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1. General introduction

1.1 Ecology of body size
The body size of living organisms spans an unimaginably large range, from single
cell organisms weighing only a few picograms (10−12 gram) on one side to large
aquatic mammals weighing a couple of hundred tons (109 gram) on the other side.
As a consequence of the large difference in size, individuals at the extremes of this
scale differ vastly in their physiology and the way they experience their environ-
ment (Bonner, 2006). For example, the smallest archaea and bacteria are so small
that every single molecule in their environment is of the greatest importance. As
these organisms consist of a single cell, they have to obtain their energy through
direct chemical interactions with their environment and have to use chemical mech-
anisms to deal with stressors such as high and low temperatures. This is in stark
contrast to blue whales, which can become up to 30 meters long and are therewith
the largest species currently present. Blue whales roam through all major oceans
and filter the water for krill and similar organisms to provide themselves with food.
Part of the energy obtained this way is used to maintain a constant homeostasis,
which strongly decreases the impact of external stressors on the functioning of
cells and organs. Indisputably, body size is a key trait determining the ecology
and physiology of species in numerous and often unknown ways.

One way scientists try to explore the effect of body size on the ecology and
physiology of individuals is by comparing species with different body sizes. In this
way, numerous traits were found to scale with body size (Hone and Benton, 2005;
Peters, 1983). For example, larger species tend to have a higher survival rate and
therefore on average live longer compared to smaller species. Meanwhile, larger
species on average mature at an older age and therefore start reproducing later
in life. This might have to do with the fact that larger species generally have
a slower growth rate compared to smaller species and are therefore older when
reaching a size at which they are physically capable of reproducing. Likewise, a
larger body size generally requires more energy to be maintained and metabolic
rates therefore tend to increase with size. As a consequence, larger species on
average require more energy and have a higher consumption rate, but might also
be able to consume a larger range of food items than smaller species. For a wide
range of traits it is generally assumed that they scale following a power-law:

Y = Y0M b (1.1)

In which Y is the trait of interest, Y0 is a constant to scale the trait, M is the body
mass or size and b is the allometric scaling exponent. It is this allometric scaling
exponent which determines the shape of the relationship between a trait and body
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size. The exact values of this scaling exponent are heavily debated and are assumed
to be multiples of 1/4 based on comparisons between species (Brown et al., 2000) or
multiples of 1/3 based on theory about scaling of metabolic processes (Kooijman,
2010). Regardless of the qualitative form of the scaling between traits and body
size, it is clear body size correlates with numerous differences between species.

When linking traits to interspecific differences in body size, it is easy to over-
look the importance of body size within a species or population. By far, most of
the multicellular organisms start as a single cell and end up as a full-grown indi-
vidual, which can consists of trillions (1013) of cells. Even after birth or hatching,
a ten-, a hundred- or even a thousandfold increase in size throughout life is not
uncommon. However, differences in body size within a species do not only occur
due to development over time, as variation in size is also very common between
individuals of the same age. Differences in size between individuals of the same
age might arise because they were born with different sizes, but could also emerge
from differences in their growth rates, for example because growth rates are af-
fected by the environment. This thesis will specifically concern the ecological and
evolutionary patterns that arise from intraspecific variation in body size caused
by a link between individual growth rates and the environment.

1.2 Plasticity in individual growth
The effect of the environment on the expression of a trait is called phenotypic
plasticity. Due to phenotypic plasticity, variation in the environment can cause
differences in the phenotype of individuals with exactly the same genotype. The
effect of phenotypic plasticity on a trait can be very distinct. A classic example is
the defence mechanism of the water flea Daphnia. In the presence of a predator,
Daphnia will produce offspring with a helmet to reduce the risk of a predator
attack on the offspring, while in the absence of a predator the helmet is lacking
(Krueger and Dodson, 1981). More often, the effects of plasticity on the pheno-
type of an individual are more subtle and might not be immediately visible, but
accumulate throughout the life history of an individual. This is the case with
individual growth and body size. For many species, growth rates are expected to
increase with temperature or food availability, but individuals have to experience
an environment for a longer period of time for environmental effects to accumulate
and become visible in their body size. The physical and ecological effects of plas-
ticity in individual growth rates might therefore have a delayed effect and might
only become apparent in the size of an individual over a longer time span.

Quantifying plasticity in individual growth requires many measurements of
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individual ages and sizes spanning a relatively long period of time. The ideal
approach would be to follow the growth trajectory of multiple individuals in con-
trolled environments, as has been done for Daphnia (McCauley et al., 1990). This
study showed that the development rate of Daphnia increases with increasing food
availability in a way that closely resembles a type II functional response. This is
a clear indication that growth of Daphnia has a plastic component. Such experi-
mental data is not available for most species, in which case relative size and age
relationships might be obtained from annual growth rings in hard body parts such
as bones, scales and even some wooden parts of plants. Several studies conduc-
ted in this way showed that in general, age is not suitable to predict the size of
amphibians and reptiles (Halliday and Verrell, 1988). From this we can conclude
that growth in amphibians and reptiles differs between individuals and is likely
to have a plastic component. More generally, the growth rate of ectotherms can
be expected to be largely plastic. Most ectotherms have weak homeostasis and
as a consequence their internal condition is strongly linked to the environment.
It is therefore straightforward to expect that growth in body size of ectothermic
species depends on the environment as well. In contrast, endothermic species
generally have a strong homeostasis and are capable of separating their internal
conditions from the environment to a much larger extent. This leads to the hypo-
thesis that the growth rate of endotherms is more static and less dependent on the
environment. This is supported by observations of a very constant growth rate in
ungulates. It is even observed that ungulates postpone reproduction while main-
taining a constant growth rate under limited food conditions (Albon et al., 2000;
Coulson et al., 2000; Skogland, 1986). Similarly, female house mice were shown to
stop ovulating while maintaining a constant growth rate under low food conditions
in an experimental setup (Perrigo, 1990). In general, this suggests that the growth
rate of endotherms is largely fixed, while the growth rates of ectotherms contain
a large plastic component.

Plasticity in individual growth is currently a topic of much interest in the
field of fisheries ecology and management. Aquatic ecosystems have to withstand
enormous pressure originating from human activities such as fisheries, water pol-
lution and the emission of greenhouse gasses which accelerate climate change.
Meanwhile, policymakers have to find a balance between the high economic and
nutritious demand for fisheries on the one hand and the viability of fish popu-
lations on the other hand when establishing fishing quotas. To establish these
fishing quotas, mathematical models are used to predict the maximum yield from
a fish stock that can be sustained by the population. Classically, these models
assume that all environmental impact acts on the pelagic larvae of fish, resulting
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in a bottleneck early in life (May, 1974). Commonly this is modelled with a stock-
recruitment relationship, which relates the number of offspring surviving the early
life stages directly to the density of reproducing adults, as proposed by Ricker
(1954) and Beverton and Holt (1957). After recruitment, the stock is generally
modelled with an age-based model, assuming that all individuals of the same age
are roughly of the same size. In other words, these models do not assume plasticity
in growth to occur in fish populations after recruitment. However, recent studies
have shown that individual growth in a substantial number of fish stocks correlates
with stock biomass. This suggests that individual growth has a plastic part which
is linked to the stock density (Zimmermann et al., 2018; Lorenzen, 2016; Schram
et al., 2006; Lorenzen and Enberg, 2002). This link between stock density and
individual growth can cause feedback mechanisms that could change the fishing
intensity at which the maximum sustainable yield is achieved (Van Gemert and
Andersen, 2018b). In addition, changes in the size structure of fish stocks due to
plasticity in individual growth are important for the fisheries industry, as larger
fish are often more valuable and only fish above a specified size threshold can be
sold. If we add this to the human induced changes in the aquatic environment
and the increase in fish stock density due to recovery from over-fishing (Rindorf
et al., 2020; Wang et al., 2020; Zimmermann and Werner, 2019; Fernandes and
Cook, 2013; Worm et al., 2009), it is clear that the level of growth plasticity in
fish stocks becomes more important for sustainable fisheries than ever.

1.3 Energetics of individual growth
Growth in body size is a costly process, as the production of new mass requires
a substantial amount of energy. Individuals have to acquire this energy through
feeding and assimilation. Not all of this assimilated energy can be spent on growth,
as other physiological processes need to continue as well. Energy is actually needed
for all processes in the body including for example the maintenance of the chemical
composition of cells, monitoring the internal and external environment, movement,
feeding and last but not least the production of offspring. One can imagine that
precise regulatory mechanisms are needed to distribute this energy in a correct way,
especially because some processes are of vital importance, while other processes
do not directly contribute to the survival of an individual. It is also clear that
energy can only be spent once, which could lead to numerous trade-offs between
individual life history characteristics (Stearns, 1989).

The energetic trade-offs in the life history characteristics of an individual can
be made more explicit by modelling the energy flows within an individual. These
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energy flows start with the absorption of energy in the body of an individual
through the assimilation of compounds from the environment. Unicellular organ-
isms and organisms with a low level of complexity, such as sponges, directly absorb
molecules from the environment. In contrast, most other animals first have to col-
lect food items, which are digested in the guts to extract energetic compounds.
These compounds are then available for assimilation. Clearly, the amount of en-
ergy that can be absorbed depends on the available energy in the environment,
regardless of whether this energy is in the form of chemical compounds or lar-
ger food items. After assimilation, energy can be stored and distributed among
the processes within an organism. Most energy allocation schemes classify these
processes into three categories, but differ in the rules that determine the division
of assimilated energy among these categories (Kooijman, 2000; West et al., 2001;
Hou et al., 2008; Sousa et al., 2008). The first category deals with reproductive
processes. In juveniles, this category includes processes that contribute to the
maturation of an individual. In adults this category includes all processes that
deal with reproduction, resulting in the production of offspring. The second cat-
egory deals with processes regarding somatic growth. Energy allocated to this
category is used by individuals to produce new mass and to grow in size. The
third category deals with somatic maintenance costs, which are costs for main-
taining the current state of the body. This category is commonly used to lump
together processes that cannot be included in the reproduction or growth category,
such as energy expenses for movement and heat production. Nonetheless, somatic
maintenance costs are generally considered to be a vital energy expense without
which individuals cannot survive. The major difference between different energy
allocation schemes is the order and priority in which energy is allocated to these
three categories, and the way that the processes in these categories scale with body
size.

The energy allocation scheme used in this thesis is based on a simple dynamic
energy budget model (Jager et al., 2013) (Fig. 1.1). In this model, assimilated
energy is stored in a short-term storage with a high turnover rate, from which it is
directly available for usage. Energy is first distributed between somatic processes
on the one hand, which is further divided between somatic growth and somatic
maintenance, and reproductive processes on the other hand, which include matura-
tion of juveniles and reproduction by adults. Energy allocated to somatic processes
is directly divided among somatic maintenance and growth. The order or priority
of the processes depends on whether a process is demand-driven or supply-driven.
A demand-driven process requires a fixed amount of energy that only depends on
the state of the body, regardless of the amount of assimilated energy. In contrast,
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Somatic 
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Figure 1.1: Schematic layout of the energy allocation scheme used in this thesis.
Arrows indicate energy flows between components. Solid arrows indicate entirely
demand-driven processes, dashed arrows indicate energy flows which could be
partly demand-driven and partly supply-driven and dotted arrows indicate entirely
supply-driven energy flows. This scheme also represents the order of priority of
energy allocation that is assumed in this thesis.

the amount of energy used by a supply-driven process directly depends on the
amount of available energy. Demand-driven processes have priority over supply-
driven processes, because demand-driven processes are not flexible in the amount
of energy that they require, while supply-driven processes are. Somatic mainte-
nance costs are generally implemented as an entirely demand-driven process with
the highest priority because it includes the basal processes needed to survive. In
most energetic models, it is assumed that the energy allocation to both growth and
reproduction depend on the amount of assimilated energy and are entirely plastic
(Kooijman, 2000; West et al., 2001; Hou et al., 2008; Sousa et al., 2008; Jager
et al., 2013). The energy model used in this thesis explicitly deviates from this
assumption, such that somatic growth has a demand-driven and a supply-driven
part. This enables individuals to grow at a more constant rate, independent of the
environment. The demand-driven part of somatic growth can be interpreted as
a minimum investment in somatic growth independent of the environment, while
the supply-driven part of somatic growth is the additional investment in growth
allowed by the amount of assimilated energy. Because energy assimilation de-
pends on the availability of energy sources in the environment, energy investment
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in supply-driven processes indirectly depends on the environment as well. In this
way, supply-driven processes and in particular supply-driven growth is inherently
plastic, while demand-driven processes are not plastic at all.

1.4 From individual energetics to population dy-
namics

Theory about individual energy allocation offers a stylized framework with which
the energetic trade-offs between life history characteristics can be described. This
kind of energetic theory is, however, only useful to a limited extent to answer ecolo-
gical and evolutionary questions directly, because it does not account for feedback
mechanisms with the environment. In addition, it is not possible to measure or ob-
serve energy fluxes in an individual directly. To bridge this gap between energetic
theory and ecological questions, models of individual energy dynamics have to be
connected to measurable individual traits such as body size and body condition,
reproductive output and mortality. With these more tangible life history charac-
teristics, the life history of an individual can be reconstructed. The separate life
histories of individuals can be bundled together with a quantitative description
of the environment to obtain a full description of a structured population. The
structure in these populations arises because individuals differ in some of their life
history characteristics such as age and size and can be classified based on these
differences. These structured descriptions of a population are very suitable to an-
swer questions about the ecological and evolutionary dynamics of a population,
because they consider differences between individuals within a population.

The allometric scaling from dynamic energy budget theory offers a convenient
way to relate schemes of individual energy allocation rules to individual life history
characteristics (Kooijman, 2010). These allometric scaling laws assume that the
energy content of an individual scales with the mass of an individual, while the
mass of an individual relates to its volume. Meanwhile, these scaling laws assume
that volume scales with length cubed while the surface area of an individual scales
with length squared, which basically comes down to approaching an organism as a
symmetric sphere. dynamic energy budget theory continues this line of reasoning
and assumes that all important life history processes approximately scale with
surface area or body volume, resulting in allometric scaling exponents in equation
(1.1) which are a multiple of one-third. More precisely, energy consumption is
assumed to scale with the surface area of an individual, while maintenance costs
are assumed to scale with individual mass or volume. With these allometric scaling
rules, an energy allocation scheme such as outlined in the previous section can be
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translated to equations for growth and reproduction in terms of individual length.
This commonly results in a growth curve first described by Von Bertalanffy (1938):

dℓ

da
= rB (ℓmax − ℓ) (1.2)

According to this description, the growth rate of an individual ( dℓ
da ) depends on the

difference between an asymptotic size (ℓmax) and the current size (ℓ) multiplied
with a species-specific scalar of the growth rate (rB). In other words, individuals
grow towards an asymptotic size and the growth rate decreases when individu-
als approach this asymptotic size. In the first formulation of this growth curve,
Von Bertalanffy (1938) already described that the asymptotic size is dependent on
the individual assimilation rate while the growth rate scalar depends on the indi-
vidual catabolism rate. The asymptotic size of the growth curve could therefore
strongly depend on the food availability in the environment, while the growth rate
scalar is generally less affected by the environment because it depends on the vital
demand-driven processes in an organism.

Individuals do not live in isolation, but are part of a population in a constantly
changing environment. Individuals that are born at approximately the same mo-
ment and experience approximately the same environment are likely to follow a
similar growth curve and form a cohort. If the growth of individuals would be
completely static and independent of the environment, all cohorts would show ex-
actly the same growth curve. In this case, a constant relationship between age and
size could be derived, and the population could be modelled using an age-based
model. Fixed size-age relationships and age-based models are commonly used to
establish long-term fishing quotas and fishery management strategies (Schnute and
Richards, 1998). The size and age structure of a population become decoupled as
soon as the individual growth rates show some plasticity. The growth curve of co-
horts will start to differ, and variation within a cohort will arise as soon as growth
is plastic and the environment is not constant. A population with a plastic growth
rate can be modelled using physiologically structured population models, in which
a population is not only structured by age, but also by a physiological trait such as
size (De Roos and Persson, 2001). As these models generally neglect the variation
within a cohort, physiologically structured population models are especially suit-
able to model populations with variation in growth between cohorts. So far, most
of these models assumed that growth is an entirely supply-driven process and that
the growth curves of individuals are therefore entirely plastic. As a consequence,
individuals would stop growing entirely if resources fall short. It has been shown
that age-structured models with static individual growth and size-structured mod-
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els with entirely plastic individual growth differ strongly in their predictions about
population dynamics, population dynamic cycles and the response to harvesting
(Gurney and Nisbet, 1985; De Roos et al., 1990; De Roos and Persson, 2003;
Persson et al., 2007; Pfaff et al., 2014). Although contrasting these extreme cases
can be very informative, it is more likely that individual growth is not entirely
static or plastic but consists of a plastic supply-driven growth rate on top of a
basal demand-driven growth rate. This raises the question of what dynamics a
structured population would exhibit if individual growth is not fully fixed nor fully
plastic, but lies somewhere in between.

1.5 What to expect from this thesis
The plasticity in individual growth differs strongly between species. As is clear
from the previous sections, individual growth rates are largely fixed in some species,
while it is strongly dependent on the environment in other species. The impact of
the environment on individual growth rates is often difficult to measure, because
environmental effects on growth accumulate in the size of an individual over a
longer period of time. Information on a large part of the growth history of an
individual is therefore needed to disentangle the fluctuations in environmental
limitation of growth over time, but in practice the age and size of an individual
is often only measured once. Even if some information on the level of plasticity
in individual growth is available, the population is generally simplified to an age-
based model with entirely fixed growth or a size-structured model in which all
growth is determined by the environment. Intermediate scenarios could arise if
individual growth arises from an environment-dependent part on top of a fixed
basal part, which would result in an intermediate level of plasticity in growth. So
far, the ecological and evolutionary dynamics arising from an intermediate level
of plasticity in individual growth did not get any attention. This thesis therefore
evolves around two main questions:

How can the temporal variation in the environmental limitation of individual growth
be derived from a collection of individual age and size measurements?

and

How does an intermediate level of growth plasticity shape the dynamics of a size-
structured population on ecological and evolutionary time scales?

Although these questions are approached from a theoretical perspective without
a particular species in mind, several chapters of this thesis turn to North Sea
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fish species to demonstrate the practical application of the developed theory to
natural systems. North Sea fish species are especially interesting because these
populations are under high pressure from human harvesting. Due to the long
history of exploitation and management, measurements of individuals from these
stocks are available over a long time span. Nonetheless, little is known about the
growth dynamics of these stocks and the effect of plasticity in individual growth on
the management of these stocks. Altogether, this makes the North Sea fish stocks
interesting populations for the application of the techniques and models discussed
in this thesis.

In chapter 2 of this thesis, I derive a method to quantify the temporal dy-
namics of the environmental limitation on individual growth from individual age
and size measurements. To do so, I derived an expression for the size distribution
of every cohort at every year and age of interest. These distributions are based on
the assumption that individuals follow a Von Bertalanffy growth curve in which
the asymptotic size is limited by an environmental condition that changes over
time. As a consequence, variation in size at age arises between years, between co-
horts and between individuals within a cohort, which are all included in the model
describing the size distributions. I show that fitting the model to individual sizes
and ages measured over a long time span results in a discretized approximation of
the environmental limitation on individual growth.

In chapter 3 of this thesis, I fit the model derived in chapter 2 to data of ten
exploited North Sea fish species in ten ecological regions. This resulted in yearly
estimates of the asymptotic sizes for all species and area combinations. These
estimated asymptotic sizes summarize the temporal variation in growth and could
therefore serve as a summary statistic for the environmental impact on individual
growth. I show that seven of the included species show a negative trend in this
asymptotic size over time. In addition, I found signs of density dependence in
growth for six of the species. More importantly, cluster analysis was performed on
the species and regions based on the estimated asymptotic sizes. The predicted
clusters predicted with the estimated asymptotic sizes corresponded closely to the
clusters expected based on the ecology of the fish species and the geographical
location of the areas. This strengthens the theory that growth limitation arises
through interactions with the environment.

In chapter 4 of this thesis, I explore how the level of plasticity in individual
growth affects the dynamics of a size-structured population. To do so, I first derive
a detailed description of a dynamic energy budget model in which the plasticity in
individual growth is variable. Herein I assume that the environment only consists
of a resource, because resource availability seems the environmental factor that is
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most likely to influence individual growth. I translate this dynamic energy budget
model to a physiologically structured population model to explore the dynamics
at the population level. The analysis reveals that the dynamics of a structured
population can be limited through individual reproduction or through individual
growth, which both result in qualitatively different population structures and pop-
ulation dynamic cycles.

In chapter 5 of this thesis, I study the evolution of growth plasticity in the
model derived in chapter 4. I show that evolution balances the individual limitation
on growth and the individual limitation on reproduction, which results in the most
optimal usage of consumed energy. In addition, I show that the individual energy
allocation schemes determine the global endpoint of evolution, while costs scaling
with plasticity only play a minor role in the evolutionary trajectory of a population.
As a consequence, it is most likely to find species with an intermediate level of
growth plasticity while it is very unlikely to find species in which growth is entirely
plastic.

In chapter 6 of this thesis, I parameterize the model derived in chapter 4
for four North Sea flatfish species to explore the effect of growth plasticity on
the fishing intensity with maximum yield. I again find that there is a regime in
which the dynamics is driven by limitation in individual reproduction and a re-
gime in which the dynamics is driven by limitation in individual growth. In the
regime driven by reproduction, the optimal harvesting intensity arises as a bal-
ance between harvesting mortality and density dependent effects on recruitment.
In the regime driven by growth, density dependent effects in growth compensate
for the additional mortality due to harvesting and the optimal fishing intensity is
determined by a peak in recruitment. The optimal fishing intensity and composi-
tion of the catches is very different for both regimes, suggesting that it is of vital
importance to know the level of density dependence in individual growth when
estimating optimal harvesting regimes.

In chapter 7 of this thesis, I discuss how growth curve plasticity affects various
levels of biological organization. In addition, I discuss how plasticity and density
dependence could affect fishing quotas and how the method developed in chapter
2 and 3 can advance the estimation of these quotas. Furthermore, I explore the
assumptions and generalities of the models used in chapter 4 to 6. I end by con-
cluding that species differ in the plasticity in individual growth, and that even
small differences in plasticity could make a large impact on the dynamics of struc-
tured populations, especially if a population is under high pressure from human
activities.
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Bertalanffy growth curves

Abstract
Growth and growth limitation are important indicators of density dependence and
environmental limitation of populations. Estimating individual growth trajectories
is therefore an important aspect of understanding and predicting the life history
and dynamics of a population. Variation in individual growth trajectories arises
due to variation in the environmental factors limiting individual growth. This
environmental limitation can vary over time, between cohorts and between indi-
viduals within a cohort. For a complete and accurate understanding of individual
growth in a population, it is important to include all these sources of variation.
So far, statistical models only accounted for a subset of these factors or required
an extensive growth history of individuals. Here we present a novel model de-
scribing the growth curves of cohorts in a population. This model is derived from
a stochastic form of the Von Bertalanffy growth equation describing individual
growth. The model is specifically tailored for use on length-at-age data in which
the growth trajectory of an individual is unknown and every individual is only
measured once. The presented method can also be used if growth limitation dif-
fers strongly between age or length classes. We demonstrate the use of the model
for length-at-age data of North Sea plaice (Pleuronectes platessa) from the last
thirty years. Fitting this model to length-at-age data can provide new insights in
the dynamics of the environmental factors limiting individual growth and provides
a useful tool for ecological research and management.
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2.1 Introduction
Body size is shown to be an important indicator of many life history traits such
as maturation, consumption, mortality and reproduction rates (Kooijman, 2010;
Calder, 1984; Peters, 1983; Pauly, 1980; Beverton and Holt, 1959). Estimating the
growth trajectory of individuals is therefore a general aspect of understanding the
life history and dynamics of a population. The Von Bertalanffy growth equation
is one of the most commonly used models to describe growth of individuals. It
is already used to describe the growth of a wide range of species (Ramirez et al.,
2021; Teleken et al., 2017; Narinç et al., 2017; Kingsley, 1979) and is especially
often used for fish (Flinn and Midway, 2021; Lorenzen and Enberg, 2002). The
Von Bertalanffy growth equation describes growth in terms of individual energy
assimilation and catabolism rates (Von Bertalanffy, 1938). In the resulting growth
curve, individuals grow towards an asymptotic length at which the catabolism rate
is equal to the assimilation rate and no energy is available for growth. If we follow
dynamic energy budget theory (Kooijman, 2010) and assume that assimilation
scales with surface area while catabolism scales with body volume, we obtain the
most commonly used form of the Von Bertalanffy growth equation:

dℓ(t,a,i)

dt
= rB

(
ftℓ∞ − ℓ(t,a,i)

)
(2.1)

Herein we indicate the length of individual i at age a and time t with ℓ(t,a,i),
which emphasizes that equation (2.1) describes the growth rate of a single in-
dividual. In this equation, individual growth is proportional to the difference
between the asymptotic length (ftℓ∞) and the current length, scaled with the
Von Bertalanffy growth rate scalar (rB). Following dynamic energy budget the-
ory (Kooijman, 2010), the asymptotic length consists of a maximum asymptotic
length (ℓ∞) scaled with the limitation of growth by the environment through as-
similation (ft). Although individuals might vary slightly in the values of the Von
Bertalanffy growth rate scalar and the asymptotic size due to genetic differences,
we will only focus on environmental effects on growth because these effects can
affect the growth of individuals through their life. It is commonly assumed that
the asymptotic length is the only parameter in the Von Bertalanffy growth equa-
tion which depends on the environment (Kooijman, 2010; Lorenzen and Enberg,
2002). As such, the Von Bertalanffy growth equation provides an opportunity to
estimate the environmental limitation on the individual growth rate.

Research on the dynamics of individual growth is generally based on one of two
types of data containing age and length measurements of individuals. The first
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type of data contains multiple measurements of the same individual, for example
obtained through controlled experiments, mark-recapture methods or back calcu-
lation from otoliths or year-rings. This type of data generally allows for extensive
correction for variation between individuals and cohorts because the growth history
of individuals is known (Vincenzi et al., 2016, 2014; Shelton et al., 2013; De Graaf
and Prein, 2005; Rafail, 1973). Often however, such rich individual-level data is
unavailable, because individuals cannot be tagged or retrieved or because back cal-
culation of otoliths and year-rings is often imprecise (Eveson et al., 2007). Even
if these methods are successful, they only result in a relative relationship between
age and length. Much more common is the second type of data, which only con-
tains a single measurement per individual. To obtain this kind of data, individuals
only have to be measured once and the age of individuals can be determined based
on hard or internal body structures such as year-rings, scales, bones, teeth, and
chemical composition. This is a common method for fish (Maceina et al., 2007),
amphibians (Smirina, 1994), reptiles (Castanet, 1994), mammals (Read et al.,
2018) and insects (Robson and Crozier, 2009). In this study, we focus on the es-
timation of growth curves and variation herein based on data consisting of a single
observation per individual.

In data with a single age and length observation per individual, the growth
history of individuals is unknown and it is difficult to deal with the different
overlapping sources of variation in the length individuals have at a specified age. In
addition to variation between measurements due to sampling errors (Piner et al.,
2016; Taylor et al., 2005), variation in the growth rate can be separated into
variation as a result of changes in the environment over time, variation in the
growth history of cohorts and variation between individuals within a cohort. So
far, statistical methods dealing with single observations of individual ages and
lengths only deal with a subset of these sources of variation.

Variation due to changes in the environment over time is most likely to affect
the asymptotic length in the Von Bertalanffy growth equation because this is the
part of the growth equation that is related to the environment-dependent assim-
ilation rate of an individual (Kooijman, 2010; Von Bertalanffy, 1938). Changes
in the asymptotic size therefore affect all cohorts at a given time equally. This
can be used to estimate the effect of an environmental factor on the growth of
individuals. This is generally done by directly substituting the asymptotic length
in the Von Bertalanffy growth equation with a linear dependency on the environ-
mental factor of interest (De Graaf and Prein, 2005; Lorenzen and Enberg, 2002;
Lorenzen, 1996; Cloern and Nichols, 1978). Although this can be useful to prove
a general relationship between the growth rate and an environmental factor, the
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a priori assumption of linearity is questionable.
Variation between cohorts arises due to differences in the growth history of

cohorts. It is evident that cohorts in a given year differ in length due to the
difference in age, but the length at a given age is likely to vary over time as well.
This variation between cohorts might arise due to variation in the length at birth,
but might also occur because cohorts lived at different times and therefore differ
in the experienced environment (He and Bence, 2007; Wang and Thomas, 1995).
A common way to correct for the growth history of individuals is to consider the
average growth increment between two time points, instead of the actual length-
at-age (Wang and Thomas, 1995; Lipinski and Roeleveld, 1990; Rafail, 1973).
As we consider datasets that consist of independent length-at-age observations
throughout years, this method can only be applied to the average length-at-age
in every sampling instance and as such neglects individual variation in length-
at-age and environmental limitation. In addition, this has been shown to yield
less accurate estimates of the Von Bertalanffy growth parameters with a larger
uncertainty (Vaughan and Kanciruk, 1982).

Similar to variation between cohorts, variation in length-at-age within cohorts
arises due to differences in length at birth and differences in the experienced en-
vironment between individuals. Although individuals in the same cohort are not
separated in time, they might be separated spatially or due to other ecological
factors leading to variation in the experienced environment. In addition, genetic
differences might cause variation between individuals as well. Consistent (genetic)
differences between individuals can be accounted for by incorporating a random
effect for every individual, but this is only feasible in data sets with multiple ob-
servations per individual. We focus on data sets with single observations for each
individual, where this approach would only lead to extreme overfitting. Therefore,
the only option to account for individual variation caused by a shared environ-
ment in datasets with single measurements is by considering the length-at-age at
the population level as a distribution rather than a single value (Eveson et al.,
2007; Pilling et al., 2002; Prajneshu and Venugopalan, 1999).

The different sources of variation in the length-at-age are entangled due to the
autoregressive nature of individual growth processes in which the current growth
rate depends on the growth history of an individual. As a consequence, variation
in growth arises between individuals and cohorts and could fluctuate over time.
All these sources of variation should be considered to obtain an accurate estimate
of the Von Bertalanffy growth parameters of a specific species, even if we are
only interested in one of the sources of variation or average growth parameters.
There is currently no method available that includes all these sources of variation
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simultaneously. To fill this gap, we derive a model that describes the length distri-
bution at a given age for every cohort, which can be used for datasets with a single
length and age observation per individual. Because we derived this model from
a stochastic version of the Von Bertalanffy growth equation for single individuals
(eq. 2.1) it simultaneously includes variation due to changes over time, variation
due to differences in the growth history of cohorts and variation between individu-
als within a cohort. Here, we derive the model and apply it to length-at-age data
of North Sea plaice (Pleuronectes platessa).

2.2 Methods

Model formulation

We start with the equation describing the growth trajectory of a single individual
(eq. 2.1). Individuals will differ in the experienced environmental limitation and
this limitation might vary over time. We therefore assume that the limiting effect
of the environment at a given point in time follows a Gaussian distribution of
which the mean (µt) and variance (σ2

t ) are allowed to vary over time:

ft ∼ N
(
µt, σ2

t

)
(2.2)

By substituting this distribution in equation (2.1) we obtain a stochastic differen-
tial equation describing the growth of an individual born at time Tb. We can solve
this equation by separation of variables and integration:

dℓ(t,a,i) =rB

(
µtℓ∞ − ℓ(t,a,i)

)
dt + rBσtℓ∞dWt (2.3)

ℓ(T,a,i) =ℓ(Tb,0,i)e
−rB(T −Tb) +

∫ T

Tb

rBµtℓ∞e−rB(T −t)dt

+
∫ T

Tb

rBσtℓ∞e−rB(T −t)dWt

The parameter ℓ(Tb,0,i) represents the length at birth of an individual. In addition,
Wt represents a Wiener process, which describes the outcome of a continuous
process with independent Gaussian increments (Wt+u − Wt ∼ N (0, u)). The
integrals in this expression cannot be solved explicitly because the dynamics of
the mean and variance of the environmental limitation (µt, σ2

t ) are not defined.
If the environmental limitation was constant over time and space (µt = µ, σ2

t =
0), individuals would follow a Von Bertalanffy growth curve towards a constant
asymptotic length.

24



2

2.2. Methods

In this method we consider datasets in which every individual is only measured
once. In the ideal situation, these individuals are selected randomly from the
population. In this type of data, it is not possible to follow the growth trajectory of
a single individual and fit the derived growth curve on single individuals. Instead,
we describe the distribution of the length-at-age for a cohort. Because we assumed
that the environmental limitation of growth follows a Gaussian distribution, the
length of individuals in a given cohort at time T follows a Gaussian distribution
as well. Because the expected value of the Wiener process is equal to zero, we can
derive an expression for the expected mean length at time T of a cohort born at
time Tb:

E
[
ℓ(T,a)

]
=E

[
ℓ(Tb,0,i)e

−rB(T −Tb)
]

+ E

[∫ T

Tb

rBµtℓ∞e−rB(T −t)dt

]
(2.4)

+ E

[∫ T

Tb

rBℓ∞σte
−rB(T −t)dWt

]

=E
[
ℓ(Tb,a)

]
e−rB(T −Tb) +

∫ T

Tb

rBµtℓ∞e−rB(T −t)dt

We omitted the indices referring to single individuals in the expression of the
expected value of the length-at-age (E[ℓ(T,a)]) to make clear that this expected
value is a statistic of the length-at-age distribution of a cohort rather than the
length of single individuals. By using equations (2.3) and (2.4) and applying Ito’s
isometry rule we can also derive an expression for the expected variance in length
at time T for a cohort born at time Tb:

V
[
ℓ(T,a)

]
=E

[(
ℓ(T,a,i) − E [ℓT,a]

)2
]

= E

(∫ T

Tb

rBσtℓ∞e−rb(T −t)dWt

)2
 (2.5)

=E

[∫ T

Tb

r2
Bσ2

t ℓ2
∞e−2rB(T −t)dt

]
=
∫ T

Tb

r2
Bσ2

t ℓ2
∞e−2rB(T −t)dt

We assume that samples are taken with an approximately constant time in-
terval and therefore discretize the equations characterizing the length distribution
of a given cohort at time T . Under this assumption, the equations become inde-
pendent of the length distribution at birth and can be applied without knowledge
of the full growth history of a cohort.
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E
[
ℓ(T +1,a+1)

]
=E

[
ℓ(Tb,0)

]
e−rB(T −Tb+1) +

∫ T +1

Tb

rBµtℓ∞e−rB(T +1−t)dt (2.6a)

=E
[
ℓ(T,a)

]
e−rB +

∫ T +1

T

rBµtℓ∞e−rB(T +1−t)dt

V
[
ℓ(T +1,a+1)

]
=
∫ T +1

Tb

r2
Bσ2

t ℓ2
∞e−2rB(T +1−t)dt (2.6b)

=V
[
ℓ(T,a)

]
e−2rB +

∫ T +1

T

r2
Bσ2

t ℓ2
∞e−2rB(T +1−t)dt

To make these equations usable, we need to make assumptions about the dynamics
of the mean and the variance of the environmental limitation (µt and σ2

t ). These
quantities only appear within the integral from time T up to time T + 1. We
therefore only have to make assumptions about the mean and variance of the
environmental limitation between consecutive time points or measurements. We
assume that the mean and variance of the environmental limitation between times
T and T + 1 are well approximated by the average value of these quantities in
the given time interval (µ̄T and σ̄2

T ). Under these assumptions, the model will
approximate the growth dynamics if the interval between measurements becomes
small relative to the average lifetime of an individual. Because we substitute
the mean and variance of the environmental limitation by the average of these
quantities over a time interval, they become independent of time in the domain of
integration and we can solve the integrals in equation (2.6), which results in the
final form of our model:

E
[
ℓ(T +1,a+1)

]
=E

[
ℓ(T,a)

]
e−rB + µ̄T ℓ∞

(
1 − e−rB

)
(2.7a)

V
[
ℓ(T +1,a+1)

]
=V

[
ℓ(T,a)

]
e−2rB + 1

2rBσ̄2
T ℓ2

∞
(
1 − e−2rB

)
(2.7b)

Interesting to note from this formulation is that the variance in environmental lim-
itation over a given period (σ̄2

T ) has the same unit as the time constant (T ). This
arises because we model the length of an individual as a Brownian process which is
a process with random increments. The variance of a Brownian process increases
due to the random nature of the process and therefore depends on the length of
the time between consecutive measurements in our model. In other words, the
total variance in environmental limitation experienced by an individual increases
(decreases) if the actual variation of the environment increases (decreases) or the
individual experiences the environment for a longer (shorter) period of time.

To obtain a time-independent measurement of the environmental variation, we
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can consider the long-term asymptotic variation in individual length (V [ℓ(T,∞)]).
This represents the variation in length that individuals would have after spending
an infinitely large time in an environment with a given amount of variation in
growth limitation (σ̄2

T ). At this asymptotic variation in length, the loss of variation
in length due to growth (V

[
ℓ(T,a)

] (
1 − e−2rB

)
) is equal to the gain in variation

in length due to variation in the environment ( 1
2 rBσ̄2

T ℓ2
∞
(
1 − e−2rB

)
). In other

words, when a cohort reaches the asymptotic variation in length, the variation in
length of a cohort does not change any further over time. From equation (2.7b) we
can therefore derive the expression of the long term asymptotic variance in length:

V [ℓ(T,∞)] = 1
2rBσ̄2

T ℓ2
∞ (2.8)

Model application

The model proposed in equation (2.7) predicts an independent Gaussian length
distribution for every cohort at every discrete age and time value. Therefore, the
model can be fitted to datasets containing pairs of age and length measurements
using maximum likelihood estimates. The best results are obtained if individuals
enter the population at approximately the same moment of the year and measure-
ments represent a random sample of the population. This is especially important
for individuals in the same age class and year. Assigning weights to the measure-
ments allows to correct for biases in the sample, if biases are known. In addition,
sample instances should approximately be evenly distributed in time and indi-
vidual ages and cohorts should be characterized on the same discrete scale as
sample instances. For example, measurements could be taken yearly on randomly
selected individuals at a specified date. The age of individuals is consequently
measured in year classes and individuals born between two measurements belong
to the same cohort. Fitting the model described by equation (2.7) to a dataset
with pairs of length and age measurements is done by optimizing the log likelihood
through altering the value of the Von Bertalanffy scalar (rB), the length distri-
bution at the youngest age at every time point (E[ℓT,amin

],V [ℓT,amin
]), the length

distribution of all other cohorts at the first time point (E[ℓTmin,a],V [ℓTmin,a]) and
the distribution of the environmental limitation between all time points (µ̄T , σ̄2

T )
(Table 2.1). In the proposed model, the mean and variance of the environmen-
tal limitation always occur as a product with the maximum asymptotic length
(µ̄T ℓ∞, σ̄2

T ℓ2
∞). Therefore, the maximum asymptotic length cannot be estimated

separately with this method and is incorporated as a species specific scalar of the
environmental limitation. We provided an R-package (Croll, 2022) that includes
a procedure for fitting the model to a dataset with pairs of age and length mea-
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Table 2.1: Description of the parameters that are estimated during the model
fitting procedure.

Parameter Description Type Number of
parameters

nT Number of sampling instances discrete 0 (fixed value)
na Number of sampled age classes discrete 0 (fixed value)
Tmin Time of the first sampling

instance
discrete 0 (fixed value)

amin First age class in the dataset discrete 0 (fixed value)
rB Von Bertalanffy growth rate

scalar
continuous 1

E[ℓ(T,amin)] Expected mean length at the
first age class

continuous nT

V [ℓ(T,amin)] Variance in length at the first
age class

continuous nT

E[ℓ(Tmin,a)] Expected mean length at the
first sampling instance

continuous na − 1

V [ℓ(Tmin,a)] Expected variance in length at
the first sampling instance

continuous na − 1

µ̄T ℓ∞ Mean asymptotic length continuous nT − 1
σ̄2

T ℓ∞ Variance in asymptotic length continuous nT − 1

surements using maximum likelihood optimization through optimization methods
available in the NLoptR-package (Johnson, 2021).

The R-package for fitting the described Von Bertalanffy growth model contains
some additional features to tailor the model to specific populations. The first
feature deals with the dynamics of the mean length at age when the environmental
limitation is very variable. In the model described in equation (2.7) the mean
length of a cohort (E[ℓT,a]) decreases if it exceeds the asymptotic length at some
time step (µ̄T ℓ∞). This is a mathematical artefact of the model that predicts
that individuals will shrink in size if they are too large to be supported by the
environment. Although some species might shrink in size under bad conditions,
this is not realistic for all species (Kooijman, 2010). This could be solved by
either assuming a log-normally distributed error structure or by simply fixing
the change in the mean length-at-age to non-negative values. The first option
is mathematically very complex. Instead, the package includes a version of the
model in which the average length of a cohort does not decrease if the average
cohort length exceeds the maximum asymptotic length. This version of the model
should be used with care and only with reasonable arguments, because this method
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inflates the impact of small and younger cohorts on the estimated environmental
limitation. In any case we advise to first fit the model without this additional
assumption, to check whether this indeed predicts large decreases in mean length
of some cohorts.

The second extension available in the R-package deals with differences in envi-
ronmental limitation between age and length classes. Differences in environmental
limitation between age or length classes can arise if age or length classes show spa-
tial segregation or differ in diet. The model allows specification of age or length
classes and estimates separate means and variances in environmental limitation
(µ̄T,c, σ̄2

T,c) for every age or length class at every time step. It is important to note
that this extension of the model only uses the mean length of a cohort to identify
the length class and therefore all individuals in a cohort are always placed in the
same length class. In addition, the number of observations per class decreases with
an increase in the number of age or length classes. The incorporation of age or
length classes can therefore make the model fit less accurate if there are no true
differences in the environmental limitation of the selected classes.

Application to North Sea plaice

To illustrate the use of the proposed model we fit the model to a dataset with
age and length measurements of plaice (Pleuronectes platessa) obtained from the
Beam Trawl Survey (BTS). This survey is designed to monitor plaice in the North
Sea and is consistently conducted in the third quarter (July to September) from
1990 onwards. The length of individuals is measured with at least 5 mm accu-
racy and the age of sampled individuals is obtained through otolith readings. We
downloaded the datasets with individual ages and lengths recorded during the
third quarter of 1990 to 2021 from the online ICES DATRAS data portal on the
1st of November 2021 (ICES, 2021a). The size distributions in the data are likely
to be skewed due to size-dependent mortality in the population and biases in the
sampling process. Differences between age classes and years are unlikely to affect
the estimated size distributions because the model estimates a size distribution
separately for every age in every year. In contrast, differences between the size
classes are likely to skew the size distribution of a given age. The age-length obser-
vations were therefore weighted by the inverse of the catch per unit effort (CPUE)
of the observed length. The CPUE per length indicates the probability that an
individual of a given length is caught in the survey of a given year. Weighting the
observations with the inverse of the CPUE corrects for any factor that affects the
catch probability of a given length in a given year. After weighting of the samples,
all lengths approximately had the same contribution to the dataset and visual
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inspection confirmed that the data approximated the assumption that length at
age in a given year follows a Gaussian distribution (judged by eye, fig. 2.7).

Starting values for the expected length at the first age in the dataset, the
expected asymptotic length and the growth scalar were estimated by fitting a
Von Bertalanffy growth model without considering differences between years and
cohorts (E[ℓ(T,amin)] = 120mm, µ̄tℓ∞ = 380mm and rB = 0.303y−1). Start-
ing values for the variance in length at the lowest age class and the variance in
asymptotic length were set to the variance in the youngest and oldest age class
respectively (V [ℓ(T,amin)] = 801mm2y and σ̄t

2ℓ2
∞ = 5789mm2y).

We used the Sbplx algorithm of the NloptR package (Johnson, 2021), which
is a variant of the Nelder-Mead optimization method, with a relative tolerance of
10−10 to optimize the likelihood of our model. The optimization was performed
using a log-transformed parameter space to account for the magnitudinal differ-
ence between parameters. For comparison we fitted two versions of the model. In
the first version the environmental limitation was constant over years and there-
fore the mean and variance of the asymptotic length were estimated as a single
parameter. In the second version the environmental limitation was allowed to vary
between years and the mean and variance of the asymptotic length were estimated
separately for every year.

To assess the robustness of the model with yearly varying asymptotic length,
we used a jackknife approach in which we repeated the analysis 31 times with data
from one entire year omitted every time. This shows the impact of the samples
from a given year on the model fit and gives an indication of the robustness of the
method to years in which no data could be collected. Lastly, we demonstrate the
use of separate age groups with a different environmental limitation in the model
by splitting the plaice population in three ecological groups by age.

We used an estimation of the maximum asymptotic length (ℓ∞ = 780) esti-
mated by Van der Veer et al. (2001) and scaled the estimated mean and variance
in asymptotic length with this value to obtain the mean and variance in environ-
mental limitation (µ̄t,σ̄t

2).

2.3 Results
A model with a constant environmental limitation and a model with a yearly vary-
ing environmental limitation were fitted to a length-at-age dataset for North Sea
plaice. The model with a yearly varying mean and variance of the environmen-
tal limitation fitted the data better compared to the model with constant mean
and variance of the environmental limitation (AIC of respectively 16076750 and
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Figure 2.1: Fitted environmental limitation (µ̄T ) for the model with a constant
environmental limitation (red) and the model with a yearly varying environmental
limitation (blue). Shaded areas indicate the mean plus or minus the two times
standard deviation derived from the estimated asymptotic variances ( 1

2 rBσ̄2
T ).

16048031, likelihood ratio test: p < 0.001). This suggests that the mean and vari-
ance of the environmental limitation are likely to fluctuate between years. More
precisely, the model with yearly varying environmental limitation suggests a weak
downward trend in this limitation, indicating that the environmental limitation
became stronger over time (Fig. 2.1, solid line). The estimated variance in the
environmental limitation is slightly larger if the environmental limitation is fixed
compared to the model in which the environmental limitation is allowed to fluc-
tuate (0.0335y and on average 0.0268y respectively). This overestimation of the
variance in environmental limitation arises because the fixed limitation model ac-
counts for the variation in the asymptotic length between years in addition to
the variation in asymptotic length within a year. As expected, the models also
differ slightly in the estimated parameters defining the length distribution at the
youngest age. The estimates of the Von Bertalanffy growth scalar of the models
(0.2553y−1 and 0.2977y−1 respectively) are relatively close to estimates based on
individual energy expenses (0.2955y−1, (Van der Veer et al., 2001)).

The estimated model parameters lead to predictions of the length-at-age dis-
tribution for every cohort, which differ most strongly for the older age classes (Fig.
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2.2). On visual inspection both the model with a constant environmental limita-
tion and a yearly varying environmental limitation appear to fit the data points
well (Fig. 2.2c-f). Note that the expected length of individuals in a cohort can
shrink in the model with a yearly varying environmental limitation. This occurs if
the estimated mean asymptotic length falls below the expected length of individu-
als in a cohort (µ̄T ℓ∞ < E[ℓ(T,a)]). While such a decrease can realistically occur,
it is sometimes a biologically impossible result. Repeating the analysis on this
dataset with the restriction that the expected length of a cohort can not decrease,
yields very similar results (not shown). Nonetheless, this additional restriction
should be handled with care, because early tests on simulated data showed that
this restriction makes the model more dependent on the data points in young age
classes.

To demonstrate the robustness of the model we used a jackknife approach in
which we repeated the analysis with the samples from one year omitted (Fig. 2.3).
It is not unlikely that actual datasets will contain years for which there is no
data, for example due to sampling problems. This analysis showed that missing
samples mainly affect the estimate of the mean environmental limitation in the
time step directly before and directly after the sample instance with missing data.
At one of these time steps the mean environmental limitation will be overestimated
while it will be underestimated in the other time step. In addition, it seems that
this over- and underestimation of the mean asymptotic length becomes larger
towards the start and end of the time period included in the model. A possible
cause for this pattern is that these time steps include cohorts which partly fall
outside the time-period covered by the data and therefore are estimated on a
restricted number of ages. This could make estimates of the growth curves of
these cohorts more vulnerable to missing data, which is reflected in the larger
over- and underestimations of the asymptotic length in the years these cohorts
are in. Indeed, the early years included in the analysis include significantly less
observation than later years. Lastly, it is clear that the over- and underestimation
of the mean asymptotic length due to omitted data is small compared to the
variation between individuals within a cohort.

Our estimation method can also be used on populations which consist of separ-
ate ecological groups. We demonstrate this using plaice, the distribution of which
has been shown to shift away from the coast with increasing length or age (Braber
and De Groot, 1973; Basimi and Grove, 1985; Rijnsdorp and Vingerhoed, 2001).
We divide the plaice population into three arbitrary age groups to represent this
spatial shift with age, respectively a group up to 4 years old, a group from 4 to 7
years old and a group with individuals over 7 years old. The model fit yields an
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Figure 2.2: Expected value of the length-at-age (E[ℓ(T,a)]) for the model with
a constant environmental limitation (a) and a yearly varying environmental lim-
itation (b). Line colours correspond to the year of birth of the cohort. The
expected length-at-age for the cohorts born in the years 1995 (c), 2000 (d), 2005
(e) and 2010 (f) are plotted separately for the model with a constant environmen-
tal limitation (red) and the model with a yearly varying environmental limitation
(blue), together with the data points corresponding to the specific cohort. Shaded
areas indicate the expected length plus or minus two times the standard deviation
from the estimated length distribution. The size of the data points indicates the
weighted number of observations of a specific age-length combination in the given
cohort ranging from 1 to 60 times.
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Figure 2.3: Fitted environmental limitation (µ̄T ) as predicted during a jackknife
approach. Colours correspond to different model fits. For every model fit, the data
in the year indicated by the dot is omitted from the analysis. The black line is the
estimated mean environmental limitation without omitted data and the shaded
area indicates the mean plus or minus the two times standard deviation derived
from the estimated asymptotic variances without omitted data ( 1

2 rBσ̄2
T ).

estimate of the mean and the variance of the environmental limitation for every
year and group (Fig. 2.4). The model with three age groups does indeed fit
the data better compared to the model without age groups (AIC of respectively
15982917 and 16048036). Despite a similar trend, year to year changes in some
years differ substantially between length groups, both in magnitude and direction.
Such differences could indicate relevant ecological differences between the groups.
The average estimated variance in environmental limitation for the youngest age
group (on average 0.0217y) is smaller compared to the average estimated variance
in environmental limitation in the model without age groups (on average 0.0268y).
This might suggest that the environmental limitation of individuals in the young-
est age group is more similar to the environmental limitation of individuals in
the same age group compared to the environmental limitation of individuals in
other age groups. This could explain why the model with three age groups fits the
data better compared to the model without age groups. In contrast, the average
estimated variance in environmental limitation for the two oldest age groups (on
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Figure 2.4: Estimated environmental limitation if three groups with separate en-
vironmental limitations are defined based on age. The black line and the shaded
area indicate the mean plus or minus two times standard deviation derived from
the estimated asymptotic variances if all ages are part of the same group (1

2 rBσ̄2
T ).

average 0.0399y for age group 4-7 years and 0.0801y for age group over 7 years)
is larger compared to the average estimated variance in environmental limitation
in the model without age groups (on average 0.0268y). This might suggest that
the environmental limitation of some individuals in the two oldest age groups is
more similar to the environmental limitation of individuals in other age groups
compared to the environmental limitation of individuals in the same age groups.
It is important to note that the reported variation corresponds to the fitted vari-
ation in environmental limitation and not the variation in the individual sizes.
The variation in individual size is a balance between the variation in size at the
previous time step and the variation in environmental limitation. The variation is
size is therefore likely to increase or decrease with age, depending on the variation
in size at birth. This does not hold for the variation in environmental limitation
as it is independent of size and age.
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2.4 Discussion
We presented a new method to estimate Von Bertalanffy growth parameters from
datasets with pairs of age and length measurements and provide an R package
called VBGfit (Croll, 2022) to apply this method. The method is based on a
model that describes the length distribution of cohorts in a population under
the assumption that cohorts partly overlap in time and experience a fluctuating
environment (eq. 2.7). The model is derived from a stochastic differential equation
describing the growth of a single individual in a fluctuating environment (eq. 2.1)
and therefore accounts for variation due to changes in the environment over time,
variation in the growth history of cohorts and variation between individuals within
a cohort. Because the model is described in a discretized form, it is easy to fit on
pairs of length and age measurements taken with a regular interval, which is one
of the most common forms of data on population structure (Eveson et al., 2007).

Our model makes several assumptions about the underlying population struc-
ture to obtain a model applicable to datasets with random observation pairs of
individual lengths and ages. First of all, we assume individuals follow a Von
Bertalanffy growth curve in which only the asymptotic length fluctuates over time
and between individuals (eq. 2.1). This is the most common and first proposed
form of the Von Bertalanffy growth equation (Von Bertalanffy, 1938). Nonetheless,
it is sometimes assumed that both the asymptotic length and the Von Bertalanffy
growth rate scalar fluctuate (Eveson et al., 2007; Pilling et al., 2002). It has been
shown that estimates of the asymptotic length and the Von Bertalanffy growth
rate scalar are strongly correlated if both are allowed to fluctuate. Due to this
correlation it might be difficult to obtain correct parameter estimates, because
different sets of parameters are likely to fit the dataset equally well (Eveson et al.,
2007; Pilling et al., 2002). In addition, it has been shown that only the asymp-
totic length or the Von Bertalanffy growth rate scalar has to fluctuate to obtain
a very good prediction of the population structure and an accurate estimate of
the environmental limitations when data consists of independently observed pairs
of individual age and length (Eveson et al., 2007). We therefore chose to only
make the asymptotic length dependent on the environmental limitation, as this
has the most comprehensive substantiation in energetic theory (Kooijman, 2010).
Secondly we assume that the dynamics of the environmental limitation between
two measurements can be described accurately by the average environmental limit-
ation in this period. This is a very convenient assumption borne from the discrete
nature of most length-at-age data. Nonetheless, it is possible to substitute a more
complex, time-dependent formulation for the environmental limitation in equa-
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tion (2.6) and work out the more complex model through integration. This would
lead to a more specific and less generally applicable form of the model. Thirdly
we assume that the environmental limitation experienced by an individual at a
given moment is drawn from a Gaussian distribution. The central limit theorem
states that if a variable is influenced by many additive random factors, it will
approach a Gaussian distribution. As the environmental limitation emerges from
a complex ecological, chemical or physical system, it is likely to be influenced by
many random factors and therefore is likely to approach a Gaussian distribution.
In conclusion, most of the assumptions in this method are made to ensure that
the model is as generic as possible but still applicable to the currently available
datasets with length-at-age data.

Just like other methods, our model assumes that individual length is normally
distributed in a cohort and therefore in the obtained samples as well. Deviations
from this normal distribution can occur for example due to sampling biases or a
link between individual mortality rate and individual length. Fits on simulated
data showed that the value of mean environmental limitation is slightly overes-
timated if the contribution to the data increases with size, while the value of the
mean environmental limitation is underestimated if the contribution to the data
decreases with size (supplementary materials). This is comparable to a situation in
which larger or smaller individuals respectively have a higher probability of ending
up in the data regardless of their age. These model fits on simulated data show
that the effects of length bias in the data might be relatively small. Nonetheless,
it is important to correct for skewness in the individual length distribution in the
data when possible. One way to do so, is to add relative weights to the samples. In
our example with North Sea plaice we weighted the samples by the inverse of the
catch per unit effort (CPUE) per length. The CPUE is a measure of the relative
presence of a length class in the dataset in a given year. In this way, we corrected
for the impact of length on the catchability of an individual, which can arise for
example due to very strong length-specific mortality or harvesting probabilities.
This resulted in a dataset in which individual length approximates a normal dis-
tribution of every age class in every year (Fig. 2.7). Because our model allows
to add weights to every individual sample it is in theory possible to correct for
biases linked to any trait of an individual including age and size. Nonetheless, it
is important to note that it is not possible to correct for all biases because specific
information is often lacking. Especially biases in growth due to genetic differences
and habitat quality might require attention as these could directly impact growth
and skew the size distributions in a population.

A novel and very important aspect of our method is that it accounts for vari-
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ation caused by environmental changes over time, variation between the growth
history of cohorts and variation between individuals within a cohort simultane-
ously. Earlier methods only account for variation due to changes over time by
fitting a growth curve separately for every sampling instance, or only account for
the growth history of a cohort by fitting a growth curve separately for every cohort.
Similarly, more recent methods only accounted for variation between individuals
(Vincenzi et al., 2014; He and Bence, 2007; Pilling et al., 2002; Prajneshu and
Venugopalan, 1999; Wang and Thomas, 1995; Rafail, 1973) or variation caused by
changes through time (Lorenzen and Enberg, 2002; Lorenzen, 1996; Cloern and
Nichols, 1978). Due to the autoregressive nature of individual growth rates, these
sources of variation are strongly intertwined and should not be considered sep-
arately. We account for this by fitting the Von Bertalanffy growth equation for
all cohorts and sampling instances simultaneously. Because we derived our model
from a stochastic differential equation describing individual growth, our model also
accounts for variation in environmental limitation between individuals. In addi-
tion, we show that the variation between individuals is overestimated if a model
does not account for changes is environmental limitation over time.

Because our model simultaneously accounts for variation between individuals
and cohorts and allows variation from the environment to fluctuate over time, the
model can be used for a wide range of applications. First of all, the estimated
mean and variance of the asymptotic length estimated by our model can be used
as a summary statistic for environmental limitation under the assumption that
the sources of variation are independent. Growth of individuals is likely limited
by numerous factors, which are often unknown. Our method offers a summary
statistic for the cumulative distribution of all these factors. Our method is es-
pecially appropriate to estimate individual limitation in growth due to limitation
through food availability. General theory about individual energy allocation links
the asymptotic length of this Von Bertalanffy growth equation to the energy in-
gestion by individuals (Kooijman, 2010; Von Bertalanffy, 1938). The distribution
of the environmental limitation estimated by our model could therefore be used as
a proxy for the distribution of food availability among the individuals in a popula-
tion. Estimates of individual food availability are scarce, because they commonly
have to be obtained from intensive observations or analysis of stomach samples.
Because our model provides a proxy of the individual food availability throughout
the entire population, it can be used for more detailed analyses of the dynamics
of food availability. For example, linking the estimated environmental limitation
to the consumer density might reveal density-dependent feedbacks in the growth
rate of individuals. The environmental limitation as a proxy for individual food
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availability might also provide insight into feeding links between species. The envi-
ronmental limitation in our model always appears as a product with the maximum
asymptotic length (ftℓ∞), it should therefore first be scaled by an estimate of the
species-specific maximum asymptotic length before it can be compared between
species. Comparison of this scaled proxy for individual food availability between
species might then reveal links such as shared resources or competition.

In our example with North Sea plaice we showed that our model can be used
to explore environmental segregation between length or age groups as well. The
R-package (Croll, 2022) allows to split a population into a priori defined length or
age groups and fits an environmental limitation separately for every length or age
group. With a realistic division in length or age groups, our model could provide
valuable information about growth limitation in different life stages. If for example
length or age groups show very diverse patterns in environmental limitation, it is
likely that the length or age groups are environmentally separated either through
segregation in space or differences in diet. In this way the model could therefore
yield additional understanding in the growth dynamics during various life stages.

It is often difficult to judge whether a certain division in length or age groups
is valid. A way to assess the suitability of a division in age or length groups is to
look at the estimated variance in environmental limitation for every group com-
pared to the variance in environmental limitation estimated in a fit without groups.
Without groups, our general model combines all length and age groups and fits
a single environmental limitation for all groups. This method lumps together the
variation in environmental limitation within and between age or length groups
which will lead to a high estimate of the variance in environmental limitation if
groups strongly differ in environmental limitation. In general, one can assume that
individuals within a group are more similar to each other compared to individuals
within another group. The variance in environmental limitation estimated for a
single group is therefore expected to be lower compared to the variance in envi-
ronmental limitation estimated for the entire population. This was only the case
for the youngest age group (up to 4 years) in our example of North Sea plaice.
This suggests that our arbitrary division of the population into three age groups
does not accurately represent the ecology of North Sea plaice. It does demonstrate
that our model can be used to verify whether a suspected division in ecological
groups is likely by comparing the estimated variance in environmental limitation
of a fit without ecological groups with a fit with ecological groups as is done in the
example for North Sea plaice.

Lastly our method might also be applicable to management as it is able to
model variation in growth through time and between individuals based on only a
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limited number of parameters (Flinn and Midway, 2021). Many management mod-
els, in particular those used to estimate reference points for fish stock management,
assume a fixed length distribution at a given size, while variation in growth rates
is shown to be important for the response of populations to exploitation (Lorenzen
and Enberg, 2002). With our model the variation in growth between years can be
easily quantified, resulting in a more accurate prediction of the length-at-age for
every cohort. The age-length relationships from our model then can be used to
calculate a more precise estimate of the needed reference points.

In conclusion, our model provides a way to estimate growth curves and length
distributions of individual cohorts based on single individual length and age ob-
servations. In our model growth is allowed to vary over time, while our model
also accounts for variation between individuals and variation between cohorts. So
far, these factors could only be estimated simultaneously if the growth history of
individuals was known. Models for single observations of individual length and age
only accounted of a subset of these factors. Our model does account for all these
factors and in this way estimates a proxy for the limitation in individual growth,
which may vary over time. This estimate of the limitation in individual growth
is a new step in understanding patterns in individual growth based on individual
field observations.

2.5 Supplementary materials

Model test on simulated data

We fitted the model to simulated data to test the sensibility of the estimated
parameters to the number of observations in the data and possible biases in length
in the data. To do so, we generated the population structure of a population with
a constant mean and variance of the environmental limitation. To do so we used
the following continuous model:

∂E(ℓ)
∂t

+ ∂E(ℓ)
∂a

= rB (µf ℓ∞ − E(ℓ)) (2.9)

∂V (ℓ)
∂t

+ ∂V (ℓ)
∂a

= 2rB

(
σ2

f ℓ2
∞ − V (ℓ)

)
(2.10)

The average length at birth was determined by drawing a random value from a
predetermined interval (ℓ0min - ℓ0max). Other parameters of the simulation were
fixed (Table 2.2). The population structure was simulated over a period of 30
years and every cohort was simulated from age 0 to 10. A sample was drawn from
the population structure for every year and cohort at 180 days after a new cohort
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Table 2.2: Parameters used for simulating population structure.

Parameter definition Symbol Value Unit
Von Bertalanffy growth rate scalar rB 0.001 d−1

Maximum asymptotic length ℓ∞ 1000 mm

Mean environmental limitation µf 0.5 -
Variance in environmental limitation σ2

f 0.0002 -
Minimum length at birth ℓ0min 5 mm

Maximum length at birth ℓ0max 15 mm

Maximum cohort age - 3650 d

Time between cohort starts - 365 d

Time between cohort start and sampling - 180 d

with age 0 is introduced to the population.
To test the influence of the number of parameters on the estimated environ-

mental limitation, we draw 100 data sets from the simulated population structure.
The number of samples varied between 10 and 100 samples per cohort per year
(Fig. 2.5). The estimated mean and variance of the environmental limitation are
distributed evenly around the actual mean and variance in the simulation. With
an increasing number of samples, the standard error of the estimated mean and
variance of the environmental limitation become smaller. In other words, the es-
timated mean and variance in environmental limitation become on average closer
to the real mean and variance if the number of samples increases.

Another concern when estimating environmental limitations from length struc-
tures is a possible bias in the sample method. It is possible that the samples are
biased towards individuals with a larger or smaller length. To test the effect of this
bias on the estimated environmental limitation we sampled 100 data sets with 50
observations per cohort per year from the simulated population structure. When
fitting our model we weighted the samples by individual length. The weight of
a sample changed linearly with individual length (wi = αℓi + β). The slope of
this relationship determined the strength of the bias, ranging from a sampling
bias towards larger individuals (α > 0) to a sampling bias towards smaller indi-
viduals (α < 0). The intercept of the relation between bias weight and length
is determined in such a way that the average weight of samples is equal to one
(β = 1 −

∑n

i=1
αℓi

n ). This will ease comparison between model fits, because the
weighted number of samples is equal for all datasets.

A sample bias linked to weight might result in an error in the estimation of the
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mean environmental limitation, but does not affect the estimation of the variance
in environmental limitation (Fig. 2.6). The mean environmental limitation is
slightly overestimated if larger individuals are more likely to end up in the samples,
while the mean environmental limitation is slightly underestimated when smaller
individuals are more likely to end up in the sample. Although this error seems to
be small, it is important to keep this bias in mind and correct for this bias when
possible.
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Figure 2.5: Average of the estimated mean and variance of the environmental
limitation for different number of data points drawn from a simulated population
structure. The black line indicates the actual values of the mean and variance in
environmental limitation in the simulation.
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Figure 2.6: Average of the estimated mean and variance of the environmental lim-
itation when the data contains a bias with length. A positive bias with length
indicates that larger individuals contribute more to the samples, while a negative
bias with length indicates that smaller individuals contribute more to the samples.
The black line indicates the actual values of the mean and variance in environ-
mental limitation in the simulation.
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Figure 2.7: Weighted distributions of length at age at a given year. The number
of observed individuals with a specific length is weighted by the inverse of the
catch per unit effort of that length in the given year. The length at age seems to
approximately follow a normal distribution.
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Abstract
Information about the ecological connections between species is needed to make
the shift from fisheries management strategies centered around single species to
ecosystem-based fisheries management. Growth rates of fish strongly depend
on the environment. Individual growth curves could therefore contain valuable
information about the environmental conditions experienced by an individual
throughout its life. In this study we explore whether estimated growth curves
contain information about the competition within and between species. To do so,
we estimated growth curves for ten species in North Sea roundfish areas based
on size-at-age data from the NS-IBTS fish survey by fitting a Von Bertalanffy
growth model with varying asymptotic size. From these model fits we extracted
a relative measure for the temporal variation in growth of a stock, which can
be used as indication of the experienced environmental condition. We quantified
the relationship between individual growth and catch-per-unit-effort as a measure
for stock biomass. In this way we found signs of density-dependent growth in at
least six out of the ten species. In addition, we used cluster analysis to explore
the relatedness in ecological growth condition between species and areas. Ecolo-
gically related species tend to show more similar temporal variation in ecological
growth condition than ecologically more distant species. Likewise, areas that are
geographically closer are more similar in ecological growth conditions compared
to geographically more distant areas. This suggests that ecological conditions de-
rived from growth curves provide a useful way to distinguish ecological groups or
regions without the need for additional stomach sampling or ecological studies. We
conclude that temporal variation in growth curves is a valuable summary statistic
for the experienced ecology and environment of a fish stock.
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3.1 Introduction
About three decades ago, general concern about the sustainability of large scale
fisheries arose. Most of the commercially exploited fish stocks were in decline
and showed clear signs of overexploitation (Pauly et al., 2002; Beverton, 1998;
Cook et al., 1997). The widespread fear of aquatic ecosystem collapse and stock
overexploitation led to a consensus about the need to reform fisheries management.
The intensified management of fish stocks seems to pay off as numerous stocks show
signs of recovery (Cardinale et al., 2013; Fernandes and Cook, 2013; Hutchings
et al., 2010; Worm et al., 2009). Due to improvements in fisheries management,
estimated stock biomass for several stocks reached sufficient numbers to produce
maximum sustainable yield, which is considered a low risk scenario (Zimmermann
and Werner, 2019; Froese et al., 2018).

The positive trend in the recovery of fish stocks does not mean that the current
fisheries management practices cannot be improved further (Zimmermann and
Werner, 2019), especially because a substantial number of global fish stocks are still
overexploited (FAO, 2020). In addition, commonly used stock assessment models
fail to predict large changes in the dynamics of fish stocks (Britten et al., 2021;
Hilborn et al., 2020). This mismatch between predictions and reality can be partly
explained by the lack of data on the dynamics of some stocks, but is likely also a
result of the ecological context in which stocks are considered (Jardim et al., 2021).
Most management models consider fish stocks in isolation and only use stock
quantities such as the spawning stock biomass to predict the ecological dynamics
of a stock. This assumption conveniently simplifies the calculation of reference
points, but it is clear that environmental conditions and ecological interactions
between species are important drivers of the dynamics of exploited fish stocks
(Säterberg et al., 2019; Andersen et al., 2015). Based on this insight, ecosystem-
based management starts to gain importance in the consideration of fishing quotas.

Ecosystem-based approaches to fisheries management have in common that
they require some level of information about the ecological connections between
species (Birkenbach et al., 2020; May et al., 1979). Most of the current knowledge
on interactions between fish species is based on stomach samples, physiological
similarities and occurrence patterns (Matley et al., 2018). Studying ecological
relatedness in these ways is often time-consuming and based on limited data. In
addition, the results from these studies are often inconclusive or very spatial or
population specific (Cadrin, 2020; Amundsen and Sánchez-Hernández, 2019). A
more general measure of the response of species to the environment is needed
to understand the ecological relatedness between co-occurring species. The body
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size of individuals might contain important information about the environment
experienced by a stock, because fluctuations in the environment often affect the
growth of individual fish (chapter 2). In this article we explore to what extent
temporal variation in growth curves of fish species contain information about the
experienced environment and the interactions within and between populations.

Growth in body size is an important life history process. Growth requires a
substantial amount of the assimilated resources of an individual and eventually de-
termines the size of an individual. In this way, growth is strongly linked to other
life history processes such as consumption, reproduction and mortality. Growth
curves of fish generally show a high degree of variation and a strong link to the
environment. Changes in growth rates of fish are for example linked to changes
in temperature and stock biomass (Rindorf et al., 2022; Tu et al., 2018; Lorenzen,
2008; Lorenzen and Enberg, 2002; Pauly, 1980). The link between growth rates
and temperature arises because temperature affects the metabolic rates of an in-
dividual (Kooijman, 2000). In contrast, the link between growth rates and stock
biomass is likely to emerge through competition. A higher stock biomass increases
competition and reduces the resource availability per individual, which could be a
limiting factor for individual growth. In addition, an interaction between temper-
ature effects and competition might arise because changes in temperature might
affect the food requirements of an individual, while it might also have a direct
effect on the food source itself. Growth rates are even argued to respond to har-
vesting pressure through evolution, although similar patterns could also emerge
through the effects of harvesting on the competition and food availability within a
stock (Heino et al., 2015; Enberg et al., 2012). The growth curves of individuals in
a stock thus contains valuable information about the environment that individuals
experienced.

In this article we explore whether growth curves contain information about the
environment experienced by individuals in different fish stocks. Herein we focus
on environmental overlap between stocks and competition within a stock. Growth
curves were fitted to fishery survey data of ten exploited North Sea fish stocks using
the method developed in chapter 2. This method is tailored to fit Von Bertalanffy
growth curves to size-at-age observations from fisheries surveys and accounts for
variation in growth between cohorts and individuals as well as temporal variation.
By applying this technique, all temporal variation in growth curves is summarized
in a yearly varying asymptotic size, which we used as an indicator of the effects
of environmental conditions on individual growth. We scale and normalize the
asymptotic size such that it is comparable between areas and species. To gain
insight into the asymptotic size as a measure for the impact of competition on
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growth, we first explored trends in the scaled asymptotic size with time and stock
biomass. In addition, we performed cluster analysis on the normalized asymptotic
sizes to explore whether these growth curves contain information about the overlap
of the environment experienced by the fish stocks.

3.2 Methods

Data collection

We used the Sex-Maturity-Age-Length-Key (SMALK) data and the Catch-Per-
Unit-Effort (CPUE) per length per haul per hour data from the North Sea In-
ternational Bottom Trawl Survey (NS-IBTS) to fit growth curves and estimate
stock density, respectively. The data was downloaded from the ICES DATRAS
database in January 2022 (ICES, 2022). The NS-IBTS is a broad scale survey
conducted in the North Sea region between the British Isles, The Netherlands,
Denmark and Norway. The survey uses standardized bottom trawl gear to tar-
get demersal stocks. The survey is conducted from 1965 onward and is performed
throughout the year. In this study we focused on data collected in the first quarter
of each year (January to March), because this quarter includes the largest number
of data points and covers the largest number of years. Growth periods in this
study therefore spanned from the first quarter of a year to the first quarter of the
following year. We performed our analysis for ten species which are labelled as the
target species of the NS-IBTS (ICES, 2020): haddock (Melanogrammus aegefinus),
herring (Clupea harengus), whiting (Merlangius merlangus), plaice (Pleuronectes
platessa), witch (Glyptocephalus cynoglossus), sprat (Sprattus sprattus), Norway
pout (Trisopterus esmarkii), cod (Gadus morhua), mackerel (Scomber scombrus)
and saithe (Pollachius virens). The data was split and analysed separately for
every species and ten roundfish regions (Fig. 3.1) which are commonly used to
analyse size and age relations for the NS-IBTS species (ICES, 2020).

The SMALK data reports the number of individuals observed with a specific
age-length combination in every year and area. Lengths are recorded in 5 or 10
millimetre intervals and ages are recorded in years. Individuals above a predeter-
mined, species-specific age are recorded as a plus-group. To make the SMALK
data suitable for our analysis, the data of every species and area was processed
in several steps. First, all data entries with missing age or size values were re-
moved. Second, all plus-groups were removed from the data, because the exact
age of these individuals was unknown, which could introduce biases when fitting
growth curves. Third, early years were discarded until the first year in the data
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Figure 3.1: Roundfish areas used for the NS-IBTS data

contains on average at least one entry for every age. Similarly, low and high age
classes were discarded until the youngest and oldest age groups contain on average
at least one entry for every year. Last, areas in which the number of age and
year combinations exceeded the number of observations were excluded from the
analysis entirely.

The CPUE data contains a relative measure of the number of individuals caught
per hour in every 5 or 10 millimetre length class for every haul in the survey. We
used this metric to derive a relative proxy for the population biomass. Every length
class was represented by the length midway between the length class boundaries.
This length was converted to individual mass using a power scaling between indi-
vidual length (ℓ) and mass (M):

M = aℓb (3.1)

The values of a and b are species-specific scalars which are derived from fishbase
(Froese and Pauly, 2021) (Table 3.1). We used the length-weight relationships from
fishbase because the NS-IBTS data lacked sufficient information to construct an
accurate length-weight relationship for some species. The use of the length-weight
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Table 3.1: Species-specific scalars for the individual length-to-mass conversion
following a power scaling (M = aℓb). Values are taken from fishbase (Froese and
Pauly, 2021).

Species a b
Haddock 0.00646 3.08
Herring 0.00562 3.09
Whiting 0.00617 3.06
Plaice 0.00794 3.07
Witch 0.00490 3.09
Sprat 0.00575 3.06
Norway pout 0.00589 3.06
Cod 0.00676 3.08
Mackerel 0.00646 3.06
Saithe 0.00636 3.06

relationship from fishbase also minimizes the relationship between the size-at-age
data used to fit the growth curves, which are used as a dependent variable in
the analysis, and the estimated stock biomass, which is used as an independent
variable in the analysis. The individual mass was multiplied with the CPUE per
length and summed per haul to obtain the total biomass per unit effort (BPUE).
The separate values of the BPUE were averaged over all hauls within a year for
every area. This quantity was used as a relative proxy of the population biomass
in a given area for a given year.

Fitting growth curves

The SMALK data contains pairs of age and size observations from sampled in-
dividuals. These data were used to fit the Von Bertalanffy growth models. In
chapter 2 the following recurrence relations for the expected length (E[ℓT,a]) and
variance in length (V [ℓT,a]) at time T and age a for every cohort were presented:

E
[
ℓ(T +1,a+1)

]
=E

[
ℓ(T,a)

]
e−rB + µ̄T ℓ∞

(
1 − e−rB

)
(3.2a)

V
[
ℓ(T +1,a+1)

]
=V

[
ℓ(T,a)

]
e−2rB + σ̄2

T ℓ2
∞
(
1 − e−2rB

)
(3.2b)

In this model every individual follows a Von Bertalanffy growth curve in which
the Von Bertalanffy growth scalar (rB) is a species-specific constant and the mean
and variance in asymptotic size (µ̄T ℓ∞, σ̄2

T ℓ2
∞) are allowed to fluctuate between

years. We used this estimated asymptotic size as a relative estimate of the impact
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of the environment on the growth of individuals in an area and year. An increase
in the asymptotic size indicates that the environment of an individual becomes
more favourable and the individual therefore grows faster and bigger.

The model described with equation (3.2) was fitted to the SMALK data for
every species in all areas following the procedures outlined in chapter 2 and using
the VBGfit package in R (Croll, 2022). This package fits the model through
maximum likelihood procedures. The likelihood of the model was optimized using
the Sbplx-algorithm from the NloptR package (Johnson, 2021). For every area, this
resulted in one estimate of the Von Bertalanffy growth scalar (rB), the mean and
variance in size at the youngest age for every year (E

[
ℓ(T,amin)

]
, V
[
ℓ(T,amin)

]
), the

mean and variance in size at all ages in the first year (E
[
ℓ(Tmin,a)

]
, V
[
ℓ(Tmin,a)

]
),

and the mean and variance in asymptotic size for every year (µ̄T ℓ∞, σ̄2
T ℓ2

∞).
From the model fits, the estimated mean asymptotic size (µ̄T ℓ∞) was used

for further analysis. The time series of the mean asymptotic size were processed
in three steps as described below to obtain a value of the environmental growth
conditions (EGC) which were suitable for comparison between areas and species.

First, the asymptotic size estimated by the model is not reliable in years
without sufficient data points (shown in chapter 2). We therefore did not in-
clude estimations of the asymptotic size for species, area and year combinations
which had an average of two or fewer data points per age class. This results in a
gap in some of the time series for the mean asymptotic size. These gaps did not
contribute to further analysis.

Second, the asymptotic size (µ̄T ℓ∞) and the Von Bertalanffy growth scalar (rB)
cannot be estimated separately which results in a spurious relationship between
the estimated asymptotic size and the Von Bertalanffy growth scalar between areas
(Eveson et al., 2007; Pilling et al., 2002). This could result in a pattern in which
the value and variance of the estimated asymptotic size is high in areas with a
low estimated Von Bertalanffy growth scalar and the value and variance of the
estimated asymptotic size is low in areas with a high estimated Von Bertalanffy
growth scalar (supplementary figure 3.7). For several species we indeed found
a significant relation between the mean asymptotic size and the inverse of the
growth scalar (1/rB). We corrected the mean asymptotic sizes of all species for
this relationship by regressing the mean asymptotic size against the inverse of the
growth scalar using linear models. Taking the residuals of these models removed
the effect of the growth scalar on the mean asymptotic size in an area. After this
correction, we still found a significant relation between the standard deviation of
the mean asymptotic size and the inverse of the growth scalar (1/rB) for several
species. We used linear regression to quantify the relationship between the stan-
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dard deviation in the mean asymptotic size and the inverse of the growth scalar.
For all species, we divided the mean asymptotic size by the predicted values of
these relationships to correct for the effect of the growth scalar on the amplitude of
the fluctuations in the asymptotic size. These corrections resulted in a quantity of
which the value and variance is independent of the Von Bertalanffy growth scalar
and can be compared between areas. This quantity is still related to the estimated
mean asymptotic size and contains the same information about the environment
experienced by the individuals in a stock, but has different absolute values. We will
therefore refer to this quantity as the corrected environmental growth condition
(EGC).

Third, the corrected EGC still differs in value and variance between species.
These absolute differences emerge from the physical differences between species.
To enable comparison of the general patterns in corrected EGC between species, we
normalized the corrected EGC of all species by subtracting the mean and dividing
by the standard deviation of the corrected EGC per species. This resulted in a
normalized value of the EGC. This value can be used for comparison between areas
and species, because it is corrected for the possibly spurious relationship between
the estimated asymptotic size and the Von Bertalanffy growth scalar as well as
the absolute differences between species that are not caused by the environment.

Analysis of environmental conditions

We first analysed general trends in the corrected EGC with respect to time and
BPUE using linear regression. This was done separately for every area and species
combination as well as all areas combined for every species.

Then we explored the relatedness of the normalized EGC between species and
between areas. Dissimilarities between species were calculated as the mean squared
difference between the normalized EGC in a given year and area. Likewise, the dis-
similarities between areas were calculated as the mean squared difference between
the normalized EGC for a species in a year. Dissimilarities were only calculated
for pairs of species or pairs of areas if they contained EGC values for at least five
overlapping area-year or species-year combinations respectively. This resulted in
dissimilarity matrices for the dissimilarity between all species pairs in each area
and between areas for each species separately. If overlap in the time series of
normalized EGC between two species or areas was insufficient, the dissimilarity
between these species or areas was set to the average dissimilarity in the dissimil-
arity matrix. This additional step was only necessary for the dissimilarity between
witch and mackerel due to several data-lacking years for these species. These dis-
similarity matrices were analysed using several clustering methods (complete link-
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age, average (UPGMA) and mcquitty (WPGMA)). Multiscale bootstrapping with
10,000 repeats was performed on the normalized EGC to calculate the probability
of appearance of clusters using the pvclust package in R (Suzuki and Shimodaira,
2006). In this bootstrapping procedure, the normalized EGC data was resampled
with replacement in which the number of samples taken varied between repeats
(Shimodaira, 2002). Because the results of the various clustering methods were
very similar, we only show the results from the average (UPGMA) clustering in the
main text and include the results of the other clustering methods as supplementary
figures (Fig. 3.5 and 3.6).

3.3 Results

Estimating environmental growth condition

We estimated the asymptotic body sizes of ten fish species in ten roundfish areas
based on the size-at-age data from the NS-IBTS. In total 78 of the species-area
combinations contained sufficient data to fit an asymptotic size value (Fig. 3.2).
The time series of the estimated asymptotic size differed strongly in length, ranging
from only one or two years to the full time span of 50 years.

Eight out of the ten species (haddock, herring, whiting, plaice, sprat, Norway
pout, cod and saithe) showed a significant positive relationship between the esti-
mated mean asymptotic size and the inverse of the growth scalar (p < 0.05). This
relationship accounted for a substantial amount of the variation in the estimated
mean asymptotic size between areas for some of the species (0.8287 > R2 > 0.0205)
and resulted in large differences in the estimated mean asymptotic size between
areas (supplementary figure 3.7). Five of these species (haddock, whiting, plaice,
Norway pout and cod) showed a significant positive relationship between the stan-
dard deviation in the estimated mean asymptotic size and the estimated growth
scalar as well (p < 0.05, 0.9681 > R2 > 0.608). This relationship suggests that
the amplitude of the fluctuations in the estimated mean asymptotic size increases
with a decrease in the estimated growth scalar. These correlations between the
estimated mean asymptotic size and the estimated growth scalar are known to
arise as an artefact when fitting a Von Bertalanffy growth curve to data (Eveson
et al., 2007; Pilling et al., 2002). Therefore, we corrected the estimated mean
asymptotic size for this spurious relationship. After this correction, the estimated
mean asymptotic size and the standard deviation herein did not correlate with
the inverse of the growth scalar any more, except for cod which showed a slight
positive relationship between the estimated mean asymptotic size and the inverse
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Figure 3.2: Corrected annual asymptotic sizes of ten commercially exploited fish
species in ten roundfish areas in the North Sea, after correction for a possible
correlation between asymptotic size and the growth scalar. Time series are inter-
rupted for years in which data was insufficient to provide a reliable estimate of the
asymptotic size.
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growth scalar. This remaining relationship for cod explained a negligible amount
of variation in the estimated asymptotic size between areas (R2 = 0.0156 after
correction against R2 = 0.8287 before correction). We refer to these corrected
values as the corrected EGC (Fig. 3.2).

General trend in environmental growth condition

Seven of the ten species (haddock, herring, whiting, plaice, sprat, cod and mack-
erel) showed a negative trend in the corrected EGC in at least one ICES area
(Table 3.2). This indicates that the environmental condition decreases over time,
which results in a decrease in the size-at-age over time. For five of these species
(haddock, herring, plaice, sprat and cod), the negative trend in corrected EGC
was also apparent on a larger scale when the data from all areas are combined.

In total 78 of the species-area combinations contained sufficient data to analyse
the effect of population biomass estimated as the biomass per unit effort (BPUE)
on the corrected EGC (Table 3.3). The corrected EGC was negatively correlated
with BPUE for five species (haddock, herring, whiting, Norway pout and cod).
For four of these species (haddock, herring, whiting and Norway pout) a negative
relationship between corrected EGC and BPUE was found in at least one area.
These negative correlations all occurred in roundfish areas 1 to 4, which are the
more north-western areas in the North Sea. Sprat also expressed a negative re-
lationship between the corrected EGC and BPUE in area 3, but this relationship
did not persist when all areas were analysed together. In contrast to the negative
correlation when all areas were analysed together, cod shows a positive correlation
between the corrected EGC and BPUE in area 5.

Clustering

We clustered the ten species based on the normalized EGC in all areas and years
with three cluster methods. This resulted in several consistent species clusters,
occurring with every clustering method. Here we only show the results using
the average (UPGMA) clustering. The first cluster consists of plaice and witch,
which are the two flatfish species in our analysis (red cluster fig. 3.3). These
flatfish species cluster together with two small forage fish species, herring and
sprat, although with a relatively low bootstrap probability (green cluster fig. 3.3).
Mackerel and Norway pout are pelagic species of intermediate length and cluster
together with saithe, which is a somewhat larger pelagic species (blue cluster fig.
3.3). The last cluster consist of whiting and haddock which are both larger species
that partly forage on smaller fish species (purple cluster fig. 3.3). Cod is the
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Table 3.2: A significant relationship between the corrected EGC and the time
variable indicates a directional trend over time. Asterisks indicate the significance
of the slope (p < 0.05, p < 0.01 and p < 0.001 respectively). All reported areas
had a significant negative relation between the environmental growth condition
and the time variable (p < 0.05).

Species Overall Number of areas
with a negative slope

Haddock -0.0186*** 4/9 (areas 2, 3, 4, 6)
Herring -0.0189*** 6/10 (areas 1, 2, 4, 5, 6, 9)
Whiting -0.002 2/10 (areas 4, 6)
Plaice -0.0430*** 4/10 (areas 2, 4, 6, 9)
Witch -0.1196 0/2
Sprat -0.0162*** 3/10 (areas 5, 9, 10)
Norway Pout 0.0023 0/7
Cod -0.0130** 3/10 (areas 3, 4, 9)
Mackerel -0.0003 1/6 (area 3)
Saithe 0.0151 0/3

Table 3.3: The relationship between the corrected environmental growth condition
(EGC) and the biomass per unit effort (BPUE). Asterisks indicate the significance
of the slope (p < 0.05, p < 0.01 and p < 0.001 respectively). All reported areas
had a significant relationship between the EGC and the BPUE (p < 0.05).

Species Overall Number of areas
with significant slope

Haddock -3.06 · 10-6*** 1/9 (Negative in area 3)
Herring -4.17 · 10-7** 2/10 (Negative in areas 2, 4)
Whiting -9.73 · 10-7* 1/10 (Negative in area 3)
Plaice −6.90 · 10−6 0/10
Witch −1.74 · 10−3 0/2
Sprat −1.12 · 10−6 1/10 (Negative in areas 3)
Norway pout -2.21 · 10-6*** 2/7 (Negative in areas 1, 4)
Cod -5.36 · 10-6** 1/10 (Positive in area 5)
Mackerel −1.67 · 10−6 0/7
Saithe −3.79 · 10−6 0/3
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Figure 3.3: Clustering of ten North Sea fish species based on the normalized
environmental growth condition for the average (UPGMA) clustering method.
Small digits show the bootstrap probability, which is the fraction of bootstrap
repeats in which a branch contained the depicted species. Coloured branches
show clusters which arise in all clustering methods.

largest predatory fish in the data and does not cluster with the other species.
Likewise, we clustered the ten roundfish areas in this analysis based on the

normalized environmental growth condition (Fig. 3.4). This resulted in a big
cluster of the north-western roundfish areas 1 to 4, with a relatively high bootstrap
probability (red cluster fig. 3.4). Another cluster consists of area 5 and 6 which
are two large adjacent regions in the south of the North Sea (green cluster fig. 3.4).
Area 8 and 9 form the Skagerrak and Kattegat areas between Denmark, Norway
and Sweden which cluster together as well (blue cluster fig. 3.4). Geographically,
area 7 is connected to all above-mentioned clusters, but it is unclear to which
cluster area 7 belongs. This might suggest that there are some strong links between
the clustered areas. Lastly, area 10 does not cluster well with any of the other
areas. This is likely because area 10 is only present in the survey from 2009 onward
and is relatively isolated geographically.
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Figure 3.4: Clustering of ten roundfish areas based on the normalized environ-
mental growth condition for the average (UPGMA) clustering method. Small
digits show the bootstrap probability, which is the fraction of bootstrap repeats
in which a branch contained the depicted areas. Coloured branches show clusters
which arise in all clustering methods.

3.4 Discussion
We fitted Von Bertalanffy growth curves for exploited North Sea fish stocks in
ten roundfish areas over a period of 50 years. The temporal variation in these
growth curves was summarized in the estimated mean asymptotic size. We correc-
ted the estimated mean asymptotic size for a possibly spurious relationship with
the estimated Von Bertalanffy growth scalar and used these quantities as a correc-
ted measure for environmental growth condition (EGC). The EGC is a summary
statistic for the environmental factors that limit growth, such as food availability.
Seven out of the ten species showed a negative trend in the corrected EGC over
time in at least one area. In addition, corrected EGC showed a link with biomass
per unit effort in at least one area for six out of ten species. More interestingly,
clustering based on the normalized EGC resulted in four distinct clusters of spe-
cies. These clusters consisted of the flatfish species and the forage fish species on
one side and the small to intermediate pelagic species and the predatory species
on the other side. Similarly, clustering of the roundfish areas resulted in three
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distinct clusters, consisting of a large cluster covering the northern areas, a cluster
with the southern areas and a cluster covering the Skagerrak and Kattegat.

By fitting a Von Bertalanffy growth curve in which the asymptotic size varied
between years, we were able to summarize the temporal variation in growth with
this asymptotic size (shown in chapter 2). The estimated asymptotic sizes showed
extreme differences between areas (supplementary figure 3.7). These extreme dif-
ferences arose as an artefact because the growth curves were fitted separately for
every area. The asymptotic size and the Von Bertalanffy growth scalar cannot be
estimated separately, resulting in a spurious relationship between the estimated
asymptotic size and the Von Bertalanffy growth scalar between areas (Eveson
et al., 2007; Pilling et al., 2002). We corrected for this spurious relationship to
obtain an unbiased measure of the EGC. In addition, we normalized the EGC to
be able to compare the EGC between species.

Because the EGC is used as a summary statistic for the environmental im-
pact on growth, it is likely that the EGC is determined by multiple environmental
factors such as food availability and temperature. Quantitatively, every environ-
mental factor is likely to influence growth in a distinct way, but qualitatively these
effects can be separated in two mechanisms. Some environmental factors such as
food availability directly affect the anabolism rate of an individual. According to
metabolic theory, these environmental factors only affect the asymptotic size of
the growth curves (Kooijman, 2000; Von Bertalanffy, 1938). In contrast, some
environmental factors, such as temperature, directly affect the catabolism rates of
an individual. According to metabolic theory these processes affect the asymptotic
size and the Von Bertalanffy growth scalar in opposite directions (Kooijman, 2000;
Von Bertalanffy, 1938). As a consequence, factors affecting the catabolism rates
of an individual will result in a negative correlation between the estimated asymp-
totic size and the estimated Von Bertalanffy growth scalar. This relationship is
indistinguishable from the spurious relationship that might arise from the fitting
procedures. Consequently, differences between areas caused by an environmental
factor that affect catabolism rates will not be present in the data corrected for the
spurious relationship arising from the fitting procedures. Before this correction,
environmental factors affecting catabolism rates would result in a very distinc-
tive pattern in which the estimated mean asymptotic size is negatively correlated
with the estimated Von Bertalanffy growth rate and both are correlated with the
environmental factor but with opposite slopes. We did not observe this pattern
for the biomass-per-unit-effort (BPUE) as a predictive variable in our study. This
suggests that BPUE, as a measure of population density, only affected individuals’
anabolism rates but not catabolism rates. The correction for the methodological
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artefact does not affect the dynamics of the estimated asymptotic size within an
area because the Von Bertalanffy growth scalar is estimated as a constant para-
meter for every area. The corrected asymptotic size can therefore be used as a
relative proxy for the environmental growth condition (EGC) within an area.

Seven out of the ten analysed stocks showed a decreasing trend in environmen-
tal growth condition over time. For five of the species this trend was even present
when all areas were analysed simultaneously. This negative trend in environmen-
tal growth condition might seem counter-intuitive as most of the North Sea fish
stocks are recovering over the last decades (Cardinale et al., 2013; Fernandes and
Cook, 2013; Hutchings et al., 2010; Worm et al., 2009). It is important to note
that studies reporting the recovery of fish stocks mainly consider the density or
biomass of a stock. Stock recovery therefore indicates that the density or biomass
of the stock increased. It is likely that the impact of a stock on the environment
increases with the density of the stock, for example due to higher consumption or
increased use of space. Recovery of a stock can, therefore, lead to deterioration
of the shared environment and a decrease in EGC. It is therefore likely to observe
a decrease in the EGC combined with an increase in stock biomass for recovering
fish stocks, such as plaice or herring (Cardinale et al., 2013; Fernandes and Cook,
2013). However, we also reported a decrease in EGC for cod in the North Sea,
while this cod stock is still heavily overfished and does not display a clear increase
in biomass (Cardinale et al., 2013; Fernandes and Cook, 2013). In this situation,
the decrease in EGC is not caused by the stock itself. This might be a worrying
signal about the status of the stock, as both the biomass and the environment
of the stock seem to deteriorate. A clear trend in EGC might therefore be an
interesting addition to stock biomass as an indication of stock status.

Six of the ten analysed species showed a link between EGC and BPUE in at
least one area, which suggests that growth in these species is density-dependent.
Density dependence in individual growth has been shown for numerous fish stocks
(Rindorf et al., 2022; Zimmermann et al., 2018; Lorenzen, 2016; Schram et al.,
2006; Lorenzen and Enberg, 2002), including haddock, herring, whiting, sprat and
cod for which we found this pattern as well. A common explanation for this pat-
tern is that an increase in stock biomass results in an increase in competition
for food and space and therewith a decrease in resources for individual growth.
Density-dependent individual growth has previously been shown for plaice (Rijns-
dorp and Van Leeuwen, 1996), mackerel (Jansen and Burns, 2015) and saithe as
well (Cormon et al., 2016). We did not find an indication of density dependence
in growth for these species in our analysis, even though we found a decreasing
trend in EGC for these species. It is likely that we were not able to detect density
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dependence in these species due to a lack of data or an inaccurate estimate of
the stock biomass. For example, we were only able to estimate growth curves for
plaice in most areas from 2010 onward, while the major recovery and fluctuations
in stock biomass of plaice occurred before this period (ICES, 2021b). In addition,
it is important to consider that stocks do live in a diverse environment with many
interactions. The impact of a stock on the environment could therefore be over-
shadowed by other factors such as competing species or human activities. This
would reduce the relative impact of the stock density on the environmental condi-
tions and therewith reduces density dependence in growth. This could also explain
the apparent positive relation between biomass per unit effort and growth of cod
in roundfish area 5. An unknown confounding factor could lead to an increase
in environmental conditions and therewith an increase in both growth and repro-
duction, resulting in an apparent positive relationship between individual size and
stock density (Rindorf et al., 2022). The relationship between individual growth
and stock density is therefore an interesting indicator for the relative impact of a
stock on its own environmental conditions.

We performed cluster analysis on the fish species and the roundfish areas based
on environmental growth condition estimated from population growth curves. This
resulted in four distinct clusters of species that differentiated between forage fish
species and flatfish species on one side and predatory species on the other side.
Interestingly, pout and mackerel cluster together with other predatory species al-
though only large individuals of these species feed on other fish. These clusters
could be explained by a partly overlapping diet. Mackerel and pout mainly for-
age on crustaceans (copepods or euphausiids), while saithe, whiting and haddock
feed on a mixed diet of crustaceans and forage fish (Mehl and Westgård, 1983;
Hislop et al., 1991; Bromley et al., 1997). Cod is rarely associated with foraging
on crustaceans, which corresponds with the result that cod clusters the furthest
away from mackerel and pout (Floeter and Temming, 2003). This clustering could
indicate that the non-piscivorous part of the diet from mackerel and pout has the
largest impact on the experienced growth condition of a stock, possibly because
most individuals within these stocks are young and not (yet) piscivorous. Another
possibility is that the patterns in the growth curves of the predatory species are
caused by other environmental factors than food availability, such as a similar re-
action towards shifting temperatures or fishing regimes within the gadidae family.
Nonetheless, the clustering of fish species based on growth curves was very similar
to the clusters expected based on ecological and geographical similarities. This
shows that growth curves contain valuable information about the environmental
conditions encountered by a species in a specific area.
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Clustering of the roundfish areas resulted in a northern cluster, a southern
cluster and a cluster for the Skagerrak and Kattegat. This suggests that the EGC
in geographically adjacent areas is similar. The high connectivity between the
roundfish areas is further emphasized by the result that further clustering of these
three clusters was inconclusive. Yet, the more global clustering of the North Sea
in three regions is very clear and suggests that geographic differences in EGC are
present. As a consequence, a shift in the geographical distribution of a stock is
likely to influence the experienced EGC of stocks and therewith the growth and
size of individuals.

Fisheries management is slowly shifting from a single-species perspective to
a multi-species and ecosystem-centred perspective (Birkenbach et al., 2020; May
et al., 1979). Information about the ecological overlap of species is needed to
facilitate this shift. Generally, such information is collected using labor-intensive
methods such as stomach sampling, physiological similarities and expert knowledge
(Cadrin, 2020; Amundsen and Sánchez-Hernández, 2019; Matley et al., 2018). In
this study we show that reconstructed growth curves can reveal relevant inform-
ation about the ecology of a stock as well. Growth of individual fish is strongly
affected by the environment (Tu et al., 2018; Lorenzen, 2008; Kooijman, 2000).
Growth curves therefore contain valuable information about the ecological condi-
tions and limitations experienced by a stock. It is likely that ecologically similar
species are affected in a similar way by the environment, and that environmental
conditions are similar in geographically and physically similar areas. Environmen-
tal conditions derived from growth curves could therefore provide valuable insight
in the ecological relatedness between stocks and areas, based on straightforward
size and age measurements. This could be further tested by comparing the results
of diets and stomach samples of species with similar growth curves. Similarly,
the clusters could be compared to reconstructions of the North Sea food web. In
addition, estimated growth curves and EGC could be correlated to densities of
other stocks to show additional ecological relationships between species such as
competition and predation. Overall, growth curves appear to contain valuable
information about the ecological conditions and relatedness of fish stocks and is a
promising method to provide additional information about the state of a stock.
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Figure 3.5: Clustering of ten North Sea fish species based on the normalized
environmental growth condition for three different cluster methods. Small digits
show the bootstrap probability, which is the fraction of bootstrap repeats in which
a branch contained the depicted species. Coloured branches show clusters which
arise in all clustering methods.
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Figure 3.6: Clustering of ten roundfish areas based on the normalized environ-
mental growth condition for three different cluster methods. Small digits show the
bootstrap probability, which is the fraction of bootstrap repeats in which a branch
contained the depicted areas. Coloured branches show clusters which arise in all
clustering methods.
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Figure 3.7: Annual asymptotic sizes of ten commercially exploited fish species in
ten roundfish areas in the North Sea, before correction for a possible correlation
between asymptotic size and the growth scalar. Time series are interrupted for
years in which data was insufficient to provide a reliable estimate of the asymptotic
size.
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Abstract
Plasticity is the extent to which life history processes such as growth and repro-
duction depend on the environment. Plasticity in individual growth varies widely
between taxa. Nonetheless, little is known about the effect of plasticity in in-
dividual growth on the ecological dynamics of populations. In this article we
analyse a physiologically structured population model of a consumer population
in which the individual growth rate can be varied between entirely plastic to en-
tirely non-plastic. We derive this population level model from a dynamic energy
budget model to ensure an accurate energetic coupling between ingestion, somatic
maintenance, growth, and reproduction within an individual. We show that the
consumer population is either limited by adult fecundity or juvenile survival up
to maturation, depending on the level of growth plasticity and the non-plastic
individual growth rate. Under these two regimes we also find two different types
of population cycles which again arise due to fluctuation in respectively juvenile
growth rate or adult fecundity. In the end our model not only provides insight
into the effects of growth plasticity on population dynamics, but also provides a
link between the dynamics found in age- and size-structured models.
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4.1 Introduction
Phenotypic plasticity is the difference in individual phenotypes due to the influ-
ence of the environment (Sultan and Stearns, 2005; Miner et al., 2005). It can
arise if individual behaviour or individual life history processes such as growth,
reproduction and mortality depend on the environment. As population dynamics
arises from the accumulation of individual life histories (Miller and Rudolf, 2011),
it is evident that plasticity in life history processes can strongly influence the dy-
namics of populations. Although plasticity is widely explored in the context of
evolutionary dynamics, the effect of plasticity of life history traits on population
dynamics is less well understood (Schmitz et al., 2003; Miner et al., 2005).

The population dynamic effects of plasticity in different life history processes
cannot be considered separately, as many life history processes are linked through
energy allocation schemes within an individual. It is therefore important to know
the rules of within-individual energy allocation when considering plasticity in life
history processes (Nisbet et al., 2000; Brown et al., 2004). Different frameworks
have been formulated to understand individual energy allocation (Kooijman, 2000;
West et al., 2001; Hou et al., 2008; Sousa et al., 2008). In general, assimilated en-
ergy is divided among maintenance, growth and reproduction, while a deficit in
assimilated energy can lead to additional mortality due to starvation. If a life
history process is entirely non-plastic, it does not depend on the environment and
requires a predetermined amount of energy. The energy requirements of such a
demand-driven process could be met through changes in behaviour to adapt the
energy intake or by changes in the energy flow to other processes (Kooijman, 2010).
In contrast, a purely supply-driven process is by definition plastic, because it de-
pends entirely on the amount of assimilated energy and therefore on the food con-
ditions of the environment. Models for individual energy allocation mainly differ in
the priority of different processes (Lika and Nisbet, 2000; Kooijman, 2000; Zhang
et al., 2012; Jager et al., 2013), but commonly maintenance costs are considered
as a non-plastic (demand-driven) process while both growth and reproduction are
considered as a plastic (supply-driven) process (but see De Roos et al. (2009) for an
example of a model in which growth is incorporated as a demand-driven process).

A life history process for which plasticity strongly differs between taxa is the
individual growth in body size. Environment-dependent changes in individual
growth rate are observed in a wide range of ectothermic species ranging from Daph-
nia (McCauley et al., 1990) and fish (Lorenzen and Enberg, 2002; Zimmermann
et al., 2018) to amphibians and reptiles (Halliday and Verrell, 1988), although
some specific species in these taxa are found to be endothermic (Dickson and
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Graham, 2004). In addition, it is even suggested that the growth rate of some
large fossil mammals was flexible (Köhler and Moyà-Solà, 2009). This suggests
that the growth rate in most ectotherms and early endotherms is plastic. In con-
trast, the growth rate of most modern endotherms (e.g. birds and mammals) is
relatively independent of environmental influences. To maintain a constant growth
rate in a fluctuating environment, it is necessary to regulate the amount of energy
acquired and allocated to somatic growth. This can partly be achieved by the
ability to maintain a constant homeostasis and adaptive behaviour (Kooijman,
2010). Meanwhile, the resting metabolic expenditure of endotherms exceeds that
of ectotherms by an order of magnitude, even when corrected for expenditure for
thermoregulation or under conditions with limited energy demand such as dur-
ing torpor or hibernation (Bennett and Ruben, 1979). The additional resting
metabolic expenditure in endotherms is likely used to maintain a constant energy
flow to growth in order to maintain a constant somatic growth rate. This lat-
ter idea is supported by field observations of ungulates which experience delayed
reproduction and decreased fecundity with low food abundance (Skogland, 1986;
Clutton-Brock et al., 1987; Festa-Bianchet et al., 1995; Coulson et al., 2000; Albon
et al., 2000) and laboratory observations of house mice, which stopped ovulating
while maintaining growth under reduced food conditions (Perrigo, 1990). Alto-
gether this suggests that the growth rate of endotherms is largely predetermined
and non-plastic rather than supply driven.

Whereas the plasticity of life history characteristics can be considered as a
continuous trait ranging from non-plastic to highly plastic (Sultan and Stearns,
2005), the individual growth rate in models of structured populations is generally
assumed to be either non-plastic or entirely plastic. This results in two categories
of structured models with different dynamics. For example, age-based models,
such as used in fisheries management (Schnute and Richards, 1998), assume that
individuals of the same age are of similar size. The growth rate of individuals is
thus implicitly assumed to be independent of the environment, suggesting that
individual growth is a non-plastic process (De Roos et al., 2003). In these models,
the population structure is entirely determined by the individual reproduction and
mortality rate. Population dynamic cycles in these models arise due to the delay
between birth and maturation and the competition between different life stages
(Gurney et al., 1983; Gurney and Nisbet, 1985; De Roos et al., 2003; Pfaff et al.,
2014). In contrast, most size-structured models are based on a dynamic energy
budget model in which individual growth is modelled as a supply-driven process.
As a consequence, the individual growth rate depends on the resource density and
is therefore entirely plastic (De Roos et al., 1990; De Roos and Persson, 2001). Due
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to the highly plastic individual growth rate, the size-structured models can show
a range of population structures and different types of population dynamic cycles,
which mainly depend on the competitive strength of different life stages (De Roos
et al., 2003; De Roos and Persson, 2003). Due to the discrete differences between
these two classes of structured models, it is largely unclear how predictions from
(age-structured) models with non-plastic growth relate to (size-structured) models
with entirely plastic growth.

Although we know most about the ecological dynamics when individual growth
is either entirely plastic or non-plastic, it is more likely that for most species the
actual level of plasticity in individual growth lies between these two extremes. At
such intermediate levels of growth plasticity, individual growth would consist of a
non-plastic part representing the baseline minimum growth rate of an individual,
and a plastic part, which is an environment-dependent additional increase in indi-
vidual growth. This raises the question of how population dynamics changes when
the plasticity in individual growth is at intermediate levels. Here we present a size-
structured model in which we vary the individual growth rate from non-plastic to
entirely plastic. We base this model on a simple Dynamic Energy Budget (DEB)
model (Jager et al., 2013) to ensure a plausible scheme for energy allocation within
an individual. Herewith we restrict ourselves to the simplest case in which the envi-
ronment only consists of a single dynamic resource. Therefore, non-plastic growth
in our model indicates that the individual growth rate is entirely independent of
the resource density and requires a predetermined amount of energy, which could
be set and regulated by genetic and chemical regulatory pathways within an in-
dividual. In contrast, entirely plastic growth indicates that the individual growth
rate depends on the resource density. The growth rate is therefore completely
supply driven and fluctuates accordingly. We will explore how the population dy-
namics in this model changes with respect to the level of growth plasticity as well
as the maximum density of the resource, as an increase in the latter is generally
known to destabilize the dynamics from structured population models, resulting
in population dynamic cycles (De Roos et al., 1990).

4.2 Model formulation

Individual energy dynamics

As a basis for the individual energy dynamics, we use a simplified DEB model
described by Jager et al. (2013). This model describes energy intake, somatic
growth and reproduction in terms of energy stored in lean mass (Em). In the
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DEB theory framework, it is generally assumed that individuals of all sizes and
ages have the same shape and body composition and therefore both the mass and
size of an individual scale with the energy stored in lean mass. Energy ingestion
(I) is assumed to scale with the resource density (R) following a Holling type II
functional response (f(R) = R

Rh+R , with Rh the half saturation constant), the
individual surface area (E2/3

m ) and the maximum ingestion rate per unit surface
area (IR):

I = IRf(R)E2/3
m = IR

R

Rh + R
E2/3

m (4.1)

We follow DEB theory and assume assimilation efficiency in the gut is a species-
specific constant. The surface-specific maximum ingestion rate times the assim-
ilation rate is represented by α. The original energetic model by Jager et al.
(2013) assumes growth is plastic and follows a κ-rule in which a fraction κ of
the assimilated energy is used for somatic growth and somatic maintenance costs.
The somatic maintenance costs are assumed to be non-plastic and scale with the
energy stored in lean mass through the energy-specific maintenance costs (b). Cov-
ering somatic maintenance costs has priority over somatic growth. This yields the
following differential equation for plastic somatic growth:

dEm

dt
= γm

(
καf(R)E2/3

m − bEm

)
(4.2)

With γm the conversion efficiency of assimilated energy to lean mass. These as-
sumptions imply that individuals follow a Von Bertalanffy type of growth curve
when the resource density is constant. The maximum lean mass reached by an
individual is proportional to f(R)3, whereas the growth rate is independent of
resource density (Jager et al., 2013).

We assume individuals mature when reaching a predetermined amount of en-
ergy stored in lean mass (EJ). In adult individuals, a fraction 1 − κ of the assimi-
lated energy is channelled to reproduction, while this fraction is used for matura-
tion in juvenile individuals. This results in the following differential equation for
the total amount of energy (Er) invested by adults into the production of juveniles:

dEr

dt
= γr(1 − κ)αf(R)E2/3

m (4.3)

With γr the conversion efficiency of assimilated energy to energy in newborn lean
mass.

To formulate a version of the model with non-plastic growth, the somatic
growth rate has to be decoupled from the resource density. In other words, a
constant amount of energy is used for somatic growth and somatic maintenance, in-
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dependent of the current resource density. To stay close to the original model with
plastic growth, non-plastic somatic growth is assumed to follow a Von Bertalanffy
growth trajectory as well. This results in the following differential equation for
non-plastic somatic growth:

dEm

dt
= γm

(
καζE2/3

m − bEm

)
(4.4)

Here we introduce a parameter ζ as a scalar modulating the non-plastic growth
rate to replace the scaled functional response (f(R)) in the plastic growth rate.
Individuals following the non-plastic growth dynamics (eq. 4.4) will therefore grow
at the same rate as individuals that follow the plastic growth dynamics (eq. 4.2)
with a scaled functional response (f(R)) equal to ζ. To capture the entire spectrum
from non-plastic growth to entirely plastic growth, we introduce the parameter ϕ,
which represents the extent to which growth is plastic. This results in our general
formula for somatic growth:

dEm

dt
= γm

(
ϕκαf(R)E2/3

m + (1 − ϕ)καζE2/3
m − bEm

)
(4.5)

We assume all energy not used for somatic processes is used by juveniles for mat-
uration and by adults for reproduction, resulting in the following expression for
the investment in reproductive energy:

dEr

dt
=

0 if Em < EJ

γr

(
αf(R)E2/3

m −
(

ϕκαf(R)E2/3
m + (1 − ϕ)καζE

2/3
m

))
if Em > EJ

(4.6)
With EJ the energy in lean mass corresponding to the size at which individuals
mature.

Equations 4.5 and 4.6 simplify to the model described by Jager et al. (2013)
if growth is entirely plastic (ϕ = 1). In addition, notice that the investment in
growth in our model is higher compared to the κ-rule model with entirely plastic
growth if f(R) < ζ, while investment in reproduction is higher if f(R) > ζ.

By comparing the equation for the assimilated energy (αf(R)E2/3
m ) with the

energy used for growth (eq. 4.5), it is clear that the rate of energy supply may
become insufficient to maintain the outlined energy allocation scheme. If energy
supply becomes insufficient, we assume starvation and rechannelling of energy
occurs. An individual could encounter three types of starvation conditions (Fig.
4.1).

Under the most severe starvation condition as a consequence of very low re-
source densities, ingested energy is insufficient to cover somatic maintenance costs
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Figure 4.1: In addition to growth dynamics, individuals can encounter three types
of starvation conditions, depending on the energy in lean mass and the scaled
functional response of the resource density. The boundaries of these dynamics
shift when growth shifts from non-plastic (ϕ = 0) to entirely plastic (ϕ = 1).
Under severe starvation conditions (red area), assimilated energy is insufficient
to cover maintenance costs. Under supply-driven starvation conditions (green
area), the energy allocated to somatic processes is insufficient to cover maintenance
costs. Under demand-driven starvation conditions (blue area), assimilated energy
is insufficient to cover the costs for maintenance and demand-driven growth.

(red area in figure 4.1). This regime occurs when:

bEm > αf(R)E2/3
m (4.7)

We will refer to this condition as severe starvation following De Roos et al. (1990)
and we will assume individuals starve instantaneously when it occurs.

Under less severe starvation conditions, ingested energy is sufficient to cover
somatic maintenance costs but the energy allocated to somatic processes is not
(green area in figure 4.1):

αf(R)E2/3
m > bEm > ϕκαf(R)E2/3

m + (1 − ϕ)καζE2/3
m (4.8)

De Roos et al. (1990) refers to this starvation condition as mild starvation, but we
will use the term supply-driven starvation, because the supply of energy to somatic
processes is insufficient to cover maintenance costs.

The last type of starvation occurs if the assimilated energy is insufficient to
cover all energy requirements for somatic growth and maintenance:

ϕκαf(R)E2/3
m + (1 − ϕ)καζE2/3

m > αf(R)E2/3
m > bEm (4.9)

We will refer to this type of starvation as demand-driven starvation, because the
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energy demand for growth is too high for the energy supplied by assimilation.
From inequality (4.9), it is clear that the boundary between growth conditions and
demand-driven starvation is dependent on resource density, but not on individual
size (Fig. 4.1, boundary of the blue area).

Comparison of the three starvation conditions shows that all three starvation
boundaries intersect at a single point (E1/3

m = ακ
b

1−ϕ
1−ϕκ ζ, Fig. 4.1). If we do not

take into account the conditions in which severe starvation occurs, individuals can
only suffer demand-driven starvation if the energy stored in lean mass is below this
critical value (E1/3

m < ακ
b

1−ϕ
1−ϕκ ζ), while individuals can only suffer from supply-

driven starvation if the energy stored in lean mass is above this critical value
(E1/3

m > ακ
b

1−ϕ
1−ϕκ ζ). In other words, small and large individuals are vulnerable to

demand-driven and supply-driven starvation, respectively.
In general, we assume energy is rechannelled under starvation conditions from

the energy flow with sufficient energy to the energy flow with the deficit (e.q. from
maturation and reproduction to growth and somatic maintenance or vice versa).
More specifically, this means that under supply-driven starvation, growth of all
individuals stops and energy allocation to reproduction in adults is reduced:

dEm

dt
= 0 (4.10a)

dEr

dt
=

0 if Em < EJ

γr

(
αf(R)E2/3

m − bEm

)
if Em > EJ

(4.10b)

While under demand-driven starvation, energy allocation to reproduction by adults
stops and growth of all individuals is reduced:

dEm

dt
= γm

(
αf(R)E2/3

m − bEm

)
(4.11a)

dEr

dt
= 0 (4.11b)

These rechannelling rules imply that individuals below the species-specific threshold
size (E1/3

m = ακ
b

1−ϕ
1−ϕκ ζ) prioritize growth if experiencing (demand-driven) starva-

tion conditions, while individuals above the species-specific threshold size prioritize
reproduction if experiencing (supply-driven) starvation conditions (Fig. 4.1b).

It is likely that the re-channelling of energy will bring additional costs such as
starvation mortality. We assume starvation mortality scales with the energy defi-
cit and is zero at the supply-driven starvation boundary and the demand-driven
starvation boundary. In addition, we assume starvation mortality approaches in-
finity if individual energetics approaches the severe starvation boundary. As a
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consequence, individuals will starve with certainty before entering severe starva-
tion conditions. The starvation-induced mortality rate (µs) under supply-driven
starvation we therefore assume to follow:

µs = qs max

bEm −
(

ϕκαf(R)E2/3
m + (1 − ϕ)καζE

2/3
m

)
αf(R)E2/3

m − bEm

, 0

 (4.12)

And under demand-driven starvation conditions:

µs = qs max


(

ϕκαf(R)E2/3
m + (1 − ϕ)ακζE

2/3
m

)
− αf(R)E2/3

m

αf(R)E2/3
m − bEm

, 0

 (4.13)

Growth dynamics

According to DEB theory (Kooijman, 2010), the individual body mass can be
expressed in terms of energy stored in lean mass by using the mass-specific energy
density (dm). In the same way the volume can be related to the mass with the
volume-specific mass (dv) and the length can be related to the volume with a shape
scaling constant (δm):

W = Em

dm
= dvV = dv(δmℓ)3 (4.14a)

ℓ = V 1/3

δm
= W 1/3

d
1/3
v δm

= E
1/3
m

d
1/3
m d

1/3
v δm

(4.14b)

Using these equalities, the individual dynamics can be expressed in terms of
individual length instead of energy stored in lean mass (Table 4.1, see also the
supplementary materials)(Murphy, 1983; De Roos et al., 1990). To do so, we
use expressions for the investments into somatic growth (Fg(R, ℓ)), reproduction
(Fr(R)) and growth and reproduction together (Ft(R, ℓ) = Fg(R, ℓ) + Fr(R)),
which depend on the resource density, the ultimate size under unlimited food con-
ditions (ℓ∞) and possibly the actual length (ℓ). Note that these investments are
proportional to the energy allocation to growth and reproduction. In addition,
these quantities are expressed per unit surface area and could therefore be inter-
preted as the (area specific) growth rate, fecundity and biomass production as
well. The dynamics of the length-age relationship (ℓ(t, a)) is defined in terms of
the Von Bertalanffy growth rate (rB) times the investments into growth (Fg(R, ℓ)
or Ft(R, ℓ)) in combination with the size at birth (ℓb), which is a boundary condi-
tion needed to solve this differential equation. Individuals mature when reaching
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Table 4.1: Equations describing the population dynamics under growth condi-
tions and supply-driven (Fg(R, ℓ) < 0), demand-driven (Fr(R) < 0) and severe
(Ft(R, ℓ) < 0) starvation conditions. Notice that as long as extreme starvation
does not occur (Ft(R, ℓ) > 0) supply- and demand-driven starvation are mutually
exclusive, such that Fr(R) ≤ 0 implies Fg(R, ℓ) > 0 and Fg(R, ℓ) ≤ 0 implies
Fr(R) > 0.

Population age-distribution dynamics
∂n

∂t
+ ∂n

∂a
= − (µb + µs(R, ℓ)) n(t, a)

n(t, 0) =
∫ amax

0
β(R, ℓ(t, a))n(t, a)da

Energetic surpluses/deficits

Fg(R, ℓ) = (ϕf(R) + (1 − ϕ)ζ) ℓ∞ − ℓ

Fr(R) =
(

ϕ
(1 − κ)f(R)

κ
+ (1 − ϕ)

(
f(R)

κ
− ζ

))
ℓ∞

Ft(R, ℓ) = Fg(R, ℓ) + Fr(R) = f(R)
κ

ℓ∞ − ℓ

Length-age dynamics

∂ℓ

∂t
+ ∂ℓ

∂a
=


rBFg(R, ℓ) if Fg(R, ℓ) > 0 and Fr(R) > 0
rBFt(R, ℓ) if Fr(R) ≤ 0 and Ft(R, ℓ) > 0
0 otherwise

ℓ(t, 0) = ℓb

Individual fecundity

β(R, ℓ) =


rF Fr(R)ℓ2 if ℓJ < ℓ, Fg(R, ℓ) > 0 and Fr(R) > 0
rF Ft(R, ℓ)ℓ2 if ℓJ < ℓ, Fg(R, ℓ) ≤ 0 and Ft(R, ℓ) > 0
0 otherwise

Starvation mortality

µs(R, ℓ) =


0 if Fg(R, ℓ) > 0 and Fr(R) > 0

−qs
Fg(R,ℓ)
Ft(R,ℓ) if Fg(R, ℓ) ≤ 0 and Ft(R, ℓ) > 0

−qs
Fr(R)

Ft(R,ℓ) if Fr(R) ≤ 0 and Ft(R, ℓ) > 0
∞ if Ft(R, ℓ) ≤ 0
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the size at maturation (ℓJ). The individual fecundity (β(R, ℓ)) is defined in terms
of the reproduction rate (rF ) times the investments into reproduction (Fr(R) or
Ft(R, ℓ)). In this formulation, the parameters for the ultimate asymptotic size
(ℓ∞), Von Bertalanffy growth rate (rB) and the reproduction rate (rF ) are com-
posite parameters consisting of the plastic energy assimilation constant (κ), the
maximum ingestion and assimilation rate (α), the energy specific somatic mainte-
nance costs (b), the size at birth (ℓb) and the energy conversion efficiencies (γm,
γr) from the DEB formulation (eq. 4.22). Lastly, the dynamics of the population
age-distribution (n(t, a)) depends on the individual background mortality (µb) and
the individual starvation mortality (µs(R, ℓ)) in combination with the population
birth rate (n(t, 0)) calculated as the total reproductive output of the population
at a given time. We state that the mortality under extreme starvation conditions
(Ft(R, ℓ) ≤ 0) is infinitely large to indicate that the survival probability under this
condition is zero and individuals are instantaneously removed from the population.

For simplicity, we will assume the resource to be unstructured and the dynamics
of the resource without consumption to be described by semi-chemostat dynamics,
with a turn-over rate ν and a maximum resource density K:

dR

dt
= ν(K − R) −

∫ amax

0
Imaxf(R)ℓ(t, a)2n(t, a)da (4.15)

The parameter Imax is a scaled version of IR, representing the ingestion rate per
unit surface area in terms of length instead of energy stored in lean mass.

4.3 Mathematical analysis
Model equilibria can be calculated following the procedure described by De Roos
et al. (1990). At a constant resource density R = R̄ and hence a constant value
of the functional response (f(R̄)) the consumer population can only persist if the
functional response is sufficiently high for extreme and demand-driven starvation
not to occur (Ft(R̄, ℓ), Fr(R̄) > 0), because otherwise consumers would die instan-
taneously or never reproduce. With a constant functional response, investment in
growth and the individual size can be solved explicitly as a function of age, which
results in a Von Bertalanffy growth curve:

Fg(R̄, ℓ) =
((

ϕf(R̄) + (1 − ϕ)ζ
)

ℓ∞ − ℓb

)
e−rBa = Fg∞(R̄)e−rBa (4.16a)

ℓ(R̄, a) = ℓb +
(
1 − e−rBa

)
Fg∞(R̄) (4.16b)

= ℓbe−rBa +
(
ϕf(R̄) + (1 − ϕ)ζ

) (
1 − e−rBa

)
ℓ∞
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Herein we introduce Fg∞(R̄) as the lifetime investment in growth at the constant
resource density R̄ given an individual survives, which we will use as an age inde-
pendent quantity for energy investment in growth (note that Fg∞(R̄) equals the
integral of the product rBFg(R̄, ℓ(R̄, a)) over the entire lifetime for an individual
living at resource density R̄). From comparing the growth curve with the supply-
driven starvation condition, it is clear that individuals do not experience supply-
driven starvation when living at a constant resource density R̄ (Fg(R̄, ℓ) > 0). The
Von Bertalanffy growth curve also defines the age at maturation at the constant
food density (āJ), which is the age at which individuals reach the size at matura-
tion (ℓ(R̄, āJ) = ℓJ). For individuals to reach this maturation size at the constant
resource density R̄, individuals of length ℓJ should not experience supply-driven
starvation (Fg(R̄, ℓJ) > 0). When individuals do not experience starvation condi-
tions, the dynamics of the population age-distribution can be simplified and solved
explicitly, resulting in an expression for the density of individuals at a given age:

n̄(a) = n̄(0)e−µba (4.17)

By substituting the Von Bertalanffy growth curve (eq. 4.16) and the age distribu-
tion in equilibrium (eq. 4.17) in the expression for the population birth rate, we
arrive at an expression for the lifetime reproductive output (LRO):

LRO =rF Fr(R̄)
∫ amax

āJ

ℓ(R̄, a)2
e−µada (4.18)

=rF Fr(R̄)
∫ amax

āJ

(
ℓb +

(
1 − e−rBa

)
Fg∞(R̄)

)2
e−µada

The lifetime reproductive output represents the average number of offspring an
individual is expected to produce during its lifetime. A population is in equilibrium
if every individual on average replaces itself and therefore the lifetime reproductive
output in equilibrium equals one. By setting the lifetime reproductive output to
one, we can solve for the functional response in equilibrium, which we indicate
with f(R̃), because this is the only unknown in the lifetime reproductive output.
The functional response and the resource density in equilibrium (R̃) are therefore
completely determined by the growth, reproduction and mortality traits of the
consumer population and hence independent of resource growth conditions.

The last step is to derive the population birth rate in equilibrium (ñ(0)) from
the dynamics of the resource (eq. (4.15)), which together with the resource density
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defines the complete equilibrium:

ñ(0) =
ν
(
K − R̃

)
Imaxf(R̃)

∫ amax

0 ℓ(R̃, a)2
e−µada

(4.19)

From equation (4.19) it follows that the resource density in equilibrium equals the
maximum resource density (R̃ = K) at the persistence boundary of the consumer
population (ñ(0) = 0). Therefore, the persistence boundary is calculated by setting
the lifetime reproductive output equal to one and substituting the resource density
with the maximum resource density (eq. 4.33).

The stability boundary of the model can be calculated through linearization
of the dynamic equations around the equilibrium state as outlined by (De Roos
et al., 1990). The derivation of the conditions determining the stability boundary
is explained in detail in the supplementary materials (eq. 4.39 - 4.47).

Energetic tradeoff

At a given constant resource density R̄ both the investments into growth (Fg∞(R̄))
and the investments into reproduction (Fr(R̄)) change with the growth plasticity
(ϕ). This change can be expressed as the derivative of these investments with
respect to the level of growth plasticity:

∂Fg∞

∂ϕ
=
(
f(R̄) − ζ

)
ℓ∞ (4.20a)

∂Fr

∂ϕ
= −

(
f(R̄) − ζ

)
ℓ∞ (4.20b)

The direction of a change in energy allocation due to growth plasticity is deter-
mined by the non-plastic asymptotic size (ζℓ∞) compared to the plastic asymptotic
size (f(R̄)ℓ∞). An increase in growth plasticity will lead to an increase in growth
investments and a decrease in reproductive investments if the plastic asymptotic
size exceeds the non-plastic asymptotic size (f(R̄)ℓ∞ > ζℓ∞). In contrast, an
increase in growth plasticity will lead to a decrease in growth investments and an
increase in reproductive investments if the non-plastic asymptotic size exceeds the
plastic asymptotic size (f(R̄)ℓ∞ < ζℓ∞). It is also clear that the effect of the
growth plasticity on the growth investments is always opposite to the effect on re-
productive investments. This reveals a tradeoff in which an increase in investment
in growth will always lead to a decrease in investment in reproduction and vice
versa.

A change in growth plasticity affects the lifetime reproductive output through
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both the growth investments and the reproductive investments:

dLRO

dϕ
= ∂LRO

∂Fg∞

∂Fg∞

∂ϕ
+ ∂LRO

∂Fr

∂Fr

∂ϕ
=
(

∂LRO

∂Fg∞
− ∂LRO

∂Fr

)(
f(R̃) − ζ

)
ℓ∞

(4.21)
Explicit expressions for the partial derivatives ∂LRO

∂Fg∞
and ∂LRO

∂Fr
are derived in

the supplementary information. From equation (4.21) it is clear that the lifetime
reproductive output of an individual is completely independent of the growth
plasticity (ϕ) if the plastic asymptotic size equals the non-plastic asymptotic size
(f(R̄)ℓ∞ = ζℓ∞). From equations (4.16) and (4.18) we can furthermore infer that
the lifetime reproductive output increases with both an increase in energy alloca-
tion to growth and energy allocation to reproduction ( ∂LRO

∂Fg∞
> 0 and ∂LRO

∂Fr
> 0).

We therefore can distinguish a parameter region in which an increase in growth in-
vestments has a larger effect on lifetime reproductive output than a similar increase
in reproductive investments ( ∂LRO

∂Fg∞
> ∂LRO

∂Fr
) and a parameter region in which an

increase in reproductive investments has a larger effect on lifetime reproductive
output than a similar increase in growth investments ( ∂LRO

∂Fg∞
< ∂LRO

∂Fr
). We will

refer to the dynamics in these regions as growth-limited and reproduction-limited
dynamics respectively. Whether or not the lifetime reproductive output increases
with an increase in growth plasticity depends on whether the dynamics are growth-
or reproduction-limited in combination with whether the plastic asymptotic size
(f(R̄)ℓ∞) is larger or smaller than the non-plastic asymptotic size (ζℓ∞). Further-
more, an increase in growth plasticity (ϕ) results in a change from an increase to a
decrease in lifetime reproductive output when the dynamics changes from growth
to reproduction limited, assuming that the plastic asymptotic size is larger than
the non-plastic asymptotic size (f(R̄)ℓ∞ > ζℓ∞). Alternatively, when the plastic
asymptotic size is smaller than the non-plastic asymptotic size (f(R̄)ℓ∞ < ζℓ∞),
an increase in growth plasticity (ϕ) results in a change from an increase to a
decrease in lifetime reproductive output when the dynamics changes from repro-
duction to growth limited. The value of the growth plasticity (ϕ) at which the
boundary between these two areas occurs, strongly depends on the plastic energy
allocation constant (κ) but is also influenced by other parameters (eq. 4.34 - 4.37).

4.4 Numerical analysis
The persistence boundary and the stability boundary have been studied numeri-
cally as a function of model parameters using general root-finding and curve con-
tinuation procedures implemented in C (Findcurve software by De Roos (2021b)).
Time dynamics of the model have been computed using the Escalator Boxcar Train
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Table 4.2: Parameters used in the structured population model for Daphnia magna
feeding on algae, derived from De Roos et al. (1990).

Parameters of the structured population model

ϕ Plasticity in somatic growth varied -
ζ Scalar of the non-plastic growth

rate
0.1 or 1 -

κ Plastic growth energy allocation
constant

0.3 or 0.9 -

ℓb Length at birth 0.8 mm
ℓJ Length at maturation 2.5 mm
ℓ∞ Asymptotic length under unlim-

ited food conditions
20κ mm

amax Maximum age 70 d
rB Time constant of growth 0.15 d−1

rF Time constant of reproduction 0.00714 mm−3d−1

µb Background mortality rate 0.03 d−1

qs Starvation mortality scaling
constant

0.2 d−1

Imax Maximum feeding rate per unit
surface area

1.8 106 cells mm−2ml−1d−1

Rh Half saturation constant of func-
tional response

0.14 106 cells ml−1

ν Semi-chemostat renewal rate 0.5 d−1

K Maximum resource density varied 106 cells ml−1

(EBT) method, especially designed for the numerical integration of physiologically
structured population models (De Roos, 1988; De Roos et al., 1992). For the nu-
merical analysis of the model and corresponding figures we use a parameter set
representing Daphnia magna feeding on algae, comparable to the parameter values
used by De Roos et al. (1990) (Table 4.2). We use slightly different definitions of
the half saturation constant of the functional response (Rh) and the reproduction
rate (rF ). Therefore, we recalculated the values of these parameters to ensure our
model is numerically equivalent to the model analysed by De Roos et al. (1990)
if growth is entirely plastic (ϕ = 1). From here on we will refer to the structured
Daphnia populations as consumers, while the unstructured algae community is
referred to as the resource.
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Equilibrium dynamics

In general, four different configurations of the regions with growth-limited and
reproduction-limited dynamics are possible (derivation in supplementary materials
eq. 4.34 - 4.37). (1) If the growth energy allocation constant κ is below a specific
threshold value (κ ≈ 0.857 with our parameter set) and the plastic asymptotic size
exceeds the non-plastic asymptotic size (f(R̃)ℓ∞ > ζℓ∞, Fig. 4.2a) the dynamics
is always growth-limited. (2) If the plastic growth energy allocation constant κ is
below the threshold value and the non-plastic asymptotic size exceeds the plastic
asymptotic size, (κ < 0.857, f(R̃)ℓ∞ < ζℓ∞, Fig. 4.2b), the dynamics is growth-
limited at high growth plasticity (high ϕ) and reproduction-limited at low growth
plasticity (low ϕ). (3) In contrast, if the plastic growth energy allocation constant
κ is above the threshold value and the plastic asymptotic size exceeds the non-
plastic asymptotic size (κ > 0.857, f(R̃)ℓ∞ > ζℓ∞, Fig. 4.2c), the dynamics
is growth-limited at low growth plasticity (low ϕ) and reproduction-limited at
high growth plasticity (high ϕ). (4) Lastly, the dynamics is always reproduction-
limited if the plastic energy allocation constant κ exceeds the threshold value and
the non-plastic asymptotic size exceeds the plastic asymptotic size (κ > 0.857,
f(R̃)ℓ∞ < ζℓ∞, Fig. 4.2d).

With an increase or decrease of ϕ the average lifetime reproductive output
increases if the growth plasticity (ϕ) approaches the boundary between growth-
limited dynamics and reproduction-limited dynamics (Fig. 4.2b and c, yellow line).
An increase in lifetime reproductive output with a change in ϕ implies that the
lifetime reproductive output will equal 1 at a lower resource density, which hence
decreases in equilibrium, while equilibrium consumer population density increases.
The maximum resource density (K) needed for the consumer population to persist
decreases accordingly if the growth plasticity (ϕ) approaches the boundary between
the two regions (Fig. 4.2b and c, red line). In contrast, the lifetime reproductive
output always increases with an increase in growth plasticity if the dynamics does
not change between growth-limited dynamics and reproduction-limited dynamics.
This leads to a decrease in resource density and an increase in population density
at equilibrium with increasing growth plasticity. Again, the maximum resource
density (K) needed for the consumer population to persist decreases accordingly
(Fig. 4.2a and d, red line).

Population dynamic cycles

The bifurcation analysis revealed three parameter regions with cyclic dynamics
(Fig. 4.2a and b, green lines). One of these regions occurred when the dynamics
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Figure 4.2: Persistence boundary (red line, numerically solved from equation
(4.33)) and stability boundary (green, numerically solved from equation (4.48))
and the boundary between dynamics (yellow dashed, numerically solved from
equation (4.35b)) as a function of the growth plasticity (ϕ) and the maximum
resource density (K) when the plastic asymptotic size exceeds the non-plastic
asymptotic size (f(R̃)ℓ∞ > ζℓ∞) (left panels) and when the non-plastic asymp-
totic size exceeds the plastic asymptotic size (ζℓ∞ > f(R̃)ℓ∞) (right panels). At
the persistence boundaries (red lines), the maximum resource density is equal to
the resource density in equilibrium.
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Figure 4.3: Population dynamic cycles for three combinations of ζ and ϕ with
K = 0.5 and κ = 0.3. The surface specific total investment in growth if individu-
als would not die (Fg∞) and the surface specific investment in reproduction are
displaced as a measure of growth and fecundity. Note the different vertical axes
for the consumer densities. The red vertical lines mark the occurrence of a peak
in adult density to ease comparison between graphs.

is limited by reproduction (Fig. 4.2b, low ϕ). In these cycles (Fig. 4.3a), the
area specific investment in growth (Fg∞) and therewith the maturation rate is
relatively high and constant due to the high and largely non-plastic growth rate.
As a result, individuals mature at a young age and the population consists of a low
number of juveniles and a high number of adults. A peak in the number of juveniles
occurs simultaneously with a peak in investment in reproduction (Fr). The high
density of juveniles results in a depletion of the resource, which is directly followed
by a decrease in fecundity. Although individuals mature at a young age, a new
large reproductive event only occurs after the consumer density has sufficiently
decreased by mortality for the resource density to recover. In other words, a new
cycle starts if competition between adults is reduced. As a result, the resource
density and the investment in reproduction fluctuate in phase with the juvenile
density but out of phase with the adult density, with a period of several times
the juvenile delay. It is clear that these cycles occur due to the fluctuations in
fecundity. We therefore refer to these cycles as fecundity-driven cycles.
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The two other regions with cyclic dynamics occur when the dynamics is growth-
limited (Fig. 4.2a and Fig. 4.2b for high ϕ). During these cycles (Fig. 4.3b and c)
the area-specific investment in growth (Fg∞) and therewith the maturation rate is
very low and shows periodic increases with a large amplitude. The investment in
reproduction reaches a maximum simultaneously with the maturation rate. The
occurrence of the high fecundity simultaneous with the high adult density results
in the production of a large cohort of juveniles. This cohort decreases the resource
density, which is followed by a decrease in the fecundity and maturation rate. The
juvenile cohort matures and reproduces after the consumer density has sufficiently
decreased by mortality for the resource density to recover. In other words, a new
cycle starts as soon as competition between juveniles is sufficiently reduced. This
results in cycles dominated by a single cohort from which all individuals mature
simultaneously and directly produce a new dominant cohort. Consequently, the
period of the cycles is approximately equal to the juvenile delay. In addition, the
periodic and simultaneous maturation of a large group of juveniles contributes
to the non-symmetric shape of these cycles in comparison with the fecundity-
driven cycles (Fig. 4.3). This type of cycles also occurs when the individual
fecundity is assumed to be independent of the resource density (Fig. 4.4), which
shows that these cycles are caused by the fluctuations in maturation rate rather
than fluctuation in the fecundity. We therefore refer to this type of cycles as
maturation-driven cycles.

4.5 Discussion
We analysed a model in which the individual growth rate could be varied between
entirely non-plastic (ϕ = 0) to entirely plastic (ϕ = 1). Although the model was
formulated at an individual level to ensure closed individual energy dynamics,
the model was analysed at the population level. In the extreme case in which
growth is entirely plastic (ϕ = 1) the model simplified to a classic size-structured
model as analysed by De Roos et al. (1990) and Kooijman and Metz (1984). It
has been shown that the well-posedness of this model is difficult to show because
the fecundity (β(R, ℓ)) of individuals jumps from zero to a positive value at the
size of maturation and the fecundity at the size at maturation (β(R, ℓJ)) is there-
fore undefined (Thieme, 1988). As a consequence the model is undefined if the
growth rate of a cohort is exactly zero at maturation and therefore remains at
the size of maturation. Although unlikely, it is difficult to predict whether this
specific condition will occur based on the starting conditions. Our model has the
same properties and the well-posedness of our model is therefore difficult to prove.
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However, these type of models are successfully used in a wide range of applications
(Baas et al., 2018; De Roos and Persson, 2001).

If growth is entirely plastic (ϕ = 1) the individual growth rate is fully coupled
to the resource density and as a consequence the age-size relationship varies per
cohort if the resource density fluctuates, for example during population dynamic
cycles as is observed in classic size-structured models (Fig. 4.5b). In contrast,
if growth is completely non-plastic (ϕ = 0), the model is equivalent to an age-
structured model given that there is a unique relationship between age and body
size. Under this extreme condition, the individual growth rate in our model only
changes if the demand-driven starvation condition (Fr < 0) occurs, but the analysis
of the model did not reveal any dynamic regimes in which individuals experienced
demand-driven starvation. The growth rate is thus completely fixed if growth
is non-plastic (ϕ = 0), which results in a fixed age-size relationship even when
population dynamic cycles occur (Fig. 4.5a). With the fixed age-size relationship,
the model can be converted to an age-based model resembling our model with
non-plastic growth. Besides linking energetic models with plastic and non-plastic
growth, our model thus also connects classic age-structured models with classic
size-structured models.

Our analysis divided the parameter space into a region with growth-limited and
a region with reproduction-limited dynamics. In the region with growth-limited
dynamics, changes in the area-specific investments in growth have a larger effect
on the lifetime reproductive output than changes in the area-specific investments
in reproduction. In contrast, in the region with reproduction-limited dynamics,
changes in the area-specific investments in reproduction have a larger effect on life-
time reproductive output than changes in the area-specific investments in growth.
At the boundary of the regions with different limiting mechanisms the consumer
population exploits the resource most efficiently and can persist on the lowest re-
source density (Fig. 4.2). In other words, on this boundary the energy allocation
to growth and reproduction is most optimal. The location of this optimum is
closely related to the classic tradeoff regarding energy allocation to growth and re-
production (Stearns, 1992), in which an optimal strategy arises through avoidance
of severe limitation in growth or reproduction. Although this is a very intuitive
tradeoff, we tied it to the specific energy budget of individuals. Namely, an optimal
energy allocation strategy can only occur if the plastic energy allocation constant
is low (low κ) and the non-plastic asymptotic size exceeds the plastic asymptotic
size in equilibrium (f(R̃)ℓ∞ < ζℓ∞) or if the plastic energy allocation constant
is high (high κ) and the plastic asymptotic size exceeds the non-plastic asymp-
totic size in equilibrium (f(R̃)ℓ∞ > ζℓ∞). Hence, an optimal energy allocation
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can only occur when energy is relatively evenly distributed between growth and
reproduction to avoid severe limitation through growth and reproduction. As a
consequence, evolution cannot always reach an optimal energy allocation scheme
if evolution only acts on growth plasticity.

The parameter regions in which the dynamics is limited by growth or repro-
duction show different kinds of population dynamics cycles. In the region with
growth-limited dynamics, the cycles are caused by fluctuations in maturation,
which is caused by fluctuations in growth rate. These maturation-driven cycles
occur because a cohort of newborn individuals outcompetes the adult individuals.
This results in single cohort cycles, which are characterized by the synchronization
of a high resource density with the maturation of the dominant cohort. The oscil-
lation period of these cycles is approximately equal to the juvenile delay (De Roos
et al., 2003). Single cohort cycles generally occur in models incorporating a juvenile
delay and, based on the oscillation period, are mainly observed in generalist spe-
cies (Murdoch et al., 2002). The type of single cohort cycles found in our model
is described in more detail by De Roos et al. (2003) as juvenile-driven cycles,
which occur if juvenile individuals outcompete adults because they can survive on
a lower resource density. The mechanism for these juvenile-driven cohort cycles is
observed in various fish species (Townsend et al., 1990; Hamrin and Persson, 1986;
Townsend and Perrow, 1989) and experimental Daphnia populations (Murdoch
and McCauley, 1985; McCauley, 1993).

In the parameter region with reproduction-limited dynamics, the cycles are
caused by fluctuations in average fecundity. These fecundity-driven cycles are
characterized by low amplitude oscillations with a period of more than four times
the juvenile delay of the consumer. In addition, the total consumer density lacks
behind the resource density. These characteristics occur because a dominant co-
hort of newborn individuals depletes the resource, which causes fecundity to de-
crease. The dominant cohort of juveniles matures before the resource density is
recovered, delaying their main reproductive event until the resource density is re-
covered, which is far beyond the age at maturation. The fecundity-driven cycles
thus differ from the reproduction driven cycles in that competition relaxes after
instead of before the maturation of a dominant cohort.

The fecundity-driven cycles in our model show resemblances with various pre-
viously described types of cycles. The oscillation period of the fecundity-driven
cycles is more than four times the juvenile delay of the consumer plus two times the
juvenile delay of the resource, which is generally considered indicative of consumer-
resource cycles (Murdoch et al., 2002). The fecundity-driven cycles indeed show an
increase in resource density leading to an increase in consumer reproduction as is
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found in classic non-structured models with consumer-resource cycles (Rosenzweig
and MacArthur, 1963). In classic consumer-resource cycles this occurs because the
resource periodically escapes the control of the consumer, which, however, cannot
occur in our model, because in our model the resource follows semi-chemostat
dynamics (De Roos et al., 1990). Instead, the increase in resource density in the
fecundity-driven cycles is due to a relaxation of competition between consumers
and are therefore different from classic consumer-resource cycles. The fecundity-
driven cycles also show some resemblances with delayed-feedback cycles. One could
argue that the depletion of the resource by a dominant cohort has a delayed effect,
because it only affects the dominant cohort after maturation. Pfaff et al. (2014)
suggested that delayed-feedback cycles can have a period of more than 4 times the
juvenile delay and arise if the juvenile delay is decoupled from the resource dens-
ity, which exactly occurs in the fecundity-driven cycles we found. Nonetheless, the
fecundity-driven cycles do not correspond to the original description of delayed-
feedback cycles from Gurney et al. (1983), because the depletion of the resource
in the fecundity-driven cycles also has a direct effect on the consumer population,
while Gurney et al. (1983) describe a complete separation of time between the mo-
ment of competition and the effect of competition. These resemblances between
the fecundity-driven cycles, consumer-resource cycles and delayed feedback cycles
at least show that very detailed knowledge is needed to disentangle different types
of cycles in structured populations (Hastings, 2020).

In this article we presented a model in which we varied the plasticity in indi-
vidual growth. More plastic growth is generally expected in ectotherms because
the growth rate in these individuals is highly dependent on the environment, while
less plastic growth is generally expected in endotherms because in these individu-
als, growth is generally independent of the environment. Including a non-plastic
growth rate results in an additional demand-driven process in the energy allocation
scheme of individuals. We assumed that a potential deficit or surplus of energy
from demand-driven growth is compensated by a change in energy allocation to
reproduction. Another strategy to cover a deficit in ingested energy could be to
increase energy ingestion by adaptive behaviour (Kooijman, 2010). Although this
strategy might weaken the tradeoff between growth and reproduction, it is unlikely
that adaptive behaviour could account for the entire deficit when individuals live
in a natural ecosystem, as sufficient resources should be available to increase the
consumption by adaptive behaviour. In our model, the resource density is regu-
lated by competition between consumers. Therefore, an increase in consumption
due to adaptive behaviour would lead to an increase in competition and a de-
crease in resource density which also could enlarge the energy deficit. Even if
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sufficient resource is available, ingested energy is limited by physiological and time
constraints which are implemented in our model by using a type II functional re-
sponse to model energy ingestion. It is therefore unlikely that adaptive behaviour
can account for the full energy deficit caused by non-plastic growth and a tradeoff
between energy allocation to growth and reproduction occurs.

We showed that the tradeoff between energy investment in growth and repro-
duction results in population dynamics regulated by respectively maturation or
fecundity. Populations limited by maturation and the corresponding cohort cycles
are widely explored in the context of ecological communities (De Roos et al., 2007,
2008; Persson et al., 2007; Van Leeuwen et al., 2008; Van Kooten et al., 2007),
while the dynamics of populations limited by fecundity are less studied in struc-
tured populations (see De Roos et al. (2009) for an example) and is an open topic.
In any case our model analysis revealed how life history strategies of species in
terms of energy allocation and plasticity affect the mechanisms which limit the
population and determine the type of population dynamic cycles. In this way we
provide a new step in linking distinct ecological phenomena such as non-plastic
growth and plastic growth, age and stage structure and populations limitation by
individual growth and fecundity.

4.6 Supplementary materials

From energy flow to growth dynamics

Here we outline the calculations to transform the model in terms of individual
energy dynamics into a size-based population model. We define the composite
parameters ℓ∞, rB and rF representing the asymptotic length of an individual,
the Von Bertalanffy growth rate in length and the reproduction rate proportionally
constant of an individual.

ℓ∞ = κα

bd
1/3
m d

1/3
v δm

(4.22a)

rB = bym

3 (4.22b)

rF = byr

ℓ3
b

(4.22c)

Starvation boundaries

We start with reformulating the starvation boundaries (eq. 4.7 - 4.9), which also
results in the equations for the area-specific energy surplus (or deficit) available

92



4

4.6. Supplementary materials

for growth (Fg), reproduction (Fr) and total biomass production (Ft). This is
done by replacing the energy in lean mass (Em) with the equivalent in terms of
size (dmdv(δmℓ)3, eq. 4.14) after which we simplify the equation and substitute
the composite parameters. For severe starvation conditions (eq. 4.7) this results
in:

bEm > αf(R)E2/3
m (4.23)

bdmdv(δmℓ)3 > αf(R)d2/3
m d2/3

v (δmℓ)2

ℓ >
f(R)

κ

κα

bd
1/3
m d

1/3
v δm

⇒

0 >
f(R)

κ
ℓ∞ − ℓ = Ft(R, ℓ)

We can do the same for the supply-driven starvation condition (eq. 4.8):

bEm > ϕκαf(R)E2/3
m + (1 − ϕ)καζE2/3

m (4.24)

bdmdv(δmℓ)3 > ϕκαf(R)d2/3
m d2/3

v (δmℓ)2 + (1 − ϕ)καζd2/3
m d2/3

v (δmℓ)2

ℓ > (ϕf(R) + (1 − ϕ)ζ) κα

bd
1/3
m d

1/3
v δm

⇒

0 > (ϕf(R) + (1 − ϕ)ζ) ℓ∞ − ℓ = Fg(R, ℓ)

The demand-driven starvation condition (eq. 4.9) is not dependent on the energy
stored in lean mass, so we only have to simplify this condition:

ϕκαf(R)E2/3
m + (1 − ϕ)κζE2/3

m > αf(R)E2/3
m (4.25)

ϕκf(R) + (1 − ϕ)κζ > f(R) ⇒

0 > ϕ
(1 − κ)

κ
f(R) + (1 − ϕ)

(
f(R)

κ
− ζ

)
= Fr(R)

Growth rate

To derive the differential equation for the length of an individual, we have to
rewrite the differential equation for the energy stored in lean mass, in terms of
length.

dℓ

dt
= d

dt

E
1/3
m

d
1/3
m d

1/3
v δm

= 1
3d

1/3
m d

1/3
v δmE

2/3
m

dEm

dt
(4.26)

We can now substitute the differential equation for the energy in lean mass under
normal growth conditions (eq. 4.5) to derive the differential equation for growth
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in length under growth conditions:

dℓ

dt
= γm

3d
1/3
m d

1/3
v δmE

2/3
m

(
ϕκαf(R)E2/3

m + (1 − ϕ)καζE2/3
m − bEm

)
(4.27)

= bγm

3

(
(ϕf(R) + (1 − ϕ)ζ) κα

bd
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m d

1/3
v δm

− E
1/3
m

d
1/3
m d

1/3
v δm

)
= rB ((ϕf(R) + (1 − ϕ)ζ) ℓ∞ − ℓ)

= rBFg(R, ℓ)

In the same way we can rewrite the differential equation for energy in lean mass
(eq. 4.11) under demand-driven starvation conditions:

dℓ

dt
= γm

3d
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m d
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v δmE

2/3
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(4.28)
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v δm
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= rB

(
f(R)

κ
ℓ∞ − ℓ

)
= rBFt(R, ℓ)

Fecundity

To derive the fecundity in terms of number of individuals (β(R, ℓ)), we have to
divide the energy investment in reproduction ( dEr

dt ) by the energy in lean mass of
a newborn individual (Eb = dmdv(δmℓb)3). Under normal growth conditions (eq.
4.6), this results in:

β(R, ℓ) = γr

Eb

(
αf(R)E2/3

m −
(

ϕκαf(R)E2/3
m + (1 − ϕ)καζE2/3

m

))
(4.29)

= γr

dmdv(δmℓb)3 (αf(R) − (ϕκαf(R) + (1 − ϕ)καζ)) d2/3
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κℓ3
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v δm
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= rF

κ
(ϕ(1 − κ)f(R) + (1 − ϕ) (f(R) − κζ)) ℓ∞ℓ2

= rF Fr(R)ℓ2
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We can use the same steps to derive the fecundity under supply-driven starvation
conditions from equation (4.10).

β(R, ℓ) = γr

Eb

(
αf(R)E2/3

m − bEm

)
(4.30)
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dmdv(δmℓb)3
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v (δmℓ)2 − bdmdv(δmℓ)3
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b

(
f(R)
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− ℓ

)
ℓ2
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(
f(R)

κ
ℓ∞ − ℓ

)
ℓ2

= rF Ft(R, ℓ)ℓ2

Starvation mortality

Lastly we reformulate the equations for the starvation mortality in terms of length
instead of energy stored in lean mass. For the supply-driven starvation mortality
(eq. 4.12) this becomes:

µs(R, ℓ) = qs

bEm −
(

ϕκαf(R)E2/3
m + (1 − ϕ)καζE

2/3
m

)
αf(R)E2/3

m − bEm

(4.31)

= qs
bdmdv(δmℓ)3 − (ϕκαf(R) + (1 − ϕ)καζ) d

2/3
m d

2/3
v (δmℓ)2

αf(R)d2/3
m d

2/3
v (δmℓ)2 − bdmdv(δmℓ)3

= qs

ℓ − (ϕf(R) + (1 − ϕ)ζ) κα

bd
1/3
m d

1/3
v δm

f(R)
κ

κα

bd
1/3
m d

1/3
v δm

− ℓ

= −qsκ
(ϕf(R) + (1 − ϕ)ζ) ℓ∞ − ℓ

f(R)ℓ∞ − κℓ

= −qs
Fg(R, ℓ)
Ft(R, ℓ)
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We can do the same for the demand-driven starvation mortality (eq. 4.13):

µs(R, ℓ) = qs

(
ϕκαf(R)E2/3

m + (1 − ϕ)ακζE
2/3
m − αf(R)E2/3

m

)
αf(R)E2/3

m − bEm

(4.32)

= qs
(ϕκαf(R) + (1 − ϕ)ακζ − αf(R)) d

2/3
m d

2/3
v (δmℓ)2

αf(R)d2/3
m d

2/3
v (δmℓ)2 − dmdv(δmℓ)3

= qs

(
ϕf(R) + (1 − ϕ)ζ − f(R)

κ

)
κα

bd
1/3
m d

1/3
v δm

ℓ2

f(R)
κ

κα

bd
1/3
m d

1/3
v δm

ℓ2 − ℓ3

= −qs
(ϕ(1 − κ)f(R) + (1 − ϕ)(f(R) − κζ)) ℓ∞

f(R)ℓ∞ − κℓ

= −qs
Fr(R)

Ft(R, ℓ)

Mathematical analysis

Persistence boundary

From equation (4.19) it follows that the resource density at the extinction bound-
ary of the population (ñ(0) = 0) is equal to the maximum resource density
(R̃ = K). The existence boundary can therefore be found by setting the life-
time reproductive output (eq. 4.18) equal to one with R̃ = K:

rF

κ
(ϕ(1 − κ)f(K) + (1 − ϕ) (f(K) − ζκ)) ℓ∞

∫ amax

ãJ

ℓ(K, a)2
e−µada = 1 (4.33)

Boundary between growth- and reproduction-limited dynamics

In the main text we distinguished growth-limited dynamics in which the effects
through energy investments in growth exceed the effects through energy invest-
ments in reproduction ( ∂LRO

∂Fg∞
> ∂LRO

∂Fr
) and reproduction-limited dynamics in

which the effects through energy investments in reproduction exceed the effects
though energy investments in growth ( ∂LRO

∂Fg∞
< ∂LRO

∂Fr
). Given a constant resource

density R̄ we can obtain an explicit expression for the derivative of the lifetime
reproductive output with respect to the lifetime energy investments in growth and
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the energy investments in reproduction:

∂LRO

∂Fr
=rF

∫ amax

aJ

ℓ(R̄, a)2
e−µada (4.34a)

∂LRO

∂Fg∞
=rF Fr(R̄)

(∫ amax

aJ

2ℓ(R̄, a)
(
1 − e−rBa

)
e−µada − ∂aJ

∂Fg∞
ℓ2

Je−µaJ

)
(4.34b)

∂aJ

∂Fg∞
= − (ℓJ − ℓb)

rB

((
ϕf(R̄) + (1 − ϕ)ζ

)
ℓ∞ − ℓb

) ((
ϕf(R̄) + (1 − ϕ)ζ

)
ℓ∞ − ℓJ

)
The boundary between the regions with growth- and reproduction-limited dynam-
ics occurs if the derivative of the lifetime reproductive output with respect to the
energy investment in growth equals the derivative of the energy investment in
reproduction.

0 =∂LRO

∂Fg∞
− ∂LRO

∂Fr
(4.35a)

=Fr(R̄)
∫ amax

aJ

2ℓ(R̄, a)
(
1 − e−rBa

)
e−µada −

∫ amax

aJ

ℓ(R̄, a)2
e−µada

− Fr(R̄) ∂aJ

∂Fg∞
ℓ2

Je−µaJ

=
∫ amax

aJ

[
2Fr(R̄)

(
1 − e−rBa

)
ℓ∞ − ℓ(R̄, a)

]
ℓ(R̄, a)e−µada (4.35b)

− Fr(R̄) ∂aJ

∂Fg∞
ℓ2

Je−µaJ

In the extreme case in which the size at birth is zero and individuals mature
directly at birth (ℓJ = ℓb = 0), the age at maturation does not affect the lifetime
reproductive output and equation (4.36) becomes zero if the term between squared
brackets becomes zero. We can rewrite this term as:[

2Fr(R̄)
(
1 − e−rBa

)
ℓ∞ − ℓ(R̄, a)

]
= (4.36)(

2f(R̄)
κ

− 3ζ − 3
(
f(R̄) − ζ

)
ϕ

)(
1 − e−rBa

)
ℓ∞ − ℓbe−rBa

If we then simplify the equation further and assume that the size at birth equals
zero (ℓb = 0), we can obtain the following solution:

2f(R̄)
κ

− 3ζ − 3
(
f(R̄) − ζ

)
ϕ = 0 (4.37)
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or
κ = 2f(R̄)

3
(
ϕf(R̄) + (1 − ϕ)ζ

) (4.38)

If growth is entirely plastic (ϕ = 1) this equality is satisfied if the plastic energy
allocation constant (κ) equals two-thirds. If the functional response exceeds the
non-plastic growth scalar (f(R̄) > ζ), the plastic energy allocation constant (κ)
at which equality (4.37) is satisfied increases with decreasing growth plasticity
(ϕ). In contrast, if the non-plastic growth scalar exceeds the functional response
(f(R̄) < ζ), the plastic energy allocation constant (κ) at which equation (4.37) is
satisfied decreases with decreasing growth plasticity (ϕ). In other words, κ = 2/3
represents a threshold value. If the plastic energy allocation constant (κ) is below
this threshold value, the boundary between the growth-limited dynamics and the
reproduction-limited dynamics occurs if the non-plastic growth scalar exceeds the
functional response (f(R̄) > ζ). If the plastic energy allocation constant (κ) is
above the threshold value, the boundary between the growth-limited dynamics
and the reproduction-limited dynamics occurs if the functional response exceeds
the non-plastic growth scalar (f(R̄) > ζ).

From equation (4.36) it is clear that a positive size at birth (ℓJ = ℓb > 0)
introduces an additional negative term. The introduction of this negative term
decreases the threshold value of κ. From equation (4.35b) it is clear that the
introduction of a size at maturation above the size at birth (ℓJ > ℓb > 0) includes
an additional positive term. The introduction of this positive term would increase
the threshold value of κ.

Stability analysis

The stability boundaries can be found by linearization and substitution of expo-
nential trial solutions, following De Roos et al. (1990). We first define a small
perturbation in the equilibrium state of the resource, the age distribution and the
individual size (ϵR, ϵn, ϵℓ):

ϵR(t) =R(t) − R̃ (4.39a)

ϵn(t, a) =n(t, a) − ñ(a) (4.39b)

ϵℓ(t, a) =ℓ(t, a) − ℓ(R̃, a) (4.39c)

As long as these perturbations are sufficiently small, starvation conditions will not
occur and the system can be described by equations which are differentiable within
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their domain of definition.

I(R, ℓ) = Imaxf(R)ℓ2 (4.40a)

for ℓb ≤ ℓ ≤ (ϕf(R) + (1 − ϕ)ζ) ℓ∞

g(R, ℓ) = rB ((ϕf(R) + (1 − ϕ)ζ) ℓ∞ − ℓ) (4.40b)

for ℓb ≤ ℓ ≤ (ϕf(R) + (1 − ϕ)ζ) ℓ∞

b(R, ℓ) = rF

κ
(ϕ(1 − κ)f(R) + (1 − ϕ) (f(R) − κζ)) ℓ∞ℓ2 (4.40c)

for ℓb ≤ ℓ ≤ (ϕf(R) + (1 − ϕ)ζ) ℓ∞

d(R, ℓ) = µb for 0 ≤ a ≤ amax (4.40d)

The perturbation in the age at maturation (ϵa), can be expressed in terms of the
perturbation in length as shown by De Roos et al. (1990).

ϵa(t) = −ϵℓ(t, ãJ)
g(R̃, ℓJ)

(4.41)

We can substitute the perturbations in the partial differential equations to for-
mulate a linearized system of equations in which we neglect all second and higher
order terms:

δϵn

δt
+ δϵn

δt
= −µbϵn (4.42a)

ϵn(t, 0) =
∫ amax

ãJ

(
b(R̃, ℓ(R̃, a))ϵn(t, a) + bR(R̃, ℓ(R̃, a))ñ(a)ϵR(t) (4.42b)

+bℓ(R̃, ℓ(R̃, a))ñ(a)ϵℓ(t, a)da
)

− b(R̃, ℓJ)ñ(ãJ)ϵa(t)
δϵℓ

δt
+ δϵℓ

δt
= gR(R̃, ℓ(R̃, a))ϵR + gℓ(R̃, ℓ(R̃, a))ϵℓ (4.42c)

ϵℓ(t, 0) = 0 (4.42d)
dϵR

dt
= −νϵR −

∫ amax

0

(
I(R̃, ℓ(R̃, a))ϵn(t, a) + IR(R̃, ℓ(R̃, a))ñ(a)ϵR(t)

+Iℓ(R̃, ℓ(R̃, a))ñ(a)ϵℓ(t, a)
)

da (4.42e)

In which the functions gR, gℓ, bR, bℓ, IR and Iℓ indicate the partial derivatives of
the functions g(R, ℓ), b(R, ℓ) and I(R, ℓ), with respect to R and ℓ respectively.
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The following step is to substitute exponential trial solutions:

ϵR(t) = ∆Reλt (4.43a)

ϵn(t, a) = ∆n(a)eλt (4.43b)

ϵℓ(t, a) = ∆ℓ(a)eλt (4.43c)

ϵa = ∆aeλt (4.43d)

into the linearized system, leading to:

∂∆n

∂a
= −(µb + λ)∆n (4.44a)

∆n(0) =
∫ amax

ãJ

(
b(R̃, ℓ(R̃, a))∆n(a) + bR(R̃, ℓ(R̃, a))ñ(a)∆R (4.44b)

+bℓ(R̃, ℓ(R̃, a))ñ(a)∆ℓ(a)
)

da − b(R̃, ℓJ)ñ(ãJ)∆a

∂∆ℓ

∂a
= gR(R̃, ℓ(R̃, a))∆R + gℓ(R̃, ℓ(R̃, a))∆ℓ − λ∆ℓ (4.44c)

∆ℓ(0) = 0 (4.44d)

λ∆R = −ν∆R −
∫ amax

0

(
I(R̃, ℓ(R̃, a))∆n + IR(R̃, ℓ(R̃, a))ñ(a)∆R (4.44e)

+Iℓ(R̃, ℓ(R̃, a))ñ(a)∆ℓ(a)
)

da

We now need to derive the explicit derivatives of the ingestion, growth and repro-
duction functions with respect to the resource and the size:

IR(R, ℓ) = Imaxf ′(R)ℓ2 (4.45a)

gR(R, ℓ) = rBϕf ′(R)ℓ∞ (4.45b)

bR(R, ℓ) = rF (1 − κϕ)f ′(R)
κ

ℓ∞ℓ2 (4.45c)

Iℓ(R, ℓ) = 2Imaxf(R)ℓ (4.45d)

gℓ(R, ℓ) = −rB (4.45e)

bℓ(R, ℓ) = 2rF

(
ϕ

1 − κ

κ
f(R) + (1 − ϕ)f(R) − κζ

κ

)
ℓ∞ℓ (4.45f)

In which f ′(R) is the derivative of the functional response with respect to the
resource density R.

We can solve for ∆n(a) and ∆ℓ(a) explicitly and all quantities can be expressed

100



4

4.6. Supplementary materials

in terms of ∆R and ∆b which we write instead of ∆n(0).

∆n(a) = ∆be−µbae−λa (4.46a)

∆ℓ(a) = rBϕf ′(R̃)ℓ∞

rB + λ

(
1 − e−(rB+λ)a

)
∆R (4.46b)

∆a = −∆ℓ(t, ãJ)
g(R̃, ℓJ)

= − ϕf ′(R̃)ℓ∞(
ϕf(R̃) + (1 − ϕ)ζ

)
ℓ∞ − ℓJ

1 − e−(rB+λ)ãJ

rB + λ
∆R

(4.46c)

From this we directly arrive at the stability matrix:

S(λ)∆ =
(

s11 ss12

s21 s22

)(
∆b

∆R

)
(4.47)

With elements:

s11 = bc(R̃) Ās(λ, ãJ)
ñ(0) − 1

s12 = rF

κ
(1 − κϕ)f ′(R̃)ℓ∞Ās(0, ãJ)

+ bc(R̃) ϕ

rB + λ
f ′(R̃)ℓ∞

( (
1 − e−(rB+λ)ãJ

)
ℓ2

Je−µbãJ((
ϕf(R̃) + (1 − ϕ)ζ

)
ℓ∞ − ℓJ

) + 2rBĀℓ(ãJ)
)

s21 = −IRf(R̃) Ās(λ, 0)
ñ(0)

s22 = −ν − λ − IRf ′(R̃)
(

Ās(0, 0) + 2 rBϕ

rB + λ
f(R)ℓ∞Āℓ(0)

)
With:

bc(R̃) = rF

κ

(
ϕ(1 − κ)f(R̃) + (1 − ϕ)

(
f(R̃) − κζ

))
ℓ∞,

Ās(s, amin) =
∫ amax

amin

ñ(0)ℓ(R̃, a)2
e−(µb+s)ada,

Āℓ(amin) =
∫ amax

amin

ñ(0)
(

1 − e−(rB+λ)a
)

ℓ(R̃, a)e−µbada

In which f ′(R̃) represents the derivative of the type II functional response with
respect to the resource density in equilibrium. The eigenvalues of the system are
now the roots of

det(S(λ)) = 0 (4.48)

101



4

4. The regulating effect of growth plasticity on the dynamics of structured
populations

Supplementary figures
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Figure 4.4: Population dynamic cycles with a resource independent fecundity. The
fecundity is made independent by substituting the resource density in the function
of the individual fecundity with the equilibrium resource density (β(R̃, ℓ(t, a))).
The cycles are the same as the cycles represented in figure 4.3b and c. This shows
that this type of cycles is not caused by fluctuations in the individual fecundity.
Note the different vertical axis for the consumer densities.
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Figure 4.5: Age-size relationships at different times during population cycles if
growth is non-plastic (a) or entirely plastic (b). The graphs are constructed with
K = 0.5, ζ = 1 and κ = 0.3. Differently coloured lines occur at different moments
during the simulation. All age-size curves for non-plastic growth (a) do overlap.
Also note the different scaling of the vertical axes.
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Abstract
Growth in individual body size among different species can to a greater or lesser
extent depend on environmental factors such as resource availability. Individual
growth curves can therefore be largely fixed or more plastic. Classic theory about
phenotypic plasticity assumes that such plasticity has associated costs. In contrast,
according to dynamic energy budget theory, maintaining a fixed growth rate in
the face of variable resource availability would incur additional energetic costs.
In this article we explore the simultaneous evolution of the degree of plasticity
in individual growth curves and the rate of non-plastic, environment-independent
individual growth. We explore different relations between possible additional en-
ergetic costs and the degree of growth curve plasticity. To do so, we use adaptive
dynamics to analyse a size-structured population model that is based on dynamic
energy budget theory to account for the energetic trade-offs within an individual.
We show that simultaneous evolution of the degree of growth curve plasticity and
the rate of non-plastic individual growth will drive these traits to intermediate val-
ues at first. Afterwards, the degree of growth curve plasticity might evolve slowly
towards extreme values depending on whether energetic costs increase or decrease
with the degree of plasticity. In addition, the analysis shows that it is unlikely to
encounter species in which individual growth is entirely fixed or entirely plastic,
opposing general assumptions in dynamic energy budget theory.
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5.1 Introduction
Individual body size strongly affects the physiology, morphology and life history of
an individual (Calder, 1984; LaBarbera, 1989; Peters, 1983). For example, body
size is positively correlated with stress tolerance, fecundity, mating success and
survival (Hone and Benton, 2005; Kingsolver and Pfennig, 2004; Blanckenhorn,
2000; Peters, 1983). This suggests that fitness increases with body size and there-
fore body size should be under strong selective pressure (Kingsolver and Huey,
2008). Comparison between taxa indeed shows an increase in species body size
throughout the history of life, a pattern that is known as Cope’s rule (Smith et al.,
2016; Stanley, 1973). However, this interspecific trend of increasing body size does
not imply that intraspecific selection pressure always results in directional selec-
tion towards faster growth rates (Gotanda et al., 2015). On the contrary, trade-off
relations between individual growth rates and other life history processes such as
fecundity and senescence often result in opposing selection forces (Rollinson and
Rowe, 2015; Dmitriew, 2011; Blanckenhorn, 2000). This is likely to result in balan-
cing selection towards an optimal growth rate. The optimal growth rate is likely to
be species and population specific as it strongly depends on the environment and
could shift with human impact or climate change (Gardner et al., 2011; Allendorf
and Hard, 2009).

Individual growth curves, that is the relationship between individual body size
and age, are not only determined by genetic components, but in many species
also show a strong plastic response to the environment. Environment-dependent
changes in individual growth curves are observed in a wide range of ectothermic
species ranging from Daphnia (McCauley et al., 1990) and fish (Zimmermann
et al., 2018; Lorenzen and Enberg, 2002) to amphibians and reptiles (Halliday and
Verrell, 1988), but it is even suggested that some large fossil mammals were growing
in body size at flexible rates (Köhler and Moyà-Solà, 2009). This suggests that the
growth curves of most ectotherms and early endotherms is or was at least partly
plastic. In contrast, modern-day endotherms (e.g. birds and mammals) might
be able to sustain a more constant growth curve due to the ability to maintain
a strong homeostasis (Kooijman, 2010). For example, female mice stop ovulating
but maintain growth in body size if food is scarce (Perrigo, 1990). Overall this
suggests that taxa not only differ in their growth rate but also differ strongly in the
degree of plasticity in the individual growth curves. In this paper we will explore
a mechanistic way to study the simultaneous evolution of the degree of plasticity
in individual growth curves.

Evolution of a trait and the plasticity herein is often considered in the con-
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text of a dynamic environment with a certain degree of unpredictability. As a
consequence, phenotypic plasticity is argued to be able to both hamper and ac-
celerate evolutionary change in a trait, while plasticity itself might be subject to
selection as well (Perry et al., 2018; Levis and Pfennig, 2016; Fusco and Minelli,
2010). Plasticity decouples the phenotypic expression of a trait from the geno-
type of an individual and increases its dependence on the environment. Yet, the
mechanisms that link a life-history trait to the environment are often unknown
and are likely to have a genetic basis as well. As a consequence, plasticity and
evolution of a trait are found to influence each other in several ways (Pfennig
et al., 2010; Crispo, 2007). Plasticity could, for example, enable species to survive
in new environmental conditions encountered through environmental change or
radiation and in this way grant species more time to adapt to new environments
(Levis and Pfennig, 2016; Moczek et al., 2011; Price et al., 2003). On the other
hand, canalization could cause a species to lose plasticity in a trait if the envi-
ronment is relatively constant (Crispo, 2007). Simultaneously, plasticity may also
mask genotypes from selective forces which could reduce the total genetic change
in a trait (Crispo, 2007). In general, it is suggested that an intermediate degree of
plasticity is expected to favour the evolution of a trait, while fluctuating environ-
ments favour a higher degree of plasticity (Levis and Pfennig, 2016; Moczek et al.,
2011; Fusco and Minelli, 2010; Price et al., 2003). Although it is clear that the
environment plays an important role in the evolution of plasticity, the mechanistic
link between the environment and a trait often remains vague and unconsidered.

A way to obtain a more mechanistic underpinning of the evolution of pheno-
typic plasticity is to consider the energy expenses or costs that are associated with
phenotypic plasticity (Pigliucci, 2005). The energetic costs of plasticity could
arise from numerous mechanisms and processes and strongly depend on the trait
(DeWitt et al., 1998). A useful way to disentangle the energetic expenses of ex-
pressing a plastic trait is to split these expenses into the costs of expressing the
trait itself and the costs of maintaining plasticity in the trait (Murren et al., 2015).
Energetic costs of expressing the trait itself can be considered as the expenses that
are needed to express a specific phenotype and are only paid when a phenotype is
actually expressed. In contrast, energetic costs of maintaining plasticity in a trait
are expenses that are always paid even if a phenotype is not expressed. This would
for example include costs of monitoring the environment or costs of maintaining a
complex genetic or chemical pathway to facilitate plasticity in a trait. Although
maintaining plasticity in a trait might bring additional expenses, plasticity can still
increase the fitness of an individual as the benefits of plasticity can outweigh the
costs for maintaining plasticity. It is generally assumed that costs of maintaining
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plasticity are low or have a very small impact on the evolution of plasticity (Auld
et al., 2010), even though it is often difficult to disentangle the different costs of a
plastic trait.

Dynamic Energy Budget (DEB) theory offers a useful way to formulate a mech-
anistic model about the energetic expenses regarding phenotypic plasticity in in-
dividual growth. DEB theory describes the allocation of assimilated energy to
growth, reproduction and somatic maintenance costs within an individual and in
this way links important life history processes (Jager et al., 2013; Kooijman, 2010).
DEB models inherently incorporate the costs of expressing a specific growth rate
and include a tradeoff with fecundity, because assimilated energy can only be spent
once. Most DEB models use a κ-rule, in which a fraction κ of the assimilated en-
ergy is allocated to somatic growth and somatic maintenance, while a fraction 1−κ

is allocated to reproduction (Jager et al., 2013; Kooijman, 2010), which implies
that both the individual growth curve and individual fecundity depend on the
food availability in the environment and are therefore entirely plastic. It is clear
that most endothermic species deviate from the κ-rule as these species maintain
a relatively constant growth curve, which is prioritized over reproduction. This
fundamental tradeoff between growth and reproduction becomes especially appar-
ent if individuals maintain a fixed growth rate under extreme conditions. This
tradeoff is very clear in ungulates which show delayed reproduction and decreased
fecundity under reduced food conditions (Albon et al., 2000; Coulson et al., 2000;
Clutton-Brock et al., 1987; Festa-Bianchet et al., 1995; Skogland, 1986). DEB
theory assumes that the κ-rule is a fundamental mechanism in individual energy
allocation and that deviating from this rule requires additional mechanisms such
as monitoring the environment and adaptive behaviour as well as more complex ge-
netic and chemical system to regulate energy allocation (Kooijman, 2010). These
additional mechanisms are argued to induce additional costs for deviating from
the simpler and more straightforward κ-rule to maintain a more constant growth
rate. This assumption contrasts with the general assumption that plasticity in a
trait is costly, such that an increase in the degree of plasticity implies higher costs
(Pigliucci, 2005). Whether costs increase or decrease with plasticity might, in the
end, strongly depend on the type of costs and their link to the underlying chemical
structure for energy allocation. Here we therefore explore both the situation in
which additional costs increase with plasticity and the situation in which costs
decrease with plasticity.

In this research we use a size-structured population model (formulated in
chapter 4) based on a DEB model describing growth and reproduction to explore
the simultaneous evolution of the degree of plasticity in the individual growth

109



5

5. The evolution of growth curve plasticity in size-structured populations

curve and the rate of the non-plastic part of individual growth. The DEB model
provides a mechanistic way to incorporate the energy expenses and costs linked to
plasticity in individual growth on an individual level. The translation of the indi-
vidual energetic model to a size-structured population model allows us to analyse
the model at the population level. Because we are interested in how the indi-
vidual energetic model affects the evolution of plasticity, we study the model in
an artificial and closed condition without external influences. As a consequence,
fluctuations in the environment only arise due to changes in the structure of the
consumer population, for example due to evolution of the individual traits or pop-
ulation dynamic cycles. In this way, individuals are able to use plasticity in growth
to optimize their energy allocation schemes. With this model, we will explore the
situation in which costs decrease with plasticity, which is in line with DEB theory,
and contrast this with the scenario in which costs increase with plasticity, which
is in line with general theory about plasticity.

5.2 Methods

Model formulation

In this study we use a physiologically structured population model to describe
the dynamics of a consumer population structured by age (a) and size (length ℓ).
the individuals of the consumer population compete for a shared, unstructured
resource (R). The energetics of individual consumers is modelled with a DEB
model that forms the core of the population model. The details of this DEB
model for individual energetics are presented in chapter 4 and here we provide a
concise overview of its main features.

In the underlying DEB model, consumer individuals are characterized by the
energy stored in lean mass. In DEB theory, it is assumed that energy in lean mass
scales with the mass of an individual. Likewise, the mass is assumed to scale with
the volume and the volume can be related to the cubed length (Kooijman, 2010).
As a consequence, energy in lean mass scales with length cubed (ℓ3).

We assume that individuals feed on a resource community that follows semi-
chemostat dynamics with a maximum density K and a turn-over rate ν. Con-
sumption of the resource scales with the surface area of an individual, which is
assumed to be proportional to length squared (ℓ2). In addition, the consumption
rate scales with the resource density following a scaled type II functional response
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(f(R) = R
Rh+R , with a half saturation constant Rh) and an ingestion scalar (Imax).

dR

dt
= ν (K − R) −

∫ amax

0
Imaxf(R)ℓ(t, a)2n(t, a)da (5.1)

In which n(t, a) represents the number of individuals at time t with age a. Con-
sumed resources are assimilated in the guts and the ingestion rate times the assim-
ilation rate is given by α. Assimilated energy is divided between somatic processes
and reproductive processes. Somatic processes include growth in body size and
somatic maintenance costs, which are costs for maintaining the current individual
state. Reproductive processes include maturation of juveniles and the production
of offspring by adults.

The model follows DEB theory in assuming that total energy allocation to
somatic processes scales with individual surface area (ℓ2). This energy allocation
rate to somatic processes is furthermore assumed to be a combination of a fixed en-
ergy allocation rate and an ingestion-dependent energy allocation rate. The fixed
energy allocation rate is determined by a fixed scalar (ζ) and is therefore non-
plastic. In contrast, for the ingestion-dependent allocation rate we follow DEB
theory by assuming that a fixed fraction κ of assimilated energy is channelled
to somatic processes. Since ingestion depends on the resource availability in the
environment (following f(R)), this ingestion-dependent allocation is plastic. In
other words, allocation to growth consists of a non-plastic part scaling with ζ and
a plastic part scaling with the energy availability in the environment (f(R)). The
balance between these two energy flows determines the level of plasticity in the
energy allocation to somatic processes. We introduce the parameter ϕ to vary this
balance from entirely fixed growth (ϕ = 0) to entirely plastic growth (ϕ = 1). En-
ergy allocated to somatic processes is first used to pay somatic maintenance costs
because these costs are essential for the functioning of an individual (Kooijman,
2010). The somatic maintenance costs are independent of the environment and
scale with the energy stored in lean mass and therefore with length cubed (ℓ3) and
a maintenance scalar (b). The remainder of the energy allocated to somatic pro-
cesses is used for somatic growth. When there are no additional costs for plasticity
we assume that energy is converted to mass with a constant efficiency (γm):

dℓ3

dt
= γm

(
κα (ϕf(R) + (1 − ϕ)ζ) ℓ2 − bℓ3) (5.2)

Note that the parameter ϕ itself is constant and in particular does not depend on
resource availability. This parameter provides, however, a mechanistic basis for
varying levels of plasticity in the growth rate in body size and thus the growth
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curve of individuals, as it influences to what extent somatic growth depends on
resource availability. The value of ϕ varies between 0 and 1. Without growth
curve plasticity (ϕ = 0), energy allocation to somatic growth is determined by a
fixed parameter (ζ) and is therefore independent of the environment. With full
growth curve plasticity (ϕ = 1) this energetic model simplifies to the DEB model
described by Jager et al. (2013) and energy allocation to somatic growth is entirely
determined by the resource density in the environment (f(R)).

The assimilated energy not allocated to somatic processes is allocated to matu-
ration in juveniles and reproduction in adults. In our model consumer individuals
eventually mature when reaching a predefined size (ℓJ). Adult consumers con-
vert the energy not used for somatic processes to reproductive energy (Er) with a
constant conversion efficiency (γr):

dEr

dt
=

γr

(
αf(R)ℓ2 − κα (ϕf(R) + (1 − ϕ)ζ) ℓ2) if ℓ > ℓJ

0 if ℓ < ℓJ

(5.3)

From equations (5.2) and (5.3) it is clear that assimilated energy might become
insufficient to cover the energy required for somatic maintenance or non-plastic
growth resulting in starvation. Under these conditions, individuals are forced to
change their energy allocation scheme, which unavoidably results in additional
plasticity. The DEB model assumes that individuals will first prioritize somatic
maintenance and then non-plastic growth over other processes. To do so, indi-
viduals have to reallocate energy from reproduction to somatic processes under
starvation conditions. In addition, we assume that individuals will experience
starvation mortality (µs) on top of the fixed background mortality (µb). We as-
sume that the starvation mortality increases with the energy deficit scaled with a
starvation scalar (qs). Starvation mortality ranges from 0 under normal conditions
to immediate death (µs = ∞) if individuals fail to pay all somatic maintenance
costs. The specific formulation of the starvation conditions plays a minor role
in the ecological and evolutionary dynamics of the model. The equations for the
energy dynamics and mortality under starvation conditions are therefore outlined
in more detail in the supplementary materials.

We reformulate the equation for growth (5.2) to describe the growth in length
rather than the growth in length cubed. In addition, we use a conversion factor
to translate the reproductive energy into the number of offspring. To express
this model more succinctly we use three composite parameters representing the
ultimate asymptotic size under unlimited resource conditions (ℓ∞ = ακ

b ), the time
constant of growth (rB = γmb

3 ) and the time constant of reproduction (rF = γrb
ℓ3

b

).
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Interesting to note is that (ϕf(R) + (1 − ϕ)ζ) ℓ∞ is the actual asymptotic size of
an individual taken into account the energy allocation strategy and environment
of an individual. Individuals grow towards this asymptotic size with a rate rB .

The physiologically structured population model described the dynamics at
the level of the population (Table (5.1)). At the core of the population model are
three equations describing the energy surplus or deficit in growth (Fg(R, ℓ)), in
reproduction (Fr(R)) and these two combined in terms of length (Ft(R, ℓ)). These
terms indicate the amount of energy available for growth and reproduction and
the amount of energy not used for somatic maintenance. As long as these terms
are positive, individuals have sufficient energy to grow and reproduce. As soon
as one of these terms becomes negative, individuals do not have sufficient energy
to grow, reproduce or cover somatic maintenance costs and experience starvation
conditions. Although most equations in the population model are expressed in
these terms for energetic surpluses or deficits, we have to derive some additional
expressions to complete the model. Integrating the individual fecundity (β(R, ℓ))
at a given time (t) over the entire population results in the number of individuals
at birth (n(t, 0)). The dynamics of the number of individuals at a given time
and age (n(t, a)) is determined by the background mortality (µb) and starvation
mortality (µs(R, ℓ)). For computational reasons we also assume that individuals
die when reaching a maximum age (amax). This assumption barely affects the
dynamics as it is set such that almost no individual reaches this age. Individuals
are born with a fixed size (ℓb) and grow towards an asymptotic size determined
by the energy assimilation to somatic processes ((ϕf(R) + (1 − ϕ)ζ)ℓ∞). If the
energy allocation to somatic processes is highly plastic (high ϕ), the asymptotic
size largely depends on the resource availability in the environment (f(R)ℓ∞) and
is therefore largely plastic. This then directly results in a plastic individual growth
curve. In contrast, if the energy allocation to somatic processes is largely fixed
(low ϕ), the asymptotic size is largely fixed (ζℓ∞) and the growth rate is largely
independent of the environment.

Besides the situation without additional costs associated with plasticity we
explore the situation in which additional costs are associated with growth curve
plasticity. We assume that these costs reduce the efficiency with which energy
allocated to growth is converted into lean mass. We explore both the situation in
which costs increase with individual growth curve plasticity and the situation in
which costs decrease with growth curve plasticity. We introduce a separate para-
meter (cg) to switch between these two situations (cg = 1 and cg = 0 respectively).
In addition, we use the parameter cp to scale the costs with the level of growth
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Table 5.1: Equations describing the population dynamics based on the model in
chapter 4.

Population age-distribution dynamics
∂n

∂t
+ ∂n

∂a
= − (µb + µs(R, ℓ)) n(t, a)

n(t, 0) =
∫ amax

0
β(R, ℓ(t, a))n(t, a)da

Energetic surpluses/deficits

Fg(R, ℓ) = (ϕf(R) + (1 − ϕ)ζ) ℓ∞ − ℓ

Fr(R) =
(

ϕ
(1 − κ)f(R)

κ
+ (1 − ϕ)

(
f(R)

κ
− ζ

))
ℓ∞

Ft(R, ℓ) = Fg(R, ℓ) + Fr(R) = f(R)
κ

ℓ∞ − ℓ

Length-age dynamics

∂ℓ

∂t
+ ∂ℓ

∂a
=


rB(1 − ct)Fg(R, ℓ) if Fg(R, ℓ) > 0 and Fr(R) > 0
rB(1 − ct)Ft(R, ℓ) if Fr(R) ≤ 0 and Ft(R, ℓ) > 0
0 otherwise

ℓ(t, 0) = ℓb

ct = (cgϕ + (1 − cg)(1 − ϕ)) cp

Individual fecundity

β(R, ℓ) =


rF Fr(R)ℓ2 if ℓJ < ℓ, Fg(R, ℓ) > 0 and Fr(R) > 0
rF Ft(R, ℓ)ℓ2 if ℓJ < ℓ, Fg(R, ℓ) ≤ 0 and Ft(R, ℓ) > 0
0 otherwise

Starvation mortality

µs(R, ℓ) =


0 if Fg(R, ℓ) > 0 and Fr(R) > 0

−qs
Fg(R,ℓ)
Ft(R,ℓ) if Fg(R, ℓ) ≤ 0 and Ft(R, ℓ) > 0

−qs
Fr(R)

Ft(R,ℓ) if Fr(R) ≤ 0 and Ft(R, ℓ) > 0
∞ if Ft(R, ℓ) ≤ 0
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curve plasticity (ϕ). This results in an expression for the total costs of plasticity:

ct = (cgϕ + (1 − cg)(1 − ϕ)) cp (5.4)

From this expression it follows that the costs for plasticity (ct) will increase (cg = 1)
from 0 to cp or decrease (cg = 0) from cp to 0 if plasticity in the growth curve (ϕ)
changes from 0 to 1. In other words, ct indicates the fraction of energy allocated
to growth that is used to cover additional costs for plasticity. This results in a
reduction of the growth rate scalar from rB to rB(1 − ct).

Adaptive dynamics

We analyse the evolution of growth curve plasticity (ϕ) and the non-plastic growth
scalar (ζ) in the described model using the adaptive dynamics framework (Bränn-
ström et al., 2013). This framework considers the invasion fitness of a rare mutant,
which has a slightly different trait value compared to resident individuals, in an
environment determined by the resident population in equilibrium. Because the
population is in equilibrium, the environment only changes over evolutionary time
and is therefore constant throughout the lifetime of an individual. As a con-
sequence, growth curve plasticity in individual growth is not visible during the
lifetime of an individual, but still affects the energy allocation of an individual.
Mutant trait values that yield a positive invasion fitness can spread and take over
the population, which results in a stepwise change in the trait throughout the
population. Using this framework results in a fitness landscape which predicts the
evolutionary trajectories towards and away from evolutionary singular strategies.

The adaptive dynamics framework assumes that the evolutionary timescale can
be separated from the ecological timescale. The derivation of the invasion fitness
function therefore starts with defining the ecological equilibrium of a resident pop-
ulation with a given trait value (ϕ, ζ). In physiologically structured population
models, the equilibrium conditions can be derived using the expression for the
lifetime reproductive output of an individual (De Roos, 1997). The lifetime repro-
ductive output represents the average number of offspring an individual produces
during its lifetime. In equilibrium the resource density is constant and individuals
therefore do not experience starvation conditions. As a consequence the lifetime
reproductive output of an individual in equilibrium (LRO(R̃)) is given by an ex-
pression in which only the scaled resource density (f(R̃)) is unknown (derivation
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in the supplementary materials and chapter 4):

LRO(R̃) = rF Fr(R̃)
∫ amax

ãJ

ℓ̃(a)2e−µbada (5.5)

ℓ̃(a) = ℓbe−rB(1−ct)a +
(
ϕf(R̃) + (1 − ϕ)ζ

) (
1 − e−rB(1−ct)a

)
ℓ∞

ãJ = 1
rB(1 − ct)

ln
( (

ϕf(R̃) + (1 − ϕ)ζ
)

ℓ∞ − ℓb(
ϕf(R̃) + (1 − ϕ)ζ

)
ℓ∞ − ℓJ

)

Herein we denoted the equilibrium value of a variable with a tilde. In equilibrium
every individual should exactly replace itself and the lifetime reproductive output
should therefore be equal to one. This can be used to numerically compute the
resource density in equilibrium (R̃). We refrain from calculating the consumer
density in equilibrium as is done in chapter 4 because this is not necessary to
compute the invasion fitness of a mutant individual.

To calculate the invasion fitness of a mutant, we consider the lifetime reproduc-
tive output of a mutant individual in an environment set by the resident population
in equilibrium. We assume that the difference between the mutant trait value and
the resident trait value is sufficiently small to prevent mutant individuals from ex-
periencing starvation mortality in an environment set by the resident population
in equilibrium. We can therefore use the same expression for the lifetime repro-
ductive output for mutant and resident individuals (eq. 5.5). A mutant trait value
can spread through the population if the lifetime reproductive output of a mutant
individual (LROm(R̃)) exceeds the lifetime reproductive output of a resident in-
dividual in equilibrium (LROr(R̃)), which is always equal to one. The invasion
fitness of a mutant can therefore be closely approximated by the natural logarithm
of the lifetime reproductive output of the mutant in an environment set by the
resident population in equilibrium, scaled by the average age at reproduction of a
resident individual in equilibrium (Tr) (Metz and Leimar, 2011):

Sm(R̃) =
ln
(
LROm(R̃)

)
Tr(R̃)

(5.6)

Tr(R̃) =
∫ amax

0
aβ(R̃, ℓ̃)e−µbada

Note that the average age at reproduction of a resident individual in equilibrium
(Tr) is always positive and therefore never affects the qualitative form of the fit-
ness landscape. The local selection gradient represents the direction and rate of
evolutionary change in a trait (Geritz et al., 1998). For the degree of growth curve
plasticity (ϕ) and the non-plastic growth rate scalar (ζ) these selection gradients
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are therefore given as:

Dϕ(R̃) = 1
Tr

[
∂

∂ϕm
ln
(
LROm(R̃)

)]
ϕm=ϕr

(5.7a)

Dζ(R̃) = 1
Tr

[
∂

∂ζm
ln
(
LROm(R̃)

)]
ζm=ζr

(5.7b)

The full expression for the selection gradients is given in the supplementary ma-
terial (eq. 5.16 and eq. 5.17).

We refer to the collection of points at which one of the selection gradients
is equal to zero as an evolutionary isocline (Dϕ(R̃) = 0 or Dζ(R̃) = 0). A sin-
gular strategy occurs if both selection gradients are equal to zero, which is at
the intersection of an evolutionary isocline for the growth curve plasticity and an
evolutionary isocline for the non-plastic growth scalar. In this article we explore
the fitness landscape around these singular strategies without additional costs for
growth curve plasticity (cp = 0), if costs increase with growth curve plasticity
(cg = 1) and if costs decrease with growth curve plasticity (cg = 0). We use gen-
eral root finding and curve continuation procedures implemented in C (De Roos,
2021b) for the continuation of the isoclines (LRO = 1 and Dϕ = 0 or Dζ = 0) with
respect to the growth curve plasticity (ϕ) and the non-plastic growth scalar (ζ).
In addition, we perform this analysis for two values of the somatic energy alloca-
tion scalar (κ) because this parameter strongly influences the configuration of the
fitness landscape. Bifurcation over other parameters showed that the presented fit-
ness landscapes cover all biologically relevant scenarios. In addition, we verify the
evolutionary behaviour of the traits around the evolutionary isoclines in terms of
convergence- and evolutionary stability by plotting the sign of the invasion fitness
for combinations of resident and mutant trait values in so-called Pairwise Invasi-
bility Plots (PIPs) (Geritz et al., 1998). An evolutionary isocline is convergence
stable if evolution drives a trait value towards the isocline and evolutionary stable
if evolution cannot drive the trait value away from the isocline in any direction.
For the model analysis we will use a parameter set for Daphnia feeding on algae
adapted from De Roos et al. (1990) (Table 5.2).

Dynamic simulations

To corroborate the evolutionary analysis using adaptive dynamics we also carry
out numerical simulations of both the ecological and evolutionary dynamics using
the escalator-boxcar-train method (EBT) (De Roos, 1988), a numerical method
specifically designed to study the dynamics of structured population models. Dur-
ing these simulations, the ecological dynamics and evolutionary dynamics occur at
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Table 5.2: Parameters used in the structured population model for Daphnia magna
feeding on algae, derived from De Roos et al. (1990).

Parameters of the structured population model

ϕ Growth curve plasticity varied -
ζ Scalar of the non-plastic growth

rate
varied -

κ Somatic energy allocation scalar 0.3 or 0.9 -
ℓb Length at birth 0.8 mm
ℓJ Length at maturation 2.5 mm
ℓ∞ Asymptotic length under unlim-

ited food conditions
20κ mm

amax Maximum age 70 d
rB Time constant of growth 0.15 d−1

rF Time constant of reproduction 0.00714 mm−3d−1

µb Background mortality rate 0.03 d−1

qs Starvation mortality scaling
constant

0.2 d−1

Imax Maximum feeding rate per unit
surface area

1.8 106 cells mm−2ml−1d−1

Rh Half saturation constant of func-
tional response

0.14 106 cells ml−1

ν Semi-chemostat renewal rate 0.5 d−1

K Maximum resource density 0.5 106 cells ml−1

cg Relation between costs and plas-
ticity

0 or 1 -

cp Additional plasticity costs scalar 0.4 -
pm Mutation probability for a spe-

cific mutation
0.01 -

dm Mutation effect on trait 0.01 -
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the same timescale, because every day new mutations occur during a reproductive
event. As a consequence, the compositions of the consumer population changes
constantly and is not in equilibrium. Similarly, the resource density therefore is
not in equilibrium and changes due to the changes in the structure of the consumer
population as well as population dynamic cycles (Chapter 4). This results in more
realistic conditions in which individuals have to deal with a constantly changing
environment, which could affect the evolution of the level of growth curve plasti-
city.

In the EBT method the population is subdivided into cohorts consisting of
individuals born at approximately the same time. In our simulations, a new cohort
will be formed once a day and all offspring are always born with age 0 and length
ℓb. We split a cohort into multiple sub-cohorts consisting of genetically identical
individuals such that the differential equations can be solved separately for every
sub-cohort. When a new cohort is formed based on the reproductive output of the
current population, we assume that a mutation occurs with probability pm for each
trait and that this mutation has an effect of size dm on either the growth curve
plasticity (ϕ) or the non-plastic growth scalar (ζ). We assume that mutations can
affect traits in both directions, resulting in either an increase or decrease in growth
curve plasticity or an increase or decrease in non-plastic growth rate, such that
selection can drive these trait values in both directions. As a result, a fraction
1 − 4pm of the offspring will have the same trait values as the parent cohort.
In addition, four sub-cohorts with mutants are produced, which differ from the
parent cohort in either the growth curve plasticity (ϕ − dm or ϕ + dm) or the
non-plastic growth scalar (ζ − dm or ζ + dm). A fraction pm of the offspring
is allocated to each of the mutant sub-cohorts. If the trait values of a mutant
cohort fall outside the range of the allowed trait values (0 ≤ ϕ ≤ 1, 0 ≤ ζ ≤
1), the trait values of the mutant sub-cohort are reset to the trait values of the
parent cohort. Simulations are started from a population dynamic attractor for
the resident population, obtained by running the model 5000 time-steps with a
given parameter-set and a mutation probability of zero. Afterwards simulations
are continued with a non-zero mutation probability until the number of cohorts,
the average trait values and the resource density become constant with a precision
of 10−6, which indicates that the population has reached an evolutionary and
ecological attractor (which took at least 5000 time-steps). We will depict the
evolving trait values of the simulated trajectories using black solid lines in the
same graphs as the fitness landscapes computed with adaptive dynamics.

119

5.2. Methods



5

5. The evolution of growth curve plasticity in size-structured populations

5.3 Results
We first consider the situation in which maintaining a plastic or non-plastic growth
curve does not incur additional costs in the form of a reduced conversion efficiency
(cp = 0, fig. 5.1). We found two evolutionary isoclines for the degree of growth
curve plasticity (Dϕ(R̃) = 0) and two evolutionary isoclines for the non-plastic
growth scalar (Dζ(R̃) = 0). The first isocline for the growth curve plasticity
(Dϕ(R̃) = 0) occurs when the non-plastic growth scalar is equal to the scaled
resource density in the environment (ζ = f(R̃), fig. 5.1, blue dashed line). At
this isocline the plastic growth rate is equal to the non-plastic growth rate and as
a consequence a mutation in growth curve plasticity does not affect the fitness of
an individual. Selection in the non-plastic growth scalar will drive the population
away from this evolutionary isocline for growth curve plasticity. We will therefore
refer to this isocline as the trivial evolutionary isocline for growth curve plasticity
(ϕ). The direction of the selection gradient for growth curve plasticity is opposite
at different sides of this trivial isocline for growth curve plasticity.

Similarly, an evolutionary isocline for the non-plastic growth scalar (Dζ(R̃) =
0) occurs if growth is entirely plastic (ϕ = 1, fig. 5.1 red dashed line). At this
isocline the life history and fitness of an individual is not affected by the non-plastic
growth scalar. Evolution in growth curve plasticity will drive the population away
from this evolutionary isocline for some values of the non-plastic growth scalar. We
therefore refer to this isocline as the trivial evolutionary isocline for the non-plastic
growth scalar (ζ).

The second evolutionary isocline for the growth curve plasticity and the non-
plastic growth scalar (Dϕ(R̃) = 0, Dζ(R̃) = 0) occur on the same manifold in the
parameter space in absence of additional costs for growth curve plasticity (Fig.
5.1, purple line; see eq. 5.16 and eq. 5.17 for corroboration that these isoclines
coincide when cp = 0). This manifold represents a collection of singular points. All
combinations of trait values on this manifold have the same fitness which results in
evolutionary neutrality on the manifold. Nonetheless, the singular points on the
manifold are invasion and convergence stable against mutants with trait values
which are not on the manifold (Fig. 5.6 and 5.7). The manifold therefore forms
a collection of evolutionary endpoints with the same fitness. We will refer to
this manifold as the main ESS-manifold. Time simulations revealed two different
evolutionary trajectories towards this main ESS-manifold (Fig. 5.1, black lines).
If the initial point of the trajectory and the main manifold occur at the same side
of the trivial evolutionary isocline for growth curve plasticity, selection will drive
the growth curve plasticity and the non-plastic growth scalar directly towards the
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Figure 5.1: Selection gradients and evolutionary trajectories for the evolution of
the growth curve plasticity (ϕ) and the non-plastic growth scalar (ζ) without ad-
ditional costs for plasticity (cp = 0) for κ = 0.3 (left) and κ = 0.9 (right). Blue,
red and purple arrows show the selection gradient for the growth curve plasticity
(ϕ), non-plastic growth scalar (ζ) and combination of both respectively. Blue,
red and purple lines indicate evolutionary isoclines for the growth curve plasti-
city (ϕ), non-plastic growth scalar (ζ) and overlapping instances of these isoclines.
Solid lines represent evolutionary isoclines which are convergence and evolutionary
stable for the parameter under consideration. Because these isoclines overlap in
this situation, these lines form a manifold that is evolutionary neutral for all para-
meter combinations on the manifold and evolutionary stable against invasion of
mutants with parameter combinations not on the manifold. Dashed lines repres-
ent evolutionary isoclines which are evolutionary neutral for the parameter under
consideration. Black lines show the average trait values from time simulations of
evolutionary trajectories starting at the parameter values marked with a dot.

main manifold. On the other hand, if the initial point of the trajectory and the
main ESS-manifold occur at opposite sides of the trivial evolutionary isocline for
growth curve plasticity, selection will first drive the growth curve plasticity and
non-plastic growth scalar towards the trivial isocline for growth curve plasticity.
At this isocline the direction of selection for the growth curve plasticity changes
and selection drives the growth curve plasticity and the non-plastic growth scalar
towards the main ESS-manifold.

Introducing a cost increasing with growth curve plasticity (cg = 1, cp = 0.4)
changes the location of the evolutionary isoclines in the parameter space relatively
little but does so differently for the evolutionary isoclines of the growth curve
plasticity and the non-plastic growth scalar (Fig. 5.2). First of all, the trivial
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Figure 5.2: Selection gradient and evolutionary trajectories for the evolution of
the growth curve plasticity (ϕ) and the non-plastic growth scalar (ζ) with costs
increasing with growth curve plasticity (cg = 1, cp = 0.4) for κ = 0.3 (left) and
κ = 0.9 (right). Blue, red and purple arrows show the selection gradient for
the growth curve plasticity (ϕ), non-plastic growth scalar (ζ) and combination
of both respectively. Blue and red lines indicate evolutionary isoclines for the
growth curve plasticity (ϕ) and the non-plastic growth scalar (ζ). Solid lines
represent evolutionary isoclines that are convergence and evolutionary stable for
the parameter under consideration. Dashed lines represent evolutionary isoclines
that are evolutionary neutral for the parameter under consideration. Black lines
show the average trait values from time simulations of evolutionary trajectories
starting at the parameter values marked with a dot.

evolutionary isocline for growth curve plasticity (Fig. 5.2, almost horizontal blue
line) slightly curves when growth is not entirely non-plastic (ϕ > 0), which makes
this evolutionary isocline an evolutionary attractor when only considering the evo-
lution in growth curve plasticity (Fig. 5.6 and 5.7). In addition, the main isocline
for growth curve plasticity shifts away from the main isocline for the non-plastic
growth scalar (Fig. 5.2, red and blue curved lines). As a consequence, selection
on the non-plastic growth scalar will drive the population away from the main iso-
cline for growth curve plasticity, while close to the main isocline for the non-plastic
growth scalar the selection gradient for the growth curve plasticity is negative. As
a result, the growth curve plasticity and the non-plastic growth scalar will first
evolve towards the main isoclines, similar to the situation without additional costs
for growth curve plasticity (Fig. 5.2, black lines). But as soon as the population
trait values are between these main isoclines, the trait values will remain between
these isoclines and slowly evolve towards lower growth curve plasticity. Inter-
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Figure 5.3: Selection gradient and evolutionary trajectories for the evolution of
the growth curve plasticity (ϕ) and the non-plastic growth scalar (ζ) with costs
decreasing with growth curve plasticity (cg = 0, cp = 0.4) for κ = 0.3 (left) and
κ = 0.9 (right). Blue, red and purple arrows show the selection gradient for
the growth curve plasticity (ϕ), non-plastic growth scalar (ζ) and combination
of both respectively. Blue and red lines indicate evolutionary isoclines for the
growth curve plasticity (ϕ) and the non-plastic growth scalar (ζ). Solid lines
represent evolutionary isoclines that are convergent and evolutionary stable for
the parameter under consideration. Dashed lines represent evolutionary isoclines
that are evolutionary neutral for the parameter under consideration. Black lines
show the average trait values from time simulations of evolutionary trajectories
starting at the parameter values marked with a dot.

estingly, selection gradients and the time series reveal that the initial evolution
towards the main isoclines is much faster compared to the evolution towards low
growth curve plasticity between the main isoclines (length of arrows fig. 5.2 and
supplementary videos).

Introducing a cost decreasing with growth curve plasticity (cg = 0, cp = 0.4)
shifts the location of the isoclines in the opposite direction compared to the situ-
ation in which costs increase with growth curve plasticity (Fig. 5.3). The trivial
isocline for growth curve plasticity remains an evolutionary attractor when only
considering the evolution of growth curve plasticity (Fig. 5.6 and 5.7). Although
sometimes very slightly, costs decreasing with plasticity decreases the distance
between the trivial and the main isoclines for growth curve plasticity if growth is
not entirely plastic (ϕ < 1, blue lines fig. 5.3). For some parameter settings this
can even cause these isoclines to collide and form a single isocline in the relevant
parameter space (Fig. 5.3b). In this situation, evolution always drives the pop-
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ulation towards a relatively high degree of growth curve plasticity. Furthermore,
we see again that evolution of the non-plastic growth scalar drives the population
away from the main isocline for growth curve plasticity, but this time the selection
gradient for growth curve plasticity is positive around the main isocline for the
non-plastic growth scalar. As a consequence, evolution will drive the population
first towards the main isoclines, from which the population evolves between these
isoclines towards a higher level of growth curve plasticity. The directional evolu-
tion between the main isoclines will eventually stop when the non-plastic growth
scalar reaches a physiological maximum or minimum value. Again the evolution
towards the main isoclines is relatively fast compared to the evolution between the
main isoclines (length of arrows fig. 5.3 and supplementary videos).

5.4 Discussion
We studied the combined evolution of plasticity in individual growth curves and
the non-plastic growth rate. To do so, we modelled a size-structured consumer
population feeding on a single shared resource. In this model, plasticity in indi-
vidual growth curves (ϕ) determines the fraction of the individual growth rate that
depends on the scaled resource availability in the environment (f(R)), while the
non-plastic growth rate is determined by an environment-independent scalar (ζ).
Additional costs scaling with plasticity (ct) were incorporated as a reduction in
the conversion efficiency from energy to lean mass. This might be plausible under
the assumption that these costs result from an increase in chemical complexity
of the regulatory mechanism, but other costs associated with plasticity, such as
additional monitoring of the environment are more likely to increase the somatic
maintenance costs of an individual. This would result in a more complex equation
for individual growth in which the growth scalar (rB) and the asymptotic size (ℓ∞)
respond in opposite directions to a change in additional costs. The implementation
of costs as increased somatic maintenance costs result in the same evolutionary
patters as costs incorporated as a decreased conversion efficiency (Supplementary
information).

We analysed the model using the adaptive dynamics framework (Brännström
et al., 2013) by defining an expression for the invasion fitness based on the lifetime
reproductive output of mutant individuals in an equilibrium of the resident popula-
tion. We furthermore corroborated the results of the adaptive dynamics approach
using numerical simulations of the ecological and evolutionary dynamics. Evolu-
tion will always drive the population uphill towards a peak in the invasion fitness,
which is a singular strategy. Because we consider the consumer population in a
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one-dimensional environment consisting of a single resource community, a peak
in the invasion fitness corresponds to a minimum in the resource density (supple-
mentary materials, eq. 5.18-5.21). In our model, a decrease in resource density can
only be caused by an increase in consumption by the entire population, from which
it follows that evolution on the growth curve plasticity and the non-plastic growth
scalar actually optimize the resource consumption by the consumer population.
Individuals with a degree of growth curve plasticity and non-plastic growth rate
closer to the singular strategy also have a higher lifetime reproductive output in
an environment without competition (chapter 4). This shows that evolution not
only optimizes the energy consumption of the population but also the efficiency of
energy allocation at an individual level.

In our model, evolution always ends on the main evolutionary isoclines. These
main evolutionary isoclines occur when a trait value yields the most optimal energy
allocation scheme, when only considering evolution in that specific trait. At these
main isoclines, individuals most optimally divide the assimilated energy between
growth and reproduction (chapter 4) and these isoclines are always convergence
and evolutionary stable in our model when considering the evolution in only one
trait (Fig. 5.6 and 5.7). The main isoclines for the growth curve plasticity and the
non-plastic growth scalar occur at the same combinations of parameter values if no
additional costs for maintaining a plastic or non-plastic growth curve are included
(Fig. 5.1). As a consequence, the strategies on this main ESS-manifold are invasion
stable against strategies outside the manifold but evolutionary neutral for points
on the manifold. As a consequence, combined evolution will drive both the growth
curve plasticity and the non-plastic growth scalar towards this main ESS-manifold
and evolution can end in a wide range of strategies on this main ESS-manifold
depending on the strategies present in the population at the start of the trajectory.
The incorporation of costs that increase or decrease with growth curve plasticity
slightly shifts the location of the main isoclines such that combined evolution will
eventually drive the population towards one of the extreme ends of these isoclines
(Fig. 5.2 and 5.3). Logically, if costs increase with growth curve plasticity, the
population will end up between the main isoclines at the side with the lowest
degree of growth curve plasticity. If costs decrease with growth curve plasticity,
the population will end up between the main isoclines at the side with the highest
degree of growth curve plasticity. General theory about plasticity assumes that
energetic costs for maintaining plasticity increase with the degree of plasticity,
which limits the evolution of plasticity (Pigliucci, 2005). This corresponds with the
evolution towards a low level of growth curve plasticity if energetic costs increase
with plasticity. In contrast, DEB theory assumes that the κ-rule is a fundamental
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mechanism in all organisms and that a deviation from this rule is costly (Kooijman,
2010). Under this assumption growth curves are entirely plastic and a decrease
in growth curve plasticity would result in an increase in energetic costs. This
corresponds with the evolution towards a high degree of growth curve plasticity
if energetic costs decrease with plasticity found in our model. In other words,
assumptions about the energetic costs for maintaining plasticity based on DEB
theory and classic theory about plasticity result in contradicting conclusions about
the evolution of plasticity in individual growth curves.

Our model clearly shows the contribution of different types of expenses scal-
ing with plasticity to the evolution of growth curve plasticity. In our model the
expenses of expressing a plastic growth curve are determined by the individual
energy allocation schemes, which depend amongst others on the plastic growth
energy allocation constant (κ). The individual energy allocation schemes determ-
ine the global location for the main isoclines in the parameter space. For example,
at low values of the plastic growth energy allocation constant (κ), the main iso-
clines occur at relatively high values of the non-plastic growth scalar (Fig. 5.1a,
5.2a and 5.3a). In this situation the non-plastic growth rate exceeds the plastic
growth rate. In contrast, at high values of the somatic energy allocation scalar (κ)
the main isoclines occur at relatively low values of the non-plastic growth scalar
(Fig. 5.1b, 5.2b and 5.3b). In this situation, the plastic growth rate exceeds the
non-plastic growth rate. We could therefore state that the individual energy as-
similation schemes and therewith the expenses for expressing a specific growth
rate determine the global position of the main isoclines. In addition, the simu-
lated trajectories show that evolution towards these main isoclines is relatively
fast. In contrast, costs that are directly linked to the degree of growth curve plas-
ticity determine the final destination of the evolutionary process. For example, if
additional costs increase with plasticity, the population will evolve towards lower
plasticity, while if costs decrease with plasticity the population will evolve towards
a higher degree of growth curve plasticity (Fig. 5.2 and 5.3). In addition, the
selection gradient and the simulated trajectories show that evolution along these
main isoclines is much slower than evolution towards the main isoclines. We could
therefore argue that individual energy allocation schemes and expenses for express-
ing a specific growth rate determine the global evolutionary trajectory for growth
curve plasticity, while the exact way additional costs scale with the growth curve
plasticity determines the precise endpoint of evolution. This adds to the general
hypothesis that costs for maintaining plasticity only play a minor role compared to
costs for expressing a trait in the evolution of plasticity because a major part of the
evolutionary trajectory is determined by the energy tradeoff within an individual
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(Auld et al., 2010).
Several energetic costs might be involved in maintaining growth curve plasti-

city. We assumed a linear relationship between the costs for maintaining growth
curve plasticity and the degree of growth curve plasticity. As a consequence,
evolution drives the growth curve plasticity to one of the extreme values along
the main isoclines. A non-monotonic relation between the costs for maintaining
growth curve plasticity and the degree of growth curve plasticity is likely to al-
ter the relative location of the main isoclines. For example, if costs for plasticity
would increase toward extreme values of the growth curve plasticity, we expect
balancing selection along the main isoclines to drive the growth curve plasticity
towards intermediate values. In contrast, if costs for plasticity would decrease to-
ward extreme values of the growth curve plasticity, we expect disruptive selection
along the main isoclines to drive the growth curve plasticity towards one of the
extreme values depending on the starting conditions.

We also found two trivial evolutionary isoclines that occur at very specific
conditions in our model. Such an isocline occurs for the growth curve plasticity
(ϕ) if the plastic growth rate and the non-plastic growth rate are equal (f(R̃) = ζ,
fig. 5.1), because in this case a shift in growth curve plasticity does not affect the
total growth rate of an individual. As a consequence, individuals with different
degrees of growth curve plasticity have the same fitness and growth curve plasticity
will not change due to selection. This trivial isocline for growth curve plasticity is
not an evolutionary endpoint, because evolution of other traits such as the non-
plastic growth scalar could easily drive the population away from these strategies.
Nonetheless, the occurrence of this trivial manifold for growth curve plasticity
suggests that the selection pressure on the level of phenotypic plasticity becomes
stronger if a change in growth curve plasticity has a larger impact on the phenotype
of an individual.

It is also suggested that phenotypic plasticity can mask genotypes from selective
forces and therefore hamper the evolution of a trait (Crispo, 2007; Price et al.,
2003). It could be argued that this occurs at the trivial isocline for the non-plastic
growth scalar (ζ). This trivial isocline occurs if growth is entirely plastic (ϕ = 1,
fig. 5.1-5.3). As a consequence, the individual growth rate does not have a non-
plastic component that is scaled by the non-plastic growth scalar and selection
does not affect the non-plastic growth scalar. This only occurs at an extreme
condition in the model and it is likely that evolution in another trait such as the
degree of growth curve plasticity will drive natural populations away from this
trivial isocline. It is therefore unlikely that growth curve plasticity will entirely
mask a non-plastic part of growth from evolutionary pressure. Nonetheless, the
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occurrence of this trivial isocline for the non-plastic growth scalar suggests that
the selection pressure on the non-plastic growth rate decreases with an increasing
degree of growth curve plasticity.

In this study we focused on the effect of an individual energetic mechanism on
the evolution of growth curve plasticity. We therefore chose to consider a struc-
tured consumer population feeding on a single resource in closed conditions. In
the adaptive dynamics analysis, the resource is in population dynamic equilibrium
and therefore does not fluctuate during the lifetime of an individual. As a con-
sequence, evolution results in the optimization of individual life histories through
optimization of the individual energy allocation scheme. Interestingly, this sug-
gests that plasticity in growth might evolve even when the environment is constant,
although the same optimal energy allocation scheme could arguably be achieved
through the evolution of other individual traits such as the plastic energy alloca-
tion constant (κ) as well. During the dynamic simulations, the resources were not
in equilibrium and followed transient dynamics. Changes in the resource density
occur through population dynamic cycles (chapter 4) as well as changes in the
structure of the consumer population. It is generally expected that fluctuations
in the environment would favour a more plastic life history strategy (Levis and
Pfennig, 2016; Moczek et al., 2011; Fusco and Minelli, 2010; Price et al., 2003).
Surprisingly, the results from the dynamic simulations seem to barely differ from
the predictions from the adaptive dynamics framework. This might suggest that
optimization of the individual life histories is a stronger selective force for the level
of growth curve plasticity than environmental fluctuations. It is important to note
that in our model, all fluctuations in the environment are generated by the system
itself. It is likely that externally driven fluctuations in the environment have a
stronger effect on the level of growth curve plasticity. These fluctuations could for
example cause different types of starvation dynamics depending on the underlying
energy allocation schemes of an individual (chapter 4). Whether and how external
environmental fluctuations would affect the evolution of growth curve plasticity in
combination with a mechanistic description of individual energy allocation is still
an open question and our model offers a suitable framework to study this.

This study can at least inform us about the evolution of plasticity in the light
of the optimization of individual energy allocation dynamics. Our model sup-
ports the suggestion that taxa are likely to strongly differ in the plasticity in
their growth curves and the non-plastic growth rate. It is generally suggested
that growth curves of ectotherms are largely plastic while growth curves of en-
dotherms are largely static (McCauley et al., 1990; Lorenzen and Enberg, 2002;
Zimmermann et al., 2018; Halliday and Verrell, 1988; Köhler and Moyà-Solà, 2009;
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Kooijman, 2010). An explanation of this could be that costs decrease with plas-
ticity in ectotherms, because they need additional chemical or genetic mecha-
nisms to maintain a constant growth curve. In contrast, endotherms have strong
homeostasis and therefore might need additional mechanisms to monitor the en-
vironment (Kooijman, 2010). If these mechanisms are costly, costs might increase
with plasticity, which could explain evolution towards lower plasticity in growth
curves. Interestingly, our model suggests that it is possible for a population to
evolve towards entirely non-plastic growth curves, while a strategy with entirely
plastic growth curves is not evolutionary stable. This contrasts with DEB theory
which argues that a κ-rule mechanism for energy allocation is most efficient for
individuals (Kooijman, 2010). Independent of this, our model suggests that it
is unlikely that growth curves are entirely plastic or entirely non-plastic in most
species, because even if maintaining a plastic or non-plastic growth curve induces
additional costs, evolution is likely to drive plasticity towards intermediate values
at first, after which the evolution towards extreme values is very slow. It is more
likely to find species with an intermediate degree of growth curve plasticity on
the trajectory towards more extreme values. Similarly, the total growth rate of
individuals is most likely at intermediate values, due to the tradeoff with other life
history characteristics such as reproduction in this model (Gardner et al., 2011;
Allendorf and Hard, 2009). Unfortunately, it is hard to disentangle the plastic
and non-plastic components of individual growth curves and the evolution herein
for a specific species as the difference between plastic and non-plastic growth only
becomes visible under extreme conditions. Therefore, there might even be more
variation in individual growth rates and the plasticity herein than we currently
expect.

5.5 Supplementary materials

Energy dynamics under starvation

From equations (5.2) and (5.3) it is clear that the energy flow can become insuf-
ficient to cover demand-driven processes such as maintenance costs and growth.
This would lead to starvation conditions which require a rechannelling of the assim-
ilated energy. Three different types of starvation conditions can be distinguished.

Under supply-driven starvation, the energy supplied to somatic processes is
insufficient to cover somatic maintenance costs (κα (ϕf(R) + (1 − ϕ)ζ) ℓ2 < bℓ3).
Under this condition some of the energy is reallocated from reproductive processes
to cover somatic maintenance costs. As a consequence, somatic growth stops and
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reproduction is reduced. In contrast, under demand-driven starvation the assimi-
lated energy is insufficient to cover the energy demand by non-plastic growth and
somatic maintenance (αf(R)ℓ2 < κα (ϕf(R) + (1 − ϕ)ζ) ℓ2). Under this condi-
tion we assume that all energy is used to cover the energy demand by non-plastic
growth and somatic maintenance as these are both demand-driven processes deter-
mined by the internal state of an individual. As a consequence reproduction stops
and growth is reduced. Under severe starvation conditions, assimilated energy is
insufficient to cover somatic maintenance costs (αf(R)ℓ2 < bℓ3) and both growth
and reproduction stop immediately. This results in the following equations for
energy allocation to growth and reproduction:

dℓ3

dt
=



γm(1 − ct)
(
κα (ϕf(R) + (1 − ϕ)ζ) ℓ2 − bℓ3)

if bℓ3 < κα (ϕf(R) + (1 − ϕ)ζ) ℓ2 < αf(R)ℓ2

γm(1 − ct)
(
αf(R)ℓ2 − bℓ3)

if bℓ3 < αf(R)ℓ2 < κα (ϕf(R) + (1 − ϕ)ζ) ℓ2

0 otherwise

(5.8a)

dEr

dt
=



γrα ((1 − κ)f(R) + (f(R) − κζ)) ℓ2

if bℓ3 < κα (ϕf(R) + (1 − ϕ)ζ) ℓ2 < αf(R)ℓ2

γr

(
αf(R)ℓ2 − bℓ3)

if κα (ϕf(R) + (1 − ϕ)ζ) ℓ2 < bℓ3 < αf(R)ℓ2

0 otherwise

(5.8b)

Additionally, we assume that starvation conditions lead to an increase in mortality.
We assume that starvation mortality scales with the energy deficit of an individual
and a starvation mortality scalar (qs). Under extreme conditions it can even
occur that the assimilated energy is insufficient to cover somatic maintenance costs
(αf(R)ℓ2 < bℓ3). We assume that individuals will starve instantaneously under
these extreme starvation conditions. This results in the following expressions for
the starvation mortality:

µs =



0 if bℓ3 < κα (ϕf(R) + (1 − ϕ)ζ) ℓ2 < αf(R)ℓ2

qs
bℓ3−κα(ϕf(R)+(1−ϕ)ζ)ℓ2

αf(R)ℓ2−bℓ2

if κα (ϕf(R) + (1 − ϕ)ζ) ℓ2 < bℓ3 < αf(R)ℓ2

qs
κα(ϕf(R)+(1−ϕ)ζ)ℓ2−αf(R)ℓ2

αf(R)ℓ2−bℓ3

if bℓ3 < αf(R)ℓ2 < κα (ϕf(R) + (1 − ϕ)ζ) ℓ2

∞ if αf(R)ℓ2 < bℓ3

(5.9)
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Together this results in the formulation of the population dynamics under supply-
driven (Fg(R, ℓ) < 0), demand-driven (Fr(R) < 0) and severe (Ft(R, ℓ) < 0)
starvation conditions in equation (5.1) in the main text.

Derivation of ecological equilibrium

In equilibrium the density of the resource is constant (R̃). As a consequence,
starvation conditions can not occur in equilibrium (chapter 4). Therefore, we can
simplify the differential equation for the number of individual at a given age in
equilibrium (ñ(a)):

∂n

∂a
= −µbñ(a) (5.10)

Because the number of individuals at birth in equilibrium (ñ(0)) is constant, this
equation can be solved explicitly:

ñ(a) = ñ(0)e−µba (5.11)

Similarly, the differential equation of the growth rate in equilibrium simplifies to:

∂ℓ

∂a
= rB (1 − ct)

((
ϕf(R̃) − (1 − ϕ)ζ

)
ℓ∞ − ℓ

)
(5.12)

We solve this differential condition by using the boundary condition of the length
at birth (ℓ(0) = ℓb):

ℓ̃(a) = ℓbe−rB(1−ct)a +
(
ϕf(R̃) + (1 − ϕ)ζ

) (
1 − e−rB(1−ct)a

)
ℓ∞ (5.13)

By substituting the length at maturation (ℓJ) in this equation, we can rearrange
the equation to express the age at maturation (aJ):

ãJ = 1
rB(1 − ct)

ln
( (

ϕf(R̃) + (1 − ϕ)ζ
)

ℓ∞ − ℓb(
ϕf(R̃) + (1 − ϕ)ζ

)
ℓ∞ − ℓJ

)
(5.14)

With an explicit expression for the density at age, the size at age and the age at
maturation, we can evaluate the integral of the individual fecundity to sum the
reproductive rate of all adults resulting in the number of individuals at birth:

ñ(0) =
∫ amax

0
β(R̃, ℓ̃(a))ñ(t, a)da =

∫ amax

aJ

rF Fr(R̃)ñ(0)e−µada (5.15)

We can divide both sides of this expression by the number of individuals at birth in
equilibrium (ñ(0)). This yield the expression for the lifetime reproductive output
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in equilibrium given in equation 5.5.

Mathematical expressions of the selection gradients

The explicit expressions for the selection gradients are derived by differentiating
the function LRO(R̃) (equation 5.5) with respect to ϕ and ζ, respectively, resulting
in:

Dϕ(R̃) =
rF

(
f(R̃) − ζ

)
ℓ∞

Tr(R̃)LROm(R̃)

[∫ amax

ãJ

(
2
(

1 − e−rB(1−ct)a
)

Fr(R̃) − ℓ̃(a)
)

ℓ̃(a)e−µbada

+ (ℓJ − ℓb) Fr(R̃)ℓ2
Je−µbãJ

rB(1 − ct)
((

ϕf(R̃) + (1 − ϕ)ζ
)

ℓ∞ − ℓb

) ((
ϕf(R̃) + (1 − ϕ)ζ

)
ℓ∞ − ℓJ

)]

− (2cg − 1)cprF Fr(R̃)
Tr(R̃)LROm(R̃)

(
ℓ2

J ãJe−µbãJ

(1 − ct)

+2rB

((
ϕf(R̃) + (1 − ϕ)ζ

)
ℓ∞ − ℓb

) ∫ amax

ãJ

ℓ̃(a)e−µbae−rB(1−ct)aada

)
(5.16)

Dζ(R̃) =
rF (1 − ϕ) ℓ∞

Tr(R̃)LROm(R̃)

[∫ amax

ãJ

(
2
(

1 − e−rB(1−ct)a
)

Fr(R̃) − ℓ̃(a)
)

ℓ̃(a)e−µbada

+ (ℓJ − ℓb) Fr(R̃)ℓ2
Je−µbãJ

rB(1 − ct)
((

ϕf(R̃) + (1 − ϕ)ζ
)

ℓ∞ − ℓb

) ((
ϕf(R̃) + (1 − ϕ)ζ

)
ℓ∞ − ℓJ

)]
(5.17)

The lifetime reproductive output of the resident in equilibrium (LROr(R̃)) is
always equal to one and therefore cancels out in these equations. The numerator
of the fraction before the squared brackets represents the effect of a change in ϕ or
ζ on the asymptotic size of an individual. The term between the squared brackets
represents the effect of a change of the asymptotic size on the fecundity, size and
age at maturation of an individual. Note that the terms between squared brackets
in both selection gradients are equal. The second term of the selection gradient for
the growth curve plasticity deals with the additional costs scaling with plasticity
and only occurs if there is a cost for maintaining a plastic or non-plastic growth
curve (cp ̸= 0). An isocline arises if the selection gradient is equal to zero. If
there are no additional costs scaling with plasticity (cp = 0) the second term of
the selection gradient for growth curve plasticity is equal to zero. In this case
it is clear that the selection gradient for growth curve plasticity is equal to zero
(Dϕ(R̃) = 0) if the non-plastic growth scalar is equal to the scaled resource density
(ζ = f(R̃)) or if the term between square brackets is equal to zero. Similarly, the
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selection gradient for the non-plastic growth scalar is zero (Dζ(R̃)=0) if the growth
curve plasticity is equal to one (ϕ = 1) or if the term between squared brackets is
equal to zero. Setting the term between square brackets equal to zero thus yields
a manifold at which the isoclines for the growth curve plasticity and non-plastic
growth scalar overlap as long as there are no additional costs for maintaining a
plastic or non-plastic growth rate.

Deriving the isoclines becomes somewhat more complicated if additional costs
for maintaining a plastic or a non-plastic growth curve are involved (cp ̸= 0). It is
at least clear that costs increasing with plasticity (cg = 1) decrease the selection
gradient for growth curve plasticity (Dϕ(R̃)), while costs decreasing with growth
curve plasticity (cp < 0) increase the selection gradient for growth curve plasticity
(Dϕ(R̃)).

We can also derive the derivative of the lifetime reproductive output with
respect to the resource density:

∂LRO(R̃)
∂R̃

= ∂LRO(R̃)
∂f(R̃)

∂f(R̃)
∂R̃

(5.18)

∂LRO(R̃)
∂f(R̃)

=

rF ℓ∞

κ

∫ amax

ãJ

(
2ϕκ

(
1 − e−rB(1−ct)a

)
Fr(R̃) + (1 − ϕκ)ℓ̃(a)

)
ℓ̃(a)e−µbada

+ rF ϕℓ∞ (ℓJ − ℓb) Fr(R̃)ℓ2
Je−µbaJ

rB(1 − ct)
((

ϕf(R̃) + (1 − ϕ)ζ
)

ℓ∞ − ℓb

) ((
ϕf(R̃) + (1 − ϕ)ζ

)
ℓ∞ − ℓJ

)
∂f(R̃)

∂R̃
= Rh(

R̃ + Rh

)2

All terms in the derivative of the lifetime reproductive output with respect to
the resource density in equilibrium are positive. This shows that an increase in
resource density will always result in an increase in the lifetime reproductive output
of an individual.

Now we will consider the change in resource density (R̃), growth curve plasti-
city (ϕ) and non-plastic growth scalar (ζ) over evolutionary time (τ). We assume
that ecological time is relatively fast compared to evolutionary time and there-
fore assume that the population is always in ecological equilibrium and therefore
the lifetime reproductive output is always equal to one ( ˜LRO = 1). As a con-
sequence, the lifetime reproductive output does not change over evolutionary time
and changes in the resource density, growth curve plasticity and non-plastic growth
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scalar are always due to evolutionary change:

d ˜LRO

dτ
=∂LRO(R̃)

∂R̃

dR̃

dτ
+ ∂LRO(R̃)

∂ϕ

dϕ

dτ
= 0 (5.19)

d ˜LRO

dτ
=∂LRO(R̃)

∂R̃

dR̃

dτ
+ ∂LRO(R̃)

∂ζ

dζ

dτ
= 0 (5.20)

We can rearrange these expressions using the chain rule and the inverse function
theorem:

dR̃

dϕ
=

dR̃
dτ
dϕ
dτ

= − 1
∂LRO(R̃)

∂R̃

∂LRO(R̃)
∂ϕ

(5.21)

dR̃

dζ
=

dR̃
dτ
dζ
dτ

= − 1
∂LRO(R̃)

∂R̃

∂LRO(R̃)
∂ζ

(5.22)

Because the derivative of the lifetime reproductive output with respect to the re-
source density is always positive, these expressions show that a change in resource
density due to a shift in a trait value is opposite to the change in lifetime re-
productive output. The isoclines studied in this article occur at a maximum of
the lifetime reproductive output with respect to the trait value of interest. This
maximum in lifetime reproductive output thus corresponds with a minimum in
resource density. This shows that evolution in this system minimizes the resource
density in the system which can only occur through maximizing the consumption
by the consumer population.

Costs as part of the somatic maintenance

It could be argued that costs for plasticity scale with individual body mass and
therefore arise as a part of the somatic maintenance costs. The energy dynamics
without starvation could then be described as:

dℓ3

dt
= γm

(
κα (ϕf(R) + (1 − ϕ)ζ) ℓ2 − b(1 + ct)ℓ3) (5.23)

This incorporation of additional costs for plasticity results in a less intuitive im-
plementation of the costs in the individual growth functions, as the maintenance
costs both affect the asymptotic size as well as the time constant for growth.

dℓ

da
= (1 + ct)rB

(
(ϕf(R) + (1 − ϕ)ζ) ℓ∞

(1 + ct)
− ℓ

)
(5.24)
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This results in the following equation for the length at age in equilibrium:

ℓ̃(a) = ℓbe−(1+ct)rBa + (ϕf(R) + (1 − ϕ)ζ)
(

1 − e−(1+ct)rBa
) ℓ∞

1 + ct
(5.25)

From this expression we can also derive the new expression for the age at matu-
ration under equilibrium conditions:

ãJ = 1
(1 + ct)rB

ln
( (

ϕf(R̃) + (1 − ϕ)ζ
)

ℓ∞ − (1 + ct)ℓb(
ϕf(R̃) + (1 − ϕ)ζ

)
ℓ∞ − (1 + ct)ℓJ

)
(5.26)

Because maintenance costs are only paid after the division of energy between
somatic processes and reproduction, the equation for the energy surplus of repro-
duction remains the same:

Fr(R̃) =
(

ϕ
(1 − κ)f(R̃)

κ
+ (1 − ϕ)

(
f(R̃)

κ
− ζ

))
ℓ∞ (5.27)

This again can be combined with the expression for the lifetime reproductive
output:

LRO(R̃) = rF Fr(R̃)
∫ amax

ãJ

ℓ̃(a)2e−µbada (5.28)

From this model we can derive a new expression for the selection gradient of the
degree of growth curve plasticity (ϕ) and the non-plastic growth scalar (ζ) (eq.
5.29 and 5.30).

If we compare these selection gradients to the selection gradients for the situ-
ation in which additional costs for maintaining plasticity only affect the growth
scalar (eq. 5.17), it is clear that the selection gradient for the non-plastic growth
scalar is the same except for the new incorporation of the plasticity costs (ct).
Similarly, the first term in the selection gradient for the level of growth curve plas-
ticity is the same except for the new location of the plasticity costs (5.16). The
second term from the selection gradient for growth curve plasticity has an opposite
sign compared to the selection gradient in the main article, because the effect of
the plasticity costs on the growth scalar changed sign. This new formulation adds
a third term, which incorporates the effects of costs for growth curve plasticity on
the asymptotic size.

We can create the analogues of figures 5.2 and 5.3 with this alternative model
formulation (see fig. 5.4 and 5.5). Comparison shows that costs incorporated as
increased somatic maintenance costs show the same evolutionary patterns as costs
incorporated as decreased conversion efficiency.
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Figure 5.4: Isoclines for the evolution of the growth curve plasticity (ϕ) and the
non-plastic growth scalar (ζ) with costs increasing with growth curve plasticity
(cg = 1, cp = 0.4), incorporated as an increase in somatic maintenance costs. Blue
and red lines represent evolutionary isoclines for the growth curve plasticity (ϕ)
and the non-plastic growth scalar (ζ) respectively. Solid lines represent evolu-
tionary isoclines that are convergent and evolutionary stable for the parameter
under consideration. Dashed lines represent evolutionary isoclines that are evolu-
tionary neutral for the parameter under consideration. Incorporating costs as an
increase in somatic maintenance results in the same evolutionary patterns as costs
incorporated as decreased conversion efficiency (Fig. 5.2).
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Figure 5.5: Isoclines for the evolution of the growth curve plasticity (ϕ) and the
non-plastic growth scalar (ζ) with costs decreasing with growth curve plasticity
(cg = 0, cp = 0.4), incorporated as an increase in somatic maintenance costs. Blue
and red lines represent evolutionary isoclines for the growth curve plasticity (ϕ)
and the non-plastic growth scalar (ζ) respectively. Solid lines represent evolu-
tionary isoclines that are convergent and evolutionary stable for the parameter
under consideration. Dashed lines represent evolutionary isoclines that are evolu-
tionary neutral for the parameter under consideration. Incorporating costs as an
increase in somatic maintenance results in the same evolutionary patterns as costs
incorporated as decreased conversion efficiency (Fig. 5.3).
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Supplementary videos

Supplementary videos show the EBT-simulations for the evolution of the growth
curve plasticity (ϕ) and non-plastic growth rate (ζ) for various parameter combi-
nations. The black lines in figures 5.1, 5.2 and 5.3 correspond to the average trait
values in the simulations shown in the videos.
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Figure 5.6: Pairwise Invasibility Plots (PIPs) for the non-plastic growth scalar (ζ)
at different parameter combinations on the isoclines for growth curve plasticity in
figures 5.1 to 5.3. These PIPs only consider evolution for the non-plastic growth
scalar and assume a constant value for the growth curve plasticity (ϕ). Grey
lines indicate instances at which the invasion fitness of the mutation is equal to
zero (Sm(R̃) = 0), while the invasion fitness is positive (Sm(R̃) > 0) in black
areas and negative (Sm(R̃) < 0) in white areas. A singular strategy arises if an
isocline at which the invasion fitness is equal to zero intersects with the main
diagonal. A singular strategy is convergence and invasion stable if the horizontal
line through the singular strategy lies within areas with a positive invasion fitness.
The singular strategy is evolutionary stable if the vertical line through the invasion
fitness completely lies within areas with a negative invasion fitness.
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Figure 5.7: Pairwise Invasibility Plots (PIPs) for the growth curve plasticity (ϕ)
at different parameter combinations on the isoclines for growth curve plasticity
in figures 5.1 to 5.3. These PIPs only consider evolution for the growth curve
plasticity and assume a constant value for the non-plastic growth scalar (ζ). Grey
lines and areas indicate instances at which the invasion fitness of the mutation is
equal to zero (Sm(R̃) = 0), while the invasion fitness is positive (Sm(R̃) > 0) in
black areas and negative (Sm(R̃) < 0) in white areas. A singular strategy arises if
an isocline at which the invasion fitness is equal to zero intersects with the main
diagonal. A singular strategy is convergence and invasion stable if the horizontal
line through the singular strategy lies within areas with a positive invasion fitness.
The singular strategy is evolutionary stable if the vertical line through the invasion
fitness completely lies within areas with a negative invasion fitness.
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Abstract
Density dependence is likely to act as a regulatory mechanism in fish stocks that
are recovering from overfishing. In general, density dependence in fish stocks
is assumed to only occur in reproduction and early life stages and is therefore
usually modelled as a stock-recruitment relationship. Recent research shows that
density dependence can also reduce individual growth in body size later in life. In
this study we show how optimal fishing effort changes with the strength of density
dependence in individual growth for four stocks of North Sea flatfish species. Using
size-structured population models we show that density dependence arises due to
a mechanistic link between the resource availability and life history processes at
the individual level. We furthermore show that the stock response to harvesting
is either driven by changes in individual reproduction when density dependence in
individual growth is weak or by changes in individual growth rate when individual
growth is strongly affected by density dependence. These two types or regimes
are separated by a sudden shift in dynamics. It is therefore of great importance
to account for density dependence in growth when managing fish stocks.
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6.1 Introduction
Density dependence is a key factor when establishing sustainable fisheries. Without
density-dependent regulation, fish stocks would either exponentially grow or de-
cline, depending on the fishing pressure and environmental conditions. Compen-
satory density dependence counteracts this exponential change in stock density
through negative feedback mechanisms which link individual life history charac-
teristics such as growth, reproduction and mortality to the density of the stock
(Herrando-Pérez et al., 2012; Rose et al., 2001). As a consequence, unharvested
fish stocks are limited by these density-dependent mechanisms and are expected
to fluctuate around a constant density as long as the environment does not show
directional changes. Harvesting is expected to lead to a decrease in stock abun-
dance and therefore a change in density-dependent life history rates resulting in
an increase of individual biomass production. This is also known as surplus pro-
duction, which is the additional production by an individual compared to the case
without harvesting. Classically, maximum sustainable yield is achieved when the
total surplus production of a stock is equal to the additional mortality due to
harvesting (Lassen et al., 2014).

In models underlying fishery management, density dependence is almost always
assumed to act only in very early life stages. Generally, fish have a very large
reproductive output in the form of numerous eggs, while only a small number of
these offspring make it to the juvenile life stage. This indicates a high mortality
rate in the larval stage, which is attributed to strong density-dependent mortality
(May, 1974). Density dependence in early life stages is often summarized with a
stock-recruitment relationship, which relates the number of small individuals that
are recruited to the population to the current density or biomass of the spawning
stock (Rothschild, 2000). The most widely used stock-recruitment relationships
are formulated by Beverton and Holt (1957) and Ricker (1954). These relationships
try to account for all density-dependent effects in both the reproduction by the
stock and the mortality of larvae and juveniles up to the size or age at which
individuals enter the explicitly modelled part of the stock. By assuming all density
dependence is covered by a stock-recruitment relationship, it is indirectly assumed
that larger individuals do not experience density dependence in growth and that
they follow a fixed size-at-age trajectory. Recent studies have however shown
that a substantial fraction of stocks appears to exhibit density-dependent growth
(Zimmermann et al., 2018; Lorenzen, 2016; Schram et al., 2006; Lorenzen and
Enberg, 2002).

With stocks increasingly recovering from overfishing (Rindorf et al., 2020; Wang
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et al., 2020; Zimmermann and Werner, 2019; Fernandes and Cook, 2013; Worm
et al., 2009), density dependence in growth may start to play an important role in
the management of exploited fish stocks (Van Gemert and Andersen, 2018a). In
addition to density-dependent recruitment, density-dependent growth potentially
offers another mechanism to compensate for a decrease in stock biomass due to
harvesting. In general, harvesting causes a truncated age distribution, resulting
in fewer old and hence large individuals. At the same time, harvesting reduces
the density and hence relaxes the density-dependent reduction of growth, caus-
ing the exact opposite effect: an increased growth rate. If this response is strong
enough, it can even lead to a positive relationship between harvesting intensity
and the harvestable biomass in the stock (De Roos et al., 2007). Models assum-
ing density-independent growth might therefore be inappropriate to predict the
response to harvesting of a stock with density-dependent growth and the max-
imum sustainable yield for these stocks. This might be especially important if
regulations not only restrict effort but also restrict catches based on length, such
as the minimum landing sizes which are widely used in fishery management, be-
cause density-dependent growth will strongly affect which part of the individuals
of the stock reaches a particular size set for management purposes. Therefore, it is
important to understand how optimal harvesting strategies change with the level
of density dependence in individual growth.

In this study we explore how the optimal fishing intensity changes with a
change in density dependence in individual growth for four North Sea flat fish
species. To do so we use a size-structured model in which density dependence arises
because individuals feed on the same resource community. The model is derived
from a dynamic energy budget model (chapter 4) which specifies the dynamics of
individuals given their physiological state and the environment they interact with.
Density-dependent growth occurs if individual growth depends on the resource
consumption and is therefore plastic. In contrast, growth is density independent
and hence non-plastic if it does not depend on the resource consumption. We
therefore vary the strength of density dependence in individual growth by changing
the level of plasticity in the individual growth rate. Understanding how fishing
intensity with maximum sustainable yield changes with the strength of density
dependence and the level of plasticity in individual growth provides insight on
how to optimize the harvesting of exploited fish stocks.
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6.2 Methods

Model description

We use the physiologically structured population model described in chapter 4 to
model the harvested fish stocks. The individual dynamics in this model is derived
from a Dynamic Energy Budget (DEB) model to ensure closed individual energy
dynamics. This DEB model is briefly discussed in the supplementary materials.
Density dependence in growth and reproduction arises through the interaction of
the stock with a resource community. As a consequence, density dependence in
individual growth can be altered by changing the dependence of somatic growth
on the individual resource assimilation rate. This creates a gradient ranging from
entirely non-plastic growth (ϕ = 0), in which somatic growth does not depend
on the assimilation rate and is therefore density independent, to entirely plastic
growth (ϕ = 1) in which somatic growth fully depends on the assimilation rate and
is therefore entirely density dependent. We will use the equilibrium conditions of
the model as an approximation of the long term average stock densities from which
we calculate total biomass yield, harvested undersized biomass and total harvested
biomass. Because individuals do not experience starvation under equilibrium con-
ditions we present a simplified form of the model sufficient to calculate the model
equilibria. We provide a more detailed description of the model derivation in the
supplementary materials and summarize the model equations below (Table 6.1).

The population model uses a simplified DEB model, describing the energy
allocation within an individual (Jager et al., 2013; De Roos et al., 1990), to mech-
anistically represent the dynamics at the level of an individual. In DEB theory,
the energy content of an individual is generally assumed to scale with length cubed
(ℓ3), which allows us to describe feeding, growth and reproduction at the individual
level in terms of length. Ingestion is assumed to scale with individual surface area
(length squared, ℓ2), the individual feeding level (f(R) described as a type II
functional response of individual feeding on the resource density R) and a propor-
tionality constant (Imax) representing the maximum individual ingestion rate per
unit surface area. The assimilated energy is subdivided into a part allocated to
somatic processes consisting of maintenance and growth and a part allocated to
maturation in juveniles or reproduction in adults. In case growth is entirely non-
plastic, a fixed amount of energy, determined by a scalar ζ, is allocated to somatic
processes. This results in a density-independent growth rate. In case growth is
entirely plastic, a fraction κ of the assimilated energy is allocated to somatic pro-
cesses, resulting in a resource- and density-dependent somatic growth rate (Jager
et al., 2013). For intermediate levels of plasticity in growth, the asymptotic size
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Table 6.1: Model equations defining the equilibrium dynamics derived in the model
described in chapter 4.

Individual dynamics

Survival ∂s

∂a
= − (µb + µh(ℓ(a))) s(a)

Growth ∂ℓ

da
= rB ((ϕf(R) + (1 − ϕ)ζ) ℓ∞ − ℓ(a))

Harvesting
mortality

µh(ℓ) = F

1 + e−cs(ℓ−ℓH )

Reproduction β(R, ℓ) =


0 if ℓ < ℓJ

rF

κ (ϕ(1 − κ)f(R) + (1 − ϕ) (f(R) − κζ)) ℓ∞ℓ2

if ℓ > ℓJ

Characteristics at birth

Survival s(0) = 1
Growth ℓ(0) = ℓb

Stock quantities

Birthrate n(0) =
∫ amax

aJ

β(R, ℓ(a))n(0)s(a)da

Consumption I =
∫ amax

0
Imaxf(R)n(0)s(a)ℓ(a)2da

Yield Y =
∫ amax

amin

dvµh(ℓ(a))n(0)s(a)(δmℓ(a))3da

Undersized
catches

U =
∫ amin

0
dvµh(ℓ(a))n(0)s(a)(δmℓ(a))3da

Resource dynamics

Equilibrium
condition

ν (K − R) − I = 0

of an individual is a weighted average of the plastic and non-plastic allocation to
growth, weighted by ϕ and (1 − ϕ), respectively. Individuals grow towards this
asymptotic size, which is given by (ϕf(R) + (1 − ϕ)ζ) ℓ∞, with ℓ∞ the ultimate
length under ad-libidum food conditions and rB a scalar of the Von Bertalanffy
growth rate.

We assume individuals mature and start reproducing at a fixed size (ℓJ) and
in equilibrium individuals reach this size at a specific age aJ . The energy available
for reproduction, is the part of the assimilated energy that is not used for somatic
growth or maintenance processes. This energy is used by juveniles to mature and
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by adults to reproduce. The energy investment in reproduction is scaled with a
reproduction scalar (rF ) which captures the conversion from energy to eggs and
the mortality during the larval stage, resulting in the individual fecundity (β).
This fecundity function defines the adult density and the number of newborn
individuals in this model (n(0)).

Mortality consists of a constant background mortality (µb), and mortality due
to fishing (µh(ℓ)). Fishing mortality equals the product of the fishing effort (F ) and
the individual catchability (cℓ) which is among others determined by the mesh size
of the fishing gear. We assume catchability follows a sigmoid function of length:

cℓ = 1
1 + e−cs(ℓ−ℓH ) (6.1)

In which ℓH is the size at which the catchability is half the maximum value and
determines the size selectivity of the gear. The parameter cs determines the steep-
ness of the catchability curve. The harvested individuals are divided into yield
which consists of all individuals above the minimum market size (ℓmin) and un-
dersized catches which are all individuals below the minimum market size (ℓmin).
In equilibrium, individuals reach the minimum market size at a specific age amin.

We use semi-chemostat dynamics to model an unstructured resource com-
munity. We use this type of dynamics to represent a resource community because
it is likely to be more realistic than logistic growth dynamics, especially if a part of
the resource community is not available for consumption. Semi-chemostat dynam-
ics results in a constant productivity of the resource community (Persson et al.,
1998).

Model parametrization

The model is analysed for four North Sea flatfish species: plaice (Pleuronectes
platessa), flounder (Platichthys flesus), dab (Limanda limanda) and sole (Solea
solea) (Table 6.2). These species belong to three separate families and differ
strongly in the energy allocation and growth rates. Values for the maximum in-
gestion rate (Imax), plastic growth allocation fraction (κ), maximum age (amax),
individual growth parameters (rB and ℓ∞) as well as the parameters to convert
individual size to individual mass (dv and δm) are derived from DEB parameters
reported by Van der Veer et al. (2001). The non-plastic growth scalar (ζ) is set
to 0.9 for all species. This is supplemented with values for the size at maturation
(ℓJ) from Fishbase (Froese and Pauly, 2021).

Due to the lack of information about the dynamics of the larval stages, we do
not explicitly model the larval stage. Instead, we only explicitly model individuals
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Table 6.2: Overview of parameter values for four North Sea flatfish species derived
from dynamic energy budget parameters derived by Van der Veer et al. (2001),
complemented with values from fishbase (Froese and Pauly, 2021).

Parameter Plaice Flounder Dab Sole
Growth plasticity ϕ 0-1 0-1 0-1 0-1 -
Plastic growth
allocation fraction

κ 0.85 0.65 0.85 0.9 -

Non-plastic
growth allocation
scalar

ζ 0.9 0.9 0.9 0.9 -

Size at settlement ℓb 10 10 10 10 mm
Size at maturation ℓJ 308 244 214 303 mm
Ultimate size ℓ∞ 780 560 510 750 mm
Minimum landing
size

ℓmin 270 240 230 240 mm

Catchability size
selectivity

ℓH 270 240 230 240 mm

Steepness of
catchability curve

cℓ 0.1 0.1 0.1 0.1 mm−1

Fishing effort F varied varied varied varied d−1

Background
mortality

µb 0.2739 0.2739 0.2739 0.2739 10−3d−1

Growth rate scalar rB 0.9257 0.9257 0.9257 0.9257 10−3d−1

Fecundity scalar rF 0.0102 0.5903 0.0234 0.7854 10−3mm−3d−1

Maximum
ingestion rate

Imax 4.8902 4.7088 3.1190 3.8966 10−9J mm−2d−1

Half saturation
constant

Rh 0.978 0.739 1.112 1.571 109J

Shape coefficient δm 0.219 0.224 0.213 0.192 -
Volume specific
mass

dv 1 1 1 1 10−9gmm−3

Maximum age amax 10950 5475 4380 7300 d
Resource growth
rate

ν 0.1 0.1 0.1 0.1 d−1

Maximum
resource density

K 8.801 6.651 10.007 14.139 109J
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starting from benthic settlement, which is approximately around 10 mm (Fonds,
1979). In this simplification we assume that the pelagic larvae do not interfere
with the dynamics of the benthic population because they do not overlap in space
and diet. In contrast to traditional approaches, we ignore density dependence in
early life stages, but we do correct for the high mortality during the egg and larval
stage by incorporating the survival of the larval stage derived from fishbase (Froese
and Pauly, 2021) in the reproduction parameter (rF ).

The background mortality rate for all individuals is set to 0.1 per year, which
is a common value in the assessment of fish stocks. The fishing mortality is size
dependent and is scaled by the fishing effort (F ). Caught individuals are divided
into yield, which are all catches above the minimum landing size (ℓmin), and un-
dersized catches, which are all catches below the minimum landing size (European
council, 1996). We assume that fishermen try to maximize their yield while min-
imizing the amount of undersized catches. We therefore set the size-selectivity
parameter of the fishing mortality function (ℓH) equal to the minimum landing
size and assume a steep catchability curve (cs = 0.1).

The parameterization of the resource dynamics (ν and κ) only scales the density
of the fish stock and therewith the absolute value of harvested biomass (De Roos
et al., 1990). We therefore chose to parameterize the resource dynamics in terms
of energy available for the fish stock instead of the number of food items, to
avoid unnecessary conversions of quantities. In addition, we parameterized the
resource dynamics in such a way that the stock with density-dependent growth
and the stock with density independent growth are similar at extreme overfishing
and go extinct at exactly the same harvesting intensity. This corresponds to the
assumption that extreme overfishing would decrease the stock to a level at which
the stock is not influenced by density-dependence. Density dependence will start
to affect the stock as soon as fishing mortality decreases as is currently aimed for
in many stocks.

Model analysis

The stock is in equilibrium if the resource density (R) and the birthrate of the stock
(n(0)) are constant. Table 6.1 specifies the equations determining the density and
size distribution of the stock in an equilibrium state, which are needed in order
to calculate the fishing effort at which the long term maximum sustainable yield
is obtained (FMSY ). With a constant resource density, the individual size (ℓ(a))
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and survival (s(a)) can be expressed as a function of age:

ℓ(a) = ℓbe−rBa + (ϕf(R) + (1 − ϕ)ζ)
(
1 − e−rBa

)
ℓ∞ (6.2)

s(a) = e
−
(

µba+
∫ a

0
µh(ℓ(a))da

)
(6.3)

The fixed age-size relationship in equilibrium also defines the age at which indi-
viduals reach the size at maturation and mature:

aJ = 1
rB

ln
(

(ϕf(R) + (1 − ϕ)ζ) ℓ∞ − ℓb

(ϕf(R) + (1 − ϕ)ζ) ℓ∞ − ℓJ

)
(6.4)

in a similar fashion, the fixed age-size relationship determines the age amin at
which individuals reach the minimum landing size:

amin = 1
rB

ln
(

(ϕf(R) + (1 − ϕ)ζ) ℓ∞ − ℓb

(ϕf(R) + (1 − ϕ)ζ) ℓ∞ − ℓmin

)
(6.5)

If we substitute the expressions for the size and survival at a given age and the
age at maturation in the equation for the population birth rate, we obtain an
expression for the lifetime reproductive output of an individual:

LRO =
∫ amax

aJ

β(R, ℓ)s(a)da (6.6)

This represents the expected reproductive output of an individual throughout its
lifetime. In equilibrium, every individual should on average replace itself and the
lifetime reproductive output should therefore be equal to one. This condition
determines the resource density in equilibrium (R). Using the equilibrium values
of the resource density (R), the individual size (ℓ(a)) and survival at age (s(a)),
an expression for the population birth rate in equilibrium (n(0)) can be derived
from the equilibrium condition for the resource:

n(0) = ν(K − R)∫ amax

0
Imaxf(R)s(a)ℓ(a)2da

(6.7)

With the expressions for the equilibrium conditions we will calculate the yield (Y ),
undersized catches (U) and several life history characteristics of individuals as a
function of the fishing effort (F ) for stocks with entirely plastic growth (ϕ = 1)
and entirely non-plastic growth (ϕ = 0). To do so we will use general root-finding
and curve-continuation procedures implemented in C (De Roos, 2021b).

Maximum sustainable yield is obtained at the fishing effort at which the yield
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(Y ) from the stock is highest (FMSY ). The fishing effort with maximum sustain-
able yield can be obtained by evaluating the derivative of the yield function with
respect to the fishing effort:

dY

dF
= 0 (6.8)

This expression is itself dependent on the level of growth plasticity (ϕ). The Find-
Curve software package (De Roos, 2021b) can be used to explore how the fishing
effort with maximum sustainable yield (FMSY ) changes with changing levels of
growth plasticity.

6.3 Results

Processes determining FMSY

The yield at a given fishing effort depends on various mechanisms affecting the
life history of individuals. We compare these mechanisms in a stock with entirely
non-plastic (ϕ = 0) and therefore density-independent growth and a stock with
entirely plastic (ϕ = 1) and therefore density-dependent growth. Here we only
discuss the figures of plaice (Fig. 6.1) and flounder (Fig. 6.2). The figures of sole
and dab are very similar to the figures of respectively plaice and founder and are
therefore added in the supplementary materials (Fig. 6.4 and 6.5).

The yield from a stock (Fig. 6.1 and 6.2, first row) is determined by the
harvesting mortality and the stock biomass density above the minimum landing
size. The stock biomass density results from the individual mortality (Fig. 6.1 and
6.2, third row) and the population reproductive output (Fig. 6.1 and 6.2, fourth
row). The population reproductive output itself depends on the adult density and
the resource availability through the relationship between the individual fecundity
and the resource density. An increase in fishing effort leads to an increase in the
mortality rate up to the minimum landing size (Fig. 6.1 and 6.2, third row) as well
as the mortality rate at larger sizes. The increased mortality relaxes competition,
which has a positive effect on recruitment. Overall, this results in a dome-shaped
relationship between fishing effort and recruitment (Fig. 6.1 and 6.2, fourth row).

The individual growth rate in the stock with plastic growth is lower com-
pared to the stock with non-plastic growth, because it is limited through density-
dependent effects (Fig. 6.1 and 6.2, second row). Individuals with plastic growth
therefore take longer to reach the minimum landing size and as a consequence
have a higher probability of dying before reaching the minimum landing size (Fig.
6.1 and 6.2, third row). The individual growth rate in a stock with non-plastic
growth is independent of the environment and therefore does not change with an
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Figure 6.1: Harvested biomass, asymptotic size, mortality before reaching the min-
imum landing size (ℓmin) and the population reproductive output for a plaice stock
with an entirely non-plastic and therefore density-independent individual growth
rate and an entirely plastic and therefore entirely density-dependent individual
growth rate.
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Figure 6.2: Harvested biomass, asymptotic size, mortality before reaching the min-
imum landing size (ℓmin) and the population reproductive output for a flounder
stock with an entirely non-plastic and therefore density-independent individual
growth rate and an entirely plastic and therefore entirely density-dependent indi-
vidual growth rate.
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increase in fishing effort (Fig. 6.1 and 6.2, second row). As a consequence, the total
background mortality before individuals reach the minimum landing size does not
change with fishing effort if growth is non-plastic (Fig. 6.1 and 6.2, third row). In
contrast, the individual growth rate in a stock with plastic growth is dependent on
the resource density. As an increase in the overall mortality relaxes competition in
the stock, the growth rate of individual with density-dependent growth increases
with fishing effort (Fig. 6.1 and 6.2, second row). Because individuals grow faster,
they reach the minimum landing size at a younger age and therefore with a lower
overall background mortality. At intermediate to high fishing effort, the decrease
in background mortality balances the increase in mortality due to harvesting and
as a consequence, the total mortality up to the minimum harvesting size does
not change with fishing effort (Fig. 6.1 and 6.2, third row). Differences in the
total mortality and the change in total mortality with fishing effort determine
at what fishing effort maximum sustainable yield (FMSY ) is achieved. In stocks
with non-plastic, density-independent growth, the fishing effort with maximum
sustainable yield is determined by the interplay between density-dependent effects
as captured by the fecundity-resource relationship and the additional mortality
due to fisheries. In the stock with plastic, density-dependent growth, a peak in
yield arises at two different values of the fishing effort (Fig. 6.1 and 6.2, fourth
row). The peak in yield that arises at very low fishing effort is caused by the same
balance between the fecundity-resource relationship and mortality as described for
the stock without density-dependent growth. In contrast, at a high fishing effort,
the increase in mortality due to fisheries is balanced by an increase in the indi-
vidual growth rate. As a consequence, a second peak in yield from a stock with
entirely plastic growth occurs at the fishing effort for which a peak in recruitment
occurs. The maximum yield of a plaice stock with density-dependent growth is
obtained at relatively high fishing effort, while the maximum yield of a flounder
stock with density-dependent growth is obtained at very low fishing effort. In-
terestingly, at low fishing efforts the harvested biomass mainly consists of yield
while at high fishing efforts the harvested biomass mainly consists of undersized
individuals.

FMSY as function of growth plasticity

So far we considered only the two extreme situations of entirely plastic (ϕ = 1)
and entirely non-plastic (ϕ = 0) growth. It is more likely that growth in fish stocks
is largely but not entirely plastic. We therefore calculated how the fishing effort at
which maximum sustainable yield of individuals above the minimum market size
(FMSY ) changes with growth plasticity (Fig. 6.3). The value of the fishing effort at
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which maximum sustainable yield occurs can differ an order of magnitude between
species and with the level of growth curve plasticity. Despite the quantitative
differences, all four species show a comparable pattern over the growth plasticity
gradient. The growth plasticity gradient corresponds to a gradient in density
dependence in individual growth. This gradient can be split into two regions.
In the first region, density dependence mainly affects the population reproductive
output and therefore the fishing effort at which maximum sustainable yield (FMSY )
occurs is mainly determined by the balance between reproduction and mortality.
In other words, the dynamics in this region is driven by changes in reproduction.
This region occurs at relatively low growth plasticity. In the second region, density
dependence also affects the individual growth rate, which balances the additional
mortality due to harvesting. In other words, the dynamics in this region is driven
by changes in growth rate. This region occurs at relatively high growth plasticity.

For all species, FMSY is higher in the region with high growth plasticity com-
pared to the region with low growth plasticity (Fig. 6.3). At the intersection of
these two regions, an optimum in yield arises at both a high and a low fishing ef-
fort, and these optima are separated by a local minimum in yield. Flounder differs
from the three other species in that the local minimum does not connect the two
optima for maximum sustainable yield (Fig. 6.3b). This pattern arises because
for flounder growth is limited by density-dependent effects to such an extent that
individuals barely reach the minimum market size. In addition, for plaice and
sole, a second local optimum and minimum in yield occurs at relatively low fishing
effort for stocks with high density dependence in growth (high growth plasticity,
fig. 6.3a and d). Overall, FMSY is lowest on the transition between the distinct
regions with high and low growth plasticity and density dependence in individual
growth.
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Figure 6.3: The dependence of fishing efforts with maximum sustainable yield
(FMSY ) on the growth plasticity of four North Sea flatfish species. Lines indicate
values of the fishing effort at which the yield is at a maximum value (solid lines)
or minimum value (dashed lines).
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6.4 Discussion
We modelled four North Sea flatfish species using a model in which we could alter
the level of density dependence in individual growth by changing the strength of
the growth plasticity. The non-plastic part of growth ((1−ϕ)ζ) can be interpreted
as a basal growth rate which is always expressed independent of the environment.
The plastic part of growth (ϕf(R)) represents additional growth on top of the
basal growth rate which is only expressed if allowed by the environment. We
assumed that the plastic part of growth is determined by the amount of resource
available to the stock. As a consequence, the plastic part of growth becomes
density dependent because an increase in consumption due to an increase in stock
density results in a decrease in the resource density. Although a fixed age-size
relationship is often assumed for fish stocks, general energetic theory (Kooijman,
2010) suggests that growth of endothermic species such as fish is largely plastic
(high value of ϕ), which corresponds to recent observations of density-dependent
growth in several fish stocks (Zimmermann et al., 2018; Lorenzen, 2016; Schram
et al., 2006; Lorenzen and Enberg, 2002).

We showed that the gradient of growth plasticity can be divided into a region
in which density-dependent effects in individual growth play a minor role in de-
termining the fishing effort with maximum sustainable yield (FMSY ) and a region
in which density-dependent effects in individual growth play a major role in de-
termining the fishing effort with maximum sustainable yield (FMSY ) (Fig 6.3).
Maximum sustainable yield arises as a balance between the additional mortality
due to harvesting and the increase in biomass production due to the reduction of
density-dependent effects. If growth is largely density independent, this balance
is fully determined by the harvesting mortality and the stock reproductive out-
put. In contrast, strong density dependence in growth counteracts the effect of
increased mortality, which shifts the maximum sustainable yield to higher fishing
effort. The occurrence of these two distinct regions shows that the occurrence of
density dependence in growth plays a major role in the response of a stock to
harvesting.

We have assumed a single resource governed by semi-chemostat dynamics,
which feeds the entire fish stock. This is a pragmatic way to implement density-
dependent growth. Many fish species gradually change diet or habitat as they
grow (Persson et al., 1998), which complicates resource dynamics and can partly
decouple density-dependent effects on growth across size ranges. The effects of
these additional interactions on the resource availability strongly depend on the
diet overlap between and within the species and the connectivity of the resource
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community across its habitat. These additional interactions could weaken the
density-dependent effects through competition, which affects both growth and re-
production in our model. It is nonetheless unlikely that density-dependent effects
would disappear completely due to these additional interactions as density de-
pendence is needed to regulate fish stocks and is indeed observed in many fish
stocks (Zimmermann et al., 2018; Lorenzen, 2016; Schram et al., 2006; Lorenzen
and Enberg, 2002).

The relationship between the stock and the number of new recruits in our
model arises due to the competition for resources and consists of two parts. The
first part of this relationship consists of the reproduction rate of adult individu-
als. Density dependence in this reproduction rate arises due to the dependence
of the individual fecundity on the individual resource consumption. Modelling
density-dependent effects in reproduction through resource consumption instead
of an explicit stock-recruitment relationship enables us to incorporate a more com-
plex and mechanistic description of density dependence. In addition, it allows a
direct link between density dependence in reproduction and density dependence
in growth through dynamic energy budget theory (Kooijman, 2010). The second
part of the relationship between the stock and the number of new recruits in our
model arises from the survival up to settlement. Due to the lack of information
about the dynamics during the larvae stage, we assume that the survival from egg
to settlement can be approximated by a constant value. This is in line with clas-
sic stock-recruitment models (Rothschild, 2000; Beverton and Holt, 1957; Ricker,
1954) which map the stock density of one year to the density of recruited indi-
viduals in the following year. Strong density dependence during the larval stage
would offer another balancing mechanism against the increased harvesting mortal-
ity because it would likely flatten the response of recruitment to changes in fishing
effort (Fig. 6.1 and 6.2, fourth column). It is likely that this would dampen the
effect of a change in fishing effort on the stock biomass which could mask density
dependence in fecundity or growth as long as fishing effort would not approach
the extinction boundaries of the stock.

The effect of fishing intensity on the size distribution of a stock could provide a
first indication whether density-dependent individual growth plays an important
role in the dynamics of the stock (Fig. 6.1 and 6.2, second column). Individuals
with largely density-independent growth can reach a large size without fisheries.
If fishing mortality increases, individuals will be harvested before reaching a large
size. Harvesting increases mortality and as a consequence, the size distribution of
a stock with density-independent individual growth shifts towards lower sizes if
fishing intensity increases. In contrast, individuals with largely density-dependent
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growth will, given the same mortality, stay smaller, because growth is limited
through competition. Harvesting decreases competition and as a consequence,
the size distribution of a stock with density-dependent individual growth shifts
towards larger sizes. Such a direct relation between harvesting intensity and an
increased growth rate is for example already shown in sole and plaice (Rijnsdorp
and Van Leeuwen, 1996; Millner and Whiting, 1996) and could play an important
role in the response of the ecosystem to harvesting and predation in both sea and
lake systems (Van Leeuwen et al., 2008; Persson et al., 2007; De Roos et al., 2003).
Shifts in the size distribution of the stock due to density-dependent growth can act
on relatively short timescales. Nonetheless, these patterns are often attributed to
fisheries-induced evolution even though evolution tends to act on longer timescales
(Andersen and Brander, 2009). More direct measures of evolution, such as the
use of genetic markers, could help to disentangle the effects of fisheries-induced
evolution and density-dependent effects in individual growth. Nonetheless, the
response of the size distribution of the stock to harvesting might be an important
first indication of the underlying processes determining the dynamics of the stock,
although other factors such as fisheries-induced evolution should be considered
when exploring the dynamics of the size distribution of a stock in more detail.

Density-dependent regulation of fish stocks has long been assumed to only oc-
cur early in life and hence accounted for by the stock-recruitment relationship,
even though it has become increasingly clear that many fish stocks also experi-
ence density dependence in growth (Zimmermann et al., 2018; Schram et al., 2006;
Lorenzen and Enberg, 2002). Changes towards smaller individuals with a decrease
in fishing intensity might give a first indication of density dependence in individual
growth. Nonetheless, caution is needed because signs that indicate overfishing in
stocks with density-independent growth, such as the absence of large individu-
als, might indicate the recovery of a stock with density dependence in growth.
In addition, stocks with density-dependent growth have a different composition
compared to stocks with density-independent growth and therefore have different
optimal harvesting strategies. A first step towards more sustainable fisheries is
to explore the strength of density dependence in growth and recruitment in more
detail. Especially if density dependence has a large impact on the dynamics of the
stock, it is important to incorporate this additional mechanism into models for
predicting optimal yield. This can only be done by incorporating a descriptive re-
lationship between the stock abundance and the growth rate in a stock assessment
model as is for example done by Lorenzen (1996) or by using an ecosystem-based
assessment method in which the individual growth rate depends on the food intake
as is done in the density-dependent model presented here. Notwithstanding, our
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results show that stocks in which density dependence in individual growth is rel-
atively strong exhibit completely different dynamics compared to stocks in which
density dependence in individual growth is relatively weak. This strongly affects
the fishing strategies with which maximum sustainable yield can be obtained. Un-
derstanding and quantifying the mechanisms of density dependence is therefore of
vital importance for the sustainable management of fish stocks.

6.5 Supplementary materials

Underlying equations of the dynamic energy budget model

In the underlying Dynamic Energy Budget (DEB) model, individuals are charac-
terized by the energy stored in lean mass (Em). In DEB theory, it is assumed that
energy in lean mass scales with the mass of an individual through the mass spe-
cific energy density (dm). Likewise, the mass is assumed to scale with the volume
through the mass density (dv) and the volume can be related to the length cubed
using a shape coefficient (δm) (Kooijman, 2010).

All life history processes are expressed in terms of the energy stored in the
lean mass of an individual. Energy ingestion is assumed to scale with the surface
area of an individual, and thus with lean mass to the power two-third (E2/3

m ). In
addition, the ingestion rate scales with the resource density following a scaled type
II functional response (f(R) = R

Rh+R ), with a half saturation constant RH . The
ingestion rate furthermore scales with the maximum ingestion rate scalar Imax,
which represents the maximum ingestion rate per unit surface area. If we assume
assimilation efficiency is constant, we can express the total assimilated energy as
αf(R)E2/3

m , in which α represents the maximum ingestion rate per unit surface
area times the assimilation efficiency.

The energy dynamics of individuals with plastic growth are based on the DEB
model specified by Jager et al. (2013). This model assumes that a fraction κ of the
assimilated energy is used for somatic processes, while the remainder of the energy
is used for maturation in juveniles and reproduction in adults (Er). The energy
allocated to somatic processes is first used to cover maintenance costs, which scale
with the energy stored in lean mass through the energy specific maintenance costs
(b). The remainder of the energy allocated to somatic processes is converted to
lean mass with conversion efficiency ym. Likewise, the conversion efficiency of
ingested energy to reproductive energy is yr. This results in the following model
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for energy usage within an individual with plastic growth:

dEm

dt
= ym(καf(R)E2/3

m − bEm) (6.9a)

dEr

dt
= yr(1 − κ)αf(R)E2/3

m (6.9b)

The growth dynamics from this model is density dependent, because the growth in
lean mass depends on the energy consumption of the individual and hence on the
resource density R, which might be depressed by population foraging (De Roos
and Persson, 2002; De Roos et al., 2003). To obtain the growth equation for an
individual with density-independent growth, we decouple the energy allocation to
somatic processes from energy assimilation, by scaling energy allocation to somatic
processes with a constant value (ζ) instead of the scaled resource density. As in
the model with density-dependent growth, we assume that all energy not used
for somatic growth and maintenance is used for reproduction. This results in
the following equation for the growth in lean mass for individuals with density-
independent growth:

dEm

dt
= ym(καζE2/3

m − bEm) (6.10a)

dEr

dt
= yr(αf(R)E2/3

m − καζE2/3
m ) = yrα(f(R) − κζ)E2/3

m (6.10b)

We combine the equation for the energy dynamic with and without density
dependence in growth. To do so, we assume that the level of plasticity in individual
growth is given by a separate parameter (ϕ). This resulted in our final formulation
of the individual energetic model:

dEm

dt
= ym

(
ϕκαf(R)E2/3

m + (1 − ϕ)καζE2/3
m − bEm

)
(6.11a)

dEr

dt
= yr

(
αf(R)E2/3

m −
(

ϕκαf(R)E2/3
m + (1 − ϕ)καζE2/3

m

))
(6.11b)

To convert the energy dynamics of a single individual to the dynamics of the
entire population, we follow allometric scaling from dynamic energy budget theory
(Kooijman, 2000). We assume that the energy stored in lean mass scales with the
mass of an individual through the mass-specific energy density (dm) and likewise
the mass scales with the volume through the mass density (dv) and the volume
can be related to the length cubed using a shape coefficient (δm).

ℓ = V 1/3

δm
= W 1/3

d
1/3
v δm

= E
1/3
m

d
1/3
m d

1/3
v δm

(6.12)
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By using these rules, the equations for the individual energy dynamics can be re-
written for individual growth in length (g(ℓ, R)). To derive the individual fecundity
(β(ℓ, R)) from the energy equations we need to know the energy per egg which
we estimated by Van der Veer et al. (2001). In addition, we use some composite
parameters representing the asymptotic size under unlimited food conditions (ℓ∞),
the Von Bertalanffy growth rate scalar (rB) and the individual fecundity scalar
(rF ):

ℓ∞ = ακ

bd
1/3
m d

1/3
v δm

(6.13a)

rB = γmb

3 (6.13b)

rF = bγr

ℓ3
b

(6.13c)

This eventually results in the model described in table 6.1.
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6. The consequences of density-dependent individual growth for sustainable
harvesting and management of fish stocks

Supplementary figures
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Figure 6.4: Harvested biomass, asymptotic size, mortality before reaching the min-
imum landing size (ℓmin) and the population reproductive output for a dab stock
with an entirely non-plastic and therefore density-independent individual growth
rate and an entirely plastic and therefore entirely density-dependent individual
growth rate.
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Figure 6.5: Harvested biomass, asymptotic size, mortality before reaching the min-
imum landing size (ℓmin) and the population reproductive output for a sole stock
with an entirely non-plastic and therefore density-independent individual growth
rate and an entirely plastic and therefore entirely density-dependent individual
growth rate.
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Chapter 7

General discussion

Jasper C. Croll
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7. General discussion

All organisms grow in size throughout their life. The growth rate of an organism
determines its size, which is linked to numerous other life history characteristics
such as consumption, maturation, reproduction and survival (Hone and Benton,
2005; Peters, 1983). Variation in the growth rate of individuals will lead to vari-
ation in the size of individuals at a given age. Some of this variation in growth
might result from the genetic differences between individuals, while some of the
variation in growth might arise due to differences in the environment experienced
by an individual. Environmental factors that are commonly argued to affect the
growth rate of individuals are resource availability and temperature. The level
of plasticity in the growth curve of an individual determines the extent to which
growth depends on environmental factors. Individuals with a low level of growth
curve plasticity will follow a largely fixed growth trajectory, while a substantial
part of the growth trajectory of individuals with a largely plastic growth curve
is determined by the experienced environment. The growth curves of birds and
mammals are often observed to be largely fixed (Albon et al., 2000; Coulson et al.,
2000; Skogland, 1986; Perrigo, 1990), while insects, fish, amphibians and reptiles
often seem to have a high level of growth curve plasticity (McCauley et al., 1990;
Halliday and Verrell, 1988; Köhler and Moyà-Solà, 2009).

Plasticity in growth curves affects many levels of biological organization, ran-
ging from individual energy allocation schemes up to the ecological and evolution-
ary dynamics of multi-species communities and ecosystems. To understand how
growth curve plasticity arises and affects individuals and populations, this thesis
considered the effects of growth curve plasticity on several levels of biological or-
ganization.

7.1 Individual energetics
Growth in body size requires energy and all energy used to grow cannot be used for
other processes such as reproduction. This results in a tradeoff in which different
life history processes compete for the available energy. In chapter 4, I constructed
a dynamic energy budget model to quantify this tradeoff in energy allocation. This
model forms the basis for the ecological and evolutionary analyses in chapters 4 to
6 as well as a more theoretical underpinning for the individual equations in chapter
2. This model assumes that resource availability is the major environmental factor
that influences an individual. The model therefore reduces the environment to the
dynamics of a single resource. Individuals acquire energy through consumption
and assimilation of the resource. The level of growth curve plasticity is altered by
changing the dependence of the individual growth rate on the amount of assimi-
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Figure 7.1: Partition of growth into a basal part, which results from a fixed amount
of energy allocated to growth (yellow), and an additional part which results from
plastic energy allocation to growth when allowed by the environment (green). The
composition of growth can shift from entirely fixed (left) to entirely plastic (right).

lated energy. The growth curve of an individual is static if a fixed amount of energy
is allocated to growth, while the level of growth curve plasticity increases if the
amount of energy available for individual growth becomes more dependent on the
amount of assimilated energy. In this formulation, the non-plastic part of growth
could be considered as a minimum basal growth rate required by an individual,
while the plastic part of growth represents the additional growth allowed by the
environment (Fig 7.1). The level of growth curve plasticity then determines which
fraction of growth consists of the minimum basal growth rate and which fraction
consists of additional environment-dependent growth.

The absolute amount of energy allocated to growth is a central concept in the
formulation of the dynamic energy budget model used in this thesis. I chose this
as a starting point for the model formulation because this provided a clear direct
link between the individual energy allocation scheme and the individual growth
curve. Another way to describe the energy allocation of an individual is to quantify
the fraction of assimilated energy which is allocated to somatic processes such as
growth and maintenance (κrealised), rather than the absolute amount of energy
allocated to these processes. This quantity can be derived easily from equation
(4.5):

κrealised =
(

ϕ + (1 − ϕ) ζ

f(R)

)
κ (7.1)

in which ϕ represents the level of growth plasticity, ζ a scalar for the amount of
energy reserved for basal growth, f(R) a measure of the total amount of assim-
ilated energy and κ a scalar of the fraction of energy allocated to growth and
maintenance. From this equation it is clear that the fraction of energy allocated
to growth becomes more dependent on the environment if the level of plasticity
in growth decreases. This might seem contradicting at first, but it merely im-
plies that individuals have to deviate from a fractional energy allocation scheme
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to maintain a constant growth rate in a fluctuating environment.
Although the dynamic energy budget model used in this thesis is far from

all-encompassing, it shows the importance of the tradeoff between individual in-
vestment in growth and reproduction. In chapter 4 and 5, I show that this tradeoff
arises if two conditions are met:

1. An independent increase in the energy investment in either growth or repro-
duction should lead to an increase in the total lifetime energy investment in
offspring;

2. The total amount of energy available for growth and reproduction combined
should be limited, such that an increase in energy allocation to growth is
linked to a decrease in energy allocation to reproduction and vice versa.

The first condition ensures that an increase in energy investment in growth or
reproduction has a potential benefit for an individual. It is straightforward that
an increase in energy investment in reproduction leads to a higher total energy in-
vestment in offspring. The link between energy investment in growth and the total
lifetime investment in offspring is less clear. An increased investment in growth
could lead to maturation at a younger age and higher survival up to maturation
and therefore a longer reproductive period. In addition, an increased growth rate
is likely to result in a larger individual size at a given age. If energy consump-
tion increases faster with size than the energy required by life history processes
other than reproduction, the net amount of energy available for reproduction will
increase with size. In our model an increased investment in growth leads to an
increase in lifetime energy investment in offspring through all these processes. In
general, the occurrence of these mechanisms depends on the exact formulation of
the dynamic energy budget model, maturation conditions and metabolic scaling
used (Kooijman, 2000; West et al., 2001; Hou et al., 2008; Sousa et al., 2008; Brown
et al., 2000).

The second condition for the tradeoff between individual investment in growth
and reproduction ensures the link between growth and reproduction which results
in the actual tradeoff. This condition relates to one of the basic assumptions of
energy budget modelling in which the available energy is limited by assimilation
and can only be spent once. Although energy budget models sometimes strongly
differ in order and priority of the different processes, they all follow this assump-
tion (Kooijman, 2000; West et al., 2001; Hou et al., 2008; Sousa et al., 2008). This
condition also ensures that the tradeoff between growth and reproduction arises
independent of the environmental factors that influence growth. Namely, an envi-
ronmental factor affecting the energy allocation to growth indirectly also affects the
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energy availability for reproduction. It is therefore likely that the tradeoff between
growth and reproduction plays a role in the dynamics resulting from growth curve
plasticity regardless of the specific assumptions made about the energy allocation
within an individual and the environmental factors influencing growth.

Unfortunately, individual energy dynamics is often impossible to measure. I
therefore translated the energy budget model used in this thesis to equations in
terms of individual length using the allometric scaling proposed in dynamic en-
ergy budget theory (Kooijman, 2000). As a result, individuals will follow a Von
Bertalanffy growth curve in which individuals grow towards an asymptotic size
(Von Bertalanffy, 1938). The asymptotic size of this growth curve is likely to
fluctuate with the environment, because the asymptotic size is directly linked to
individual assimilation rates. Some environmental factors, such as temperature,
might influence individual catabolism rates and therefore affect the asymptotic size
as well as the rate at which individuals grow towards this asymptotic size. Statis-
tical studies have shown that it is not possible to distinguish fluctuations in the
asymptotic size from fluctuations in the growth rate when fitting Von Bertalanffy
growth curves to observational data (Eveson et al., 2007; Pilling et al., 2002). In
addition, in chapter 5 I show that it does not matter for the evolution of growth
curve plasticity whether additional costs for plasticity only affect the asymptotic
size of the Von Bertalanffy growth equation or both the asymptotic size and the
growth rate. All together this suggests that it does not matter which aspects of
the Von Bertalanffy growth equation are affected by plasticity when studying the
ecological and evolutionary dynamics of a population.

7.2 Population structure
The structure of a population arises because individuals within a population differ
in one or several of their life history characteristics. In this thesis, I considered
populations that are structured by age and size. The age of individuals does not
depend on the environment and is therefore only used to divide the population
into cohorts of individuals that are born at roughly the same moment. The size
structure of a population might be more dynamic, depending on the level of growth
curve plasticity in the population. In chapter 2, I showed that the variation in the
size structure of a population can be considered within a cohort, between cohorts
and as a population metric (Fig. 7.2).

A cohort consists of individuals born at the same time and arises if individuals
within a cohort have similar life history characteristics. In chapter 2 and 3, I
assumed that the sizes within a cohort follow a Gaussian distribution and the size
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Figure 7.2: Throughout this thesis, size distributions of a population are considered
within a cohort (a), between cohorts (b) and for the entire population (c).

structure of a cohort is therefore bell shaped. It is convenient to assume that
the size distribution of a cohort follows a Gaussian distribution because in this
case only the mean and variance are needed to quantify the exact shape of the
distribution. In chapter 2, I showed that the corrected size structure at a given
age of North Sea plaice can indeed be approximated by a Gaussian distribution.
Nonetheless, it is likely that the size distribution of a cohort will become skewed
when individuals grow older, due to size-dependent effects. For fish stocks, size-
selective fisheries could be an important factor skewing the size distribution of
a cohort. For example, if fisheries would target large fish, it is likely that the
size distribution of a cohort shifts towards the smaller individuals because larger
individuals have a higher fishing mortality. Starvation mortality could have a
similar effect on the size distribution of cohorts. According to the energetic model
used in chapter 4 to 6, larger individuals need more energy for maintenance and
are therefore more likely to starve due to a lack of resources. As a consequence, the
larger individuals of a cohort have a higher probability of dying when resources
become scarce. Because of this, variation within a cohort is often neglected in
structured population models including the models used in chapter 4 to 6 (De Roos
and Persson, 2001; De Roos, 1997). Instead, it is generally assumed that all
individuals within a cohort are exactly similar. It would be an interesting challenge
to make the models used in this thesis more specific by deriving a quantity for the
skewness of the size distribution of a cohort which can account for size-specific
effects.

Cohort structures arise if individuals are born at approximately the same time.
Cohorts are most distinct if reproductive events are clustered for example due to
seasonal reproduction. In structured population models, clustered reproduction
can also arise due to population cycles in which maturation or reproduction is
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limited by competition for resources as found in chapter 4 and other work on
structured population models (De Roos and Persson, 2003; De Roos et al., 1990).
The cohort structure of a population vanishes if reproductive events become less
discrete or if the time between reproductive events becomes very short. All models
in this thesis divide the population into cohorts for mathematical purposes. In
chapter 2 and 3 the division in cohorts is very crude as all individuals born in the
same year are grouped together. In contrast, reproduction in the simulations in
chapter 4 to 6 is almost continuous as a new cohort is formed every day.

The growth curves of cohorts differ if growth is at least partly plastic and the
environment fluctuates over time. If growth is entirely static, all individuals would
follow the same growth trajectory. Only genetic variation could then cause minor
differences in the growth curves of individuals. As a consequence, the average size
structure of the population would scale with the age structure of the population
and the population could be modelled as an age-structured model in which an
individual of a given age has a specific size or size distribution. This approach
is commonly used in models for fisheries management (Schnute and Richards,
1998). However, if the environment is fluctuating and growth is at least partly
plastic, cohorts can differ in their growth curves. These differences arise because
cohorts are born at different points in time and therefore experience different
environmental conditions. Models that explicitly take size structure into account
are needed to model populations in which growth depends on the environment.
In the deterministic models used in chapter 4, fluctuations in the environment
only arise due to population dynamic cycles, but in chapter 3, I show that the
environment experienced by harvested North Sea fish stocks is never constant.

The level of growth curve plasticity always affects the structure of the entire
population, even if the population is in equilibrium and the environment is con-
stant. From chapter 4 it is clear that the size structure of a population is very
similar to the age structure of the population if growth is largely fixed. In this case
a population consists of both small and large individuals and individuals mature
relatively quickly. In contrast, growth is hampered due to competition if growth
is largely plastic. As a consequence, individuals stay small and mature late in life
resulting in a truncated size distribution of the population (De Roos et al., 1990).
From chapter 6 it is clear that this difference in population structure also trans-
lates to the yield from exploited fish stocks. Harvesting from a population with
largely non-plastic growth yields relatively large and valuable catches. In contrast,
harvesting from a population with largely plastic growth often yields small and
undersized catches unless the population is heavily over-fished. The level of plas-
ticity in individual growth thus does not only affect the structure of a cohort or
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population but even affects the way humans should interact with the population.

7.3 Ecological dynamics
Natural populations never exist in isolation but are always part of a larger eco-
system. One of the most important aspects of the ecosystem are the resources
available for a population, regardless of whether these resources consist of inor-
ganic compounds, plants or animals. A consumer population is strongly limited by
the amount of resources available in the environment and simultaneously affects
the dynamics of the resources through consumption. Understanding and modelling
the interactions of consumers and resources has been a recurring topic in ecolo-
gical research (Hastings, 2020; Berryman, 1992; Tilman et al., 1982; Rosenzweig
and MacArthur, 1963). The interaction between consumer and resource is a key
factor in the dynamics explored in chapter 4. In this model, the consumer pop-
ulation depletes the resources, which in turn limits the consumer. In this way,
two types of dynamics emerge. The first type of dynamics arises if a decrease of
the resource density has a larger impact on growth than on reproduction. In this
case the population is mainly limited by growth and a bottleneck at maturation
occurs. The second type of dynamics arises if reproduction is more limited by a
decrease in the resource density than growth. In this case the population suffers
from reduced fecundity, resulting in a bottleneck at reproduction. In chapter 6, I
show that these limiting mechanisms also drive the response of a consumer popu-
lation to additional mortality such as harvesting. In chapter 5, I furthermore show
that evolution will minimize the limitation in growth and reproduction, resulting
in balancing selection. Whether growth or reproduction is more limited by the re-
sources depends on the energy allocation schemes of an individual and especially
on the level of growth curve plasticity.

The population dynamic cycles explored in chapter 4 clearly demonstrate how
competition can limit a population through growth and reproduction. In both
types of cycles, a newborn cohort depletes the resources, which results in an in-
crease in competition within the population. Maturation-driven cycles emerge if
competition mainly affects growth and maturation while fecundity-driven cycles
emerge if competition mainly affects individual fecundity. Several types of popu-
lation dynamic cycles have been observed in structured population models. These
cycles are often characterized by the amplitude and the period relative to the juve-
nile delay (Murdoch et al., 2002). Differentiating population cycles based on their
amplitude and period might be useful when dealing with field observations, but
is not very informative about the mechanisms causing the cycles. For example,
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Table 7.1: Overview of cycles occurring in structured population models ordered
based on the life stage that is the superior competitor and the life history processes
that suffers from the strongest limitation due to competition.

Superior competitor

Juveniles Adults

Li
m

it
in

g
pr

oc
es

s

Maturation
Maturation-driven cycles /

Juvenile-driven cohort
cycles

Adult-driven cohort cycles

Parental effect cycles

Reproduction
Fecundity-driven cycles

Delayed-feedback cycles
Consumer-resource cycles

the fecundity-driven cycles found in chapter 4 are similar to consumer-resource
cycles and delayed feedback cycles when considering the cycle period, but differ
in the mechanisms causing the cycles (Murdoch et al., 2002; Pfaff et al., 2014;
Rosenzweig and MacArthur, 1963). A more insightful way to classify the popula-
tion dynamic cycles occurring in structured population models would be based on
the mechanisms causing the population dynamic cycles. Two important aspects in
classifying these cycles are the competitive superior life stage and the life history
process that is most strongly affected by competition. A population is often split
into juveniles and adults as the two most important life stages. Individuals are
born as juveniles and have to mature into adults before they can start reproducing.
Maturation and reproduction might therefore be considered as two of the most im-
portant processes that can limit a population. In addition, I define the competitive
superior life stage as the life stage which can persist on the lowest resource density
and therefore is able to deplete the resources to the lowest level. Which life stage
is superior depends on the minimum amount of resources that an individual in a
specific life stage needs to persist and the rate at which an individual in a specific
life stage can acquire these resources from the environment. Population dynamic
cycles in structured populations could be classified by considering the superior life
stage and the life history process that is most strongly affected by competition
(Table 7.1).

In the model used in chapter 4 juveniles are always competitively superior to
adults. In this model, individual maintenance costs increase faster with size than
the individual ingestion rate. Larger individuals therefore need more energy to
cover maintenance costs than small individuals, while they acquire the resources to
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do so at a relatively slower rate. Because juveniles are smaller than adults, juveniles
can persist on a lower resource density and therefore are competitively superior.
This corresponds to the observation that the resources are depleted after a large
cohort of juveniles is produced. The maturation-driven cycles found in chapter 4
arise because growth and therefore maturation is limited by a lack of resources.
These cycles are previously described as juvenile-driven cohort cycles (De Roos
et al., 1990, 2003). Interesting to note is that the term juvenile-driven cohort
cycles emphasizes the competitive superior life stage while the term maturation-
driven cycles emphasizes the limited life history process. The fecundity-driven
cycles found in chapter 4 arise because competition limits the reproduction by
adults. The dynamic characteristics of these cycles are very comparable to pre-
viously described delayed feedback cycles (Pfaff et al., 2014; Gurney et al., 1983;
Gurney and Nisbet, 1985). The major difference between the fecundity-driven
cycles described in chapter 4 and delayed-feedback cycles is the way competition
affects fecundity. In fecundity-driven cycles, an external resource is reduced by
juveniles. As a result, reproduction by adults is directly reduced and remains low
until the resource recovers. In delayed-feedback cycles, competition affects some
endogenous character of an individual during the juvenile stage which then affects
reproduction of that specific individual later in life. The major difference between
fecundity-driven cycles and delayed-feedback cycles is thus whether the effect of
competition is conveyed through an exogenous or endogenous factor and therefore
affects either the entire population or only specific individuals.

Cycles can also emerge if adults are competitively superior. Cycles in which
adults are competitively superior but competition mainly affects maturation are
previously described as adult-driven cohort cycles (De Roos et al., 2003; De Roos
and Persson, 2003). In these cycles, adults are competitively superior because
they can persist at a lower resource density. In these models an adult cohort
constantly reproduces but simultaneously depresses the resource density such that
juveniles cannot mature. Similar to fecundity-driven cycles, these adult-driven
cohort cycles are based on exogenous factors to convey the effect of competition.
Cannibalism is another example of an exogenous way in which adults can affect
juveniles, which can lead to population dynamic cycles (Claessen et al., 2004).
Herein adults are the superior life stage because juveniles function as an addi-
tional resource for adults, while the limiting life history process is reproduction
because an increased adult density decreases the probability of a juvenile to sur-
vive up to maturation. An endogenous mechanism that can convey effects from
adults to juveniles would result in parental effects, which is indeed hypothesized
to cause population dynamic cycles (Inchausti and Ginzburg, 2009). To my know-
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ledge, cycles in which adults are competitively superior and competition mainly
affects reproduction have not been observed in structured population models. One
could argue that classic consumer-resource cycles fall into this category, because
these cycles arise in models which only model reproducing adults without a delay
or structure (Rosenzweig and MacArthur, 1963). However, it is important to
note that classic consumer-resource cycles only arise if the resource can periodic-
ally escape the control of the consumer. This might indicate that a combination
of a competitively superior adult stage and competition-limited reproduction is
insufficient to cause population dynamic cycles without additional mechanisms.
It is clear that the classification proposed here does not provide an all-inclusive
framework for classifying population dynamic cycles. Other processes such as sea-
sonality, stochastic environments, community dynamics and evolution might cause
cycles as well (Barraquand et al., 2017). Nonetheless, I want to emphasize that it is
important to consider the mechanisms causing population dynamic cycles rather
than only using descriptive statistics when classifying cycles. The classification
proposed here could provide a start in the context of structured populations.

Obviously consumers and resources are not the only components of an ecosys-
tem. Individuals have to deal with many different resources and might interact
with other species through multiple processes such as competition and predation
simultaneously. For example, in chapter 3 I show that some North Sea fish species
with a similar ecology also experience the environment in a more similar way which
suggests that they are also strong competitors. As a consequence, the dynamics
of ecosystems become vastly complex. One way to tackle this complexity is by
simplifying the size-structured models to stage-structured models with juveniles
and adults. With these simplified models it has been shown that size-structure
and plasticity in growth can facilitate coexistence of competitors and persistence of
higher trophic levels (De Roos et al., 2008; Van Leeuwen et al., 2008). These pat-
terns arise because predation and consumption decrease the competition between
prey species, which will change the size structure of the prey population if growth
is largely plastic. The shift in size distribution of the prey enables the persist-
ence of an additional competitor or top-predator which benefits from the shifted
structure of the prey population. In chapter 6 I showed that the same mecha-
nisms determine the yield from a fish stock with largely plastic growth, resulting
in high yield at high fishing intensities. It has even been shown that communities
in which all species are plastic in the maturation rate are more stable and can
contain more species compared to communities in which the juvenile-adult ratio is
fixed (De Roos, 2021a). It is still an open question whether size structure can facil-
itate the persistence of multiple competitors, top-predators and large communities
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if growth of some of the species is partly or entirely non-plastic.

7.4 Improving fisheries management
Chapter 2, 3 and 6 of this thesis are framed in the context of harvested fish
stocks and use data and parameters from exploited fish species. Relatively recent
developments in the management of fish stocks make the results from this thesis
especially relevant for the field of fisheries management. Due to increased and
strict management, numerous stocks show signs of recovering from over-fishing
(Zimmermann and Werner, 2019; Cardinale et al., 2013; Fernandes and Cook,
2013; Hutchings et al., 2010; Worm et al., 2009). When recovering, fish stocks will
increase in density and as a consequence competition between individuals within
a stock will increase. To accurately predict the effect of increased competition
on the fish stocks, it is important to understand which life history processes are
mostly affected by competition (Van Gemert and Andersen, 2018a). Traditional
methods for modelling fish stocks use a stock-recruitment relationship to model
density dependence, in which the number of new individuals entering the stock
is related to the number of reproducing adults in the stock (Rothschild, 2000;
Beverton and Holt, 1957; Ricker, 1954). This assumes that only reproduction and
recruitment are limited by the environment, while numerous stocks have shown
signs of density dependence in other life history processes as well (Zimmermann
et al., 2018; Lorenzen, 2016; Lorenzen and Enberg, 2002). The results from chapter
6 show that it cannot be determined whether a fish stock is limited by growth
or reproduction as long as the stock is over-fished. Nonetheless, growth-limited
stocks and reproduction-limited stocks will become very different as soon as fishing
intensity decreases. It is therefore important to keep a close eye on the dynamics
of recovering fish stocks and adjust the models used for management purposes
accordingly.

The results from chapter 3 show that the growth curves of North Sea fish stocks
are very variable. Both the mean and variance in the size-at-age differ strongly
between years. Classic models for establishing fisheries reference points are based
on individual ages instead of sizes and therefore do not allow for fluctuations in
the size-at-age distribution over time. As a consequence, a fixed size distribution
is assumed for every age. A first improvement of these models would be to assume
a separate size distribution for every cohort in every year. For most exploited fish
species it is unlikely to have sufficient data to fit an independent size distribution
for every cohort in every year. Instead, the model proposed in chapter 2 can be
used. This is a descriptive model which fits a size distribution for every cohort
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in every year while taking into account the size distributions of other cohorts and
years. In this way the number of parameters that needs to be estimated is reduced
and the model can provide an interpolation for cohorts with missing data. The
model in chapter 2 is developed as a descriptive model for the dynamics of the
size-structure of a population. The changes in the size distribution of cohorts are
summarized in two variables representing the environmental impact on the growth
curves of cohorts and individuals. These two variables need to be extrapolated to
make predictions about the future structure of a population. It is likely that a
variable size distribution for every cohort will improve the predictions of fisheries
management models substantially because many factors in fisheries, such as the
catchability of an individual, are related to the size of individuals.

Models for fisheries management can furthermore be improved by incorporating
a description of the environmental dynamics. In this way, the environment does
not only affect the dynamics of a fish stock, but the stock also affects the dynamics
of the environment. If the growth model described in chapter 2 is coupled to a
dynamic description of the environment, it becomes very similar to the model
used in chapter 6. Models used for fisheries management might be a bit more
complex compared to the models in chapter 6, for example due to a more complex
description of the environment or the stock recruitment relationship. Nonetheless,
the model in chapter 6 provides useful insight in the response of fish stocks to
harvesting. The model for example shows that changes in the competition within
a stock could affect the size distribution of a stock through the environment. As a
consequence, it is likely to achieve maximum sustainable yield at a higher fishing
intensity if growth is largely plastic compared to a situation in which growth is
largely static. In addition, it might be beneficial to target the most abundant
or most competitive life-stage of a stock to reduce the competition within the
stock, because this allows the remaining individuals to grow faster and reproduce
more. For some stocks this might imply that fisheries should also target small
juvenile individuals. This is against common fisheries policies aimed to reduce
the mortality of small undersized individuals. Nonetheless, the optimal harvesting
strategies are likely to be highly species-specific and can only be considered by
including a dynamic size-structure and a dynamic description of the environment.
Including these factors in fisheries management models would therefore be an
interesting step to improve fisheries management.

Meanwhile, fisheries management is slowly changing from a single-species per-
spective to a multi-species perspective. This change arose from the realization that
many stocks in an ecosystem interact and harvesting of one species is likely to af-
fect other species as well. The proposed approaches range from combining data
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from multiple species in one statistical model to multi-species models and models
in which individuals are only ordered by a trait and not by species (Jardim et al.,
2021; Säterberg et al., 2019; Trochta et al., 2018; Andersen et al., 2015). It is
important to consider interactions between multiple species and the environment,
but these models require extensive knowledge about the ecological connections
between species and the way species interact with the environment (Birkenbach
et al., 2020; May et al., 1979). Information on these interactions is often diffi-
cult or time-consuming to acquire. In chapter 3, I show that trends in growth
curves contain information about the experienced environment of a population.
Ecologically similar species tend to be more similar in the dynamics of the size-
at-age structure. Summary statistics of the variation in growth might therefore
be a useful indicator of the ecological relatedness of species. One of the main
advantages of using growth curves to indicate ecological relatedness is the avail-
ability of data. Size and age measurements are widely collected for many species
through surveys and are already used for the assessment of many species. Using
this data to construct the ecological relatedness thus does not require additional
surveys or measurements. Variation in growth could therefore become a central
concept in understanding and gaining information about the ecological dynamics
and interactions of harvested fish stocks.

7.5 Evolutionary dynamics
Taxa in the animal kingdom differ vastly in the level of growth curve plasticity. It
is tempting to divide these taxa into two extreme categories consisting of species
with a very plastic growth curve and species with an entirely fixed growth curve.
Insects (McCauley et al., 1990), fish (Zimmermann et al., 2018; Lorenzen and
Enberg, 2002), amphibians and reptiles (Halliday and Verrell, 1988) are observed
to have a high level of plasticity in their growth curve, while the growth curves of
mammals and birds are thought to be largely fixed (Perrigo, 1990; Albon et al.,
2000; Coulson et al., 2000; Clutton-Brock et al., 1987; Festa-Bianchet et al., 1995;
Skogland, 1986). A common consensus is therefore that the growth curve of endo-
therms is fixed while the growth curve of ectotherms is largely plastic. This is in
contrast to the results in chapter 5 which predict that a whole range of intermediate
levels of growth curve plasticity can be found in nature. This mismatch between
observations and predictions could occur because some mechanisms might mask
a part of the plasticity in growth curves. For example, endotherms have a high
metabolic rate and are therefore expected to live in environments with a high and
constant resource availability (Nagy, 2005; Clarke, 2019). The plasticity in growth
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curves would be less visible if the resource availability is relatively constant. In-
dividuals could also show behaviour that increases or decreases the ingestion rate
under specific conditions. By actively changing their ingestion rate, individuals
can regulate the amount of energy available for growth, which could result in a
constant growth rate, even if the underlying energy allocation mechanisms allow
for plastic growth (Kooijman, 2000). Interesting to note is that behaviour could
only mask plasticity in growth if there are sufficient resources available in the en-
vironment, which might not always be the case. Experiments in which individuals
are grown or starved on various resource levels are needed to determine the actual
level of growth curve plasticity of an individual.

It is interesting to speculate how differences in growth curve plasticity between
endotherms and ectotherms might arise even if these differences are less distinct
than suggested. In general, endothermic individuals are able to regulate their body
temperature independent of the environment, while the body temperature of ecto-
thermic individuals always depends on environmental factors. Birds and mammals
are the primary examples of endothermic individuals because they maintain a very
constant body temperature, but some insects, fish and reptiles have been shown to
regulate their body temperature independent of the environment as well (Ciezarek
et al., 2019; Zermoglio et al., 2018; Seymour et al., 2009; Dickson and Graham,
2004). Meanwhile, the processes that drive the evolution of endothermy itself
are unclear and many factors ranging from increased aerobic activity to increased
parental care are suggested to influence the evolution of endothermy (Farmer,
2000; Bennett and Ruben, 1979; Ruben, 1995). Endothermy might even be a by-
product of the optimization of the energy balance of an individual, just like the
evolution of growth curve plasticity in chapter 5 (Seebacher, 2020).

The major difference between endotherms and ectotherms is the degree in which
the internal environment of an individual depends on the external environment.
The internal environment of ectotherms strongly depends on the external environ-
ment. It might therefore be costly for ectotherms to decouple their growth rate
from the external environment. On the other hand, the internal environment of
endotherms is already decoupled from the external environment. It might there-
fore be costly for endotherms to monitor the external environment and make their
growth rate plastic. In this case, the model in chapter 5 predicts that evolution
would slowly drive ectotherms towards a higher level of growth curve plasticity,
while endotherms are driven to a lower level of growth curve plasticity. This is in
line with the observation that the growth rate of large fossil mammals was at least
partly plastic, while the growth rate of modern mammals seems almost entirely
static (Köhler and Moyà-Solà, 2009).
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A high and constant body temperature is of vital importance for the survival
and functioning of endotherms. As a consequence, endothermic individuals spend
a substantial amount of energy on the production of heat (Nagy, 2005; Clarke,
2019). In the model used in chapters 4 and 5 this would translate to high somatic
maintenance costs. For endotherms, it might therefore be especially important to
ensure a sufficient energy supply to these somatic processes, even in a strongly
fluctuating environment. One way to do so is by fixing the energy allocation to
somatic processes including growth. Under these conditions, fluctuations in the
environment would only result in strong fluctuations in reproductive output as
observed in many ungulate species (Perrigo, 1990; Albon et al., 2000; Coulson et al.,
2000; Clutton-Brock et al., 1987; Festa-Bianchet et al., 1995; Skogland, 1986). This
furthermore predicts that high somatic maintenance costs in combination with a
strongly fluctuating environment would result in evolution towards a low level of
growth curve plasticity. It would be very interesting to test this prediction with the
models used in chapter 5 as well as observations on individual energy expenses. In
addition, a more detailed understanding of the mechanisms underlying the energy
allocation to physical processes such as growth and heat production is needed to
disentangle the relation between growth curve plasticity and endothermy. Until
then, it is unclear whether a low level of growth curve plasticity evolves due to
endothermy or whether endothermy and the level of growth curve plasticity are
both just the result of the evolutionary optimization of individual energy dynamics.

7.6 Conclusion
Growth curve plasticity is the extent to which the growth rate of an individual
depends on environmental factors such as the resource availability. The level of
growth curve plasticity is determined by an underlying individual energy allocation
scheme. Endothermic species are often assumed to have a largely fixed growth rate
while ectothermic species are generally expected to have a higher level or growth
curve plasticity. Similarly, theoretical models often assume that growth is entirely
fixed or entirely plastic, while evolutionary analysis of the level of growth curve
plasticity suggests that these extremes are unlikely to occur in nature. The level
of growth curve plasticity might rather be at some intermediate value.

The level of growth curve plasticity strongly affects the growth curves of in-
dividuals and therewith the variation in size within and between cohorts as well
as the size structure of the entire population. Variation in growth can therefore
be used as an indicator of the environment experienced by a population. This
might be useful in for example fisheries management, because information about
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the ecological relatedness of stocks is often missing while size and age data is often
sufficiently available from surveys.

Meanwhile, growth and individual size are linked to numerous life history char-
acteristics determining the dynamics of a population. Because growth curve plas-
ticity is determined by the energy allocation scheme of an individual, it causes
a tradeoff between energy investment in growth and energy investment in repro-
duction. As a consequence, either maturation or individual fecundity is limited
by the environment and eventually determines the dynamics of the population.
Populations limited by maturation and fecundity strongly differ in the response to
external influences such as harvesting and the type of population dynamic cycles
that can emerge. The level of growth curve plasticity and the individual life his-
tory processes that limit the population are therefore central in understanding the
dynamics of structured populations.
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Summary

Starving to grow:
the ecology and evolution of growth curve plasticity

The size of living organisms spans an unimaginably large range, from single-cell
organisms to large aquatic mammals. The size of an organism is linked to nu-
merous life history processes such as consumption, reproduction and survival and
determines the way an organism experiences its environment. It is therefore un-
surprising that individual body size is a key factor in the life history and ecology
of an organism.

Species not only differ in their body size, but also in the rate at which they
grow. Individuals of some species grow fast and reach their maximum size at a
young age, while individuals of other species might grow slowly but keep growing
throughout their entire life. The rate at which an individual can grow and the
size an individual can reach is governed by the amount of energy available for
the growth of an individual. Individuals acquire energy through consumption
and assimilation of resources. The acquired energy is used to fuel life history
processes such as growth and reproduction, but also to maintain the current state
of the body. This results in a tradeoff between these processes because assimilated
energy can only be spent once. As a consequence, the growth rate of an individual
is strongly determined by the physiological rules an individual uses to allocate
energy to growth and other processes.

Interestingly, species differ in the amount in which their individual growth rate
depends on the environment. Some species, such as most mammals and birds,
display a very constant growth rate independent of the experienced environment.
For these species, the size of an individual can be predicted relatively accurately
based on its age. In contrast, the growth rate of other species, such as insects, fish
and amphibians, strongly depends on the environment and especially the amount
of resources that are available. The extent to which the growth of an individual
depends on the environment is the level of growth curve plasticity of an individual.
The level of growth curve plasticity arises from the energy allocation schemes used
by individuals and strongly affects the ecological dynamics of a population.

If growth is largely plastic, individuals of the same age can differ strongly in
size, even within the same population. These differences in size arise because indi-
viduals experienced different environments. Individuals could for example experi-
ence differences in the environment due to chance or because they live in different
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places. In addition, the environment can also change over time, which causes vari-
ation in size between individuals born at different points in time. Variation in
size therefore contains valuable information about the environment experienced
by individuals. In chapter 2, I developed a method to quantify the variation in
the environment based on size and age measurements of individuals that can only
be measured once during their life, which is for example the case for wild fish.
In addition, I showed that a model which accounts for temporal fluctuations in
the environment predicts the size of individuals more accurately compared to a
model in which the environment is assumed to be constant. In chapter 3, I used
this model to characterize the temporal trends in the experienced environment for
ten exploited North Sea fish stocks in ten North Sea regions. Analyses of these
trends revealed that the experienced environment is more similar for ecologically
similar species and within geographically connected regions. This suggests that
variation in growth can be a useful summary statistic for ecological relatedness of
fish stocks, which is especially useful in the transition towards ecosystem-based
fisheries management.

The environment thus affects the life history of an individual, but individuals
can in their turn also affect the environment, for example through consumption
of the resource. This results in a feedback loop in which the resource density and
the consumer population mutually limit each other. The level of growth curve
plasticity affects the energy allocation scheme of an individual and determines to
what extent growth in size is dependent on the resources in the environment. In
chapter 4, I show that this can result in a consumer population limited by growth
and a consumer population limited by reproduction. These two regimes differ
vastly in the structure of the consumer population and the type of population
dynamic cycles that can emerge. The dynamics of a consumer population limited
by growth is mainly affected by fluctuations in the survival up to maturation, while
the dynamics of a consumer population limited by reproduction is mainly affected
by fluctuations in individual fecundity. In chapter 5, I show that evolution balances
the limitation in growth and reproduction. Evolution is therefore expected to drive
a population towards an intermediate level of growth curve plasticity. This is in
sharp contrast with common theory about the evolution of plasticity and energy
budget theory, which often assume that the level of growth curve plasticity will
evolve to extreme values.

The level of growth curve plasticity strongly affects the response of a fish stock
to harvesting. Classic models of fisheries management are structured by age rather
than size and therefore assume a low level of growth curve plasticity, while most fish
species have been shown to maintain a largely plastic growth rate. In chapter 6, I
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show that yield from fish stocks with a low level of growth curve plasticity is highest
at a relatively low fishing intensity. Unfortunately, under these conditions, a large
part of the catches is undersized and cannot be sold on the market. In contrast,
yield from a fish stock with a high level of growth curve plasticity is highest at
a relatively high fishing intensity. This is again paired with the harvesting of
numerous undersized individuals. Interestingly, for some stocks with a high level
of growth curve plasticity, a second harvesting intensity with high yield arises at
which the amount of undersized catches is relatively low.

All together, this thesis shows how growth curve plasticity affects all levels
of biological organization, from individual energetics to the ecological and evol-
utionary dynamics of entire populations. On the individual level, growth curve
plasticity is tightly intertwined with the energy allocation schemes of an individual
and the energetic trade-offs between life history processes. Fluctuations in the en-
vironment accumulate in the size of individuals if growth is largely plastic. As
a consequence, the level of growth curve plasticity strongly influences the struc-
ture of a population. The size-structure of a population might therefore contain
valuable information on the experienced environment. Meanwhile, the structure
of a population also influences the impact of a population on the environment.
The level of growth curve plasticity therefore strongly affects the type of dynamics
that can arise from the mutual interactions between the populations and its en-
vironment. Overall, it is clear that growth curve plasticity is an important factor
when considering the dynamics of structured populations on any level of biological
organization.
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Samenvatting

Vast en zeker groeien:
de ecologie en evolutie van plasticiteit in groeicurves

De lichaamsgrootte van levende organismen bestrijkt een ongelofelijk groot be-
reik, variërend van eencellige organismen tot aan grote aquatische zoogdieren. De
grootte van een organisme houdt verband met veel verschillende levensprocessen,
zoals consumptie, reproductie en overleving, en is daarnaast belangrijk voor de ma-
nier waarop een organisme zijn omgeving ervaart. Het is dan ook niet verrassend
dat de lichaamsgrootte van een individu een sleutelrol speelt in zijn ontwikkeling
en ecologie.

Diersoorten verschillen niet alleen in hun lichaamsgrootte, maar ook in de snel-
heid waarmee ze groeien. Individuen van sommige soorten groeien snel en bereiken
hun maximumlengte op jonge leeftijd, terwijl individuen van andere soorten hun
hele leven langzaam doorgroeien. De snelheid waarmee een individu groeit en de
lengte die een individu kan bereiken, hangt af van de hoeveelheid energie die be-
schikbaar is voor groei. Individuen vergaren energie door voedsel te consumeren
en te verteren. De vergaarde energie wordt gebruikt voor levensprocessen zoals
groei en reproductie, maar ook voor het onderhouden van het huidige lichaam.
Omdat energie maar één keer gebruikt kan worden, veroorzaakt dit een wissel-
werking tussen verschillende levensprocessen. Hierdoor hangt de snelheid waarop
individuen groeien vooral af van de regels die bepalen hoe individuen vergaarde
energie gebruiken.

Soorten verschillen in de mate waarin de groei van een individu afhangt van
de omgeving. Bij sommige soorten, zoals de meeste vogels en zoogdieren, is de
groeisnelheid zeer constant en onafhankelijk van de omgeving. De grootte van
individuen van deze soorten kan geschat worden op basis van hun leeftijd. Dit is
niet het geval bij de meeste andere soorten, zoals insecten, vissen en amfibieën,
waarbij de groeisnelheid sterk afhangt van de omgeving en vooral de beschikbaar-
heid van voedsel. Hoe sterk de groeisnelheid van een individu bepaald wordt door
de omgeving hangt af van de mate van plasticiteit in de groeicurve. De mate van
groeiplasticiteit wordt bepaald door de regels voor energiegebruik van een orga-
nisme en heeft een grote impact op de ecologische dynamiek van een populatie.

Bij een hoge mate van groeiplasticiteit kunnen individuen van dezelfde leeftijd
sterk verschillen in lichaamsgrootte, zelfs als deze individuen uit dezelfde popu-
latie komen. Deze verschillen ontstaan doordat individuen de omgeving verschil-
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lend ervaren. Dit kan veroorzaakt worden door toeval, maar individuen kunnen
bijvoorbeeld ook in een ander gebied leven. Daarnaast kan de omgeving veran-
deren, waardoor het moment waarop een individu geboren is, bepalend is voor
de omgeving die hij ervaart. De variatie in lichaamsgrootte bevat dus belangrijke
informatie over de ervaren omgeving. In hoofdstuk 2 ontwikkel ik een methode
die gebruikt kan worden om de variatie in de omgeving te schatten op basis van
metingen van lengte en leeftijd van individuen die maar één keer gemeten kunnen
worden, zoals het geval is bij vissen uit de zee. Daarnaast laat ik zien dat een
model dat rekening houdt met temporale fluctuaties in de omgeving beter in staat
is om de grootte-structuur van een populatie te voorspellen dan een model dat
aanneemt dat de omgeving constant is. In hoofdstuk 3 gebruik ik dit model om
een schatting te maken van de fluctuaties in de omgeving van tien commerciële
vispopulaties in tien verschillende regio’s van de Noordzee. De analyse van deze
fluctuaties laat zien dat vissen met eenzelfde ecologie en vissen in verbonden regio’s
op een vergelijkbare manier beïnvloed worden door de omgeving. Dit suggereert
dat variatie in groei van vissen een belangrijke maat kan zijn voor de ecologische
verwantschap van vispopulaties. Dit kan bijvoorbeeld gebruikt worden in de tran-
sitie naar een nieuwe manier van visserij management die rekening houdt met het
gehele ecosysteem.

De omgeving beïnvloedt niet alleen de levensloop van een individu, maar een
individu beïnvloedt ook zijn omgeving, bijvoorbeeld door het eten van voedsel.
Hierdoor ontstaat er een wisselwerking waarbij de voedselbron en de consumenten-
populatie elkaar wederzijds beïnvloeden. De mate van groeiplasticiteit beïnvloedt
de regels voor energiegebruik van een individu en bepaalt in welke mate de groei
van een individu afhangt van het voedsel in de omgeving. In hoofdstuk 4 laat
ik zien dat dit kan leiden tot een consumentenpopulatie gelimiteerd door groei
en een consumentenpopulatie gelimiteerd door reproductie. Deze twee regimes
laten grote verschillen zien in de structuur van de consumentenpopulatie en de
dynamische cycli die kunnen ontstaan in de populatie. De dynamiek van een con-
sumentenpopulatie gelimiteerd door groei ontstaat voornamelijk door fluctuaties
in de overleving tot het moment waarop individuen volwassen worden, terwijl de
dynamiek van consumentenpopulaties gelimiteerd door reproductie voornamelijk
ontstaat door fluctuaties in de reproductie van individuen. In hoofdstuk 5 laat ik
zien dat evolutie leidt tot een balans tussen de limitatie in groei en de limitatie in
reproductie. Het is daarom te verwachten dat een populatie zal evolueren richting
een gedeeltelijk plastische groei. Dit staat in schril contrast met klassieke theo-
rieën over evolutie van plasticiteit en energietheorie, die voorspellen dat de mate
van groeiplasticiteit zal evolueren richting extreme waarden.
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De reactie van een vispopulatie op visserij wordt sterk bepaald door de mate
van plasticiteit in groei. Klassieke modellen voor visserij volgen de leeftijdsstruc-
tuur van een populatie en gaan daardoor uit van een lage mate van groeiplasticiteit,
terwijl veel vissoorten een hoge mate van groeiplasticiteit laten zien. In hoofdstuk
6 laat ik zien dat de opbrengst van een vispopulatie met een lage mate van groei-
plasticiteit het hoogste is bij een relatief lage visserij-intensiteit. Helaas worden
er in dit geval ook veel vissen gevangen die te klein zijn om te verkopen. De op-
brengst van vispopulaties met een hoge mate van groeiplasticiteit is daarentegen
het hoogst bij een relatief hoge mate van visserij-intensiteit. Ook dit gaat samen
met het vangen van een grote hoeveelheid vis die te klein is om te verkopen. Voor
sommige vispopulaties met een hoge mate van groeiplasticiteit is er een tweede
visserij intensiteit met een hoge opbrengst, waarbij het aantal te kleine vissen dat
gevangen wordt, beperkt is.

In het geheel laat dit proefschrift zien hoe plasticiteit in groei invloed heeft
op alle niveaus van biologische organisatie, van individuele energiehuishouding tot
de ecologische en evolutionaire dynamiek van populaties. Op het niveau van een
individu is groeiplasticiteit sterk verbonden met de regels voor energiegebruik en de
wisselwerking tussen levensprocessen. Als groei sterk afhangt van de omgeving,
bouwen schommelingen in de omgeving zich op in de lichaamsgrootte van een
individu. Hierdoor wordt de structuur van een populatie sterk beïnvloed door de
mate van plasticiteit in groei. Aan de andere kant kan de lengtestructuur van een
populatie daardoor waardevolle informatie bevatten over de omgeving waarin een
populatie heeft geleefd. Ondertussen beïnvloedt de structuur van een populatie
ook de impact van een populatie op de omgeving. Hierdoor heeft de mate van
groeiplasticiteit een sterke invloed op de dynamiek die voortkomt uit de interacties
tussen een populatie en de omgeving. Uit dit proefschrift is in ieder geval duidelijk
geworden dat plasticiteit op elk biologisch organisatieniveau een belangrijke factor
is voor de dynamiek van een gestructureerde populatie.
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