Pleasant .28 [.07, .48] .35 [.20, .50] .21 [.02, .43]
Disgusting .30 [.15, .41] .31 [.21, .41] .31 [.17, .41]

Disgusting Pleasant .41 [.29, .50] .49 [.43, .55] .42 [.28, .51]
Disgusting .19 [.02, .40] .03 [.00, .30] .09 [.00, .31]

Exp. 2 Pleasant Pleasant .18 [.02, .37] .05 [.00, .30] .14 [.01, .33]
Disgusting .30 [.15, .41] .40 [.31, .49] .31 [.17, .41]

Disgusting Pleasant .44 [.32, .52] .47 [.40, .55] .45 [.34, .53]
Disgusting .14 [.01, .33] .10 [.00, .32] .08 [.00, .26]

Note. Data of reported estimates are extracted from Figure 3 and Figure 4 of
the original manuscript.
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Although we cannot draw a firm conclusion, the data suggest some evidence
for the null model in that unexpected information and expected information are
recalled equally well in Experiment 1. Thus this analysis does not support (but
also does not clearly contradict) the results from the frequentist analysis of the
aggregate data reported by Bell et al. (2015) which suggested the presence of a
disordinal interaction. This discrepancy may be partially explained by the fact
that the parameter estimates from the hierarchical analysis are very uncertain, as
can be seen in the left panel in Figure 10.6. Although the point estimates descrip-
tively conform to the predicted disordinal interaction, the large uncertainty in the
estimates leads to inconclusive evidence. In the bookend comparison between the
restricted and the encompassing model, the data are uninformative. The Bayes
factor centers around 1.12 and ranges from 1.05 to 1.20. The restricted model can
thus not outperform the encompassing model.

For Experiment 2 the data suggests weak evidence in favor for the restricted
model relative to the null model. The Bayes factor centers around 2.31 and ranges
from 1.92 to 2.66. These estimates are somewhat higher than the Bayes factor esti-
mate of 0.87 we receive using the Matzke-Klauer prior which suggests no evidence.
Thus for Experiment 2, the evidence is again inconclusive. As for the bookend
model, the data again are uninformative. The Bayes factor centers around 1.71
and ranges from 1.63 to 1.79.

Table 10.1 summarizes the estimates for the source memory parameter, ob-
tained from theory-informed prior distributions, the reported estimates in the orig-
inal manuscript, and from Matzke-Klauer priors. The reported estimates—which
were based on frequentist estimation on aggregated data—suggest less variability
in the estimates compared to the Bayesian hierarchical models. The two Bayesian
models are more similar to each other. However, one interesting observation con-
cerns the source-memory estimates regarding the pairing of disgusting face and
disgusting behaviour in both experiments: here the median of the theory-informed
prior is much higher than the estimates from the other approaches. However, it
should also be noted that all estimates have credible/confidence intervals with
lower bounds close to zero. Regarding the source-guessing parameter (Table 10.2),
Experiment 1 shows a discrepancy in the parameters in the pleasant face condi-
tion. The estimates obtained from the theory-informed priors and the reported
estimates are better in agreement and larger than the estimates obtained from
Matzke-Klauer priors. In the disgusting face condition the two Bayesian models
yield similar estimates that are smaller than the reported ones.

10.4.4.4 Assessing Individual Differences

When predicting a specific pattern of effects on cognitive parameters, researchers
might be interested in whether the patterns observed on the aggregate level also
generalize to the individual level (Haaf & Rouder, 2019; W. Miller J. amd Schwarz,
2018). That is, whether for the biases on the population-level, are exhibited by
all individuals within the population.

Another benefit of Bayesian hierarchical models is that they can not only esti-
mate overall effects, but are also suited to test effects on the individual-level. Note
that the studies by Bell et al. (2015) and Symeonidou and Kuhlmann (2021) were
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Table 10.2: Estimates for the group-level source guessing parameter g
for the data of Experiment 1 and 2 in Bell et al. (2015). The column
“Reported” shows the estimates as reported in the original manuscript
using frequentist estimation on aggregated data. The columns “Theory-
Informed” and “Matzke-Klauer” show the median estimates and 95%
credible intervals when using Bayesian hierarchical approaches.

Source Guessing g

Face Theory-Informed Reported Matzke-Klauer

Exp. 1 Pleasant .34 [.26, .42] .36 [.30, .42] .31 [.24, .40]
Disgusting .68 [.61, .75] .75 [.69, .80] .70 [.62, .77]

Exp. 2 Pleasant .36 [.30, .44] .30 [.24, .37] .35 [.28, .42]
Disgusting .66 [.59, .72] .67 [.61, .73] .68 [.61, .73]

Note. Data of reported estimates are extracted from Table 4 in the
original manuscript.

designed to test group-level hypotheses, that is, the authors did not pose research
questions concerning individual-level effects. As will become apparent below, the
individual-level parameter estimates are also highly uncertain which hampers sta-
tistical inference. Nevertheless, researchers interested in assessing individual-level
effects might find the following demonstration valuable.

To study individual effects, we can assess whether descriptively the point esti-
mates depicted at the bottom panel in Figure 10.6 crossed the diagonal line con-
trary to the prediction. For Experiment 1, based on the median point estimates,
55.80% of participants (i.e., 77/138) showed the predicted effect for pleasant faces,
that is, they remembered the pleasant face better when it was paired with dis-
gusting rather than with pleasant information. For disgusting faces, this was the
case for 91.30% of participants (i.e., 126/138). However, when accounting for the
uncertainty of the estimates (i.e., 80% credible intervals), this number dropped
to 0% of participants in the pleasant face condition and 13% of participants (i.e.,
18/138) in the disgusting face condition.

For Experiment 2, we see a similar pattern. For pleasant faces, 99.10% of
participants (i.e., 113/114) showed the predicted effect. For disgusting faces, this
was the case for all participants. Again, when accounting for the 80% credible
intervals, this number dropped to 0% in the pleasant face condition and to 40.40%
(i.e., 46/114) in the disgusting face condition. These results once again highlight
the extent to which estimated values are subject to uncertainty.

10.4.4.5 A Principled Test To Evaluate Individual Differences

Although the descriptive statistics give an insight into whether or not the indi-
viduals show the predicted effect, assessing whether credible intervals cross the
diagonal is not a principled test of whether all participants show the predicted
pattern. Moreover, it yields only limited information about whether people out-
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Figure 10.6: Violin plots of the estimated source memory parameters in Exper-
iment 1 (left panel; blue) and Experiment 2 (right panel; orange) of Bell et al.
(2015). In the top panels, we illustrate the group-level parameters. The bottom
panel illustrates the comparison between the source memory parameters in the
two behavior description conditions at the individual level. The dots represent
the median estimate, the error bars the 80% credible intervals.

side of this sample would have an effect in the same direction. For a detailed
discussion of the issues with this approach we refer interested readers to Haaf
and Rouder (2019) and Thiele, Haaf, and Rouder (2017). Instead of counting the
number of participants who show an effect in one or the other direction, we apply
the model comparison approach developed by Haaf and Rouder (2017), and com-
pare an individual-constrained model where every participant shows an effect in
the predicted direction with an encompassing model where this constraint is not
obeyed. If the encompassing model is supported, further research could shed light
on the conditions under which the test is beneficial or not (Haaf & Rouder, 2017).

To examine individual differences, the same restrictions that we have previously
imposed at the group-level can be applied at the individual level. That is, we
now test whether the predicted biases in person memory are present in every
participant at the same time. This model makes a very risky prediction: the a
priori probability that all participants show the effect is only approximately 2 in
ten thousand in both Experiments. In this case, the risk-taking does not pay off.
Since the posterior probability that all participants show the effect is smaller than
the prior probability (i.e., 1 in a million for Experiment 1 and 3 in ten thousand for
Experiment 2) the hypothesis that all participants show the effect simultaneously
is not supported. For Experiment 1, the data suggest strong evidence in favor for
the encompassing model with a Bayes factor of 230. For Experiment 2 the data
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suggested inconclusive evidence. The Bayes factor in favor for the encompassing
model relative to the restricted model is 0.922.

10.4.4.6 Sensitivity of individual-level Bayes factor to group-level
priors

So far, in this case study the differences in theory-informed priors compared to
Matzke-Klauer priors led to only negligible deviations in group-level estimates.
The conclusions that one would draw from the Bayes factors of both priors differed
only in experiment 2 and were not particularly large there either (weak evidence
versus no evidence). The massive influence of the two priors, however, becomes
apparent when evaluating the individual effects.

For Experiment 1, the Matzke-Klauer the data suggested very strong evidence
in favor of the restricted model relative to the encompassing model with of 71.
By comparison, theory-informed priors lead to opposite conclusion and provided
extreme evidence against the restrictive model. For Experiment 2 while the Bayes
factor of theory-informed priors was inconclusive, the Matzke-Klauer Bayes factor
in favor of the restricted model was 144 suggesting extreme evidence.

These vastly different Bayes factors are a result of extreme participant pop-
ulations predicted by Matzke-Klauer priors. The mixture of several populations
causes an extreme low a priori probability that all participants will show the pre-
dicted effect simultaneously, approximately only 2 in ten million for Experiment
1 and 2 (which is one thousand times less than for theory-informed priors). The
implication of this low a priori probability is that a small number of posterior sam-
ples consistent with the constraint is already sufficient to suggest evidence in favor
of the restricted model. And indeed: since the posterior probability increased at
least relative prior probability (i.e., 117 and 312 in 10 million) the restricted model
is favored in both experiments.

When estimating individual-level parameters, the two priors also diverge with
Matzke-Klauer priors appearing to cause undesirable prior shrinkage instead of
hierarchical shrinkage. Figure 10.7 compares the individual estimates of source
memory and guessing from the two models in the disgusting face-disgusting be-
haviour condition in Experiment 1. The dashed line corresponds to identical
estimates from the two priors. As can be seen, the estimates for source guess-
ing parameters (right plot) do not deviate much from this line. For the source
memory parameter (left plot), on the other hand, Matzke-Klauer priors pull the
parameters closer to the extremes than theory-informed priors. Here, estimates
are mostly below 0.5, and are therefore pulled towards zero.

10.4.5 Reanalysis of Symeonidou and Kuhlmann (2021)

The reanalysis of the data by Symeonidou and Kuhlmann (2021) illustrate our
approach for the case of ordinal interactions. Within the classical source memory
paradigm, participants are asked to memorize a combination of source and content
information. In standard source-monitoring test participants are then presented
with only the content and need to correctly recall the source (M. K. Johnson et
al., 1993). Symeonidou and Kuhlmann (2021) extended this paradigm by replac-
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Figure 10.7: For the reanlaysis of Bell et al. (2015) Matzke-Klauer priors and
theory-informed priors yield the same posterior estimates for guessing parameters
(right). For the source-memory parameters (left), on the other hand, estimates
from theory-informed priors are larger than Matzke-Klauer estimates.

ing the standard source-monitoring test with a reinstatement test. In this test,
participants are presented with an item (i.e., a noun) and are asked to correctly
identify the source it came from (i.e., which person spoke the noun). However,
they also receive all possible source-content combinations, that is, the recordings
of the noun by different voices, together with a picture and a name (see Fig-
ure 10.8). The authors predicted that this test would facilitate source retrieval
and thus increase the probability to correctly recall the source. In their study, all
participants took part in both test types (i.e., all participants completed a stan-
dard source-monitoring test followed by a reinstatement test). In addition, the
authors manipulated between-participants the task difficulty (i.e., sources were
either easy or hard to distinguish) and the encoding frequency (i.e, whether the
source-item combination was repeated or not).

10.4.5.1 Data

The individual-level data for the study were shared by the authors on the OSF:
https://osf.io/6nzjs/. The experiment features data from 146 participants across
four between-subjects conditions. Each participant was instructed to learn 70
nouns, which were randomly drawn from a pool of 167 nouns. In each test phase,
participants had to recognize all items and 35 new nouns were introduced as
distractors. Thus, each participant provided a total of 210 data points.

10.4.5.2 Hypothesis

The hypotheses are schematically illustrated in Figure 10.9. The authors stated
the following three hypotheses. First, they predicted a main effect for the test
type. That is, source memory should be higher when participants completed a
reinstatement test compared to the standard source-memory test. Second, the
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Figure 10.8: Schematic illustration of the experimental procedure in Symeonidou
and Kuhlmann (2021) in the easy condition in which the items were not repeated.
In the study phase (top), participants were presented with words spoken by either
a male or a female voice together with a face and a name. In the standard test
(bottom left), words were presented to them on the screen and the participants
had to decide who had spoken them or whether they were new. In the reinstate-
ment test (bottom right), the words were first spoken by both sources and the
participants had to make the source decision afterwards. Stimuli were presented
originally in German.
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Figure 10.9: Schematic representation of how the restricted model (left) and the
null model (right) predict the source memory parameter d on the group-level.
The restricted model makes predictions about the ordering of the source memory
parameters within the two test types. In addition, it predicts a specific interaction
pattern between the test type and encoding frequency, as well es between the test
type and the task difficulty. The null model predicts no source memory benefit
for the reinstatement test.

authors predicted a specific interaction effect between test type and task diffi-
culty. That is, source memory should be higher when participants completed a
reinstatement test compared to the standard source-memory test and that this
improvement would be greater when the sources are harder to distinguish (i.e.,
they are similar). Third, the authors predicted a specific interaction effect be-
tween test type and encoding frequency. That is, source memory should be higher
when items were repeated compared to items that were not repeated and that
this improvement is greater for the reinstatement test. This restricted model will
be compared to the null model which predicts no source memory benefit for the
reinstatement test and the encompassing model which makes no predictions (i.e.,
all parameters are free to vary).

10.4.5.3 Results

The group-level parameter estimates and the individual-level parameter estimates
are displayed in Figure 10.10. The data suggest extreme evidence in favor of the
restricted model relative to the null model. The Bayes factor estimate centers
around 4196 and range from 2660 to 6425. Concerning the bookend comparison,
the data similarly suggest very strong evidence in favor for the restricted hypothe-
sis relative to the encompassing model. The Bayes factor estimates center around
74.49 and range from 72.12 to 76.45. When computing the Bayes factor using the
Matzke-Klauer prior, the evidence is greatly reduced to a Bayes factor of 3.29 in
favor of the restrictive model relative to the null model.

Table 10.3 and Table 10.4 summarize the estimates for the source memory
and source guessing parameter respectively, obtained from theory-informed prior
distributions, obtained from Matzke-Klauer priors, and the reported frequentist
estimates in the original manuscript. The estimates using the two Bayesian ap-
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Figure 10.10: Violin plots of the estimated source memory parameters for the con-
dition in which items were repeated once (left panel; green) or twice (right panel;
purple) of Symeonidou and Kuhlmann (2021). In the top panels, we illustrate
the group-level parameters. The bottom panel illustrates the comparison between
the source memory parameters in for the standard and reinstatement test at the
individual level. The dots represent the median estimate, the error bars the 80%
credible intervals.

proaches largely converge and differences between the two are apparent only when
inspecting the credible intervals. Compared to the Bayesian estimation methods,
the frequentist approach leads to somewhat smaller estimates with the exception of
the no-repetition difficult-task condition in the standard test where the estimates
are somewhat larger.

10.4.5.4 Assessing Individual-Differences

As with the first case study, we may again assess whether participants showed
the predicted reinstatement effect, that is, whether the individual 80% credible
intervals are above the diagonal line at the bottom panel in Figure 10.10. When
presented with the items once in the difficult condition all 37 participants showed
the predicted effect, that is, they had a higher estimated source memory parameter
with the reinstatement test compared to the standard test (depicted in dark green).
In the easy condition that was 69.40 % of participants (i.e., 25/36; depicted in
bright green). When items were repeated in the difficult condition 94.40% of
participants (i.e., 34/36; depicted in dark purple) showed the predicted effect, that
is, they had a higher estimated source memory parameter with the reinstatement
test compared to the standard test. In the easy condition all 37 participants
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Table 10.3: Estimates for the group-level source memory parameter d for the data of
Symeonidou and Kuhlmann (2021). The column “Reported” shows the estimates as
reported in the original manuscript using frequentist estimation on aggregated data.
The columns “Theory-Informed” and “Matzke-Klauer” show the median estimates
and 95% credible intervals when using Bayesian hierarchical approaches.

Source Memory d

Item Difficulty Test Theory-Informed Reported Matzke-Klauer
Presented

Once Easy Standard .86 [.74, .96] .82 [.45; .50] .87 [.74; .98]
Reinstate .89 [.75, .98] .86 [.77; .94] .87 [.73; .99]

Hard Standard .37 [.20, .55] .42 [.34; .50] .34 [.14; .54]
Reinstate .66 [.45, .87] .65 [.54; .76] .66 [.36; .94]

Twice Easy Standard .84 [.72, .94] .82 [.77; .88] .84 [.71; .95]
Reinstate .94 [.86, .99] .97 [.89; 1.04] .95 [.86; 1.00]

Hard Standard .54 [.32, .76] .48 [.42; .55] .55 [.27; .84]
Reinstate .92 [.80, .99] .86 [.77; .95] .94 [.83; 1.00]

Note. Default Bayes estimates based on Table D1 (Appendix D) in the original
manuscript.

Table 10.4: Estimates for the group-level source guessing parameter g for the data of
Symeonidou and Kuhlmann (2021). The column “Reported” shows the estimates as
reported in the original manuscript using frequentist estimation on aggregated data.
The columns “Theory-Informed” and “Matzke-Klauer” show the median estimates
and 95% credible intervals when using Bayesian hierarchical approaches.

Source Guessing g

Item Difficulty Test Theory-Informed Reported Matzke-Klauer
Presented

Once Easy Standard .50 [.46, .54] .50 [.46, .53] .50 [.46, .54]
Reinstate .53 [.49, .58] .54 [.51, .57] .54 [.49, .58]

Hard Standard .48 [.45, .51] .49 [.46, .52] .48 [.45, .51]
Reinstate .46 [.43, .49] .47 [.44, .49] .46 [.43, .49]

Twice Easy Standard .51 [.46, .55] .51 [.48, .55] .51 [.46, .55]
Reinstate .52 [.47, .57] .52 [.49, .56] .51 [.46, .56]

Hard Standard .49 [.45, .53] .48 [.42, .55] .49 [.45, .52]
Reinstate .52 [.49, .56] .53 [.50, .55] .53 [.49, .56]

Note. Matzke-Klauer parameter estimates based on Table D1 (Appendix D) in
the original manuscript.
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showed the effect (depicted in bright purple). When accounting for the uncertainty
of the estimates (i.e., 80% credible intervals), the numbers in the difficult no-
repetition condition reduced to 16.20% (6/37) for difficult items and 5.60% (2/36)
for easy items. When items were repeated this was 55.60% (20/36) for difficult
items, 5.40% (2/37) for easy items.

Finally, we tested whether the reinstatement effect is present in each partici-
pant. The a priori probability that all participants show the effect was approxi-
mately 2 in ten thousand. In this case, again, the proportion of posterior samples
in agreement with the constraints is smaller than the prior probability, approx-
imately 2 in ten million, yielding a Bayes factor in favor for the encompassing
model over the restrictive model of 8,267. This result may be somewhat surpris-
ing considering that the majority of individual median effects are in the predicted
direction. However, there seemingly is not enough evidence across participants
that all of them experience a benefit from the reinstatement test.

As in the first case study, Matzke-Klauer priors result in evidence pointing in
the opposite direction from the evidence we received from theory-informed priors.
In this case, no prior samples were in agreement with the constraints. Therefore,
even though the number of posterior samples in agreement with the constraints
was similar to the one obtained from theory informed priors (i.e., approximately
4 in ten million), the Bayes factor yield infinite evidence in favor the restricted
model. And it would yield the same evidence no matter how high the posterior
probability of the constraint!

Returning to the comparison of the commonly used Matzke-Klauer priors and
our informed priors, we chose to visualize a condition for which Matzke-Klauer
priors and theory-informed priors differ most, that is the reinstatement condition
in which sources were similar and only presented once. Figure 10.11 compares
for this condition the individual estimates of source memory and guessing from
the two models. The dashed line highlights when the estimates are identical. For
the source memory parameter (left plot), prior shrinkage of the Matzke-Klauer
priors is apparent in the s-curve, indicating that Matzke-Klauer priors yield esti-
mates pulled towards the extremes. For the guessing parameter (right plot) the
Matzke-Klauer priors yield slightly more hierarchical shrinkage (corresponding to
less extreme estimates). However, the guessing parameter estimates are fairly
comparable. The differences between the estimates at the individual level illus-
trate that the problems associated with vague group-level priors mainly concern
parameters that cannot be estimated with great precision.

10.5 Discussion

This chapter discussed two points of refinement for the specification and com-
parison of Bayesian MPT models. Specifically, we highlighted how to specify
theory-informed predictions both in terms of plausible values for model param-
eters within experimental conditions and in terms of the rank ordering across
experimental conditions. We did do so by using the 2HTSM model for source
monitoring, however, our arguments and methods generalize to all MPT research.
The aim of this work was to provide researchers with principles for specifying and
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Figure 10.11: For the reanlaysis of Symeonidou and Kuhlmann (2021) Matzke-
Klauer priors and theory-informed priors seem do differ systematically for source
memory parameter (left) but not for source guessing (right). The figure illustrates
parameters in the reinstatement condition in which sources were similar and only
presented once.

comparing MPT models and to present methods that are simple to use.
To ensure plausible model predictions within experimental conditions, we ar-

gued for the need of theory-informed priors. Using prior-predictive checks, we
illustrated that the priors proposed by Matzke, Dolan, et al. (2015) and Klauer
(2010) and implemented in TreeBUGS (Heck et al., 2018) are uninformative and
vague at the group level but are highly informative at the individual level and
favor extreme values. These distributions predicted nonsensical response rates
and—instead of a homogeneous population of participants—a mix of different
participant populations. Since Matzke-Klauer priors favor extreme values, more
data are needed to overwhelm them. In both case studies, the source memory
parameter was still influenced by the priors, leading to prior shrinkage. More-
over, the priors massively affected Bayes factor estimates. In our case studies,
Matzke-Klauer Bayes factors and Bayes factors obtained from theory-informed
priors diverged, sometimes with extreme evidence for opposite hypotheses. This
was especially the case when the hypothesis concerned individual differences.

However, prior shrinkage did not affect all parameters to the same extent,
that is, prior shrinkage became apparent only in individual-level parameters. This
is good news for MPT modelers: regarding parameter estimation on the group-
level, the two priors discussed in this chapter largely converged to the same pos-
terior estimates. However, when the goal is model comparison—even when the
research question concerns only group-level parameters—Bayes factors obtained
from Matzke-Klauer priors and theory-informed priors did not reliably yield the
same results. In the second case study, theory-informed Bayes factor indicated
very strong evidence in favor for the restricted model while the Matzke-Klauer
Bayes factor indicated only moderate evidence.

Similarly, not all parameters at the individual level were affected by the prior
shrinkage to the same extend, but mainly parameters that were subject to greater
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uncertainty. Importantly, this was the case for the case study with somewhat
scarce data, but also for the case study that featured more data per participant.
In MPT models, the tree architecture gives an indication on which parameters
might be affected most: the more frequently parameters occur in the individual
branches, the more information is available for estimation. For instance, Fig-
ure 10.1 shows that in the 2HTSM model, source guessing is featured in every
branch as guessing can guide all responses. Thus, data from all trials can be used
to estimate the parameter resulting in precise estimates. By contrast, source mem-
ory may be represented only in branches of previously presented items for which
the source was correctly identified. MPT modellers should keep this in mind, es-
pecially when working with tree structures where the test-relevant parameters are
the ones occurring in only a few branches. To inform these parameters, researchers
could collect more data. However, in memory experiments, this is inherently dif-
ficult, since presenting participants with hundreds of source-items pairs for learn-
ing and retrieval is not possible. Thus, in paradigms with scarce data and/or
a tree-architecture that does not sufficiently inform test-relevant parameters, the
development of theory-informed prior distributions is especially important.

We would like to stress that we do not propose our priors as a new default.
The appropriateness of the priors depend on the model and research design at
hand. The specific prior we set on the correlation matrix, for instance, will make
different predictions when more or less parameters are featured in the model.
Furthermore, the priors chosen here, while making assumptions consistent with
domain knowledge (e.g., source guessing centered at nominal guessing level), are
far from perfect. As apparent in Figure 10.3 our priors on the source memory
parameters are not completely flat but still assign a higher density to extreme
values. This is due to our consideration to adapt the default priors only to the
extent that the model made reasonable prior predictions. However, based on
the prior predictions, it would be also legitimate to constrain the model priors
even further. For instance, constraining the participant variability group-level
further will lead to predictions that result in a more homogeneous population.
Experienced MPT modelers will certainly be able to identify further improvements
based on published literature or their own research, for instance, by centering
distributions of MPT parameter on specific values.

In addition to specifying the statistical model within an experimental condi-
tion, we also discussed how to specify expected effects on model parameters across
experimental conditions. Research questions in MPT research are often charac-
terized as ordinal expectations in the form of ordinal and disordinal interactions,
but so far it has been challenging to evaluate them. Commonly used methods to
test ordinal expectations require the reparametrization of the MPT parameters
(Knapp & Batchelder, 2004), are mainly applicable for non-hierarchical models,
and are not suited to test these expectations directly.

As a refinement to current practices, we therefore suggested to compute Bayes
factors using Savage-Dickey and the unconditional encompassing method (Gelfand
et al., 1992; Klugkist et al., 2005; Sedransk et al., 1985). The methods discussed
here have three considerable advantages over the current methods, as (1) they
do not require the reparametrization of MPT parameters in order to represent
interaction effects, (2) they are suited for hierarchical models, thus taking into ac-
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count participant heterogeneity and hierarchical shrinkage, and (3) they are able
to test theories directly. Furthermore, the methods allow researchers for testing of
a wide variety of research questions, including the assessment of individual differ-
ences. Finally, the unconditional encompassing method relies simply on counting
instances from the posterior distribution, and thus is intuitive and simple to use.

However, the unconditional encompassing method comes with some limita-
tions. That is, the robustness of the Bayes factor depends largely on whether
enough prior and posterior samples in agreement with the constraint can be drawn
from the encompassing model in order to estimate the proportion of restricted pa-
rameter space reliably. That is, if the number of restricted parameters is large
or the restricted parameter space decreases (e.g., if the data suggests extreme ev-
idence against the restricted model) the Bayes factor results become unreliable
(Sarafoglou, Haaf, et al., 2021). This issue might, for instance, occur for the as-
sessment of individual differences in the previous section. As a first remedy, more
samples can be drawn from the encompassing model to stabilize the Bayes factor
estimates, but ultimately more efficient alternatives must be developed. Alter-
natives to the unconditional encompassing approach are the conditional encom-
passing method (Mulder et al., 2009) and the recently developed bridge sampling
method to evaluate restricted models (Gronau et al., 2020, 2019; Sarafoglou, Haaf,
et al., 2021). These methods have already been applied to test order constraints in
multinomial models, but not yet to test these restrictions on the class of (hierarchi-
cal) MPT models (e.g., Heck & Davis-Stober, 2019; Sarafoglou, Aust, Marsman,
Wagenmakers, & Haaf, 2021). A user-friendly implementation of these methods
would be a key asset for Bayesian MPT modeling.

We presented various techniques to compute Bayes factors, however, Bayes fac-
tors are often criticized as they are sensitive to priors (e.g., Kass & Raftery, 1995).
This is correct; as our case studies demonstrated, priors drastically affected the
Bayes factors. Yet, the same applies to the other two steps of model specification.
A different model equation will result in different Bayes factors, as will different
hypotheses as they are incorporated in the model. In the formalization of theories,
subjectivity comes into play at all stages of model specification–this is one of the
characteristics of cognitive modeling and the construction of psychological theories
in general. However, one should not equate subjectivity with randomness. The
model equation, model assumptions, and parameter priors are not random: they
result largely from theoretical considerations.

Our results show that Bayes factors depend strongly on the modeling choices
of researchers and that thorough considerations about parameter priors play a
crucial role in the analysis. However, from our own experiences, MPT modelers
are often discouraged to inform their priors of fear of being accused of “Bayes fac-
tor hacking”. Researchers can counteract this by well justifying their parameter
priors and preregister them to ensure the confirmatory status of their analyses.
In addition, researchers can determine through sensitivity analyses whether the
findings are fragile or robust to aspects of the prior that are not fully justified
by theory (I. J. Myung & Pitt, 1997; Sinharay & Stern, 2002). For instance, in
our implementation of the 2HTSM model, our goal was to assign a prior to the
source guessing parameter that was centered at the change level, however, we had
no preconceived idea about the exact standard deviation of this distribution. In
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this case, a sensitivity analysis could examine whether the Bayes factor is robust
against alternative plausible prior distributions, that is, whether different priors
lead to diverging conclusions. When conducting sensitivity analyses, the alterna-
tive prior distributions should have the same theoretically justified properties as
the prior distribution chosen in the analysis (i.e., a distribution centered around
chance), make reasonable prior predictions, (Haaf & Rouder, 2017, 2019; Lee &
Vanpaemel, 2018), and be preregistered along with the prior distribution chosen
in the analysis. Sensitivity analyses are particularly justified when data are scarce
(e.g., in memory research or research on clinical populations) and parameter priors
can be expected to have a greater impact on the results.

10.5.1 Concluding Comments

Although prior specification is often considered a nuisance in Bayesian modeling,
it offers MPT modelers the opportunity to make model evaluation a complete test
of the theory. Heck et al.’s work has made it possible for many researchers to
apply Bayesian MPT modeling to their data, but it also tempts researchers to
rely entirely on the default settings of TreeBUGS. We hope that we have succeeded
in drawing attention to potential problems with diffuse Matzke-Klauer priors and
encouraged researchers to give the specification of priors the attention it deserves.

Even though the focus of this chapter was on source memory models, our
arguments extend to all MPT research. MPT research is characterized by complex
experimental designs and predictions often describe ordinal relations of parameters
that span multiple factor levels. In combination with theory-informed priors, the
specification of ordinal expectation brings MPT modelers closer to quantitatively
describing and testing their theory to the fullest extent possible.
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Figure 10.12: Theory-informed prior distributions for guessing parameters (A.),
the standard deviations across participants (B.), and marginal correlation for
LKJ(1) prior on 8x8 matrices (C.) and 6x6 matrices (D.).

10.A Model specifications

To model individual-level differences in the latent-trait approach responses are
aggregated over items so that we receive a vector of category frequencies for each
participant i (i = 1, · · · , I) in each between-subjects experimental condition j
(j = 1, · · · , J). For convenience, we will drop subscript j in the following para-
graphs. The individual-level MPT parameters are denoted as Di, di, bi and gi.
The function fMPT that encodes the model equation translates the parameters
into category probabilities P (C)i, where a category corresponds, for instance, to
the probability to answer “A” given that the correct source was Source A (i.e.,
P (“A” | Source A)i). Differences between the default 2HTSM model proposed in
Matzke, Dolan, et al. (2015) and the theory-informed model used in this chapter
lies in the prior distributions for the group-level parameters, that is, the prior
distribution for the guessing parameter (panel A in Figure), the prior distribu-
tion on the standard deviations across participants (panel B), and the marginal
correlation across participants (panel C and D) in Figure 10.12.

10.A.1 Default Prior Distributions

The graphical model using default prior distributions is illustrated in Figure 10.13.
In this model, the vector containing the individual-level MPT parameters is probit-
transformed into the vector θi. The vectors over all participants are then combined
in a matrix Θ and assigned a multivariate normal distribution as prior distribution
with mean vector µ and a covariance matrix Σ. As proposed in Heck et al. (2018)
and Matzke, Dolan, et al. (2015), the group-level MPT parameters are assumed
to be independent so that each element in µ is assigned an independent standard
normal distribution. The covariance matrix is composed of a vector containing
scaling parameters ξ and a matrix W. In the original work by Matzke, Dolan,
et al. (2015), each element in ξ is assigned a uniform distribution ranging from 0
to 100. In TreeBUGS, Heck et al. (2018) assign as default a uniform distribution
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ranging from 0 to 10. Lastly, the matrix W is assigned an inverse-Wishart as prior
distribution with degrees of freedom df = P + 1, where P refers to the number of
free participant parameters.

Figure 10.13: Graphical model for
the default 2HTSM model as imple-
mented in TreeBUGS with two within-
subjects conditions and J between-
subjects conditions. Index I refers
to the total number of participants
within each between-subjects condi-
tion.

W ∼ Inverse Wishart(df = P + 1)

ξ ∼ Uniform(0, 10)

Σ = Diag(ξ)×W×Diag(ξ)

µ ∼ Normal(0, 1)

Θ ∼ Multivariate-Normal(µ,Σ)

Di, di, bi, gi = ϕ(θi)

P (C)i = fMPT(Di, di, bi, gi)

ki ∼ Multinomial(P (C)i,N)

10.A.2 Theory-Informed Prior Distributions

The graphical model using theory-informed prior distributions is illustrated in
Figure 10.14. The adaptations from the classical latent-trait model are based on
recommendations of Stan Development Team (2022) and Barnard et al. (2000)
and implemented in Singmann (2019). In this model, the probit-transformed
individual-level MPT parameters are assumed to be determined by the mean vec-
tor µ featuring the group-level MPT parameters and by a matrix ∆ containing
participants’ individual deviations around the group mean. As in the default
model, we assume that the elements in µ are independent. We assign the group-
level memory parameters standard normal distribution as prior. The guessing
parameters are assigned a Normal(0, 0.28) distribution as prior. The individual
deviation matrix ∆ is obtained by drawing from a multivariate normal distribution
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with means µ = 0. The variance-covariance matrix of this distribution is decom-
posed into a vector of standard deviations σ and a Cholesky-factorized correlation
matrix L, which are used to scale a matrix of standardized deviation ∆̃ from a
standard normal distribution. We assigned each element in σ a Gamma(2, 3)
distributions, favoring small standard deviations over large ones. We further as-
sign an LKJ prior distribution with shape η = 1 to the correlation matrix L. This
yields a marginal distribution favoring correlations among parameters in the range
[−0.5, 0.5] over more extreme correlations, Figure 10.12 panels C and D.

Figure 10.14: Graphical model for
2HTSM model with theory-informed
priors with two within-subjects con-
ditions and J between-subjects con-
ditions. Index I refers to the total
number of participants within each
between-subjects condition.

L ∼ LKJ(η = 1)

δ̃ ∼ Normal(0, 1)

σ ∼ Gamma(2, 3)

∆ = (Diag(σ)× L)× ∆̃)⊤

µD, µd, ∼ Normal(0, 1)

µb, µg , ∼ Normal(0, 0.28)

Di, di, bi, gi = ϕ(µ+ δi)

P (C)i = fMPT(Di, di, bi, gi)

ki ∼ Multinomial(P (C)i,N)
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Chapter 11

A Consensus–Based Transparency
Checklist

Abstract

We present a comprehensive checklist that social and behavioural scien-
tists can use to improve and document the transparency of their research.
The checklist was created using a preregistered expert-consensus method,
with guidance from 45 social and behavioural science journal editors and 18
open science advocates. The resulting checklist presents a consensus-based
solution to a difficult task: identifying the most important steps needed for
achieving transparent research in these fields. An accompanying online ap-
plication allows users to complete the form and generate a report that they
can submit with their manuscript and/or post to a public repository. Al-
though this checklist was developed for social and behavioural researchers
who conduct and report confirmatory research on primary data, other re-
search approaches and disciplines should find value in it and adapt it to their
field’s needs.

This chapter is published as Aczel, B., Szaszi, B., Sarafoglou, A., Kekecs, Z., Kucharský,
Š., Benjamin, D., ... & Wagenmakers, E. J. (2020). A consensus-based transparency checklist.
Nature Human Behaviour, 4, 4–6.
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11. A Consensus–Based Transparency Checklist

We present a consensus-based checklist to improve and document the trans-
parency of research reports in social and behavioural research. An accompanying
online application allows users to complete the form and generate a report that
they can submit with their manuscript or post to a public repository.

11.1 Good Science Requires Transparency

Ideally, science is characterized by a ‘show me’ norm, meaning that claims should
be based on observations that are reported transparently, honestly and completely
(Merton, 1973). When parts of the scientific process remain hidden, the trust-
worthiness of the associated conclusions is eroded. This erosion of trust affects
the credibility not only of specific articles, but—when a lack of transparency is
the norm—perhaps even entire disciplines. Transparency is required not only for
evaluating and reproducing results (from the same data), but also for research
synthesis and meta-analysis from the raw data and for effective replication and
extension of that work. Particularly when the research is funded by public re-
sources, transparency and openness constitute a societal obligation.

In recent years many social and behavioural scientists have expressed a lack of
confidence in some past findings (Baker, 2016), partly due to unsuccessful replica-
tions. Among the causes for this low replication rate are underspecified methods,
analyses and reporting practices. These research practices can be difficult to de-
tect and can easily produce unjustifiably optimistic research reports. Such lack of
transparency need not be intentional or deliberately deceptive. Human reasoning
is vulnerable to a host of pernicious and often subtle biases, such as hindsight bias,
confirmation bias and motivated reasoning, all of which can drive researchers to
unwittingly present a distorted picture of their results.

11.1.1 The practical side of transparency

How can scientists increase the transparency of their work? To begin with, they
could adopt open research practices such as study preregistration and data sharing
(Chambers, 2013; Gernsbacher, 2018; Munafò et al., 2017). Many journals, insti-
tutions and funders now encourage or require researchers to adopt these practices.
Some scientific subfields have seen broad initiatives to promote transparency stan-
dards for reporting and summarizing research findings, such as START, SPIRIT,
PRISMA, STROBE and CONSORT (see https://www.equator-network.org).
A few journals ask authors to answer checklist questions about statistical and
methodological practices (e.g., the Nature Life Sciences Reporting Summary)
(Campbell, 2013) and transparency (for example, Psychological Science). Journals
can signal that they value open practices by offering ‘badges’ that acknowledge
open data, code and materials (Kidwell et al., 2016). The Transparency and Open-
ness Promotion (TOP) guidelines (Nosek et al., 2015), endorsed by many journals,
promote the availability of all research items, including data, materials and code.
Authors can declare their adherence to these TOP standards by adding a trans-
parency statement in their articles (TOP Statement; Aalbersberg et al., 2018).
Collectively, these somewhat piecemeal innovations illustrate a science-wide shift
toward greater transparency in research reports.
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11.2 Transparency Checklist

We provide a consensus-based, comprehensive transparency checklist that be-
havioural and social science researchers can use to improve and document the
transparency of their research, especially for confirmatory work. The checklist re-
inforces the norm of transparency by identifying concrete actions that researchers
can take to enhance transparency at all the major stages of the research process.
Responses to the checklist items can be submitted along with a manuscript, pro-
viding reviewers, editors and, eventually, readers with critical information about
the research process necessary to evaluate the robustness of a finding. Journals
could adopt this checklist as a standard part of the submission process, thereby
improving documentation of the transparency of the research that they publish.

Figure 11.1: The Shortened Transparency Checklist 1.0. After each section, the
researchers can add free text if they find that further explanation of their response
is needed. The full version of the checklist can be found at http://www.shinyapps
.org/apps/TransparencyChecklist/.

We developed the checklist contents using a preregistered ‘reactive-Delphi’
expert consensus process (McKenna, 1994), with the goal of ensuring that the
contents cover most of the elements relevant to transparency and accountability
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in behavioural research. The initial set of items was evaluated by 45 behavioural
and social science journal editors-in-chief and associate editors, as well as 18 open-
science advocates. The Transparency Checklist was iteratively modified by delet-
ing, adding and rewording the items until a sufficiently high level of acceptability
and consensus were reached and no strong counter arguments for single items were
made (for the selection of the participants and the details of the consensus pro-
cedure see Supplementary Information). As a result, the checklist represents a
consensus among these experts.

The final version of the Transparency Checklist 1.0 contains 36 items that cover
four components of a study: preregistration; methods; results and discussion; and
data, code and materials availability. For each item, authors select the appropriate
answer from prespecified options. It is important to emphasize that none of the
responses on the checklist is a priori good or bad and that the transparency report
provides researchers the opportunity to explain their choices at the end of each
section.

In addition to the full checklist, we provide a shortened 12-item version (Fig-
ure 11.1). By reducing the demands on researchers’ time to a minimum, the short-
ened list may facilitate broader adoption, especially among journals that intend
to promote transparency but are reluctant to ask authors to complete a 36-item
list. We created online applications for the two checklists that allow users to com-
plete the form and generate a report that they can submit with their manuscript
and/or post to a public repository (Box 1). The checklist is subject to contin-
ual improvement, and users can always access the most current version on the
checklist website; access to previous versions will be provided on a subpage.

This checklist presents a consensus-based solution to a difficult task: identi-
fying the most important steps needed for achieving transparent research in the
social and behavioural sciences. Although this checklist was developed for so-
cial and behavioural researchers who conduct and report confirmatory research
on primary data, other research approaches and disciplines might find value in
it and adapt it to their field’s needs. We believe that consensus-based solutions
and user-friendly tools are necessary to achieve meaningful change in scientific
practice. While there may certainly remain important topics the current version
fails to cover, nonetheless we trust that this version provides a useful to facilitate
starting point for transparency reporting. The checklist is subject to continual im-
provement, and we encourage researchers, funding agencies and journals to provide
feedback and recommendations. We also encourage meta-researchers to assess the
use of the checklist and its impact in the transparency of research.

11.3 Disclosures

11.3.1 Data availability

All anonymized raw and processed data as well as the survey materials are publicly
shared on the Open Science Framework page of the project: https://osf.io/

v5p2r/. Our methodology and data-analysis plan were preregistered before the
project. The preregistration document can be accessed at: https://osf.io/

v5p2r/registrations.
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11.3.2 Supplemental Information

Supplemental information to this chapter can be accessed via https://www

.nature.com/articles/s41562-019-0772-6#MOESM1.

Box 1. Online applications and the benefits of the
transparency checklist

Online applications for the checklist:

1. http://www.shinyapps.org/apps/TransparencyChecklist/ for the
complete, 36-item version

2. http://www.shinyapps.org/apps/ShortTransparencyChecklist/

for the shortened, 12-item version

Benefits of the Checklist:

1. The checklist can help authors improve the transparency of their work
before submission.

2. Disclosed checklist responses can help editors, reviewers, and readers
gain insight into the transparency of the submitted studies.

3. Guidelines built on the checklist can be used for educational purposes
and to raise the standards of social and behavioral sciences, as well as
other scientific disciplines, regarding transparency and credibility.

4. Funding agencies can use a version of this checklist to improve the re-
search culture and accelerate scientific progress.
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Chapter 12

Seven Steps Toward More
Transparency in Statistical Practice

Abstract

We argue that statistical practice in the social and behavioral sciences
benefits from transparency, a fair acknowledgement of uncertainty, and open-
ness to alternative interpretations. To promote such a practice, we recom-
mend seven concrete statistical procedures: (1) visualizing data; (2) quan-
tifying inferential uncertainty; (3) assessing data preprocessing choices; (4)
reporting multiple models; (5) involving multiple analysts; (6) interpreting
results modestly; and (7) sharing data and code. We discuss their bene-
fits and limitations, and provide guidelines for adoption. Each of the seven
procedures finds inspiration in Merton’s ethos of science as reflected in the
norms of communalism, universalism, disinterestedness, and organized skep-
ticism. We believe that these ethical considerations –and their statistical
consequences– establish common ground among data analysts, despite con-
tinuing disagreements about the foundations of statistical inference.

This chapter is published as Wagenmakers, E. J., Sarafoglou, A., Aarts, S., Albers, C.,
Algermissen, J., Bahńık, Š. ... & Aczel, B. (2021). Seven steps toward more transparency in
statistical practice. Nature Human Behaviour, 5, 1473–1480.
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12. Seven Steps Toward More Transparency in Statistical
Practice

12.1 Introduction

A superficial assessment of the published literature suggests that statisticians
rarely agree on anything. Different schools –mostly frequentists, likelihoodists,
and Bayesians– have fought one another tooth and nail for decades, debating the
meaning of “probability”, arguing about the role of prior knowledge, disputing the
value of objective vs. subjective analyses, and disagreeing about the primary goal
of inference itself: whether researchers should control error rates, update beliefs,
or make coherent decisions. Fundamental disagreement exists not only between
the different statistical schools, but is also present within the same school. For
instance, within the frequentist school there is the perennial debate between those
who seek to test hypotheses through p-values and those who emphasize estimation
through confidence intervals; and within the Bayesian school, Jack Good’s claim
that there are 46, 656 varieties of Bayesians may prove an underestimate (Good,
1971; but see Aczel, Hoekstra, et al., 2020).

The disagreement also manifests itself in practical application, whenever multi-
ple statisticians and practitioners of statistics find themselves independently ana-
lyzing the same data set. Specifically, recent “multiple-analyst” articles show that
statisticians rarely used the same analysis, and often drew different conclusions,
even for the exact same data set and research question (Bastiaansen et al., 2020;
Botvinik–Nezer et al., 2020; Salganik, Lundberg, Kindel, Ahearn, Al-Ghoneim, et
al., 2020; Silberzahn et al., 2018; van Dongen et al., 2019). Deep disagreement
is also exhibited by contradictory guidelines on p-values (e.g., Amrhein, Green-
land, & McShane, 2019; Benjamin et al., 2018; Harlow, Mulaik, & Steiger, 1997;
McShane, Gal, Gelman, Robert, & Tackett, 2019; Wasserstein & Lazar, 2016;
Wasserstein, Schirm, & Lazar, 2019). Should practitioners avoid the phrase “sta-
tistically significant”? Should they lower the p-value thresholds, or justify them, or
abandon p-values altogether? And if p-values are abandoned, what should replace
them? With statisticians fighting over these fundamental issues, users of applied
statistics may be forgiven for adopting a wait-and-see attitude and carrying on as
usual.

In this article, we claim that besides the numerous disputes and outstanding
arguments, statisticians might agree on a set of scientific norms. We bring these
norms to the fore, as we believe that they have considerable relevance for the
practice of statistics in the social and behavioural sciences. The norms which we
believe should guide statistical practice are communalism, universalism, disinter-
estedness, and organized skepticism, which are the four scientific norms proposed
by Merton (1973)Merton, 1973 (originally published in 1942; see the Box 1 for a
detailed overview of the Mertonian norms).

In general, when Mertonian norms are carried over to the field of statistics,
general themes include the need to be transparent, to acknowledge uncertainty,
and to be open to alternative interpretations. As such, the Mertonian norms,
although proposed over half a century ago, embody the current aspirations to in-
crease the transparency and reproducibility of science. Critically, the principles
behind the Mertonian norms can be translated into concrete statistical practices.
A non-exhaustive list of these practices include (1) visualizing data; (2) quantifying
inferential uncertainty; (3) assessing data preprocessing choices; (4) reporting mul-
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tiple models; (5) involving multiple analysts; (6) interpreting results modestly; (7)
sharing data and code. We believe that most statisticians would generally endorse
these practices (M. S. Anderson, Martinson, & De Vries, 2007), barring reason-
able exceptions (e.g., privacy concerns, severe restrictions of time and money). In
this article, we will explain these practices in more detail, including their benefits,
limitations and guidelines.

Box 1. Merton’s Ethos of Science

Merton Merton, 1973 proposed that scientific ethos is characterized by the
following four norms:

1. Communalism. “The substantive findings of science are a product of
social collaboration and are assigned to the community. (· · ·) Property
rights in science are whittled down to a bare minimum by the rationale
of the scientific ethic. (· · ·) The institutional conception of science as
part of the public domain is linked with the imperative for communi-
cation of findings. Secrecy is the antithesis of this norm; full and open
communication its enactment.” (Merton, 1973, pp. 273–274)

2. Universalism. “truth-claims, whatever their source, are to be subjected
to preestablished impersonal criteria: consonant with observation and
with previously confirmed knowledge. The acceptance or rejection of
claims entering the lists of science is not to depend on the personal or
social attributes of their protagonist; his race, nationality, religion, class,
and personal qualities are as such irrelevant.” (Merton, 1973, p. 270;
italics in original)

3. Disinterestedness.“Science, as is the case with professions in general, in-
cludes disinterestedness as a basic institutional element. (· · ·) A passion
for knowledge, idle curiosity, altruistic concern with the benefit to hu-
manity (· · ·) have been attributed to the scientist.” (Merton, 1973, pp.
275-276)

4. Organized Skepticism. This “involves a latent questioning of certain
bases of established routine, authority, vested procedures and the realm
of the “sacred” generally. (· · ·) Science which asks questions of fact
concerning every phase of nature and society comes into psychological,
not logical, conflict with other attitudes toward these same data which
have been crystallized and frequently ritualized by other institutions.
Most institutions demand unqualified faith; but the institution of sci-
ence makes scepticism a virtue.” (Merton, 1973, p. 264–265; italics in
original)
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12.2 Visualizing Data

12.2.1 Description

By visualizing data, researchers can graphically represent key aspects of the ob-
served data as well as important properties of the statistical model applied.

12.2.2 Benefits and Examples

Data visualization is important in all phases of the statistical workflow. In ex-
ploratory data analysis, data visualization helps researchers formulate new theories
and hypotheses (Tukey, 1977). In model assessment, data visualization supports
the detection of model misfit and guides the development of appropriate statistical
models (e.g., Gabry et al., 2019; Gelman, 2004; Heathcote, Brown, & Wagenmak-
ers, 2015; Kerman, Gelman, Zheng, & Ding, 2008; Weissgerber, Milic, Winham,
& Garovic, 2015). Finally, once the analysis is complete, visualization of data and
model fit is arguably the most effective way to communicate the main findings to
a scientific audience (Healy & Moody, 2014).

For an example of how data visualization facilitated the development of a new
hypothesis, consider the famous “map of the distribution of deaths from cholera”
created by London anaesthetist Dr. John Snow during the cholera outbreak in
Soho, London in September 1854. In order to trace the source of the outbreak,
Dr. Snow created a dot map that displayed the homes of the deceased as well
as the water pumps in the neighborhood (Figure 12.1). The scatter of the data
showed that the deaths clustered around a particular water pump in Broad Street,
suggesting that the disease was waterborne instead of airborne (Gilbert, 1958).
Upon Dr. Snow’s request, the pump was disabled by removing its handle, which
immediately ended the neighbourhood epidemic. It was discovered later that the
well belonging to the pump was contaminated with sewage, which caused the
outbreak in the neighborhood.

For an example of how data visualization can reveal model misspecification,
consider Anscombe’s quartet (Anscombe, 1973) shown in Figure Figure 12.2. The
four scatter plots all have identical summary statistics (i.e., means, standard de-
viations, and Pearson correlation coefficient). By visually inspecting the panels,
it becomes obvious that the bivariate relation is fundamentally different for each
panel (see also Matejka & Fitzmaurice, 2017).

12.2.3 Current Status

Since William Playfair (1759–1823) invented the first statistical graphs –such as
line graphs and bar charts (Playfair, 1786)– , data visualization has become an es-
sential part of science. Today, graphs are part of most statistical software packages
and have become an indispensable tool to perform certain analyses (e.g., principal
component analysis, or prior and posterior predictive checks), or for handling big
data sets (e.g., through cluster analysis Everitt, Landau, Leese, & Stahl, 2011).
Technology now allows us to go beyond static visualizations and display the dy-
namic aspects of the data, for instance, by using the software packages R Shiny
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Figure 12.1: Recreation of Dr. Snow’s map of the distribution of deaths from
cholera. In this map, the points represent the homes of the deceased and the
crosses represent the water pumps in the neighborhood. The contaminated water
pump that triggered the cholera epidemic in the neighborhood is located on Broad
Street. Reprinted with permission from Pioneer maps of health and disease in
England (p. 174), by E. W. Gilbert, 1958, The Royal Geographical Society (with
the Institute of British Geographers).

(W. Chang, Cheng, Allaire, Xie, & McPherson, 2020) or iNZight (iNZight Team,
2020).

12.2.4 Limitations

Despite the obvious benefits, data visualization also offers the opportunity to
mislead, for instance, when displaying spurious patterns by either expanding the
scale to minimize variation, or by minimizing the scale to accentuate differences
(e.g., Cairo, 2019; Gelman, 2011; Wainer, 1984).

Furthermore, the informativeness of a graph often depends on the design ca-
pabilities of the researcher and how much thought they put into what information
should be communicated. Scientists without programming experience often find
themselves constrained by the options offered in standard graphics software. How-
ever, the example of Anscombe’s quartet shows that even the simplest plots can
be highly informative.

12.2.5 Guidelines

There are no uniform guidelines as to when and which graphical representations
should be used. There is, however, a fundamental principle of good statistical
graphics due to Tufte (Tufte, 1973, p.92): “Above all else show the data” (i.e.,

241



12. Seven Steps Toward More Transparency in Statistical
Practice

Figure 12.2: Anscombe’s quartet emphasizes the importance of data visualization
to detect model misspecification. Although the four data sets are equivalent in
terms of their summary statistics, the Pearson correlation is only valid for the data
set in the upper left panel. Figure is available at https://tinyurl.com/y9je2mut
under CC license https://creativecommons.org/licenses/by/2.0/.

minimize non-data elements). In general, scientists should aim to create a graph
that is as clean, informative, and as complete as possible. These characteristics
are also emphasized in the ASA Ethical Guidelines (Committee on Professional
Ethics of the American Statistical Association, 2018). The guidelines mention
that to ensure the integrity of data and methods, the ethical statistician “[i]n
publications and reports, conveys the findings in ways that are both honest and
meaningful to the user/reader. This includes tables, models, and graphics” (p. 3).

Beyond that, guidelines depend on the individual aspects of the data (e.g.,
complexity of the data and experimental design) and context (cf. Diamond &
Lerch, 1992); here we refer the interested reader to the numerous manuals de-
scribing good practices in graphical representation of statistical information (e.g.,
Chen, Härdle, & Unwin, 2008; Cleveland & McGill, 1984; Gelman, Pasarica, &
Dodhia, 2002; Mazza, 2009; Tufte, 1973; Wilke, 2019; L. Wilkinson, 1999).

12.3 Quantifying Inferential Uncertainty

12.3.1 Description

By reporting the precision with which model parameters are estimated, the analyst
communicates the inevitable uncertainty that accompanies any inference from a
finite sample.
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12.3.2 Benefits and Example

Only by assessing and reporting inferential uncertainty is it possible to make
any claim about the degree to which results from the sample generalize to the
population. For example, Strack, Martin, and Stepper (1988) studied whether
participants rate cartoons to be funnier when they hold a pen with their teeth
(which induces a smile) instead of holding it with their lips (which induces a
pout). On a 10-point Likert scale, the authors observed a raw effect size of 0.82
units. For the interpretation of this result it is essential to know the associated
inferential uncertainty. In this case, the 95% confidence interval ranges from −0.05
to 1.69, indicating that the data are not inconsistent with a large range of effect
size estimates (including effect sizes that are negligible or negative).

Box 2. Seven Mertonian Statistical Procedures

This box outlines how each of the seven procedures discussed in the main
manuscript fullfill the Mertonian norms. An overview is given in Table below.

Commu– Univer– Disinteres– Organized

nalism salism tedness Skepticism

1. Visualizing Data Yes Yes Yes

2. Quantifying Inferential

Uncertainty Yes Yes Yes

3. Assessing Data Preprocessing

Choices Yes Yes Yes

4. Reporting Multiple Models Yes Yes Yes

5. Involving Multiple Analysts Yes Yes Yes

6. Interpreting Results Modestly Yes Yes

7. Sharing Data and Code Yes Yes Yes Yes

1. Visualizing Data

Well-designed visualizations show at a glance the key aspects of the data.
Moreover, by giving the reader a more complete picture of the data and related
statistics, visualizations can either support or weaken a conclusion drawn by
the researcher, or help the reader find alternative ways of interpreting the
results and analyzing the data.

2. Quantifying Inferential Uncertainty

Acknowledging inferential uncertainty (e.g., by presenting standard errors or
confidence intervals) contributes to open communication. In addition, quanti-
fying inferential uncertainty signals that researchers are openly acknowledging
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the extent to which their measurements are imprecise, especially when sam-
ple size is small. Finally, explicitly acknowledging inferential uncertainty may
prompt readers to question how well the results from the sample generalize
to the population.

3. Assessing Data Pre-processing Choices

When researchers share the results from only a single data pre-processing
pipeline, they may unintentionally hide important information. If a result
proves sensitive to particular pre-processing choices, this warrants skepticism
and may initiate a debate on the importance and plausibility of relevant data
pre-processing choices (cf. Leamer, 1985, p. 308).

4. Reporting Multiple Models

Similar to the previous section, reporting results from only a single model
may unintentionally hide important information.

5. Involving Multiple Analysts

The multiple-analysts approach can reveal whether different (teams of) ana-
lysts reach converging or diverging conclusions from the same data set. By
including other analysts with different backgrounds and interests, the poten-
tial impact of self-interest of any single analyst is counteracted. The multiple-
analysts approach also stimulates skepticism by bringing to light alternative
statistical perspectives on the data.

6. Interpreting Results Modestly

Disinterested analysts arguably have little need to exaggerate claims, impress
reviewers, and downplay signs of model misfit. Analysts who facilitate orga-
nized skepticism do not attempt to suppress doubt — they are not defensive,
and they do not wish to protect their work against good-faith scrutiny from
their peers.

7. Sharing Data and Code

All secrecy about data is a limitation to knowledge accumulation and violates
the ethos of science. All interested researchers should have access to relevant,
properly anonymized data. Importantly, sharing data allows skeptical eyes to
scrutinize the results, promoting quality control.

12.3.3 Current Status

In virtually all statistics courses, students are taught to provide not only the sum-
mary of statistical tests (such as F -, t-, p-values and associated degrees of free-
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dom), but also parameter point-estimates (e.g., regression weights, effect sizes)
and their associated uncertainty (e.g., standard error, posterior distribution, con-
fidence intervals, credible intervals). Nevertheless, there exists a gap between what
is taught and what is practiced. Studies of published articles in physiology (Weiss-
gerber et al., 2015), the social sciences (Hoekstra, Finch, Kiers, & Johnson, 2006),
and medicine (Cooper, Schriger, & Close, 2002; Schriger, Sinha, Schroter, Liu, &
Altman, 2006) revealed that error bars, standard errors, or confidence intervals
were not always presented. Also, popular metrics such as Cronbach’s alpha (a
measure of test score reliability) are virtually never presented with a measure of
inferential uncertainty.

12.3.4 Limitations

Although not a limitation per se, it should be noted that inferential uncertainty
always needs to be quantified relative to the inferential goal: does a researcher
want to generalize across people, stimuli, time points, or another dimension? The
proper way of computing standard errors depends on the researcher’s purpose.

12.3.5 Guidelines

Various guidelines strongly recommend that effect size estimates are accompanied
by measures of uncertainty in the form of standard errors or confidence intervals.
For instance, the publication manual of the American Psychological Association
(6th ed.) states: “When point estimates (e.g., sample means or regression coef-
ficients) are provided, always include an associated measure of variability (preci-
sion), with an indication of the specific measure used (e.g., the standard error),”
(p. 34). Also, the International Committee of Medical Journal Editors (Inter-
national Committee of Medical Journal Editors, 2019) explicitly recommend to
“[w]hen possible, quantify findings and present them with appropriate indicators
of measurement error or uncertainty (such as confidence intervals)” (p. 17).

12.4 Assessing Data Preprocessing Choices

12.4.1 Description

By assessing the impact of plausible alternative data pre-processing choices (i.e.,
examining the “data multiverse”, Steegen et al., 2016), the analyst determines the
extent to which the finding under scrutiny is either fragile or sturdy.

12.4.2 Benefits and Example

A “data multiverse” analysis reveals the fragility or sturdiness of the finding un-
der plausible alternative data pre-processing choices. This prevents researchers
from falling prey to hindsight bias and motivated reasoning, which may lead them
to unwittingly report only the pre-processing pipeline that yields the most com-
pelling result (e.g., De Groot, 1956/2014; Simmons et al., 2011). But even a
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completely unbiased analysis will benefit from a “data multiverse” analysis, as it
reveals uncertainty that would otherwise remain hidden.

For example, Steegen et al. (2016) reexamined the results of Durante, Rae,
and Griskevicius (2013), who reported an interaction between relationship status
(i.e., single or not) and menstrual cycle (i.e., fertile or not) on reported religiosity.
After applying a series of 180 different data pre-processing procedures (e.g., five
different ways to split women into high versus low fertility), the multiverse reanal-
ysis showed that the resulting 180 p-values were distributed uniformly between 0
and 1, indicating that the reported interaction is highly fragile.

12.4.3 Current Status

The idea of assessing sensitivity to data-preprocessing choices dates back at least
to (De Groot, 1956/2014, p. 190) and (Leamer, 1985, p. 308) and was revived by
Simmons et al. (2011) and by Steegen et al. (2016). In the field of functional mag-
netic resonance imaging, both Carp (2012) and Poldrack et al. (2017) emphasized
the hidden influence of different plausible pre-processing pipelines. In psychology,
recent applications are Bastiaansen et al. (2020) and Wessel, Albers, Zandstra,
and Heininga (2020). Nevertheless, the overwhelming majority of empirical arti-
cles does not report the results of a data multiverse analysis.

12.4.4 Limitations

A pragmatic limitation of the data multiverse lies in the extra work that it en-
tails. Another limitation can be found in ambiguities surrounding the definition of
the data multiverse. The analyst has to determine what constitutes a sufficiently
representative set of pre-processing choices and whether all pre-processing choices
are equally plausible, such that they should be given equal weight in the multi-
verse analysis. A final limitation is that it is not always clear how to interpret
the results of a data multiverse analysis. Interpretation can be facilitated with
certain graphical formats that cluster related pipelines (e.g., specification curves;
Simonsohn, Nelson, & Simmons, 2020).

12.4.5 Guidelines

Some specific guidelines on assessing data pre-processing choices are offered by
Simmons et al. (2011, see Requirements for Authors, numbers 5 and 6), but it
is difficult to provide general guidelines as “(· · ·) a multiverse analysis is highly
context-specific and inherently subjective. Listing the alternative options for data
construction requires judgment about which options can be considered reasonable
and will typically depend on the experimental design, the research question, and
the researchers performing the research” (Steegen et al., 2016, p. 709). More
general guidelines that relate exclusively to the reporting of pre-processing choices
are given in the ASA Ethical Guidelines (Committee on Professional Ethics of the
American Statistical Association, 2018). These mention that to insure the integrity
of data and methods, the ethical statistician “[w]hen reporting on the validity of
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data used, acknowledges data editing procedures, including any imputation and
missing data mechanisms” (p. 2).

12.5 Reporting Multiple Models

12.5.1 Description

By assessing the impact of plausible alternative statistical models (i.e., examin-
ing the “model multiverse”), the analyst gauges the extent to which a statistical
conclusion is either fragile or sturdy.

12.5.2 Benefits and Example

Similar to the “data multiverse” analysis discussion in the previous section, a
model multiverse analysis examines the fragility or sturdiness of the finding un-
der plausible alternative statistical modeling choices. Modeling choices comprise
differences in estimators and fitting regimes, but also in model specification and
variable selection. Reporting the outcomes of multiple plausible models reveals
uncertainty that would remain hidden if only a single model were entertained. In
addition, this practice protects analysts against hindsight bias and motivated rea-
soning, which may unwittingly lead them to select the single model that produces
the most flattering conclusion. For example, Patel, Burford, and Ioannidis (2015)
quantified the variability of results under different model specifications. They
considered 13 clinical, environmental, and physiological variables as potential co-
variates for the association of 417 self-reported, clinical, and molecular phenotypes
with all-cause mortality. Consequently, they computed p-values for 213 = 8, 192
models and examined the instability of the inference, which they call the “vibra-
tion of effects”.

12.5.3 Current Status

Although the idea of the model multiverse dates back at least to De Groot
(1956/2014) and Leamer (1985), most empirical researchers still base their con-
clusion on only a single analysis (but see Athey & Imbens, 2019; Levine & Renelt,
1992).

12.5.4 Limitations

As was the case for the construction of the data multiverse, a pragmatic limitation
of the model multiverse lies in the extra work that it entails —for the analyst as
well as the reader. Recent work suggests that the number of plausible models
can be very large (i.e., Botvinik–Nezer et al., 2020; Silberzahn et al., 2018). Also,
multiverses vary in their informativeness, and readers need to assess themselves
whether a multiverse features notably distinct models or just runs the essentially
same model multiple times. Model spaces can be overwhelming; any single analyst
will naturally be drawn towards the subset of models that they are familiar with
(or, unwittingly, the subset of models that yields the result that is most flattering

247



12. Seven Steps Toward More Transparency in Statistical
Practice

or most in line with prior expectations). In addition, Del Giudice, Gangestad,
and Steven (2021, p. 5) argue that “By inflating the size of the analysis space,
the combinatorial explosion of unjustified specifications may, ironically, exaggerate
the perceived exhaustiveness and authoritativeness of the multiverse while greatly
reducing the informative fraction of the multiverse. At the same time, the size
of the specification space can make it harder to inspect the results for potentially
relevant findings. If unchecked, multiverse-style analyses can generate analytic
“black holes”: Massive analyses that swallow true effects of interest but, due to
their perceived exhaustiveness and sheer size, trap whatever information is present
in impenetrable displays and summaries.”

12.5.5 Guidelines

Because the construction of the model multiverse depends on the knowledge and
expertise of the analyst, it is challenging to provide general guidelines. For rela-
tively simple regression models, however, clear guidelines do exist (e.g., Hoeting,
Madigan, Raftery, & Volinsky, 1999; Patel et al., 2015). Furthermore, Simonsohn
et al. (2020) suggested a specification curve analysis, and Dragicevic, Jansen,
Sarma, Kay, and Chevalier (2019) suggest interactive ways of presenting the re-
sults. The ASA Ethical Guidelines (Committee on Professional Ethics of the
American Statistical Association, 2018) mention that to meet the responsibili-
ties towards funders and clients, the ethical statistician “[t]o the extent possible,
presents a client or employer with choices among valid alternative statistical ap-
proaches that may vary in scope, cost, or precision” (p. 3). The ASA, however,
does not mention that researchers share the same responsibility towards their sci-
entific colleagues, although this may be implicit.

One general recommendation for constructing a comprehensive model multi-
verse is to collaborate with statisticians who have complementary expertise, bring-
ing us to the next section.

12.6 Involving Multiple Analysts

12.6.1 Description

By having multiple analysts independently analyze the same data set, the re-
searcher can decrease the impact of analyst-specific choices regarding data pre-
processing and statistical modeling.

12.6.2 Benefits and Example

The multiple-analysts approach reveals the uncertainty that is due to the subjec-
tive choices of a single analyst and promotes the application of a wider range of
statistical techniques. When the conclusions of the analysts converge, this bolsters
one’s confidence that the finding is robust; when the conclusions diverge, this un-
dercuts that confidence and stimulates a closer look at the statistical reasons for
the lack of consensus.
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The multiple-analysts approach was used, for example, in a study by Silberzahn
et al. (2018) where 29 teams of analysts examined, using the same dataset, whether
the skin tone of soccer players influences their probability of getting a red card.
While most of the analysis teams reported that players with a darker skin tone have
a higher probability of getting a red card, some of the teams reported null results.
The analysis approach used by the teams differed widely, both with respect to data
pre-processing and statistical modeling (e.g., included covariates, link functions,
assumption of hierarchical structure).

12.6.3 Current Status

A precursor to the multiple-analysts approach concerns the 1857 “Cuneiform com-
petition”, where four scholars independently translated a previously unseen an-
cient Assyrian inscription (Rawlinson, Talbot, Hincks, & Oppert, 1857). The
overlap between their translations –sent to the Royal Asian Society in sealed en-
velopes, and simultaneously opened and inspected by a separate committee of
examiners– was striking and put to rest any doubts concerning the method used
to decipher such inscriptions. The multiple-analysts approach never caught on in
practice, although recent examples exist in psychology and neuroscience (Basti-
aansen et al., 2020; Boehm, Hawkins, Brown, van Rijn, & Wagenmakers, 2016;
Botvinik–Nezer et al., 2020; Dutilh, Annis, et al., 2019; Schweinsberg et al., 2020;
Silberzahn et al., 2018; van Dongen et al., 2019).

12.6.4 Limitations

As was the case for the construction of the data multiverse and the model mul-
tiverse, a pragmatic limitation of the multiple analyst approach lies in the extra
work that it entails, specifically with respect to (1) finding knowledgeable analysts
who are interested in participating; (2) documenting the data set, describing the
research question, and identifying the target of statistical inference; (3) collating
the initial responses from each team, and potentially coordinating a review and
feedback round. While differences in opinion should be respected, there need to
be ways to filter out analysis approaches that involve clear mistakes. An addi-
tional limitation concerns possible homogeneity of the analysts. For instance, all
analysts involved could be rigidly educated in the same school of thought, share
cultural or social biases, or just make the same mistake. In such a case, the results
may create an inflated sense of certainty in the conclusion that was reached. This
potential limitations can be mitigated by selecting a diverse group of analysts
and incorporating feedback and revision options in the process (Silberzahn et al.,
2018), a round-table discussion (van Dongen et al., 2019) or, more systematically,
a Delphi approach (Thangaratinam & Redman, 2005).

12.6.5 Guidelines

There are no explicit guidelines concerning the multiple-analysts approach. We
propose that the optimal number of analysts to include depends on factors such as
the complexity of the data, the importance of the research question (e.g., a clinical
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trial on the effectiveness of a new drug against COVID-19 warrants a relatively
large number of analysts), and the probability that the analysts could reasonably
reach a different conclusion (e.g., there may be multiple ways to interpret the
research question, and there may be multiple dependent variables and predictor
variables that could or could not be relevant).

When analysts are selected, care should be taken to ensure heterogeneity, di-
versity, and balance. Specifically, one should be mindful of the potential biasing
effects of specific background knowledge, culture, education, and career stage of
the analyst.

The ASA Guidelines emphasize the legitimacy and value in alternative ana-
lytic approaches, stating that “[t]he practice of statistics requires consideration
of the entire range of possible explanations for observed phenomena, and distinct
observers (· · ·) can arrive at different and potentially diverging judgments about
the plausibility of different explanations” (p. 5).

12.7 Interpreting Results Modestly

12.7.1 Description

By modestly interpreting the results, the analyst explicitly acknowledges any re-
maining doubts concerning the importance, replicability, and generalizability of
the scientific claims at hand.

12.7.2 Benefits and Example

Modestly presented scientific claims enable the reader to evaluate the outcomes for
what they usually are: not final, but tentative results pointing in a certain direc-
tion, with considerable uncertainty surrounding their generalizability and scope.
Overselling results might lead to the misallocation of public resources towards ap-
proaches that are in fact not properly validated and not ready for application in
practice. Also, researchers themselves risk losing long-term credibility for short-
term gains of greater attention and higher citation counts. Moreover, after having
publicly committed to a bold claim, it becomes difficult to admit that one’s initial
assessment was wrong; in other words, overconfidence is not conducive to scientific
learning.

Scientists of true modesty remain doubtful even at moments of great success.
For example, when James Chadwick found experimental proof of neutrons, the
discovery that earned him the Nobel prize, he communicated it modestly under
the title “Possible Existence of Neutron” (Chadwick, 1932).

12.7.3 Current Status

Tukey (1962) already remarked that “Laying aside unethical practices, one of the
most dangerous [(· · ·) practices of data analysis (· · ·)] is the use of formal data-
analytical procedures for sanctification, for the preservation of conclusions from
all criticism, for the granting of an imprimatur.” (p. 13). Almost 60 years later,
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an editorial in Nature Human Behaviour warns its readers about “conclusive nar-
ratives that leave no room for ambiguity or for conflicting or inconclusive results”
(NHB Editorial, 2020, p. 1). Similarly, D. J. Simons, Shoda, and Lindsay (2017)
suggested adding a mandatory Constraints on Generality statement in the discus-
sion section of all primary research articles in the field of psychology to prevent
authors from making wildly exaggerated claims of generality. This suggests that
scientific modesty is rarer than we would expect if Mertonian norms were widely
adopted. There are some clear indications of a lack of modesty. First of all, the
frequency of stronger language (words like “amazing”, “groundbreaking”, “un-
precedented”) seemed to have increased in the last few decades Vinkers, Tijdink,
& Otte, 2015. Secondly, dichotomization of findings (i.e., ignoring the uncertainty
inherent to statistical inference) is common practice (e.g., Hoekstra et al., 2006;
also see paragraph 4.3). Thirdly, textbooks (which are typically a reflection of
current practice) on how to write papers often explicitly encourage authors to
overclaim (e.g., Bem, 1987; van Doorn et al., 2021).

12.7.4 Limitations

Publications and grants are important for scientific survival. Coupled with the fact
that journals and funders often prefer groundbreaking and unequivocal outcomes,
it may be detrimental to one’s success to modestly interpret the results. The
encouragement of this Mertonian practice may require change at an institutional
level, although some have argued that scientists should not hide behind the system
when defending their behavior (Yarkoni, 2018).

12.7.5 Guidelines

There are several ways we can contribute to increasing intellectual modesty. First
of all, we could encourage intellectual modesty in others’ work when we act as
reviewers of papers and grant proposals (Hoekstra & Vazire, 2020). Since a re-
viewer’s career is independent of how they evaluate a paper, they can make a
positive review conditional on a more modest presentation of outcomes. Hoekstra
and Vazire (2020) present a list of suggestions for increasing modesty in the tradi-
tional sections of an empirical article, which can be used by authors as well. One
example (p. 16) includes “Titles should not state or imply stronger claims than
are justified (e.g., causal claims without strong evidence)”.

Also, the ASA Guidelines state: “[t]he ethical statistician is candid about any
known or suspected limitations, defects, or biases in the data that may affect the
integrity or reliability of the statistical analysis” (p. 2).

12.8 Sharing Data and Code

12.8.1 Description

By sharing data and analysis code, researchers provide the basis for their scientific
claims. Ideally, data and code should be shared publicly, freely, and in a manner
that facilitates reuse.
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12.8.2 Benefits and Example

Since there are many different ways of processing and analyzing data (Silberzahn
et al., 2018; Steegen et al., 2016), sharing code promotes reproducibility and en-
courages sensitivity analyses. Sharing data and code also allows other researchers
to establish the validity of the original analyses, it can facilitate collaboration,
but it can also serve as protection against data loss. When publishing his theory
on “general intelligence”, Spearman (1904) shared his data as an appendix to the
article. A century later, this act of foresight enabled scientists to use this data
set for both research and education. Because Spearman made his data publicly
available, other researchers could establish the reproducibility and generalizability
of the findings.

12.8.3 Current Status

Data sharing has never been easier. Public repositories offer free storage space
for research materials, data (e.g., the Open Science Framework), and code (e.g.,
Github). While data sharing is not yet a general practice in most scientific fields,
several recent initiatives (e.g., Open Data/Code/Materials badges, Kidwell et al.,
2016), standards (TOP Guidelines, Nosek et al., 2015), journals (e.g., Scientific
Data) and checklists (e.g., Transparency Checklist, Aczel, Szaszi, et al., 2020) are
helping to promote this research practice. When sharing raw data is unfeasible,
researchers can make aggregated data summaries available, for example, the data
used to generate certain plots or covariance matrices of involved variables.

12.8.4 Limitations

Restrictions imposed by funders, ethics review boards in universities and other
institutions, collaborators, and legal contracts may limit the extent to which data
can be publicly shared. There may also be practical considerations (e.g., sharing
big data), data use agreements, privacy rights, and institutional policies that can
curtail sharing intentions. What remains central is to inform the readers about the
accessibility of the data of the analysis. It should be noted that these limitations
should not apply to the analysis code as long as code is solely reflective of the
researcher’s analysis actions and is free of any data privacy issues.

12.8.5 Guidelines

An important principle of sharing data is that they should be Findable, Accessi-
ble, Interoperable, and Reusable (FAIR, M. D. Wilkinson et al., 2016). Several
guides are available discussing the practical (e.g., O. Klein et al., 2018) and ethical
(e.g., Alter & Gonzalez, 2018) aspects of data sharing. Researchers should follow
the data sharing procedures and requirements of their fields (e.g., Taichman et
al., 2017; Wagenmakers, Kucharsky, & the JASP Team, 2020) and indicate the
accessibility of the data in the research report (Aalbersberg et al., 2018; Nosek
et al., 2015). The ASA Ethical GuidelinesCommittee on Professional Ethics of
the American Statistical Association, 2018 for Statistical Practice state that the
ethical statistician “[p]romotes sharing of data and methods as much as possible”,
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and “[m]akes documentation suitable for replicate analyses, metadata studies, and
other research by qualified investigators.” (p. 5).

12.9 Concluding Comments

If the statistical literature is any guide, one may conclude that statisticians rarely
agree with one another. For instance, the 2019 special issue in The American
Statistician featured 43 articles on p-values, and in their editorial Wasserstein et
al. (2019) stated that “the voices in the 43 papers in this issue do not sing as
one”. However, despite the continuing disagreements about the foundations of
statistical inference, we believe there is nevertheless much common ground among
statisticians, specifically with respect to the ethical aspects of their profession.
To explore this ethical dimension more systematically, we started by considering
the Mertonian norms that characterize the ethos of science and outlined a non-
exhaustive list of seven concrete, teachable, and implementable practices that we
believe need wider propagation.

In essence, these practices are about promoting transparency and the open
acknowledgement of uncertainty. With agreement on such practices explicitly
acknowledged, we believe that commonly discussed contentious issues (e.g., p-
values) may become less crucial. Indeed, in a letter to his frequentist nemesis Sir
Ronald Fisher, the arch-Bayesian Sir Harold Jeffreys wrote “Your letter confirms
my previous impression that it would only be once in a blue moon that we would
disagree about the inference to be drawn in any particular case, and that in the
exceptional cases we would both be a bit doubtful” (J. H. Bennett, 1990, p. 162).

We hope that the proposed statistical practices will improve the quality of
data analysis across the board, especially in applied disciplines that are perhaps
unfamiliar with the ethical aspects of statistics, aspects that a statistician may
take for granted. Also, instead of counting on them to be absorbed through
osmosis, we believe it is important to include these ethical considerations –and
their statistical consequences– explicitly in the statistics curricula. Statistical
techniques other than those discussed here may also further the Mertonian ideals.
We hope that this contribution provides the impetus for a deeper exploration of
how data analysis in applied fields can become more transparent, more informative,
and more open about the uncertainties that inevitably arise in any statistical data
analysis problem.
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Chapter 13

Teaching Good Research Practices:
Protocol of a Research Master

Course

Abstract

The current crisis of confidence in psychological science has spurred on
field-wide reforms to enhance transparency, reproducibility, and replicability.
To solidify these reforms within the scientific community, student courses on
open science practices are essential. Here we describe the content of our
Research Master course “Good Research Practices” which we have designed
and taught at the University of Amsterdam. Supported by Chambers’ re-
cent book The 7 Deadly Sins of Psychology, the course covered topics such
as QRPs, the importance of direct and conceptual replication studies, pre-
registration, and the public sharing of data, code, and analysis plans. We
adopted a pedagogical approach that (1) reduced teacher-centered lectures
to a minimum; (2) emphasized practical training on open science practices;
(3) encouraged students to engage in the ongoing discussions in the open
science community on social media platforms.

This chapter is published as Sarafoglou, A., Hoogeveen, S., Matzke, D., & Wagenmakers, E.
J. (2020). Teaching good research practices: Protocol of a research master course. Psychology
Learning & Teaching, 19, 46–59.
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13. Teaching Good Research Practices: Protocol of a Research
Master Course

13.1 Introduction

Over the last eight years, psychological research has been in the midst of a “cri-
sis of confidence” (e.g., Pashler & Wagenmakers, 2012; Simmons et al., 2011).
Central to the crisis is the increasing realization that common research practices
may in fact be deeply problematic. Examples include poor study design (i.e., low
statistical power; Button et al., 2013; Ioannidis, 2005), the field’s reluctance to
conduct direct replication studies (Pashler & Harris, 2012; Schmidt, 2009), and a
bias to selectively report positive results (Francis, 2013; Scargle, 1999). Moreover,
many researchers self-admit to the use of so-called questionable research practices
(QRPs; John et al., 2012). Hidden from the reader, QRPs exploit researchers’
degrees of freedom in study design and analysis in order to produce significant
findings. For instance, researchers may decide to stop data collection when the re-
sult reaches significance, exclude data points based on their impact on the results,
or report unexpected findings as having been predicted from the start (Kerr, 1998;
Simmons et al., 2011). The detrimental effect of these practices is evident from
recent surveys and large-scale replication projects. For instance, a survey among
over 1,500 scientists revealed that 90% believe there is indeed a crisis, with 52%
observing a “significant crisis” (Baker, 2016). These perceptions are substantiated
by large-scale replication efforts, which demonstrated replication rates from 36%
to 77% (Camerer et al., 2018; R. Klein, Ratliff, Vianello, Adams, et al., 2014;
R. Klein et al., 2018; Open Science Collaboration, 2015).

To combat the crisis of confidence, the scientific community has begun to adopt
research standards that reduce cherry-picking and significance chasing. For in-
stance, an effective practice that has quickly gained popularity is preregistration.
When preregistering their studies, researchers outline their analysis plan before
the data are collected. Because the analysis pipeline cannot be tailored to the
data, researchers protect themselves against hindsight bias and other QRPs that
may unwittingly contaminate the results. Researchers can choose to preregister
their study either independently or integrate preregistration with the peer-review
process (i.e., in the form of a Registered Report; Chambers, 2013; Nosek & Lak-
ens, 2014). In addition, the scientific community has launched various initiatives
to increase transparency. For instance, to encourage data sharing, Morey et al.
(2016) started the peer reviewers openness (PRO) initiative. PRO signatories
agree to provide a full review only for articles that share data and materials in a
public repository, or provide reasons why this is not possible. Journals have also
promoted transparency standards, for instance by signing on to the Transparency
and Openness Promotion guidelines (TOP; Nosek et al., 2015), or by providing
open science badges for preregistration and sharing of data and materials (Kid-
well et al., 2016). Open science advocates have argued that the methodological
reforms within the scientific community have been so substantial that warrant de-
scriptions such as “Revolution 2.0” (Spellman, 2015) or “Credibility Revolution”
(Vazire, 2018).

In addition to the reforms within the research community itself, researchers
have emphasized the need to overhaul methodological education. For instance, in
the survey by Baker (2016), three of the five factors considered most promising
for increasing the reproducibility in science were directly related to improvements
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in scientific training (i.e.,“better statistical understanding”, “better mentoring/-
supervision”, and “better teaching”). Central among the proposed changes are
offering lectures on the crisis of confidence and open scientific practices (Chopik,
Bremner, Defever, & Keller, 2018; Funder et al., 2014; Munafò et al., 2017).

We believe that a course on good research practices deserves a place in the
standard psychology curriculum, and that open scientific practices should be an
inherent part of the methodological training of students for several reasons. First,
without the proper education, students’ opinions on the crisis of confidence tend to
be “quite radical, superficial, or even emotional” (Chopik et al., 2018, p. 159). Ed-
ucating students about the ongoing methodological changes allows them to develop
informed opinions on these topics. Second, when students –the next generation
of scientists– understand open science practices, they can confidently introduce
them in their future labs. Third, students who pursue an academic career, will
ultimately be evaluated on whether they adhere to these practices. As journals
and university policies are making increasing demands on transparency criteria,
educating students about these practices seems advisable if not imperative. Lastly,
regardless of students’ future career plans, advancing the methodological curricu-
lum also benefits the students’ development at a more general level. By following
a course on good scientific practices, students learn to recognize scientific studies
that meet certain quality standards reflected by, for instance, being preregistered,
having open materials and data, being published as a Registered Report, includ-
ing a power analysis, or reporting effect sizes. As such, a course on open science
enhances students’ skills to critically evaluate research, be it from the published
literature or conducted by themselves, for instance as part of a thesis requirement.

Since 2015 we offer the open science course Good Research Practices at the
University of Amsterdam. The course covers the current crisis of confidence in
psychological science and outlines attempts by the scientific community to in-
crease the reliability and transparency in the field. Good Research Practices is
a Research Master course; students generally know basic statistics and have had
practical experience with the empirical cycle. This background makes it easier to
understand the challenges and advantages of implementing open science practices.
Nevertheless, the course is not technical in nature and mostly demands common
sense –hence, the material may also be useful for a course for undergraduate stu-
dents.

In this chapter, we aim to provide an overview of our Good Research Practices
in order to assist lecturers who intend to develop a similar course. Below we
discuss the course objectives, describe our pedagogical approach, and illustrate
the contents of two classes in more detail. Furthermore, we will list the lecture
topics together with suggested literature for students. Readers interested in the
full course catalogue and materials can access it in our online appendix (accessible
via https://osf.io/v3z7q/).1

1Interested readers may also find the collection of teaching materials for university courses
by Davis et al. (2017) helpful which can be accessed via https://osf.io/f82ej/, or the Massive
Open Online Courses compiled by the Open Science MOOC Team (2019) which are available
at https://opensciencemooc.eu. These teaching materials are specifically designed to educate
psychology students on open science, reproducibility, and replicability.
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13.2 General Information

Good Research Practices is designed as a seven-week course including a total of
14 two-hour classes. A total of 43 Research Master Psychology students at the
University of Amsterdam participated in the course last year, for which they were
awarded six ECTS credits after completion (equivalent to 180 hours of work).
Grading was based on a combination of bi-weekly quizzes about the background
literature, and on the quality of their short presentations and in-class assignments.

13.3 Course Objectives

In general, a course on good research practices should teach students how to
critically review the scientific literature and how to conduct open, transparent,
and reliable research. In addition, we wanted to immerse students in current
debates and recent developments in the open science community. Specifically, our
course had four objectives, discussed below.

Our first objective was for students to reflect on various types of questionable
research practices. In particular, we emphasize that researchers are not immune to
biases (e.g., hindsight bias and confirmation bias) that cause them to selectively
report analyses that yield publishable findings. To protect themselves against
their own biases, researchers must rely on scientific practices that minimize hidden
degrees of freedom (Wagenmakers et al., 2012). As primary course literature we
used the recent book “The 7 Deadly Sins of Psychology” by Chambers (2017),
which presents a clearly written, authoritative, and comprehensive account of the
causes and proposed solutions for the current crisis in psychological science.

Our second objective was to engage students in current debates and recent
developments in the open science community. Social media platforms constitute
a prominent stage for science communication and debates on research-methods
reforms. These platforms include Twitter, scientific blogs, and podcasts. As
part of the curriculum, we encouraged students to stay informed about ongoing
discussions and new developments within the open science movement, and educate
their peers in weekly “Newsflashes” on interesting debates, articles, or events.
A list with Twitter handles, Podcasts, and scientific blogs we recommended is
available via https://osf.io/mcqa5/.2

Our third objective was to let our students contribute to the curriculum them-
selves. We believe that students learn more when they are stimulated to actively
participate in the course (e.g., Jang, Reeve, & Halusic, 2016; Reeve, 2016). There-
fore, we adopted a flipped-classroom setting to reduce teacher-centered classes to a
minimum. In this setting, students give short lectures, design in-class assignments,
and lead group discussions.

Our fourth objective was to provide multiple perspectives on the open science
movement. Therefore, we invited a series of guest speakers to present their most
recent research projects, their perspectives on the developments within the scien-

2It should be noted that during this exercise most students took part as passive observers,
that is, they were instructed to follow the discussions but were not urged to participate in the
debates.
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tific community, and their opinions on possible ways to resolve the crisis. Since
the course was designed to illustrate the necessity and benefits of open science, we
exclusively invited proponents of the open science movement. At the same time,
we tried to select speakers who differ in their level of seniority, and who approach
methodological reforms from different angles. In the current installment of the
course, the guest speakers included a former student from the Research Master
program (Bobby Houtkoop), a science journalist (Hans van Maanen), metascience
researchers (Balazs Aczel, Nick Brown, and Olmo van den Akker), Chris Cham-
bers, who is the chair of the Registered Reports committee at the Center for Open
Science (https://cos.io/) and leading force within the open science movement.

13.4 Pedagogical Approach

In line with our course objectives, we alternated regular classes with classes orga-
nized by students. Lectures in regular classes were given either by us or one of our
guest speakers, and focused on the substantial impact that QRPs may have on the
reliability of research findings. In particular, we explained why certain research
practices can be considered “bad science” (Goldacre, 2009), and how such practices
can be detected, and –importantly– avoided. The classes also featured specific in-
class assignments and group discussions to deepen students’ understanding. In
addition, the regular classes covered recent developments and debates within the
open science movement; specifically, we reserved the last twenty minutes of each
regular class for a “Newsflash” item, where students gave lighting presentations
about relevant events, discussions, or articles they encountered on social media
platforms that week. It should be noted that discussions following the lightning
presentations were led by one of the lecturers who could provide context and in-
sight about the presented topics. These guided discussions are recommended, since
students might not be aware that they are exposed to only a selective group of
people who typically dominate these debates, and who may not be representative
of the entire scientific community.

Classes given by students were structurally similar to regular classes. However,
at about 10 minutes each, the student lectures were much shorter than regular lec-
tures, leaving considerable time for active learning during the in-class assignments.
Shorter student lectures also allowed us to have multiple groups present each week.

To encourage creativity and originality, students were instructed to base their
lectures on relevant topics that had not already been elaborately discussed in their
assigned readings. With respect to the in-class assignments, we emphasized that
the exercises should have practical value for their peers, that is, the exercises
should be training material for open science practices.3 Examples of this year’s
in-class assignments are: tutorials on how to preregister a study or share data on
the Open Science Framework (https://osf.io), trying out software tools that
examine possible anomalies in individual articles (e.g., statcheck; Epskamp &
Nuijten, 2016, or SPRITE; Heathers, Anaya, van der Zee, & Brown, 2018), or

3Without this instruction it is our experience that students tend to create in-class assignments
that simply demonstrate a QRP (e.g., a frequently suggested exercise is to let students p-hack a
data set to obtain a significant result).
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detecting hidden analytic flexibility in entire research fields (e.g., with a p-curve
analysis as proposed by Simonsohn, Nelson, & Simmons, 2014). To illustrate
our pedagogical approach, the next two sections describe a regular class and a
student-organized class.

13.4.1 Example of a Regular Class: The Sin of Data Hoarding

The fifth week of the course focused on “The Sin of Data Hoarding” Chambers
(2017), that is, the chapter on data sharing (for a recent special issue see D. Simons,
2018). As an expert on this topic we invited Bobby Lee Houtkoop, a former
student from the same program. Houtkoop recently conducted and published a
survey study to reveal reasons why researchers are reluctant to share their data,
and what can be done to overcome this reluctance (Houtkoop et al., 2018). In her
lecture, Houtkoop discussed the dominant scientific culture in which data sharing
is not the norm, even though data sharing offers unequivocal advantages for both
the author and the scientific community. In cancer research, for instance, it was
found that studies for which data were publicly shared received higher citation
rates compared to studies for which data were not available (Piwowar, Day, &
Fridsma, 2007). In addition, data sharing may improve the reputation or perceived
integrity of the researcher. The scientific community benefits from data sharing
since (1) it increases the longevity of the data, (2) data can be reanalyzed and
reused efficiently (e.g., for meta–analyses), and (3) statistical or reporting errors
are more likely to be found (Vanpaemel, Vermorgen, Deriemaecker, & Storms,
2015; J. Wicherts, Borsboom, Kats, & Molenaar, 2006). Houtkoop then presented
the methods and results of the survey study. The survey results demonstrated that
data are shared only infrequently. Most respondents acknowledged the benefits
and importance of data sharing in general; however, they perceived data sharing
as less beneficial for their own research projects. Among the perceived barriers
to data sharing are the respondents’ belief that data sharing is not a common
practice in their fields, their preference to share data only upon request, their
perception that data sharing requires additional work, and their perceived lack
of training in data sharing. Houtkoops study sparked a lively discussion among
the students about future research, about initiatives that encourage data sharing,
but also about limitations of the study. In particular, the students were critical
about potential biases in the results due the low response rate of the survey (i.e.,
a response rate of only about 5% which, however, translated into a sample of 600
respondents) and the self-selection of the respondents.

The end of the class featured a “Newsflash”. In that particular week, the sci-
ence community was excitedly debating the results of the “Many Labs 2” project
(R. Klein et al., 2018) which had just been published. In this project, the par-
ticipating research teams conducted high powered preregistered replications of 28
classic and contemporary findings across many samples and settings. The repli-
cation efforts showed that only 54% (i.e., 15 studies) could be replicated. In the
newsflash, students discussed the article by R. Klein et al. (2018), the related news
article published in The Atlantic titled “Psychology’s Replication Crisis Is Run-
ning Out Of Excuses” (Yong, 2018), and the BBC radio episode on the replication
crisis (BBC Radio 4, 2018).
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13.4.2 Example of a Student Class: The Sin of Data Hoarding

The student lecture continued where Houtkoop’s study left off. The student pre-
senters emphasized the benefits of data sharing and created a tutorial for their
peers on how to archive and share data of simple empirical studies on the Open
Science Framework (see also Soderberg, 2018). The objective of this lecture was
to encourage their peers to ask their future thesis supervisors permission to share
the collected data in a public repository. The in-class assignment revolved around
the Peer Reviewer’s Openness initiative (PRO; Morey et al., 2016) mentioned in
the introduction. Specifically, the students let their peers create a set of questions
for the signatories of the PRO initiative, inquiring about signatories’ post-PRO
experiences with journals and editors, their attitude towards data sharing in their
own research, and whether and how the signatories would improve the initiative.
Students were divided into small groups and were instructed to read the article
by Morey et al. (2016) on the PRO initiative. Then, each group had to propose
concrete questions for the PRO signatories. In a plenary discussion, the students
reviewed the questions, selected the ones they found most relevant, and created
a survey. Since this exercise generated items that seemed informative and useful,
the students who prepared the class decided to continue and execute the survey
as a separate research project. Currently, the PRO initiative survey has elicited
responses from over 120 of the current 340 signatories for whom Email information
could be retrieved (i.e., 37.4%).

13.5 Topics Covered

Table 13.1 lists the topics covered in the lectures, including the guest lectures.
The table also contains pointers for students to the relevant literature. Most topics
follow the chapters of Chambers (2017); however, we added topics that we deemed
relevant in the current research debate. For instance, we dedicated one lecture to
the recently published and much debated article by Benjamin et al. (2018) who
proposed a more stringent significance threshold for new scientific discoveries. We
also discussed analysis blinding–a promising and underused method that allows
researchers maximum flexibility while preserving the confirmatory status of the
analyses.

Table 13.1: Topics Covered and Suggested Literature for the Course “Good Re-
search Practices”.

Topic Description

The crisis of
confidence

In two classes we covered some of the main events that led to
the crisis of confidence: multiple instances of scientific fraud,
the wide acceptance of QRPs among researchers, and the
preference of journals to publish novel and positive findings.
Suggested Literature: Pashler & Harris, 2012; Spellman et
al., 2018.
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Topic Description

Biases in scientific
research

This class covered cognitive biases, such as confirmation
bias and hindsight bias, that lead researchers to unwittingly
present unexpected findings in their data as if they were hy-
pothesized from the beginning.
Suggested Literature: Chambers, 2017, Chapter 1.

Lack of
transparency (with
Balazs Aczel)

In this class we argued that whenever part of the scientific
process remains hidden from view, the trustworthiness of the
associated conclusions is eroded, since QRPs cannot be de-
tected. To combat this issue, researchers will be able to use
a transparency checklist (which is nearing completion) that
facilitates the disclosure of the transparency and openness-
related factors of their study. This lecture was given by Bal-
azs Aczel, the leading researcher of this project.
Suggested Literature: De Groot, 1956/2014; Simmons et al.,
2011

Hidden flexibility
in data analysis

In this class we stressed the point that the reliability of re-
search findings is ensured only when researchers adhere to the
empirical cycle. Specifically, we argued that if researchers do
not strictly separate between the stage of hypothesis gen-
eration and the stage of hypothesis testing, the predictive
interpretation is lost.
Suggested Literature: Chambers, 2017, Chapter 2.

Blinded analyses In this class we discussed analysis blinding as a valuable ad-
dition to study preregistration to avoid hidden flexibility in
data analysis. Analysis blinding, just as preregistration, pre-
vents implicit or explicit forms of significance-chasing, but
it retains the possibility for the data analyst to account for
unexpected features of the data.
Suggested Literature: Dutilh, Sarafoglou, & Wagenmakers,
2019; MacCoun & Perlmutter, 2015; MacCoun & Perlmut-
ter, 2018.

Unreliability of
scientific findings

Science depends on direct replications of scientific studies to
determine the validity of alleged effects. In this lecture we
discussed recent large-scale replication efforts and the impact
they had on psychological science.
Suggested Literature: Chambers, 2017, Chapter 3.

Data hoarding
(with Bobby Lee
Houtkoop)

This class covered the importance of data sharing and dis-
cussed reasons why researchers are still reluctant to share
their data. This lecture was given by Bobby Lee Houtkoop,
the leading researcher of a recently published survey study
that identified these perceived barriers and possible remedial
action.
Suggested Literature: Chambers, 2017, Chapter 4; Houtkoop
et al., 2018.
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Topic Description

Scientific fraud
(with Nick Brown)

In this class we discussed how to detect anomalies in research
articles, for instance, by reconstructing plausible samples
from descriptive statistics. This lecture was given by Nick
Brown, who was involved in the development of these tech-
niques.
Suggested Literature: Brown & Heathers, 2017; Heathers et
al., 2018; Levelt, Drenth, & Noort, 2012; Stapel, 2014.

Overselling
scientific findings
(with Hans van
Maanen)

In this class we discussed how the over-generalization or exag-
geration of study conclusions in abstracts and press releases
distort the representation of scientific findings in the media.
As an expert on this topic we invited science journalist Hans
van Maanen, who is known for his columns in the Dutch
newspaper De Volkskrant in which he eviscerates published
research.
Suggested Literature: Chambers, 2017, Chapter 5.

Redefining
statistical
significance

In this class we discussed the recently published paper by
Benjamin et al. (2018) in which the authors propose to lower
the α-levels for claims of new discoveries from 0.05 to 0.005.
Suggested Literature: Benjamin et al., 2018
Blogpost articles: Wagenmakers, 2019, Redefine Statistical
Significance (Parts I– XVII)
YouTube debate on Benjamin et al. (2017): BITSS, 2017.

Statistical errors
(with Olmo van
den Akker)

Statistical reporting errors can lead to erroneous substantive
conclusions. In this class we discussed how researchers can
minimize the chance of statistical reporting errors by using
software that automatically detects inconsistencies. This lec-
ture was given by Olmo van den Akker, who is part of the
Meta-Research Center at Tilburg University that is special-
ized in scientific misconduct and reproducibiity.
Suggested Literature: Chambers, 2017, Chapter 6; Epskamp
& Nuijten, 2016; Greenland et al., 2016; Nuijten et al., 2016.

Registered Reports
(with Chris
Chambers)

Apart from publishing the course textbook “The 7 Deadly
Sins of Psychology”, Chambers has participated in drafting
the TOP guidelines and is the chair of the Registered Re-
ports committee supported by the Center for Open Science.
In his class, Chris Chambers shared his experiences of how
he first proposed the Registered Report format to the Cortex
editorial board, how the initiative was implemented in the
journal, and how Registered Reports are having a growing
influence on the scientific community.
Suggested Literature: Chambers, 2017, Chapter 8; Cham-
bers, 2013.
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13.6 Student Evaluation and Recommendations for Future
Courses

Student feedback was highly positive. Students particularly appreciated (1) the
guest lectures; (2) the group discussions about ongoing debates and recent arti-
cles; (3) the assigned literature (i.e., the course book and the additional articles),
which was perceived as relevant and enjoyable; and (4) the teaching of important
practical skills. The perceived work load was deemed appropriate, and students
liked the fact that the course was designed to encourage regular work through
quizzes and assignments.

Students were most critical about our emphasis on negative facets during reg-
ular classes, that is, QRPs and the crisis of confidence. Some students stated that
discussing these aspects so frequently made them pessimistic about the current
state of science. Furthermore, the students felt the 2-hour classes were too short.
In particular, students were disappointed that often only one group rather than
two groups (as anticipated) could present during the student classes. This lack of
time also repeatedly forced us to skip the weekly “Newsflashes”.

We believe the student feedback is constructive and helpful. We agree with
the students that scheduling an additional hour for each class will reduce the time
pressure. With regard to the focus on negative facets, we believe that the recog-
nition of QRPs and “bad science” (Goldacre, 2009) is essential to motivate the
methodological reorientation towards more transparency and rigor; on the other
hand, our main objective was to inspire students to embrace open research prac-
tices, not to instill a sense of despair. As nicely put by Michèle Nuijten (2019),
we want to “turn students into skeptics not cynics”. Therefore, the next install-
ment of our course will devote a larger proportion of time to the positive changes
within the scientific community. For instance, we suggest to reconstruct the lec-
ture “Unreliability of Scientific findings”. During this lecture, we focused mainly
on the importance of conducting direct replications to determine the validity of al-
leged effects, and emphasized the lack thereof in the scientific literature. However,
this lecture offers the opportunity to highlight recent large-scale replication efforts
and multi-lab collaborations, such as the Open Science Collaboration (2015), the
Many Labs projects (R. Klein, Ratliff, Vianello, Adams, et al., 2014; R. Klein
et al., 2018), the ManyBabies project (Frank et al., 2017), and the Psychological
Science Accelerator (Moshontz et al., 2018). In addition to a lecture which gives
students a general overview on these collaborative efforts, it would be particularly
interesting to invite a guest speaker who participated in one of these collaborations
to share his or her experiences in working and publishing in such an environment.

Additionally, we would like to replace the lecture “Scientific Fraud” by a lecture
on “Open Science within the University of Amsterdam” to educate our students
on the concrete steps our university has taken to improve reproducibility, trans-
parency, and openness. For instance, the ethical committee of the psychology
department demands a detailed methods and analysis plan as precondition to
grant ethical approval for any research project; similarly, students are requested
to write their introduction, methods, and analysis plan of their internship and
thesis projects before data collection. Additionally, we would like to highlight the
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methodological and statistical consulting which is offered to both researchers and
students, as well as several open science initiatives that were launched recently.4

13.7 Concluding Remarks

Across 14 lectures, the course Good Research Practices taught psychology students
about the causes of the crisis of confidence and about recent attempts by the
scientific community to increase transparency, reproducibility, and replicability.
In addition, students acquired practical skills on how to conduct research that is
open, transparent, and reliable. We believe that this learning success was primarily
due to the active role we gave students in our course. By being instructed to create
lectures and in-class assignments that go beyond the assigned literature, students
were able to choose articles covering topics that they consider most relevant for
their future research projects. Furthermore, the students developed a sense of
ownership for the lectures and in-class assignments, which facilitated ambitious
student projects such as the PRO initiative survey.

As the scientific culture changes, practical knowledge on open scientific prac-
tices is becoming an increasingly important scientific skill. A course on this topic
helps students not only to develop critical thinking, but also to get excited about
conducting research that distinguishes sharply between its exploratory and con-
firmatory components. We hope that courses on open science practices inspire
the future generation of psychological researchers to deliver psychology from the
deadly sins that have so stained it in the past.

4This lecture can be adapted to the specific situation of the university in which this course
is offered. For instance, if open science policies are still absent in the university, lecturers
can highlight promising initiatives in other universities, recently enacted journal policies (i.e.,
TOP guidelines), or open science policies that are advanced on country level (e.g., the National
Institutes of Health Public Access Plan in the United States; https://grants.nih.gov/grants/
NIH-Public-Access-Plan.pdf, or the open-access science publishing initiative Plan S in the
European Union; https://www.coalition-s.org/).
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Chapter 14

Combine Statistical Thinking with
Open Scientific Practice: A Protocol

of a Bayesian Research Project

Abstract

Current developments in the statistics community suggest that modern
statistics education should be structured holistically, that is, by allowing
students to work with real data and to answer concrete statistical questions,
but also by educating them about alternative frameworks, such as Bayesian
inference. In this chapter, we describe how we incorporated such a holistic
structure in a Bayesian research project on ordered binomial probabilities.
The project was conducted with a group of three undergraduate psychology
students who had basic knowledge of Bayesian statistics and programming,
but lacked formal mathematical training. The research project aimed to
(1) convey the basic mathematical concepts of Bayesian inference; (2) have
students experience the entire empirical cycle including collection, analysis,
and interpretation of data and (3) teach students open science practices.

This chapter is published as Sarafoglou, A., van der Heijden, A., Draws, T., Cornelisse,
J., Wagenmakers, E. J., & Marsman, M. (2022). Combine Statistical Thinking With Open
Scientific Practice: A Protocol of a Bayesian Research Project. Psychology Learning & Teaching,
147572572210773.
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14.1 Introduction

The curriculum guidelines of the American Statistical Association (ASA) argue
that statistics education in undergraduate programs should not be primarily fo-
cused on teaching statistical methods and mathematical foundations, but also
emphasize scientific practice, that is, study design, data collection, programming
skills, and data analysis (American Statistical Association, 2014; Horton & Hardin,
2015; Wasserstein & Lazar, 2016). In general, students should learn to “think with
and about data” (Cobb, 2015, p. 267) and thus develop a holistic understanding
of statistics (Horton & Hardin, 2015).

This holistic understanding of statistics also includes learning and understand-
ing alternatives to classical inference based on p-values. Bayesian inference is be-
coming increasingly popular and its adoption has been advocated for both scientific
practice (Wasserstein & Lazar, 2016) and statistics education (Cobb, 2015). Re-
cent examples for undergraduate courses and in-class demonstrations on Bayesian
methods that require only little or no mathematical or statistical training are
described in Witmer (2017; on teaching Markov chain Monte Carlo methods),
Rouder and Morey (2018; on teaching Bayes’ rule), and van Doorn, Matzke and
Wagenmakers (2020; on teaching the key concepts of Bayesian inference). How-
ever, little attention has been paid to the design and structure of Bayesian research
projects that can be conducted with a small group of students, for instance, in
the context of a thesis or internship project, or a seminar. These formats, as
opposed to standard courses, allow for more extensive research projects, since su-
pervisors can offer individual support for students, and can dedicate more time to
the execution of the project.

We believe that a research project on Bayesian inference should take advan-
tage of the rather long project duration and the small group size by introducing
students in detail to the theoretical and practical aspects of Bayesian inference.
Theoretical aspects of Bayesian inference entail that by the end of the project
students should feel comfortable with the standard terminology, be able to un-
derstand how to assign a prior distribution, specify a likelihood function, derive
a posterior distribution, and compute a marginal likelihood. The practical as-
pects entail that students should be able to apply their theoretical knowledge to
address a concrete research question, and experience the entire empirical cycle,
including study planning, preregistration, data collection and analysis, and inter-
pretation of the results. These teaching goals resulted in three guiding principles
for structuring the project, listed below.

The first principle is to introduce students to the mathematics underlying
Bayesian statistics. In our own teaching of Bayesian methods in undergraduate
psychology courses, we usually hide the mathematics and instead aim to provide
students with an intuition about how Bayesians use distributions to quantify un-
certainty about model parameters and hypotheses. This approach helps students
interpret posterior distributions, credible intervals, and Bayes factors (for a gen-
tle technical introduction to Bayesian inference without mathematical derivations
see Etz & Vandekerckhove, 2018). However, for students who want to special-
ize in research methods and statistics it is important to go beyond an intuitive
understanding and be introduced to the mathematics behind these key concepts.
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Without the mathematical foundations, students will find the statistical literature
difficult to understand.

The second principle is to let students experience scientific practice. In line
with the ASA guidelines on statistics education (American Statistical Association,
2014), we believe that students learn most when they are given the opportunity
to gain hands-on experience on how to apply the methods taught to a real data
example. We therefore set up a Bayesian replication study that demonstrates
a series of Bayesian benefits. For instance, in contrast to frequentist analyses,
the Bayesian framework allows students (1) to discriminate between “absence of
evidence” and “evidence of absence” of the effect in the replication study (Dienes,
2014; Keysers, Gazzola, & Wagenmakers, 2020; Verhagen & Wagenmakers, 2014);
(2) to experience Bayesian learning by incorporating prior knowledge –such as
data from previous experiments– to construct a more informative test (Verhagen
& Wagenmakers, 2014); (3) to monitor evidence as the data accumulates (Rouder,
2014b). In addition, it allows students to learn how conclusions from significant p-
values differ from conclusions drawn from Bayes factors by conducting a Bayesian
reanalysis of the results of the original experiment.1

The third and final principle is to convey open science practices. Reproducibil-
ity and replicability are core scientific values, but yet psychological science is cur-
rently facing a crisis of confidence as a disappointing proportion of key findings
appear to be reproducible (Baker, 2016; Camerer et al., 2018; R. Klein, Ratliff,
Vianello, Adams, et al., 2014; R. Klein et al., 2018; Nature Publishing Group,
2016; Open Science Collaboration, 2015; Pashler & Wagenmakers, 2012). To a
large extent, the low rate of reproducible findings can be attributed to the great
flexibility in data analysis in combination with selective reporting of significant re-
sults (Simmons et al., 2011), the high prevalence of questionable research practices
(John et al., 2012), the reluctance to conduct direct replication studies (Pashler &
Harris, 2012; Schmidt, 2009), and the poor availability of research data (Houtkoop
et al., 2018; J. Wicherts et al., 2006; for a special issue on data sharing see D. Si-
mons, 2018). To address these problems, psychological science today relies on nu-
merous open scientific practices, such as preregistration and Registered Reports,
large-scale collaborations, and sharing of data, materials, and code (e.g., Cham-
bers, 2013; Chambers & Tzavella, 2021; Kidwell et al., 2016; Morey et al., 2016;
Moshontz et al., 2018; Nosek et al., 2015). However, to truly integrate these prac-
tices into the research culture, it is necessary to introduce the principles of open
science to students at an early stage (Chopik et al., 2018; Funder et al., 2014; Mor-
ling & Calin-Jageman, 2020; Munafò et al., 2017; Sarafoglou, Hoogeveen, Matzke,
& Wagenmakers, 2020). Since thesis projects often require detailed design and
analysis plans we view them as a good opportunity for supervisors to teach them
both the philosophy behind open science and the practical skills needed to apply
open science practices. Therefore, we set up a preregistered replication study, and
have students publish the analysis code, and share the data and materials on the
Open Science Framework (OSF; Center for Open Science, 2021).

The purpose of this chapter is to share our experiences on designing and super-

1We refer the interested reader to Wagenmakers (2007); Wagenmakers, Marsman, et al.
(2018) for a more detailed discussion on the benefits of Bayesian inference.
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vising a Bayesian thesis project for undergraduate psychology students. Lecturers
who intend to offer a Bayesian research project for a small group of students which
emphasizes mathematical training as well as practical experience with real data
might find helpful advice on what focal points to set when planning their project.
In addition, the described project can serve as illustrative example in a classroom
setting, to teach students Bayesian learning, and a simple method to evaluate
ordinal expectations. In the following, we will describe the course structure, the
theoretical and the practical part of the project in more detail.

14.2 Supplemental Material

Interested readers can visit our OSF project folder (https://osf.io/zfhbc/)
to access the following information: the study preregistration, the analysis code,
all data and materials, and the student evaluations. Furthermore, it contains the
results of the Bayesian reanalysis of the original studies and the formal description
of the mathematical model for multiple independent binomial probabilities.

14.3 Project Overview

Here we describe the thesis project titled “A Bayesian View on ‘Science versus the
Stars’: Bayes factor analysis for ordered binomial probabilities” at the University
of Amsterdam. The topic of the thesis project was the Bayesian analysis of ordinal
expectations of multiple binomial probabilities. We chose this topic due to both
its relevance in the psychological literature and the simplicity of the statistical
model. Ordinal expectations of binomial probabilities are common in the area
of psychometrics and theories on rational decision making (see e.g., Cavagnaro
& Davis-Stober, 2014; Davis-Stober, 2009; Guo & Regenwetter, 2014; Haaf et
al., 2020; Heck & Davis-Stober, 2019; J. Myung et al., 2005; Regenwetter et al.,
2018, 2011; Tijmstra et al., 2015). For instance, a psychometrician who evaluates
whether a test for cognitive performance can be measured on an interval scale
needs to test the assumption that the probability to solve a given item is non-
decreasing for the ability of a person. One argument to use Bayesian methods
for these problems is that we can easily incorporate ordinal expectations of the
binomial probabilities in the respective prior distributions (Klugkist et al., 2010).
This makes the corresponding statistical model particularly simple and enables
students to derive the method even without formal mathematical training.

During the theoretical part of the project students familiarized themselves
with the computation of Bayes factors for ordered binomial probabilities using the
encompassing prior method (Klugkist et al., 2005). During the practical part of the
project the students applied the methods in practice by conducting a preregistered
reanalysis and replication study.

14.3.1 Course Structure

The full thesis project–starting from the first introductory lesson to submission
of the research report–took 16 weeks. A weekly overview of the research project
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is provided in Table 14.1. Our students had to hand-in two writing assignments,
create the preregistration of the empirical study, and write the final report. On
average the students worked 22−23 hours per week on the project for which they
were rewarded with 12 ECTS credits. The following section describes these com-
ponents in more detail.

Table 14.1: A week-by-week overview of our project “A Bayesian view on science
versus the stars: Bayes factor analysis for ordered binomial probabilites”.

Week Goal Activities

1 Reiterating
knowledge

Bayesian parameter estimation and hypothesis test-
ing for the beta-binomial model
Write methods section of research report

2 Establishing
knowledge

Generalize concepts to multiple binomials
Write methods section of research report

3 Establishing
knowledge

Derive and apply Savage-Dickey density ratio
Write methods section of research report

4 Establishing
knowledge

Derive and apply encompassing prior approach
Bayesian reanalysis of Carlson (1985) and Wyman
and Vyse (2008)
Write introduction of research report

5 Writing Finalize the methods section of the research report;
Write introduction of research report

6–7 Preregister
study

Plan replication study
Create preregistration document

8 Preregister
study

Print all necessary documents, prepare data collection
(e.g, book lab)
Finalize preregistration

9–10 Data collec-
tion 1

Participants fill out NEO-FFI and report date and
place of birth

11 Create study
materials

Generate personality descriptions
Prepare follow-up data collection

12–
13

Data collec-
tion 2

Participants perform choice task

14 Analyzing
data

Analyze data and upload the dataset to the OSF
Write results section of research report

15–
16

Finalizing
project

Finalize research report
Prepare 20-minute presentation

14.3.2 Supervision

During the theoretical part of the project we supervised the students intensively;
we had weekly group meetings that were structured as lectures, we gave students
two writing assignments, and we reviewed and discussed these assignments with
each student individually. During the practical part, the students then primarily
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worked independently with little need for supervision. The weekly group meetings
were replaced by individual contact hours that gave students the opportunity to
discuss details of their report.

14.3.3 Writing Assignments

We dedicated the first four sessions at the beginning of the project to the theoret-
ical concepts of Bayesian inference. During these four weeks, students wrote two
short 1−2 page reports explaining Bayesian parameter estimation and hypothesis
testing. The first report concerned Bayesian inference for one binomial probability.
In the second report, they had to generalize these concepts to multiple binomial
probabilities. Students could incorporate these reports as part of the methods
section in their final report.

14.3.4 Preregistration

Our students had three weeks to create the preregistration document. Since our
students answered the same research question, we let them create the preregistra-
tion together. The preregistration featured the following components: the study
design; the sampling plan, sampling plan rationale, and stopping rule for data
collection; exclusion criteria; the description of the materials and procedure; the
research question and hypotheses (including the expected direction of the effect);
details on the statistical model and analysis plan, including specifications for prior
distributions, number of samples drawn, inference criteria, and handling of missing
data.

14.3.5 Grading Criteria

For the most part, grading was based on the individual research reports. We as-
sessed whether students were able to (1) justify the proposed research question
and methods; (2) describe the Bayesian concepts accurately by using the specific
terminology; (3) discuss and interpret the results correctly; and (4) adopt a scien-
tific writing style. In addition, students could receive a pass or fail both on their
final presentation and on their learning progress. The writing assignments and
the preregistration were not graded.

14.4 The Theoretical Part: Bayesian Parameter
Estimation and Hypothesis Testing for Multiple
Binomial Probabilities

The goal for the theoretical part of the project was to teach students when and
how the encompassing prior approach is used, and how it is derived. To ease
the students into this topic, we asked them to reiterate the basic mathematical
concepts in Bayesian inference by means of one binomial success probability, that
is, Bayesian parameter estimation (including Bayes’ rule, the prior distribution,
the likelihood function, marginal likelihood, and the posterior distribution) and
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Bayesian hypothesis testing (including prior model odds, the Bayes factor, and
posterior model odds). Subsequently, students had to generalize these concepts to
multiple binomial success probabilities.

14.5 The Practical Part: Reanalysis and Replication of
Wyman and Vyse

We searched for empirical studies which involved hypotheses about the ordering
of multiple binomial probabilities. The study by Wyman and Vyse (2008) is a
suitable candidate for a replication study, for several reasons. First, the study
had an engaging research question, that is, whether the accuracy of psychologi-
cal personality descriptions is similar to the accuracy of astrological natal charts.
Second, the dependent variables in Wyman and Vyses’ study allowed for the for-
mulation of an ordinal expectation. Third, replicating the study did not require
knowledge about sophisticated concepts such as item response theory (Birnbaum,
1968; Rasch, 1960). Fourth, the experimental setup for the study was straightfor-
ward which made the planning and execution of a preregistered replication study
feasible for our time frame. Note that the study by Wyman and Vyse is itself
a conceptual replication of a study conducted by Carlson (1985). We chose to
replicate the study by Wyman and Vyse (2008), however, since the authors had
a clearer setup and material that was easier to reproduce. We aimed to replicate
the study by Wyman and Vyse (2008) as closely as possible which meant that we
adapted the original research design with only a few practical changes.

14.5.1 Methods

14.5.1.1 Sampling plan

We preregistered to collect data from 50 participants or stop data collection by
June 1st, 2018. The target sample size was based on the number of participants
in the original studies which was 56 participants in Carlson (1985) and 52 par-
ticipants in Wyman and Vyse (2008). Unfortunately, we were not able to reach
the preregistered target sample before our testing period ended. We were only
able to recruit 31 participants. Of those, 2 participants did not attend the second
meeting, leaving us with a final sample of 29 participants.

14.5.1.2 Materials

In their study, Wyman and Vyse used the NEO Five Factor inventory (NEO-FFI,
Costa & McCrae, 1985, 1992) to create psychological personality descriptions and
the software Astrolabe (Astrolabe Inc, 2018) to create astrological natal charts for
each participant. Then, an experimenter gave each participant their own psycho-
logical personality description and a psychological personality description belong-
ing to another participant. The participant was then asked to decide which of the
two personality descriptions was their own. This procedure was then repeated for
the astrological personality description.
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14.5.1.3 Procedure

The research design required two testing periods that were one week long and ap-
proximately two weeks apart. During the first testing period, the students assessed
participants with the NEO-FFI personality inventory and collected information,
that is, date and place of birth, that allowed them to create astrological natal
charts for each participant with the free version of the software used by the origi-
nal authors. In the second testing period the participants had to perform a simple
choice task; they were asked to identify both their own psychological personality
description and their astrological natal chart out of two descriptions each (i.e., a
chance level of 50%).

14.5.1.4 Hypotheses

For the replication, our students took into account the direction of the original
results and thus tested the ordinal hypothesis Hr that the success probability for
psychological personality descriptions is higher than that for astrological person-
ality descriptions. This hypothesis was then tested against a point-null hypothesis
H0 that both success probabilities are equal to chance. Furthermore, as will be
explained in the next section, the calculation of the Bayes factor required another
hypothesis –referred to as the encompassing hypothesis He– that both success
probabilities can vary freely.

14.5.1.5 Analysis Plan

The students assigned a beta prior distribution to the model parameters and used
the data from Wyman and Vyse (2008) to inform their prior beliefs. Specifically,
based on Wyman and Vyse’s data, the students assigned a Beta(42, 12) prior
distribution to the probability of correctly identifying one’s own psychological
personality description and a Beta(25, 29) prior distribution to the success proba-
bility of correctly identifying one’s own astrological personality description. That
is, the prior for psychological personality descriptions favors success probabilities
well above chance level while for astrological personality descriptions success prob-
abilities at chance level are favored, with medians and 95% credible intervals of
0.77 [0.65, 0.87] and 0.46 [0.34, 0.59], respectively.

To compare H0 versus Hr, the students first had to take a two-step approach.
First, they needed to compute the Bayes factor between H0 and He, denoted as
BF0e, using the Savage-Dickey density ratio (Dickey & Lientz, 1970; Wagenmakers,
Lodewyckx, Kuriyal, & Grasman, 2010) and the Bayes factor between Hr and
He, denoted as BFre, using the encompassing prior approach (Klugkist et al.,
2005). The students then obtained BFr0 through transitivity, that is: BFr0 =
BFre × BFe0. A detailed description of the statistical model is available in the
online appendix.

14.5.2 Results of the replication study

In our replication study, out of 29 participants, 25 correctly identified their own
psychological personality description and 18 participants correctly identified their
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own astrological personality description (see Table 14.2). Given our data and the
prior knowledge provided by the Wyman and Vyse study, the result suggests ex-
treme evidence (i.e., BFr0 = 1884) in favor of the hypothesis that people recognize
their psychological personality description more reliably than their astrological
personality description.

Table 14.2: Data from the current research project, as well as from Wyman and
Vyse (2008) and Carlson (1985), where xpsy and xastro denote the number of
participants who correctly identified their psychological personality description
and their astrological personality description, respectively, npsy and nastro denote

the respective total number of observations, and θ̂psy and θ̂astro denote the sample
proportions of correctly identifying one’s own personality description.

Data

Study xpsy npsy θ̂psy xastro nastro θ̂astro Chance level

Current project 25 29 0.86 18 29 0.62 0.50
Wyman and Vyse (2008) 41 52 0.79 24 52 0.46 0.50
Carlson (1985) 25 56 0.45 28 83 0.38 0.33

14.6 Considerations for Lecturers

Our experience with this project suggests that three considerations warrant special
attention. First, lectures should be aware of the prior knowledge of their students.
The described project was designed for students who have some knowledge of
Bayesian statistics, but also a basic background in the programming language R

(R Core Team, 2021). However, despite their familiarity with the key concepts
of Bayesian inference, our students found the mathematical parts of the project
particularly challenging. Therefore, we recommend lectures to allow enough time
to reiterate necessary mathematical components.

Second, when students are required to independently draft the preregistration
we recommend the use of preregistration templates. For instance, the OSF of-
fers preregistration templates for standard empirical research, but also replication
studies (see https://osf.io/zab38/wiki/home/ for an overview of all preregis-
tration forms). The transparency checklist by Aczel, Szaszi, et al. (2020) is an-
other highly accessible tool which covers the most important aspects for achieving
transparency and openness in preregistrations and manuscripts.

Finally, in the described project, we based our target sample size on the number
of participants in the original studies. Alternatively, lecturers could based their
target sample size on a Bayesian design analysis (Stefan et al., 2019). A Bayesian
design analysis is considered the Bayesian version of a frequentist power analysis
and allows researchers to determine the minimum number of participants needed
to achieve compelling evidence either in favor or against the hypothesis. Lecturers
could also choose to do sequential testing, that is, monitor the evidence as the
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data accumulates and stop data collection as soon as the evidence is sufficiently
compelling (e.g., Rouder, 2014b).

14.7 Summary

The discussed research project allowed students to learn a relevant Bayesian
method to compute Bayes factors for ordinal expectations (i.e., the encompassing
prior approach), and increase their understanding of the underlying mathematical
concepts of Bayesian inference. We believe that this learning success was primarily
due to the simplicity of the discussed statistical model which enabled the students
to formulate the likelihood function, assign a prior distribution, derive the poste-
rior distribution, and understand the encompassing prior approach even without
strong mathematical background.

In addition, students gained practical experience through designing and con-
ducting a reanalysis and replication study. Through this experience the students
learned the advantages of Bayesian statistics in the context of replication research,
for instance, by being able to quantify evidence for the absence of the predicted
effect, but also by incorporating prior knowledge into their analyses and hence
draw more informed decisions. In addition, the project gave students the oppor-
tunity to practice open research practices by letting them preregister their study,
that is, create an analysis plan prior to data collection, and share their data, ma-
terials, and code. The confrontation with real data challenged the students to
think in broader terms, that is, by discovering how different methods (i.e., the
Savage-Dickey density ratio and the encompassing prior approach) can be utilized
to answer specific research questions.

We believe that a research project is an ideal opportunity to integrate the the-
ory and mathematics of Bayesian inference with hands-on experience, and confront
students with all aspects of the empirical cycle. This experience gives students
valuable insights into scientific practice, and equips them with problem solving
skills that are necessary when they pursue their careers as psychological researchers
and methodologists.
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15.1 Summary

In this dissertation, entitled “Good Research Practices”, I examined research prac-
tices and reform ideas aiming to combat the crisis of confidence (Pashler & Wa-
genmakers, 2012) in psychology. I did so through theoretical contributions and
empirical work, developed practical guidelines for researchers, and demonstrated
how principles of good research can be conveyed to students. In particular, the
research methods and statistical practices presented in this dissertation facilitate
the adherence to the following three principles: (1) respect the empirical cycle;
(2) acknowledge uncertainty; and (3) enrich statistical models with theoretical
knowledge. In the following subsections, I will discuss these principles in turn,
put forward some ideas about statistical meta-science tools, highlight other facets
of good research practices, and suggest how good research practices might be
encouraged. I will end with some concluding remarks.

15.1.1 The First Principle: Respect The Empirical Cycle

The first principle is to respect the empirical cycle depicted in Figure 15.1 (De
Groot, 1956/2014). Preregistration and analysis blinding allow researchers to
make a sharp distinction between hypothesis-generation and hypothesis-testing,
which prevents conscious and subconscious “fishing expeditions” for statistically
significant effects. In psychology, a popular and widely used method to accomplish
this is preregistration, in which researchers describe their hypotheses and complete
analysis plan before coming into contact with the data on which they are tested.

Preregistration is an effective means of distinguishing exploratory from confir-
matory results. In Chapter 5, we explored subjective experiences and expectations
related to preregistration. Interestingly, researchers reported benefits of preregis-
tration that extend beyond safeguarding the confirmatory status of the analysis,
including the overall improvement of the quality of the projects. Criticism on
preregistration concerned the increase of the overall project duration and work-
related stress. This chapter establishes that the benefits outweigh the challenges,
but only for researchers who already have experience with preregistration.

It has been recognized that preregistration goes along with effort and time
investment (e.g., Nosek & Lindsay, 2018; van ’t Veer & Giner-Sorolla, 2016), but
also that many preregistered analyses do not survive contact with the data, as
unexpected peculiarities (e.g., outliers or violated assumptions) often demand that
statistical models are adjusted after the fact (Claesen et al., 2021; Heirene et al.,
2021; Nosek et al., 2019). An alternative to preregistration might be analysis
blinding, a practice which promises more flexibility in data analysis. With analysis
blinding, the statistical model is developed in interaction with the observed data;
however, the data are altered in order to allow for an unbiased evaluation of the
hypotheses (as illustrated in Figure 15.2). Chapter 6 advocated this practice and
made concrete suggestions about how analysis blinding may be implemented for
different research designs in experimental psychology.

We suspected that blinded analyses might have several advantages over prereg-
istration. By providing greater flexibility in data analysis, we hypothesized that
researchers would deviate less often from their analysis plan. In addition, since
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Figure 15.1: Empirical cycle and the distinction between the con-
text of discovery and the context of justification. Figure available at
https://www.bayesianspectacles.org/library/ under CC license https://

creativecommons.org/licenses/by/2.0/.

analysis blinding does not require the development of a preregistration protocol we
suspected that it might additionally save researchers time and effort to complete
a research project. Whether analysis blinding indeed had benefits over preregis-
tration was assessed in Chapter 7. In this chapter, we compared the subjective
time and effort required to develop an analysis plan and deviations from it among
researchers who either preregistered their analysis or did analysis blinding in the
Many-Analysts Religion Project. The hypothesis that analysis blinding takes less
time and is less effortful than preregistration was not confirmed. However, re-
searchers who developed their analysis plan based on a blinded version of the data
were found to deviate less often from their analysis plans than researchers who
preregistered their analysis, suggesting that analysis blinding achieves at least one
important improvement.

Although this dissertation contrasted preregistration and analysis blinding,
researchers may also use these practices in combination. Personally I would rec-
ommend that researchers preregister the study but finalize the statistical analysis
on a blinded version of the data–in fact this was the procedure we used ourselves
in Chapter 7.

Together with the transparent reporting of research methods, preregistration
and analysis blinding were one of the topics covered in the Transparency Checklist
presented in Chapter 11. The Transparency Checklist is a reporting checklist for
the social sciences that lists key steps for achieving transparent research. The
checklist was developed to be endorsed and implemented by journals as part of
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Figure 15.2: Lady Justice evaluating two competing hypotheses as a symbol of
unbiased research. Figure available at https://www.bayesianspectacles.org/

library/ under CC license https://creativecommons.org/licenses/by/2.0/.

the submission process as journals can have a profound impact in initiating re-
search reforms (see e.g., Chambers, 2013; Kidwell et al., 2016; Nosek et al., 2015).
Therefore, we developed the checklist not only in collaboration with open science
advocates, but also with journal editors. Finally, we demonstrated in Chapter 13,
how to teach students at the Master’s level the importance of following the em-
pirical cycle, as well as necessary skills to apply recent methodological reforms.
Specifically, we described the teaching concept of the course “Good Research Prac-
tices”, which is offered to students following the Research Master program at the
University of Amsterdam.

15.1.2 The Second Principle: Acknowledge Uncertainty

The second principle is to acknowledge uncertainty. The most complete picture of
a scientific phenomenon can be painted only if uncertainties and inconsistencies in
statistical results and conclusions are explored and communicated transparently.
This principle benefits the empirical cycle, as statistical analyses concern the step
from ‘test on new data’ to ‘evaluation’.

Preregistration and analysis blinding are usually seen in the context of a sin-
gle research team executing a single analysis, implicitly assuming that there is a
single, uniquely appropriate analysis procedure to answer a specific research ques-
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tion. Chapter 12 challenged this idea. In addition to good statistical practices,
which improve a single analysis (e.g., data visualization and quantifying inferen-
tial uncertainty), the chapter introduced several ways to acknowledge uncertainty
across multiple plausible analyses. Suggestions include assessing the impact of data
pre-processing choices, reporting multiple models, and conducting many-analysts
projects.

Chapter 3 and Chapter 4 demonstrated how the many-analyst approach can be
applied in practice. The chapters described the Many-Analysts Religion Project
in which 120 teams were invited to answer research questions on a much de-
bated topic in the psychology of religion, that is, whether (1) religious people
self-report higher well-being, and whether (2) the relation between religiosity and
self-reported well-being depends on perceived cultural norms of religion. Although
analytic procedures vastly differed from each other and there was a considerable
variability in effect sizes, the conclusions regarding the first research question were
robust against alternative statistical decisions, that is, most teams concluded that
religious people do indeed self-report higher levels of well-being. With regard to
the second research question, the conclusions differed across teams. The Many-
Analysts Religion Project highlighted two benefits of involving multiple analysts.
That is, the many-analysts approach allowed for the assessment of the robustness
of the effect, but also yielded interesting additional insights (both thematic and
methodological) through the contributions by the participating teams.

15.1.3 The Third Principle: Enrich Statistical Models With
Theoretical Knowledge

The last principle is to enrich statistical models with theoretical knowledge. In-
corporating theory-based knowledge into statistical models, for instance, through
ordinal hypotheses and theory-informed parameter priors, allows psychological
theories to be tested more comprehensively and effectively, both in replication re-
search and original work. This principle benefits the empirical cycle in two ways.
First, adequately quantifying predictions improves the step from ‘new hypothesis’
to ‘new prediction’. Second, the corresponding statistical procedure for testing
these predictions improves the step from ‘test on new data’ to ‘evaluation’.

Chapter 8 proposed a methodology to evaluate specific ordinal hypotheses for
categorical data. The chapter introduced an efficient statistical technique based on
a bridge sampling routine to evaluate ordinal hypotheses and mixtures of ordinal
hypotheses and equality hypotheses for binomial and multinomial variables. The
associated software package multibridge was introduced in Chapter 9. So far, we
could apply the proposed bridge sampling routine only to simple multinomial and
binomial models. However, I also see great value in further developing the method
and generalizing it to problems of increasing sophistication. For instance, in the
field of cognitive psychology, the bridge sampling routine has already been suc-
cessfully applied to multinomial processing tree models (Gronau et al., 2019) but
not yet to test ordinal hypotheses. In Chapter 10, we discussed the advantages
of testing ordinal hypotheses in MPT research and demonstrated its usefulness
with two case studies. However, the methods we used in this chapter did not rely
on the bridge sampling routine, but on the less efficient unconditional encompass-
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ing approach, which, although intuitive and simple, can become unreliable under
certain conditions. Beyond demonstrating the usefulness of ordinal hypotheses,
Chapter 10 also highlighted other aspects of theory-driven inference, such as the
importance of theory-informed parameter priors.

We can inform model comparison by incorporating theoretical knowledge into
the statistical model. Another way we aimed to incorporate knowledge in statis-
tical inference is by quantifying the plausibility of research hypotheses. Chapter 2
established that there seems to be an intuitive plausibility inherent to psycholog-
ical studies that can be picked up by laypeople. That is, intuitive plausibility of
a research hypothesis seems to be indicative of replication success. Within the
Bayesian statistical framework, these predictions may be used to inform the prior
odds of two competing hypotheses. Moreover, laypeople’s replication predictions
could prove useful for selecting potential candidates for replication research.

Chapter 14 demonstrated how thesis projects on the undergraduate level can
be structured so that students can experience the entire empirical cycle and learn
to incorporate their theoretical knowledge into their statistical inference. The
project described in the chapter outlined the teaching principles we applied to a
Bachelor thesis project, in which students to conducted a preregistered replication
study, informed parameter priors from results of the original studies, and tested
an ordinal hypothesis.

15.2 Statistical Tools for Meta-Science

In this dissertation, I explored reform ideas, developed new statistical techniques,
and analyzed the acceptance of existing methods among researchers. Thus, my
work is situated at the intersection between statistical research methods and meta-
science. In psychology, meta-science is still in its infancy. Therefore, it is not
surprising that its methodology is not yet fully refined and many conclusions are
based on descriptive statistics. I therefore see great research potential in further
integrating my research interests, that is, working on the development of statistical
methods for the evaluation of meta-scientific studies. Specifically, I would like to
work on problems that tie in with two of my empirical papers, namely Chapter 2,
in which we measured the subjective plausibility of social science studies, and
Chapters 3 and 4, in which we conducted a many-analysts study. In the following,
I will highlight how the methods in these chapters could be improved.

In Chapter 2 laypeople indicated for a particular social science study whether
they thought it would replicate and how confident they were in their decision. We
then plotted the prediction pattern for each study on a −100 to 100 scale, with
100 representing extreme confidence that the effect would replicate and −100
representing extreme confidence that the effect would fail to replicate. Inspecting
the distributions of these prediction patterns led us to an interesting discovery: for
studies where laypeople were in near agreement, predictions were highly accurate.
In particular, when laypeople showed relatively high agreement that a study could
not be replicated, it indeed failed to replicate. In this study, we assessed agreement
on the replicability of a given study by visual inspection of the prediction patterns.
That is, we roughly divided the prediction patterns into those for which laypeople
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as a collective were divided (as indicated by a bimodal distribution) and those for
which laypeople agreed (as indicated by a unimodal distribution).

Rather than classifying prediction patterns based on visual inspection, future
studies should apply statistical methods to examine whether prediction patterns
are bimodal or unimodal. To classify prediction patterns, one could test, for
instance, whether the data stem from a single data generating processes or a
mixture of two processes (e.g., Schlattmann, 2009). Furthermore, to inform priors
in the Bayesian statistical framework with laypeople’s predictions, it would be
useful to establish appropriate methods for summarizing prediction patterns into
a common prior probability of the hypothesis. This quantity could form the basis
for informed prior odds–that is, the ratio of the prior probabilities of two competing
hypotheses– which in combination with the Bayes factor determine the posterior
odds for the competing hypotheses (Kass & Raftery, 1995).

In Chapter 3 and 4, we described the Many-Analysts Religion Project (MARP),
in which we examined the relationship between religiosity and well-being. For this
project, we adopted a many-analysts approach to assess the robustness of the
results and to describe the variability of the findings based on theory-driven ana-
lytic choices and plausible statistical models. The assumption we made regarding
the many-analysts approach was that the more consistent the results are across
analysis teams, the more confident we could be in the teams’ conclusions.

To determine the extent to which results were consistent across analysis teams,
we again exclusively relied on descriptive statistics. To summarize the effect size
across analysis teams, we calculated the median effect size, reported the propor-
tion of teams that found a positive effect, and reported the proportion of teams
that concluded that there was evidence for the effect. While descriptive statistics
provide valuable insight into whether results depend on the choice of an analysis
method (e.g., are there teams that find inconclusive results while others find the
expected effect?), interesting research questions remained unanswered. When can
we assume that there is an effect, that is, do all teams have to agree on their
results? What exactly does it mean when a certain proportion of teams find no
effect? At what point can one assume low or high variability between teams?

For instance, concerning our second research question “Does the relation be-
tween religiosity and self-reported well-being depend on perceived cultural norms
of religion?” there was some variability in the conclusions: 66 out of 101 teams
(65%) the confidence/credible interval excluded zero and 54% of the teams con-
cluded that there is good evidence for an effect. In this case, it is difficult to make
a statement about the research question except to note that there seems to be
considerable between-team variability. As many-analysts projects and multiverse
analyses become more popular in psychology, it is necessary to develop more prin-
cipled statistical techniques to adequately summarize the outcomes. Inspired by
meta-analysis, we need “meta-analysts” techniques.

It seems an exciting challenge to me to develop statistical methods to address
research questions such as “Does every research team/analytic pipeline yield an
effect in the same predicted direction?”, “How large is the between-analysis vari-
ability?”, What is the consensus-based effect size?, and “Can we classify analysis
teams into groups?”. In some ways many-analysts project might benefit from
meta-analysis methods. That is, in meta-analysis, a common effect size is deter-
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mined across the included studies, which traditionally denotes the average effect
size across all studies weighted by the respective sample size. In addition, recently
Rouder, Haaf, Davis-Stober, and Hilgard (2019) and Haaf and Rouder (2021) pro-
posed the Does-every-study meta-analysis which answers the question “Does every
study show the predicted effect?”. A comparable measure would also be valuable
in the case of many-analysts studies. What appeals to me about the development
of such a ‘meta-analysts” technique is that we can use ordinal hypotheses to test
interesting research questions (e.g., “Does every research team find a positive ef-
fect?”). The studying this approach would combine two of the three principles of
good research practices, that is, enrich statistical models with theoretical knowl-
edge (by formulating ordinal hypotheses) and acknowledging uncertainty (through
involving multiple analysts).

However, the methods of meta-analyses cannot simply be applied to many-
analysts projects. The challenge of summarizing results from these projects is
the large dependency structure of the results as teams address the research ques-
tion based on the same data (in meta-analysis results are based on independent
studies). This dependency must be adequately captured in the statistical model.
If meta-analytic effect sizes are summarized as a weighted average, criteria need
to be defined by which the results are weighted. Instead of weighing the results
based on sample size, many-analysts results may be weighed according to their
quality, so that higher quality analyses have a greater impact on the final results.
One problem with this approach is the subjectivity that is introduced: as is ev-
ident in Chapter 3 and commentaries submitted by the teams (summarized in
Chapter 4), analysts have strong and sometimes conflicting opinions about which
analysis method is best to answer the research questions.

To me, the question also remains whether effect sizes are in fact the best way
to summarize the results of many-analysts projects. In MARP, we based our
conclusions mostly on effect sizes, but also assessed the teams’ subjective beliefs.
In particular, we asked analysis teams whether the data provide evidence in favor
for the hypothesis and how likely they thought the hypothesis was (before and after
they saw the data). Extending this set of questions further, it would be possible to
extract the teams’ shared knowledge about the hypotheses using cultural consensus
theory for ordinal data (Anders & Batchelder, 2015; W. H. Batchelder & Romney,
1988; Oravecz, Vandekerckhove, & Batchelder, 2014; van den Bergh et al., 2020).
Cultural consensus theory is applied when the true answer to a particular problem
is not known a priori (e.g., whether or not an effect is present) and assumes
that the agreement of members within a culture (or in this case analysis teams)
contains information about a shared cultural truth. This theoretical framework is
promising, since it gives an estimate about the consensus answer for each question,
the teams’ competencies in answering the questions, and the difficulty for each
question.

Finally, we could apply Bayesian nonparametric models (Fraley & Raftery,
1998; Quintana, 2006) in particular cluster analyses, to investigate whether anal-
ysis teams can be classified into groups. With this approach, we can estimate
the variance between clusters and try to identify commonalities of analysis teams
within a group. As such, this approach could possibly shed light on which char-
acteristics in the analysis pipeline lead to different effect sizes (e.g., number and
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type of covariates, a priori beliefs, final sample size).

15.3 Other Facets of Good Research Practices

My thesis primarily focused on the way in which good research practices can im-
prove how theories are tested – in terms of the empirical cycle shown in Figure 15.1,
my thesis emphasised the role of the statistical context of justification. However,
good research practices also benefit the complementary part of the empirical cycle:
the creative context of discovery.

Firstly, methodologists have argued that it is crucial to improve the devel-
opment of psychological theories themselves (Borsboom, van der Maas, Dalege,
Kievit, & Haig, 2021; Oberauer & Lewandowsky, 2019; Proulx & Morey, 2021).
Theory development happens in the first step of the empirical cycle. ‘Old knowl-
edge and old data’ typically constitutes either an existing theoretical framework
the current study builds upon or is the basis of forming a new theory. The re-
searcher then derives their new hypotheses from this theory.

Formalizing theory and hypotheses are good research practices that are of-
ten neglected. Oberauer and Lewandowsky (2019) argue that most psychological
theories are not formulated strongly enough to be tested properly. A researcher
who finds a certain effect may consider this evidence for the theory. However, the
opposite often does not apply: the failure to find an effect could indicate that the
theory is wrong, but it could also indicate that the construct of interest was not
operationalized correctly. For instance, a researcher might decide to test priming
theory, which states that activating a particular concept in a participant’s mind
influences their behavior. One hypothesis that can be derived from this theory is
that when analytical thinking is active in people’s minds, it triggers their religious
disbelief (Gervais & Norenzayan, 2012). If the researcher finds the desired effect,
he might conclude that this is evidence for the priming theory. If the researcher
does not find an effect, he might conclude that, among other things, the concept
was not activated strongly enough or that priming theory, although valid, does
not apply to religiosity.

Many psychological theories are not sufficiently specific, and consequently they
do not lend themselves to conclusive tests. This concern was echoed by Borsboom
et al. (2021). In addition, Borsboom et al. (2021) claimed that while researchers
in psychology are well trained in testing predictions they often lack skills that
are conducive to constructing theories, such as theoretical modeling using math-
ematical tools. An example in psychology where theories have been quantified
successfully as mathematical models are the multinomial processing tree (MPT)
models introduced in Chapter 10. Through model equations built as a tree-like
architecture, MPT models can capture the interplay of different psychological
mechanisms, allowing the derivation of specific predictions.

Secondly, in order to move successfully from theory development to theory
testing, researchers must ensure that the theoretical constructs have been properly
measured. In the empirical cycle, this step falls under ‘designing new experiment’.
The way researchers in psychology handle measurement has been increasingly scru-
tinized; one point of critique concerns the fact that researchers pay little attention
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to psychometric properties, which may jeopardize the validity of the conclusions
(Flake & Fried, 2020; Lilienfeld & Strother, 2020). This dissertation also shows
some weaknesses regarding measurement practices. For instance, contrary to the
suggestions in Flake & Fried, 2020, Chapter 7 did not report psychometric prop-
erties of the measurements used. In MARP, some participating teams pointed out
that the assumption of measurement invariance, an important precondition for
cross-cultural comparisons, was violated in the religiosity construct (Ross et al.,
2022; Schreiner et al., 2022) potentially invalidating the statistical analyses.

There are many areas for improvement in psychology, and even a 300+ page
dissertation titled “Good Research Practices” cannot do justice to all facets of
good research. The ever-evolving abundance of good research practices can feel
overwhelming and cause inertia: rather than implementing the suggested practices,
researchers may decide not to implement any at all. I therefore take a pragmatic
stance: instead of expecting psychologists to perfectly adhere to each facet of good
research, I instead expect them to be open to scientific debates, to rethink their
current research practices, and to be willing to learn new skills. At the same time,
I expect my colleagues in the field of meta-science to offer constructive criticism
rather than attacks, and to understand that other researchers may not see their
specific meta-science agenda as a top priority.

15.4 Moving Forward: Encouraging Good Research
Practices

Researchers may recognize the value of certain good research practices, but may
not adopt them due to various subjective barriers and the assumed additional
time required to implement the practices (see Houtkoop et al., 2018 for subjective
barriers regarding data sharing). For instance, with regard to preregistration, a
respondent in the survey reported in Chapter 5 wrote: “I understand the impor-
tance of [preregistration], but the amount of time and effort needed to preregister
is probably the biggest reason I have avoided it in the past”.

The ultimate goal in meta-science should be that good research practices
are applied in practice. To achieve this, it is necessary to create incentives for
researchers–simply pointing out their benefits in scientific publications may not
be enough to change an entire research culture. Instead, the entire academic
system must pull together: journals, funding agencies, and institutions.

In recent years, we have seen many positive developments in this regard. An
increasing number of journals are promoting transparency standards, for instance
by signing on to the Transparency and Openness Promotion guidelines (Nosek et
al., 2015), or by providing open science badges for preregistration and sharing of
data and materials (Kidwell et al., 2016). In collaboration with journal editors we
developed the Transparency Checklist (Chapter 11) so that participating journals
may make the Transparency Checklist part of their submission process in the
future.

Institutions and funding agencies have a profound impact on the research cul-
ture because they are involved in the hiring process and fund research projects.
University hiring processes may focus more on the quality of applicants’ published
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work (e.g., whether their studies were preregistered, whether they assessed the
robustness of results, whether their shared their data, materials, and code) rather
than the sheer number of publications. This would provide an incentive especially
for those researchers who currently shy away from implementing practices such
as preregistration for fear of being less productive. In the Netherlands, research
practices such as open access publishing and data sharing are particularly en-
couraged by government institutions. They form two of the three pillars of the
National Plan for Open Science (NPOS; National Program Open Science, 2022),
whose steering committee consists of the Association of Dutch Universities, the
Dutch Federation of University Medical Centers, and the Dutch Research Council.
The latter also requires that all projects it funds be published in open access and
that data be shared whenever possible (Dutch Research Council, 2022).

While I strongly support these measures, I would like to see some of the re-
search practices discussed in this thesis stronger promoted, such as preregistration,
analysis blinding, or many-analysts/multiverse projects. It is undoubtedly chal-
lenging to combine the demands of different disciplines regarding these practices
– what works in psychology does not necessarily work in other research fields. For
instance, preregistration might be not feasible in disciplines such as physics, as the
analysis is often too complex to anticipate. But researchers in these fields might
find it more feasible to do analysis blinding (e.g., MacCoun & Perlmutter, 2015).
To discuss these challenges and achieve nationwide change, we are currently in
the process of establishing an interdisciplinary ‘Reproducibility Network’ in the
Netherlands, involving both researchers and other stakeholders.

Individual departments may also enforce good research practices more strongly.
A simple measure would be to integrate good research practices within ethical
reviews. In the department of psychology at the University of Amsterdam, both
students and researchers must include in their ethics application a statement about
whether their study–if it is confirmatory research–has been preregistered. If the
study is preregistered they must provide the link of the preregistration, if they
do not preregister the study they must provide a justification why this is not the
case. In addition, our department has made good research practices an integral
part within the curricula of students. The course “Good Research Practices”
(presented in Chapter 13) is mandatory for all students following the Research
Master program. In the future, it would also be worth considering to offer a
similar course at the undergraduate level, so that students specializing for industry
or clinical work can also benefit.

Finally, individual researchers can promote good research practices within their
scientific networks. For instance, researchers can launch bottom-up networks at
their institutions so-called Open Science Communities (e.g., Armeni et al., 2021).
Open Science Communities (OCSs) aim to exchange knowledge about good re-
search practices across faculty and disciplines, to learn together, to identify bar-
riers that hinder peers in opening up their workflows, and to provide the support
needed to foster cultural change at the institutional level (Armeni et al., 2021;
Nosek, 2019). In the Netherlands, OSCs are currently represented at all major
Dutch universities (see Figure 15.3). At the beginning of my doctoral studies,
I founded the OSC Amsterdam together with my colleague Suzanne Hoogeveen.
Since then, the community has grown to be a joint initiative of four institutions:
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Figure 15.3: Open Science Communities are currently represented in twelve cities
in the Netherlands. Figure available at https://www.osc-nl.com.

the University of Amsterdam, the Free University Amsterdam, the University of
Applied Sciences, and the Amsterdam Medical Centrum with currently 225 schol-
ars subscribed to the initiative (see https://openscience-amsterdam.com).

Some universities (such as the University of Utrecht) explicitly encourage OSCs
by providing financial support and creating positions for open science coordinators
to build and strengthen the communities and organize events. In Amsterdam,
of the four organizations, only the Free University of Amsterdam is currently
receiving funding; the University of Amsterdam is not. One of our main goals is
to ensure the sustainability of the communities in all four institutions.

15.5 Concluding Remarks

The goal of my dissertation was to study promising reform ideas to combat the
crisis of confidence in psychology and to develop statistical methods that support
researchers in their work. I hope that I have been able to make a contribution
to combating the crisis, and that researchers will find the insights presented here
valuable for their own work and that of their students.
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English Summary

In this dissertation, entitled “Good Research Practices”, I examined research prac-
tices and reform ideas aiming to combat the crisis of confidence (Pashler & Wa-
genmakers, 2012) in psychology. I did so through theoretical contributions and
empirical work, I developed statistical methods and practical guidelines for re-
searchers, and I demonstrated how principles of good research can be conveyed to
students. In this dissertation, I divided my efforts thematically into three parts,
that is: (1) Revealing Hidden Uncertainty in Data Analysis, (2) Multinomial
Order-Restrictions, and (3) Guidelines for Good Research Practices.

Part I: Revealing Hidden Uncertainty in Data Analysis

The first part of the dissertation examined current good research practices in
psychological science. This part began with a sobering realization: you do not need
to be an expert to be able to predict whether a social science study replicates–
Chapter 2 illustrated that laypeople too are able to predict replication success
with above-chance performance. We suggested that laypeoples’ predictions may
be used to quantify intuitive plausibility of empirical effects and hence contribute
to efficiently selecting studies for replication research.

Chapter 3 introduced the Many-Analysts Religion Project. In this project,
we recruited 120 analysis teams and had them answer the same two research
questions based on the same data. Specifically, the teams investigates (1) whether
religious people self-report higher well-being, and (2) whether the relation between
religiosity and self-reported well-being depends on perceived cultural norms of
religion (i.e., whether it is considered normal and desirable to be religious in a
given country). For the first research question, all but 3 teams found evidence
that religious people report higher levels of well-being and reported positive effect
sizes with credible/confidence intervals excluding zero. For the second research
question, this was the case for 65% of the teams.

Chapter 4 contained our reflections and conclusions about the Many-Analysts
Religion Project. We addressed the issue of theoretical specificity, highlighted
some more in-depth observations, discussed methodological concerns raised by
the analysis teams, and reflected on our experience of organizing a many-analysts
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project.
Chapter 5 described a survey study which identified the benefits and challenges

of preregistration from the researcher’s perspective. When preregistering a study,
researchers describe their hypotheses, as well as the data collection and data anal-
ysis plan, as precisely as possible and register them before data collection begins.
This research practice increases the transparency of the research process and forces
researchers to adhere to the empirical cycle, that is, to clearly distinguish predicted
findings from possible chance findings. The study showed that preregistration has
benefits beyond safeguarding the adherence to the empirical cycle, including the
improvement of the overall project quality. This survey, however, also illustrated
some of the challenges that come with preregistration, such as the increase of the
overall project duration and work related stress.

Chapter 6 introduced analysis blinding as an addition or possible alternative
to preregistration. In analysis blinding, research teams develop their data analysis
plan based on a blinded version of the data, that is, data for which collaborators
or independent researchers have removed any information that might jeopardize a
fair statistical analysis (e.g., treatment effects or differences between two experi-
mental conditions). The chapter discussed how analysis blinding can be applied in
experimental psychology. Specifically, it introduced different methods of analysis
blinding, offered recommendations for blinding of popular experimental designs,
and introduced the design for an online blinding protocol.

Following this idea, Chapter 7 compared the reported efficiency and conve-
nience of preregistration and analysis blinding in the context of the Many-Analysts
Religion Project. The recruited teams answered the same research questions based
on the same data either preregistering their analysis or using analysis blinding.
The study concluded that analysis blinding does not mean less work but approx-
imately the same amount, but researchers can still benefit from the method since
they can plan more appropriate analyses from which they deviate less frequently.

Part II: Multinomial Order-Restrictions

The second part of the dissertation explored how researchers can integrate their
theory-based knowledge into statistical models and presents statistical procedures
for testing ordinal hypotheses (i.e., hypotheses about increasing or decreasing
trends). Our research on this topic has focused primarily on categorical data
analysis which is based on a multinomial distribution.

Chapter 8 described a Bayesian technique with which researchers can eval-
uate ordinal hypotheses concerning the distribution of multinomial proportions.
Whenever researchers formulate ordinal hypotheses that entail expectations about
increasing or decreasing trends they must rely on methods that are relatively in-
efficient and computationally expensive. To address this problem, we developed
a bridge sampling routine that allows an efficient evaluation of these hypotheses
for multinomial variables. An empirical example showed that bridge sampling
outperforms current Bayesian methods in terms of accuracy and efficiency.

In order to maximize the accessibility of the proposed bridge sampling rou-
tine, we developed the user-friendly software package multibridge which was
introduced in Chapter 9. The R software package implements the bridge sam-
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pling routine for multinomial variables and independent binomial variables. The
chapter described the core functions in multibridge and illustrated its use with
two examples one concerning the prevalence of statistical reporting errors across
eight different psychology journals, the other using multibridge to reveal corrupt
statistics on the deficit and debt of the Greek government in the years before the
financial crisis.

Chapter 10 applied the evaluation of ordinal hypotheses in the context of multi-
nomial processing tree (MPT) models. In psychology, MPT models are used to
test sophisticated theories on memory, judgement and decision making, and rea-
soning. The chapter highlighted how researchers can refine their Bayesian MPT
modeling practices by adequately capturing their theory in the model and testing
their ordinal expectations.

Part III: Guidelines for Good Research Practices

The third part of the dissertation provided concrete suggestions on how to facilitate
the uptake of good research practice among researchers. This part addressed this
challenge on two levels: educating researchers and training students.

Chapter 11 presented the Transparency Checklist which allows researchers in
social and behavioural sciences to improve and document the transparency of
research reports. The initial set of items in the Transparency Checklist was de-
veloped in collaboration with 45 behavioural and social science journal editors-in-
chief and associate editors, as well as 18 open-science advocates. The final checklist
spans the four study components: preregistration, methods, results and discussion
as well as data, code and materials availability. Responses to the checklist items
can be submitted along with a manuscript, providing reviewers, editors and, even-
tually, readers with critical information about the research process allowing them
to evaluate the robustness of a finding.

Chapter 12 discussed seven concrete statistical practices which embody the
current aspirations in the social and behavioural sciences to increase transparency
and reproducibility. These practices are (1) visualizing data; (2) quantifying infer-
ential uncertainty; (3) assessing data preprocessing choices; (4) reporting multiple
models; (5) involving multiple analysts; (6) interpreting results modestly; and (7)
sharing data and code. We discussed the benefits and limitations of each practice
and provided guidelines for its adoption.

The remaining two chapters showed how the concepts of good research practices
can be incorporated into the methodological training of students. Chapter 13
described the content of the graduate course “Good Research Practices” which we
have designed and taught at the University of Amsterdam. This course gives a
general introduction into the crisis of confidence as well as recent methodological
reforms proposed in psychological science, such as direct and conceptual replication
studies, preregistration, and the public sharing of data and code.

Chapter 14 presented a Bayesian research project that we conducted with
undergraduate psychology students. This project aimed to (1) convey the basic
mathematical concepts of Bayesian inference; (2) have students experience the
entire empirical cycle including collection, analysis, and interpretation of data and
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(3) teach both the philosophy behind good research practices and the practical
skills needed to apply them.

340



Nederlandse Samenvatting

In dit proefschrift, getiteld “Good Research Practices”, onderzocht ik onderzoeks-
praktijken en hervormingsideeën om de vertrouwenscrisis in de psychologie te be-
strijden (Pashler & Wagenmakers, 2012). Ik heb dit gedaan door middel van
theoretische bijdragen en empirisch werk; ik heb statistische methoden en prakti-
sche richtlijnen voor onderzoekers ontwikkeld, en laten zien hoe de principes van
goed onderzoek kunnen worden overgebracht op studenten. In dit proefschrift heb
ik mijn werk thematisch opgedeeld in drie delen, namelijk: (1) Onthullen van ver-
borgen onzekerheid in data-analyse, (2) Multinomiale volgorde-restricties, en (3)
Richtlijnen voor goede onderzoekspraktijken.

Part I: Onthullen van verborgen onzekerheid in data-analyse

Het eerste deel van het proefschrift onderzocht de actuele praktijken van goed
onderzoek in de psychologische wetenschap. Dit deel begon met een ontnuchte-
rende constatering: je hoeft geen expert te zijn om te kunnen voorspellen of een
sociaal-wetenschappelijke studie repliceert - hoofdstuk 2 illustreerde dat ook leken
in staat zijn om replicatiesucces beter dan kansniveau te voorspellen. Wij sugge-
reerden dat de voorspellingen van leken kunnen worden gebruikt om de intüıtieve
plausibiliteit van empirische effecten te kwantificeren en zo bij te dragen aan een
efficiënte selectie van studies voor replicatieonderzoek.

Hoofdstuk 3 introduceerde het Many-Analysts Religion Project. In dit project
wierven we 120 analyseteams om te onderzoeken (1) of religieuze mensen een ho-
ger niveau van welzijn zelfrapporteren, en (2) of de relatie tussen religiositeit en
zelfgerapporteerd welzijn afhangt van waargenomen culturele normen van religie
(d.w.z. of het in een bepaald land als normaal en wenselijk wordt beschouwd
om religieus te zijn). Voor de eerste onderzoeksvraag rapporteerden op 3 na alle
teams positieve effectgroottes waarbij nul buiten de geloofwaardheids-/ betrouw-
baarheidsintervallen viel. Voor de tweede onderzoeksvraag was dit het geval voor
65% van de teams.

Hoofdstuk 4 bevatte onze overwegingen en conclusies over het Many-Analysts
Religion Project. We behandelden de kwestie van theoretische specificiteit, be-
lichtten enkele diepgaandendere observaties, bespraken methodologische proble-
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men, en reflecteerden op onze ervaring met het organiseren van een project met
veel analisten.

In hoofdstuk 5 wordt een enquêteonderzoek beschreven waarin de voordelen en
knelpunten van preregistratie vanuit het perspectief van de onderzoeker in kaart
zijn gebracht. Uit de studie bleek dat preregistratie extra voordelen heeft naast het
waarborgen van de naleving van de empirische cyclus, waaronder de verbetering
van de algehele projectkwaliteit. Dit onderzoek illustreerde echter ook enkele van
de uitdagingen die gepaard gaan met preregistratie, zoals de verlenging van de
totale projectduur en werkgerelateerde stress.

In hoofdstuk 6 werd analyseblindering gëıntroduceerd als aanvulling op of mo-
gelijk alternatief voor preregistratie. Het hoofdstuk besprak hoe analyseblindering
kan worden toegepast in de experimentele psychologie. In het bijzonder werden
verschillende methoden van analyseblindering gëıntroduceerd, werden aanbevelin-
gen gedaan voor blindering van veelgebruikte experimentele opzetten, en werd het
ontwerp voor een online blinderingsprotocol gëıntroduceerd.

Naar aanleiding van dit idee werden in hoofdstuk 7 de gerapporteerde efficiëntie
en het gemak van preregistratie en analyseblindering vergeleken in het kader van
het Many-Analysts Religion Project. De deelnemende teams beantwoordden de-
zelfde onderzoeksvragen op basis van dezelfde data door hun analyse vooraf te
registreren of door gebruik te maken van analyseblindering. In de studie werd
geconcludeerd dat analyseblindering niet minder werk betekent, maar ongeveer
evenveel, maar dat onderzoekers toch baat kunnen hebben bij de methode om-
dat zij adequatere analyses kunnen plannen waarvan zij minder vaak hoeven af te
wijken.

Part II: Multinomiale Orde-Beperkingen

In het tweede deel van het proefschrift werd besproken hoe op theoretische kennis
kan worden gekwantificeerd in statistische modellen en werden statistische technie-
ken gëıntroduceerd om ordinale hypothesen te testen in de context van categorische
data-analyse.

In hoofdstuk 8 is een Bayesiaanse techniek beschreven waarmee onderzoekers
ordinale hypotheses over de verdeling van multinomiale verhoudingen kunnen eva-
lueren. Telkens wanneer onderzoekers ordinale hypothesen formuleren met ver-
wachtingen over stijgende of dalende trends, zijn zij aangewezen op methoden die
relatief inefficiënt zijn. Om dit probleem aan te pakken hebben wij een bridge-
sampling methode ontwikkeld die een efficiënte evaluatie van deze hypothesen voor
multinomiale variabelen mogelijk maakt. Een empirisch voorbeeld toont aan dat
bridge-sampling beter presteert dan de huidige Bayesiaanse methoden met betrek-
king tot nauwkeurigheid en efficiëntie.

Om de toegankelijkheid van de voorgestelde bridge-sampling methode te maxi-
maliseren, ontwikkelden we het gebruiksvriendelijke R-pakket multibridge dat in
hoofdstuk 9 werd gëıntroduceerd. Het pakket implementeert de bridge-sampling
methode voor multinomiale variabelen en onafhankelijke binomiale variabelen.
Het hoofdstuk beschreef de kernfuncties van multibridge en illustreerde het ge-
bruik ervan met twee voorbeelden, waarvan er een betrekking had op de prevalentie
van statistische rapportagefouten in acht verschillende psychologische tijdschriften.
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In hoofdstuk 10 wordt de evaluatie van ordinale hypothesen toegepast in de
context van multinomiale procesboom (MPT) modellen. In de psychologie wor-
den MPT-modellen gebruikt om geavanceerde theorieën over geheugen, besluit-
vorming, en redeneren te testen. Het hoofdstuk belichtte hoe onderzoekers hun
Bayesiaanse MPT-modellen kunnen verfijnen door hun theorie adequaat vast te
leggen in het model en hun ordinale verwachtingen te testen.

Part III: Richtlijnen Voor Goede Onderzoekspraktijken

Het derde deel van het proefschrift bevatte concrete suggesties over hoe de invoe-
ring van goede onderzoekspraktijken onder onderzoekers kan worden vergemakke-
lijkt. In dit deel werd deze uitdaging op twee niveaus aangepakt: het opleiden van
onderzoekers en het trainen van studenten.

Hoofdstuk 11 presenteerde de Transparantiechecklist waarmee onderzoekers
in de sociale en gedragswetenschappen de transparantie van onderzoeksartikelen
kunnen verbeteren en documenteren. De eerste reeks items van de Transparantie-
checklist werd geëvalueerd door 45 hoofdredacteuren en adjunct-redacteuren van
tijdschriften in gedrags- en sociale wetenschappen, alsook door 18 voorvechters van
Open Wetenschap. De uiteindelijke checklist omvat de vier onderzoeksonderdelen:
preregistratie, methoden, resultaten en discussie, alsmede de beschikbaarheid van
data, code en materialen. Reacties op de items van de checklist kunnen samen met
een manuscript worden ingediend, waardoor reviewers, redacteuren en uiteindelijk
ook lezers kritische informatie krijgen over het onderzoeksproces die nodig is om
de robuustheid van een bevinding te evalueren.

In hoofdstuk 12 werden zeven concrete statistische praktijken besproken die het
huidige streven naar meer transparantie en reproduceerbaarheid in de sociale en
gedragswetenschappen belichamen. Deze praktijken zijn (1) het visualiseren van
data; (2) het kwantificeren van inferentiële onzekerheid; (3) het beoordelen van
data-voorbewerkingskeuzes; (4) het rapporteren van meerdere modellen; (5) het
betrekken van meerdere analisten; (6) het bescheiden interpreteren van resultaten;
en (7) het delen van data en code. Wij bespraken de voordelen en beperkingen
van elke praktijk en gaven richtlijnen voor de toepassing ervan.

De resterende twee hoofdstukken lieten zien hoe de concepten van goede on-
derzoekspraktijken kunnen worden opgenomen in de methodologische training van
studenten. Hoofdstuk 13 beschreef de inhoud van de masteropleiding cursus “Good
Research Practices” die wij hebben ontworpen en gegeven aan de Universiteit van
Amsterdam. Deze cursus geeft een algemene inleiding in de vertrouwenscrisis en
recente methodologische hervormingen die zijn voorgesteld in de psychologische
wetenschap, zoals directe en conceptuele replicatiestudies, preregistratie, en het
openbaar delen van data, code en analyseplannen.

In hoofdstuk 14 presenteerden we een Bayesiaans onderzoeksproject dat we
uitvoerden met studenten psychologie. Dit project had tot doel (1) de wiskundige
basisconcepten van Bayesiaanse inferentie over te brengen; (2) studenten de hele
empirische cyclus te laten ervaren, inclusief het verzamelen, analyseren en inter-
preteren van data, en (3) zowel de filosofie achter goede onderzoekspraktijken te
onderwijzen als de praktische vaardigheden die nodig zijn om ze toe te passen.
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Deutsche Zusammenfassung

In dieser Dissertation mit dem Titel “Gute Forschungspraktiken” habe ich For-
schungspraktiken und Reformideen untersucht, die darauf abzielen, die Vertrau-
enskrise in der Psychologie zu bekämpfen. Im Rahmen meiner Forschung habe
ich sowohl theoretische als auch empirische Arbeiten verfasst, statistische Metho-
den und praktische Leitlinien entwickelt und aufgezeigt, wie die Grundsätze guter
Forschung an Studierende vermittelt werden können. Thematisch lässt sich die
Dissertation in drei Teile gliedern: (1) Die Aufdeckung verborgener Unsicherheit
in der Datenanalyse, (2) Ordinale Beschränkungen bei Multinomialverteilungen
und (3) Richtlinien für gute Forschungspraktiken.

Teil I: Aufdeckung verborgener Unsicherheit in der
Datenanalyse

Im ersten Teil meiner Dissertation untersuchte ich aktuelle gute Forschungsprakti-
ken in der psychologischen Wissenschaft. Dieser Teil begann mit einer ernüchtern-
den Erkenntnis: Man muss kein Experte sein, um vorhersagen zu können, ob eine
sozialwissenschaftliche Studie repliziert werden kann. Kapitel 2 zeigte, dass auch
Laien in der Lage sind, den Replikationserfolg sozialwissenschaftlicher Studien
überdurchschnittlich gut vorherzusagen. Wir schulgen vor, dass solche Laien-
vorhersagen verwendet werden können, um die intuitive Plausibilität empirischer
Effekte zu erfassen, was wiederum zur effektiven Auswahl von Replikationsstudien
beitragen kann.

Kapitel 3 stellte das “Multi-Analysten Projekt zum Thema Religion” vor. Im
Rahmen dieses Projekts rekrutierten wir 120 Analyseteams und liessen sie die-
selben zwei Forschungsfragen auf der Grundlage derselben Daten beantworten.
Konkret beantworteten die Analyseteams die Frage, (1) ob religiöse Menschen
nach eigenen Angaben ein höheres Wohlbefinden haben, und (2) ob die Beziehung
zwischen Religiosität und subjektiven Wohlbefinden von den wahrgenommenen
kulturellen Normen zu Religion abhängt (d.h., ob es in einem bestimmten Land
als normal und wünschenswert angesehen, wird religiös zu sein). In Bezug auf die
erste Forschungsfrage fanden alle bis auf 3 Teams positive Evidenz dafür, dass re-
ligiöse Menschen ein höheres Wohlbefinden haben, und meldeten Effektgrößen mit
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Kredibilitäts-/Konfidenzintervallen größer Null. Bei der zweiten Forschungsfrage
war dies bei 65% der Teams der Fall.

Kapitel 4 enthielt unsere überlegungen und Schlussfolgerungen über das Multi-
Analysten Projekt zum Thema Religion. In diesem Kapitel befassten wir uns mit
der Frage der theoretischen Spezifizität, hoben tiefer gehende Erkenntnisse zu bei-
den Forschungsfragen hervor, setzten uns kritisch mit einigen der methodischen
Bedenken auseinander, die von einigen Analyseteams geäußert wurden und be-
richteten über unsere eigenen Erfahrungen mit der Organisation dieses Projektes.

In Kapitel 5 wurde eine Umfragestudie beschrieben, bei der wir Forscher zu
den Vorteilen und Herausforderungen der Präregistrierung befragten. Bei der
Präregistrierung werden Hypothesen, sowie der Datenerhebungs- und Datenana-
lyseplan so genau wie möglich festgehalten und vor Beginn der Datenerhebung
registriert. Diese Forschungspraktik erhöht die Transparenz des Forschungspro-
zesses und zwingt Forscher dazu, den empirischen Zyklus einzuhalten, das heißt,
vorhergesagte Befunde klar von möglichen Zufallsbefunden zu unterscheiden. Un-
sere Studie zeigte, dass die Präregistrierung nicht nur den Vorteil hat, dass For-
scher den empirischen Zyklus einhalten, sondern Forscher gaben auch an, dass
die Präregistrierung die Qualität ihres Forschungsprojekts insgesamt verbessert.
Die Umfrage veranschaulichte jedoch auch einige Nachteile der Präregistrierung,
beispielsweise, dass diese Forschungspraktik die Projektdauer verlängert und den
arbeitsbedingten Stress erhöht.

In Kapitel 6 wurde die Analyseverblindung als Ergänzung oder mögliche Al-
ternative zur Präregistrierung vorgestellt. Bei der Analyseverblindung entwickeln
Forschungsteams ihren Datenanalyseplan auf der Grundlage einer verblindeten
Version der Daten, das heißt, Daten, bei denen Mitarbeiter oder unabhängige
Forscher alle Informationen entfernt haben, die eine faire Auswertung gefährden
(z.B. Behandlungseffekte oder Unterschiede zwischen zwei experimentellen Be-
dingungen). In diesem Kapitel wurde erörtert, wie die Analyseverblindung in
der experimentellen Psychologie angewendet werden kann. Insbesondere wurden
verschiedene Methoden der Analyseverblindung vorgestellt, Empfehlungen gege-
ben, wie gängiger Datenstrukturen in der Psychologie effektiv verblindet werden
können, sowie ein Online-Verblindungsprotokoll präsentiert.

Diesem Gedanken folgend wurde in Kapitel 7 die berichtete Effizienz und
Zweckmäßigkeit von Präregistrierung und Analyseverblindung im Rahmen des
Multi-Analysten Projektes zum Thema Religion verglichen. In diesem Projekt
beantwortete die eine Hälfte der Analyseteams die Forschungsfragen, indem sie
ihre Analysen präregistrierten, die andere Hälfte indem sie Analyseverblindung
anwendeten. Unsere Studie kam zu dem Schluss, dass die Analyseverblindung
nicht wie erwartet weniger Arbeitsaufwand bedeutet, sondern ungefähr den glei-
chen Aufwandsaufwand mit sich bringt wie Präregistrierung. Die Analyseverblin-
dung konnten dennoch von der Analyseverblindung profitieren. Unsere Studie
zeigte, dass Forscher die diese Praktik anwendeten, angemessenere Analysen pla-
nen konnten, von denen sie später weniger häufig abweichen mussten.

346



Teil II: Ordinale Beschränkungen bei Multinomialverteilungen

Im zweiten Teil der Dissertation wurde erörtert, wie Forscher ihr theoriebasiertes
Wissen in statistische Modellen integrieren können und stellt statistische Verfah-
ren zur Prüfung ordinaler Hypothesen vor (d.h., Hypothesen zu aufsteigenden
oder absteigenden Trends). Unsere Forschung zu diesem Thema konzentrierte
sich dabei in erster Linie auf die Analyse von kategorischen Daten, die auf einer
multinomialen Verteilung beruhen.

In Kapitel 8 beschrieben wir eine Bayes’sche Technik, mit der Forscher ordi-
nale Hypothesen über die Verteilung multinomialer Wahrscheinlichkeiten testen
können. Zurzeit müssen Forscher, wann immer sie ordinale Hypothesen formu-
lieren, auf statistische Methoden zurückgreifen, die relativ ineffizient und rechen-
aufwändig sind. Um dieses Problem zu lösen, haben wir eine Bridge-Sampling-
Routine entwickelt, die eine effiziente Auswertung dieser Hypothesen für mul-
tinomiale Variablen ermöglicht. Ein empirisches Beispiel hat gezeigt, dass die
Bridge-Sampling-Routine verglichen zu den derzeitigen Bayes’schen Methoden so-
wohl genauere Ergebnisse liefert als auch effizienter ist.

Um unsere Bridge-Sampling-Routine für Forscher in der Psychologie zugäng-
lich zu machen, haben wir das benutzerfreundliche Software-Paket multibridge
entwickelt, das in Kapitel 9 vorgestellt wurde. Das Software-Paket wurde in
der Programmiersprache R geschrieben und implementiert die Bridge-Sampling-
Routine für multinomialverteilte Variablen und unabhängig-binomialverteilte Va-
riablen. In diesem Kapitel wurden die Kernfunktionen von multibridge beschrie-
ben und seine Verwendung anhand von zwei Beispielen veranschaulicht. Im ersten
Beispiel verwendeten wir multibridge, um die Häufigkeit von Fehlern in der Be-
richterstattung statistische Ergebnisse (z.B., verursacht durch Tippfehler) in acht
verschiedenen psychologischen Fachzeitschriften zu testen. Im zweiten Beispiel
verwendeten wir multibridge, um korrupte Statistiken zu Defizit und Schulden-
stand des griechischen Staates in den Jahren vor der Finanzkrise aufzudecken.

In Kapitel 10 testeten wir ordinale Hypothesen im Rahmen von Multinomialen
Prozessbaum Modellen. In der Psychologie werden Multinomialen Prozessbaum
Modelle verwendet, um anspruchsvolle Theorien zu Gedächtnisprozessen, Urteils-
und Entscheidungsfindungsprozessen und Prozessen rationalen Denkens zu te-
sten. Das Kapitel zeigte auf, wie Forscher ihre Modellierungspraktiken verfei-
nern können, wenn sie ihr Wissen zu psychologischen Prozessen direkt in ihre
statistische Modelle integrieren und ihre Erwartungen als ordinale Hypothesen
formulieren und testen.

Teil III: Richtlinien für gute Forschungspraktiken

Im dritten Teil der Dissertation machen wir konkrete Vorschläge, wie sich Wissen
zu gute Forschungspraktiken leichter verbreiten lassen. Dieser Teil geht die Her-
ausforderung auf zwei Ebenen an: der Schulung von Forschern und der Ausbildung
von Studenten.

In Kapitel 11 wurde die Transparenz-Checkliste vorgestellt, mit deren Hil-
fe Forscher in den Sozial- und Verhaltenswissenschaften die Transparenz ihrer
Forschungsberichte verbessern und angemessen dokumentieren können. Die auf-
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Deutsche Zusammenfassung

geführten Fragen wurden in Zusammenarbeit mit 45 Chefredakteuren und Mit-
herausgebern sozial- und verhaltenswissenschaftlicher Fachzeitschriften sowie von
18 Verfechtern der offenen Wissenschaft entwickelt. Sie dient dazu, wichtige Infor-
mationen über den Forschungsprozess zu liefern und ist thematisch in vier Teile
gegliedert: Präregistrierung, Forschungsmethoden, Forschungsergebnis und Dis-
kussion, sowie Verfügbarkeit von Daten, Code und Materialien. Forscher können
den ausgefüllten Fragenkatalog zusammen mit ihrem Manuskript in Fachzeitschrif-
ten einreichen und liefern damit den Gutachtern, Redakteuren und den Lesern
notwendige Informationen, die eine Bewertung zur Robustheit ihrer Forschungs-
ergebnisse zulässt.

In Kapitel 12 wurden sieben konkrete statistische Verfahren beschrieben, die
die derzeitigen Bestrebungen in den Sozial- und Verhaltenswissenschaften zur
Erhöhung von Transparenz und Reproduzierbarkeit verkörpern. Diese Prakti-
ken sind (1) Datenvisualisierung; (2) Erwähnung von Messungenauigkeiten in sta-
tistischen Ergebnissen; (3) Einschätzung des Einflusses verschiedener Methoden
der Datenvorverarbeitung auf das Ergebnis; (4) Einschätzung des Einflusses ver-
schiedener gleichwertiger statistischer Modelle auf das Ergebnis; (5) Einbeziehung
mehrerer Analyseteams; (6) die bescheidene Interpretation von Ergebnissen; und
(7) das zur Verfügung stellen von Daten und Code. Wir erörterten die Vortei-
le und Einschränkungen der einzelnen Verfahren und geben Richtlinien für ihre
Anwendung.

In den beiden verbleibenden Kapiteln wird aufgezeigt, wie die Konzepte guter
Forschungspraktiken in die methodische Ausbildung von Studenten integriert wer-
den können. Kapitel 13 beschrieb den Inhalt des Kurses “Gute Forschungsprak-
tiken”, den wir im Research-Masterstudiengang Psychologie an der Universität
Amsterdam entworfen und unterrichtet haben. Dieser Kurs gibt eine allgemeine
Einführung in die Vertrauenskrise in der Psychologie sowie in die jüngsten me-
thodologischen Reformen, um die Krise zu bekämpfen, wie beispielsweise direkte
und konzeptionelle Replikationsstudien, Präregistrierung und das zur Verfügung
stellen von Daten und Code.

In Kapitel 14 wurde ein Bayes’sches Forschungsprojekt vorgestellt, das wir
mit Psychologiestudenten im Bachelorstudiengang durchgeführt haben. Dieses
Projekt zielte darauf ab, (1) die grundlegenden mathematischen Konzepte der
Bayes’schen Inferenz zu vermitteln, (2) Studenten den gesamten empirischen Zy-
klus erleben zu lassen, einschließlich der Erhebung, Analyse und Interpretation
von Daten und (3) Studenten sowohl die Philosophie zu lehren die hinter guten
Forschungspraktiken steckt, als auch die praktischen Kompetenzen zu lehren, die
für deren Anwendung erforderlich sind.
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