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Parkinson’s disease
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease worldwide 1 
that affects 1-2 individuals per 1000 humans of the population in Europe 2. The prevalence 
of PD increases with age to 1% of patients that are above 60 years old 3,4. The symptoms 
are caused by progressive degeneration of dopaminergic neurons in the Substantia Nigra 
pars compacta (SNpc), located in the midbrain 5. Human SNpc neurons contain the dark 
pigment neuromelanin, and loss of SNpc neurons, marked by depigmentation in PD patients 
is clearly visible at neuropathological examination 6 (Fig. 1, upper section). SNpc dopamine 
neurons project to the corpus striatum 7,8, one of the forebrain centers in charge of motor control 
(Fig. 1, upper section). The functional connectivity between both structures is referred as the 
nigrostriatal pathway and depends on the release of the catecholamine dopamine 9. Due to 
the neuronal degeneration in the SNpc, there is less projection of dopaminergic fibers from 
the SNpc to the striatum (Fig. 1, lower section), resulting in a decreased dopamine release. 

Figure 1. Nigrostriatal degeneration of dopaminergic neurons

Illustration of the functional connectivity between the SNpc in the midbrain (cell bodies) and the striatum (terminals) 
that is called the nigrostriatal pathway. Additionally, the mesolimbic pathway, the connectivity between the VTA that 
projects towards the ventral striatum/NAc and prefrontal cortex is illustrated. Both pathways depend on the release of 
dopamine and are known to be involved in PD pathology. Coronal midbrain section of normal healthy versus PD state 
of the SNpc (dark gray). Loss of pigmentation of neuromelanin in PD patients is clearly visible, in which approximately 
70% of SNpc neurons already have been lost. Degeneration of nigrostriatal and mesolimbic dopaminergic neurons 
in the midbrain causes a reduction in the amount of dopamine neurons, functional dopamine neuron terminals and 
dopamine transmission. Abbreviations: NAc, Nucleus Accumbens; PD, Parkinson’s disease; SNpc, Substantia nigra 
pars compacta; VTA, Ventral Tegmental Area.
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Studies reported that additionally but to a lesser extent the connectivity from the ventral 
tegmental area (VTA) to the ventral striatum, called the mesolimbic pathway is affected as 
well 10. To date there is no cure to halt the observed neurodegeneration. 

When patients are diagnosed, PD is characterized by a range of motor symptoms, such as 
bradykinesia, akinesia, muscle cramps and tremor at rest 11–13. PD is also featured by a variety 
of non-motor symptoms, such as cognitive dysfunction, depression, anxiety, delusion, sleep 
abnormalities, hallucination, and impulsive and compulsive behaviors 14,15, suggestively partly 
influenced by given therapy. Strikingly, clinical symptoms only emerge at an advanced disease 
stage, in which a substantial amount of approximately 70% of SNpc neurons has already been 
lost and is numbers are still declining 16. Before clinical diagnosis and obvious PD-like motor 
symptoms, the patients go through a so-called prodromal phase 17. Prodromal PD symptoms 
include loss of smell, constipation, mood disruptions, and problems sleeping 17,18. Interestingly, 
the prodromal symptoms can occur as early as 20 years before the onset of motor symptoms 19. 
Thus, improving diagnosis would be beneficial to start treatment as early as possible that 
could delay the onset of clinical symptoms and improve the patient’s quality of life. 

Only around 10% of PD cases have a monogenetic cause, and the remaining 90% of cases 
are sporadic, where the chance of developing PD increases with age 20. Several mutations 
in genes, such as glucocerebrosidase (GBA), leucine-rich repeat kinase 2 (LRRK2), Parkin 
(PARK2), UCHL1 (PARK5), DJ-1 (PARK7), PTEN-induce putative kinase 1 (PINK1), a-synuclein 
(SNCA), vacuolar protein sorting-associated protein 35 (VPS35) and other genes have been 
associated with increased risk for PD 21–26.  Environmental factors such as toxins, pesticides, 
intake of heavy metals, dairy products and head trauma are all found to increase PD risk 27–34.

 
Treatment opportunities
L-DOPA: the current therapy for Parkinson’s disease
Dopamine in dopaminergic midbrain neurons is synthesized by the enzyme Aromatic amino 
acid decarboxylase (AADC) from the precursor L-3,4-dihydroxyphenylanine (L-DOPA). Prior, 
L-DOPA is synthesized by tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine 
synthesis (Fig. 2A).

To replenish the decreased level of dopamine, and as soon as a PD patient exhibits motor 
symptoms, they are treated orally with L-DOPA, which is considered the gold standard in the 
treatment of PD. L-DOPA is administered together with the AADC inhibitor carbidopa, that 
does not pass the blood brain barrier (BBB) to prevent peripheral conversion of L-DOPA to 
dopamine 35–38. Absorption of L-DOPA takes place in the small intestine, through the L- amino 
acid transport (LAT) system, sharing uptake with other essential large amino acids 39. Only 
30% of the oral L-DOPA supplementation reaches the circulation intact 39 of which merely 1% 
enters the brain 39,40. L-DOPA is effective at plasma concentrations of 2 μg/mL 39, however 
effectiveness is unpredictable when disease state progresses 41. 

From the circulation, L-DOPA reaches the brain via cerebral arteries, passes the BBB via 
active transport via LAT, and is dispersed all over the brain 42–46. After an initial period of 5-10 
years of effective levodopa treatment (honeymoon period), patients develop fluctuations in 
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their therapeutic response, leading to a ‘wearing-off’ effect, in which the therapeutic effect is 
shortened in duration of each consecutive L-DOPA dosage 47–49. Accordingly, L-DOPA treatment 
requires regular incremental adjustments in dosage and dosages per day. Interestingly, it is 
suggested that the presence of L-DOPA reduces the uptake of L-Tyrosine 50–52. This possibly 
further downscales the endogenous dopamine production and elevates the dependence of 
exogenous L-DOPA delivery.

The production of dopamine from L-DOPA by the enzyme AADC, is however not restricted 
to dopamine neurons in the midbrain, but it also facilitates additional enzymatic reactions in 
other neuronal cell type systems. These AADC-positive systems include the brain serotonin 
system, the noradrenergic system, trace amine neuromodulator systems, and glial cells 45,53–55 
(Fig. 2B). The expression of AADC in serotonin neurons is suggested to underlie one of 
the major side-effects observed after long-term levodopa treatment: Levodopa-induced-
dyskinesia (LID). LIDs are suggested to be the result of AADC-mediated biosynthesis 
of dopamine that is derived from exogenous L-DOPA in serotonergic neurons 56,57. These 
afferent nerves will additionally serve a role for storage and release of L-DOPA-derived 
dopamine 58. Therefore, dopamine will be released from non-dopaminergic afferents, resulting 
in uncontrolled, excessive swings in dopamine release. Serotonin transporter blockade with 
selective serotonin reuptake inhibitors (SSRIs) was recently shown to counteract L-DOPA-
induced dyskinesias in 6-hydroxydopamine (6-OHDA)-lesioned rats 59–62. Also, lesions of the 
serotonin fibers or activating serotonergic auto-receptors with receptor agonists blocked the 
development of LID in lesioned animals 63–66. 

Post-synaptic targeting: Medium Spiny Neurons
To completely bypass presynaptic dopamine synthesis, Dopamine receptor agonists already 
are implemented as a therapy for PD 67–69. Dopamine receptors in the post-synaptic membrane 
of medium spiny neurons (MSNs) are targeted to enhance the neuronal signaling action 
potential, increasing its sensitivity. Results demonstrate improved mobility and a prolonged 
motor response mediated by L-DOPA in PD patients, suggesting a long-lasting effect of 
treatment. However, their complicated mode of action is proposed controversial, with lower 
efficacy and high incidence of adverse effects 70–73. One of the issues is that these agonists 
are not specific, because of the wide distribution of dopamine receptors within different brain 
regions 74–77. 

Recently, several gene therapy methods for PD went into clinical trials 78–80. Some methods 
that are included are AADC-TH-GCH gene therapy, viral vector-mediated gene delivery, RNA 
interference-based therapy, and CRISPR-Cas9 gene editing 80,81. In AADC-TH-GCH gene 
therapy, AADC, TH and glutamic acid decarboxylase (GCH), enzymes that are crucial in 
dopamine biosynthesis are used 82. The MSNs, that are not affected in PD are targeted to 
synthesize dopamine and showed improved motor performance and sustained expression of 
the genes in phase 1 human trials and primates 83–88. They found that gene delivery indeed 
resulted in increased levels of dopamine 89,90. Nevertheless, it has been debated whether 
MSNs are the right target at all because they lack the ability to store and release dopamine 
properly 78, leading to unregulated expression levels that can lead to harmful levels of 
dopamine and its metabolites 91–93.
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Figure 2. Biosynthesis of dopamine

The biosynthetic pathway of dopamine. A | TH has a predominant role in the biosynthesis pathway of dopamine. TH 
uses oxygen (O2), the cofactor Tetrahydrobiopterin (BH4), and a ferrous iron (Fe2+) atom in the active site to facilitate the 
catalytic reaction of L-tyrosine to L-3,4-dihydroxyphenylalanine (L-DOPA). In turn, aromatic amino acid decarboxylase 
(AADC) decarboxylates L-DOPA to dopamine. B | Illustration describing the dopamine supplementation therapy by 
L-DOPA for PD patients. L-DOPA, which can pass the blood-brain barrier, is usually administered peripherally in 
combination with a peripheral AADC inhibitor. It reaches the brain via cerebral arteries and passage of the blood-brain 
barrier. Then, through activity of AADC, L-DOPA is converted to dopamine in the brain. The presence of AADC is, 
however, not limited to dopamine-synthesizing neurons. Accordingly, in addition to the original treatment target area, 
L-DOPA reaches various AADC-containing neuronal cell types in diverse brain regions. Consequently, dopamine is 
synthesized in AADC-containing neurons that normally synthesize neurotransmitters or modulators other than dopamine, 
for example serotonin neurons in the raphe nuclei.

Replacement therapies: Cell reprogramming and transplantation
For almost half a century cell transplantation therapies have been researched to commemorate 
the loss of dopamine neurons and catecholamine signaling in PD. However, efficacy was 
dramatically low and severe side effects occurred, also in later studies 94–96. Gladly, clinical cell 
therapy for PD has been picked up again for the last decades. Cells that are mainly used as 
a therapy are human embryonic stem cells (hESCs), human induced pluripotent stem (iPS) 
cells, and human fetal mesencephalic tissue 97,98. hESCs have some beneficial properties such 
as unlimited self-renewal capacity and potential to differentiate into specialized cells 99. Kriks 
and other researchers described successful conversion of hESCs to dopaminergic neurons, 
showing long survival, no tumor growth and an increase in dopamine production 100–104. 
Allografts of human fetal ventral mesencephalic (VM) tissue is currently suggested to be the 
most effective cell replacement therapy for PD patients. These allografts contain developing 
midbrain dopamine neurons and their precursors 105. Some successful open-lab trials that 
exist in this area reported improved motor symptoms in a selection of PD patients 8,106,107.  In 
the last decade, induced pluripotent stem cells (iPSCs), are also used for reprogramming into 
dopamine cells 108,109. Hallett and colleagues reported that iPSC reprogrammed dopaminergic 
neurons, transmitted into the striatum of a monkey PD model, showed survival of transplanted 
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neurons and motor progression 110. The benefits of using this iPSC model are that patient-
specific cells can be acquired, which reduces immune reactions and ethical issues associated 
compared to other transplantation therapies 111–113. However, these techniques still comprise of 
a great deal of challenges. Apart from the obvious complexity of the procedure, problems that 
occur such as the purity of the material injected, the risk of tumorigenesis, immune reactions, 
ethical issues, pathology and a variety of other challenges should first be resolved 97,114. 

Halting neurodegeneration: Blocking mitochondria-dependent apoptosis
Halting or slowing down the progressive degeneration of dopaminergic neurons in the 
Substantia pars compacta (SNpc) would be a breakthrough in the treatment of PD. First, 
the molecular mechanism underlying dopaminergic cell death in PD should be elucidated, 
exposing the intrinsic vulnerability of these neurons. Promising results in pre-clinical cell 
and animal PD models demonstrated degrees of neuroprotection, however clinical attempts 
to achieve neuroprotection have been disappointing 115–117. Interestingly, in PD pathology, 
accumulating evidence aims towards mitochondria-dependent apoptosis underlying neuronal 
loss 118,119. Blocking mitochondria-dependent apoptosis may therefore be a therapeutic to 
prevent the loss of dopamine neurons 119. However, the components of the apoptotic pathway 
have to be identified first in midbrain dopamine neurons. To ensure proper development and 
maintenance of the dopaminergic system, it has been hypothesized that a set of transcription 
and growth factors orchestrate specific dopaminergic pro- and anti-apoptotic factors that 
determine cell fate 119. Nevertheless, early detection of PD pathology is necessary to prevent 
further loss of midbrain dopamine neurons for these therapeutics to be effective.

 
Proposed treatment

TH: the rate-limiting enzyme in dopamine biosynthesis
As previously discussed, TH is the rate-limiting step in dopamine biosynthesis. TH is a member 
of the Aromatic amino acid hydroxylases (AAAHs), that are involved in the biosynthesis and 
signaling of monoamine neurotransmitters and hormones. Other members of AAAH enzymes 
are phenylalanine hydroxylase (PAH) and tryptophan hydroxylase 1 and 2 (TPH1, TPH2). 
They catalyze the hydroxylation of their respective amino acids. AAAH enzymes require the 
co-factors tetrahydrobiopterin (BH4), oxygen and iron for this reaction to occur 37,120,121. AAAHs 
are conserved tetrameric structures with identical subunits, however PAH can also exist as a 
dimer 37,122,123. The subunits consist of a 3-domain organization including the N-terminal regulatory 
domain, central catalytic domain and C-terminal oligomerization domain 124–126 (Fig. 3A).  
The AAAHs display high-sequence identity, with 293 amino acid residues of catalytic domains, 
that demonstrate approximately 65% sequence identity across the sequence. AAAH’s are 
therapeutic targets for many diseases within neurology, psychiatry and cardiology 127. An example 
of this is the recessive disease phenylketonuria (PKU), associated with mutations in PAH, 
leading to loss of enzyme activity. Symptoms that arise are progressive intellectual impairment, 
autism, seizures, motor deficits and rash 128. It is characterized by the accumulation of 
phenylalanine and its degradation products, which is very toxic to the brain. Treatment options 
are administration of large neutral amino acids to prevent phenylalanine entry into the brain 
or oral BH4 co-factor application to increase PAH activity 129. Oral BH4 treatment is used 
for several disorders, such as hypercholesterolemia, diabetes mellitus, and cardiovascular 
disorders 130–136. However, this is not considered for PD 137–139. Another disease regarding 
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TH, called Tyrosine hydroxylase Deficiency (THD) is characterized by L-DOPA-responsive 
dystonia and/or infantile parkinsonism 140. This rare autosomal recessive disorder is largely 
caused by TH missense mutations and treated with L-DOPA supplementation 140,141.  
 
Regulation of TH expression and enzyme activity
TH is present in the brain, retina, sympathetic nervous system, gut and adrenal medulla 142, 
and predominantly found in the cytoplasm 143. In all species, TH is coded by a single gene 
and in human, TH is found on locus 11p15.5. TH has a molecular weight of approximately 
60 kDa and forms a functional homotetramer of 240 kDa. Interestingly, the human TH gene 
contains 14 exons that encode four isoforms of TH, hTH1, hTH2, hTH3 and hTH4, as a result 
of alternative splicing of the gene 144. The roles of the different isoforms in TH regulation are 
unclear. The TH protein found in other vertebrates is comparable to the human TH isoform 
hTH1. Isoforms hTH2, hTH3 and hTH4 have an additional 4, 27 or 31 (27+4) amino acids 
inserted on the N-terminus 145,146. In the caudate and putamen, hTH1 and hTH2 are expressed 
equally and account for 95% of the TH protein present 147. 

In the adrenal medulla and locus coeruleus, stress or chronic drug treatments induced TH 
gene transcription and increased mRNA stability 148,149, indicating that TH is being regulated on 
the transcriptional level. However, in midbrain neurons, only modest or insignificant alterations 
in TH mRNA levels are observed during stressful events 150–153.  In addition, more than 50 
single nucleotide polymorphisms (SNPs) in the human TH gene have been described that 
occur in 1/3 of the population 154–156. These SNPs have been associated with a variety of 
uncommon movement disorders, such as L-DOPA-responsive dystonia, Parkinsonism and 
progressive infantile encephalopathy with L-DOPA-nonresponsive dystonia 157–163.

Besides regulation of TH via transcription 164, it can also be regulated via post-translational 
modifications such as phosphorylation and dephosphorylation, leading to changes in enzyme 
stability and feedback inhibition 165–171. The regulatory domain of TH harbors several conserved 
phosphorylation sites that are important for the regulation of its enzymatic activity. Conserved 
over species, the regulatory domain contains three serine residues (position 19, 31 and 40 
in hTH1; Fig. 3B) that can be phosphorylated 142,172–175. It has been suggested that Ser8 in 
rodents and threonine 8 in human (Thr8) may be phosphorylated as well 145,174,176, however the 
function is never shown.

TH serine phosphorylation by a variety of protein kinases 
Serine phosphorylation of TH harbors several functions. TH Ser40 phosphorylation augments 
enzymatic activity by altering the conformation of TH, leading to an increased dissociation of 
inhibitory catechols and increasing the affinity for its cofactor BH4 142,170,175,177,178. TH Ser31 
phosphorylation promotes activity as well, although to a considerably lower extent than Ser40 
and is involved in enzyme stability and localization 173,179–184. Ser19 phosphorylation is involved 
in enzyme stability and there is little evidence that Ser19 phosphorylation has a direct effect 
on TH activity 181,185–190. There is no evidence that Ser8 phosphorylation increases TH activity.
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Figure 3. The structure of TH

The structure of Aromatic amino acid hydroxylases and TH A | Aromatic amino acid hydroxylases share homology in their 
structure and consist of identical subunits with a 3-domain organization. The enzymes phenylalanine- tryptophan- and 
tyrosine-hydroxylase contain an N-terminal regulatory domain, central catalytic domain, and C-terminal oligomerization 
domain. B | The regulatory domain of TH can be phosphorylated at serine (S or Ser) residues at position 19 (Ser19), 31 
(Ser31) and 40 (Ser40), conserved over species. Position 8 (Ser08), indicated in black is not conserved in humans as a 
threonine (T) can be found in that position. 

Ser40 phosphorylation
Many protein kinases are known to phosphorylate TH at Ser40. It has been widely described 
that protein kinase A (PKA) can phosphorylate TH at Ser40 164,172,174,177,179,181,184,191–206. Also, 
activation of protein kinase C (PKC), in response to phorbol esters or phospholipase 
C, leads directly or indirectly to an increase of TH phosphorylation at Ser40 207–209. Third, 
Calcium calmodulin-dependent protein kinase (CAMKII) was also confirmed as an in vitro 
TH Ser40 kinase 210. Interestingly, a role for protein kinase G (PKG) on TH phosphorylation 
was suggested 211,212. In bovine adrenal chromaffin cells increased PKG activity, produced 
significant increases in phosphorylation of TH. Inhibition of PKG, confirmed that the increased 
phosphorylation was mediated by PKG. When both PKA and PKG signaling routes were 
activated in this experiment, an additive effect on TH phosphorylation was not observed, 
suggesting that PKA and PKG phosphorylates the same serine residue. However, the target 
serine site is never shown directly 212.  PKG shares the same consensus phosphorylation 
motif with PKA 212–214, and such it is in general hard to discriminate between PKA and PKG 
substrates. It is therefore highly likely that PKG may also control TH Ser40 phosphorylation 
in a parallel route.  
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Ser31 phosphorylation
The extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) 180,181,215,216 and cyclin-
dependent kinase 5 (CDK5) 182,217,218 are known to phosphorylate TH at Ser31 both in vitro and 
in situ. The direct effects of TH phosphorylation at Ser31 on enzyme activity are modest and 
the increased TH activity is believed to due to a decrease in Km value for the cofactor BH4 
rather than the dissociation of inhibitory CAs 175. In addition, TH stability was reported to be 
decreased by inhibition of CDK5-induced Ser31 phosphorylation 182, whereas additional data 
show that Ser31 phosphorylation targets TH to vesicles for transport along microtubules from 
the soma to the distal parts of neurites 183.

Ser19 phosphorylation
Calcium calmodulin-dependent protein kinase (CAMKII) has been reported to not only 
phosphorylate TH at Ser40 but also Ser19 in situ 189,219. Also, p38-regulated/activated protein 
kinase (PRAK) was found to phosphorylate TH Ser19 189. Next, stability has been correlated 
with the phosphorylation state of Ser19, which allows binding of 14-3-3, followed by decreased 
proteolysis by trypsin 188. Binding of 14-3-3 also promotes TH activity, by protecting TH from 
being dephosphorylated 189,190,220. 

Figure 4 demonstrates all described protein kinases in various experimental set-ups that 
increase phosphorylation of its specific TH serine site.

Figure 4. Protein kinase-mediated phosphorylation of TH

Activation of TH is mediated by phosphorylation of serine residues in its amino terminal regulatory domain. This 
illustration depicts a selection of protein kinases that are found to phosphorylate Th in vitro and in situ in several 
studies. Phosphorylation results in several functionalities such as increased activity/stability and subcellular localization. 
Additional protein kinases could be added to the list in future research. Abbreviations: CAMKII, calcium- and calmodulin 
stimulated protein kinase II; CDK5, cyclin-dependent kinase 5; ERK1/2, extracellular signal-regulated protein kinase 1/2; 
PKA, protein kinase A; PKC, protein kinase C; PKG, protein kinase G; p38-regulated/activated protein kinase, PRAK.

Hierarchical phosphorylation
Next to the role of each individual TH serine residue has, they can affect the extent of 
phosphorylation of the other serine residues. This interdependence of phosphorylation sites 
has been explored in a number of studies 169,183,187,221–224 and has resulted in a hypothesis 
describing hierarchical phosphorylation. Overall, Ser19 and Ser31 phosphorylation has been 
shown to increase the phosphorylation rate of Ser40 169,187,222,223,225.
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Lehmann and colleagues (2006) were the first to describe hierarchical phosphorylation. They 
increased phosphorylation of Ser19 and Ser31 by angiotensin II (AngII) of purified TH, which 
increased the rate of phosphorylation of Ser40. This was evident when the reaction did not 
include dopamine. Therefore, they suggest that the role of Ser19 and Ser31 phosphorylation in 
dopamine-free TH is to increase the rate of rephosphorylation of Ser40 of TH after it has been 
dephosphorylated. Also in adrenal chromaffin cells, pre-incubation with AngII increased Th Ser40 
phosphorylation by forskolin almost 2-fold. Added to these findings, downregulation of Ser31 
phosphorylation by using an ERK1/2 inhibitor decreased basal Ser40 phosphorylation by 50% 165.

Thus, Ser19 and Ser31 are suggested to indirectly stimulate TH catalytic activity by increasing 
the rate of Ser40 phosphorylation by its upstream kinase 222. 

Upstream of PKA: adenylyl cyclases and G-protein coupled receptors
In short, TH activity is regulated by kinase phosphorylation of serine residues in the 
regulatory domain. Out of the upstream kinases, PKA is the most abundant described Ser40 
kinase 174,175,191. Inactive PKA is a heterodimer of 2 regulatory subunits bound to 2 catalytic 
subunits. The regulatory subunit possesses a pseudo-substrate which occupies the substrate 
binding pocket of the catalytic subunit, preventing activity towards other substrates. The key 
second messenger required for activation of PKA, cyclic adenosine monophosphate (cAMP), 
is produced by the conversion of adenosine triphosphate (ATP) to cAMP by adenylyl cyclases 
(AC) 226. Upon binding of cAMP to the regulatory subunit, the regulatory and catalytic subunit 
dissociate. The free catalytic subunit can now phosphorylate a wide array of downstream 
targets 227–229. In mammals, ACs can be divided into AC1-10 and are expressed throughout 
the brain 230–234, and peripheral regions 234. Besides activating PKA, cAMP can interact with 
multiple additional downstream effectors such as exchange protein activated by cyclic AMP 
(Epac), cAMP-regulated cyclic nucleotide phosphodiesterases (PDEs) and cyclic nucleotide 
gated (CNG) channels 227–229,235,236. 

Most ACs, except soluble AC (AC10 or sAC) are coupled to G-protein coupled receptors 
(GPCRs) which can either stimulate or inhibit AC activity. The GPCRs mode of action is 
primarily activating heterotrimeric G proteins composed a complex of α, β, and γ subunits. 
GTP binding leads to a conformational change in Gα, promoting dissociation of the Gα and 
Gβγ subunits. Each of these units can in turn modulate the activity of effector proteins. Gα 
proteins are coupled to adenylyl cyclase. Gβγ subunits can play a role to recruit proteins to the 
membrane or modulate the activity of kinases, ion channels, or phospholipases 237,238.
The Gα can be stimulatory or inhibitory (Gs and Gi, respectively) and therefore increase AC 
activity or inhibit AC activity. Gβγ can indirectly modulate AC activity, however this is much 
lower extend as compared to Gα 239. GPCRs can be modulated by a wide range of regulatory 
signals, including hormones and neurotransmitters 240–242. The most obvious GPCRs in the 
brain dopamine system are dopamine receptors D1-D5 77. D1-like receptors (D1 and D5) 
are Gαs coupled, whereas D2-like receptors (D2, D3 and D4) are Gαi coupled. Of these 
dopamine receptors, D1-D5 are present post-synaptic, whereas D2-like receptors are the 
only present pre-synaptic 76. Importantly, pre-synaptic stimulation of D2 of the nigrostriatal 
neuron inhibits AC activity, thereby downregulating the phosphorylation and activity of TH in 
an autoregulatory feedback loop 243,244. 
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Next to L-DOPA treatment, dopamine receptor agonists are used as a therapy for PD 67–69. 
These agonists directly stimulate dopamine receptors on the post-synaptic membrane of 
medium spiny neurons (MSNs), bypassing the presynaptic dopamine synthesis, and act 
on the D2-class dopamine receptors and D1-class receptors activated by dopamine (and 
rotamerics), phenylbenzazepines, tetracyclis and bicyclics 245. Originally, they were used as 
an adjunctive therapy in advanced PD, however they are now implemented in early stages 
of the disease. However, their use is still a complicated and sometimes a controversial issue 
because it involves difficult pharmacokinetics, lower efficacy and high incidence of adverse 
effects 70–73. These adverse effects are explained by the wide distribution of dopamine receptor 
expression within different brain regions, making it not restricted to the striatal neurons that 
are the main target in PD 74–77. 

A second group of interesting AC-coupled GPCRs found in the brain are members of 
GPCR family B or secretin receptor-like GPCRs. These GPCRs are activated by a super 
family of structurally related peptide hormones which include pituitary adenylate cyclase-
activating polypeptide (PACAP), vasoactive intestinal peptide (VIP) secretin, peptide 
histidine isoleucine/methionine (PHI/PHM), peptide histidine valine (PHV) and glucagon-like 
peptides 246–249.  Some of these peptide hormones are found to increase TH activity in various 
experiments 204,248–259. Therefore, a specifically expressed GPCR in a dopamine neuron that 
is positively coupled to an AC or is a potential therapeutic target as it may lead to increased 
TH activity (Fig. 5, right segment). 

Parallel route: natriuretic peptide receptors
Interestingly, besides the well described cAMP-PKA pathway, a parallel pathway involving 
the natriuretic peptide receptor family has been shown to control TH activity. Instead of 
signaling via cAMP, it is mediated through alterations of second messenger cyclic guanosine 
monophosphate (cGMP) 260.

In mammals, there are three known natriuretic peptide receptors (NPRs), namely NPR-A/
GC-A, NPR-B/GC-B, and NPR-C/Clearance receptor that are bound by Atrial natriuretic 
peptide (ANP), B-type natriuretic peptide (BNP), and C-type natriuretic peptide (CNP), 
respectively.  The other members of the family are GC-C, a receptor for the intestinal guanylin 
family of peptides, and Ret-GC-1 and Ret-GC-2, receptors in the retina that regulate the 
photoreceptor dark cycle 242,261–266. These receptors, except from NPR-C are unique in the 
sense that they have an extracellular ligand binding domain that is directly coupled to an 
intracellular guanylate cyclase domain. NPR-C does not possess intrinsic enzyme activity 
as it lacks the intracellular guanylate cyclase domain. Upon activation of the cyclase, cGMP 
is catalyzed from GTP regulating activity of a variety of intracellular effector targets including 
PKG, Cyclic nucleotide-gated (CNG) channels and cGMP-dependent PDEs 267,268. Besides 
these so-called particulate guanylyl cyclases (pGC), the guanylate cyclase domain can also 
be expressed in the cytoplasm without an extracellular ligand binding domain, the soluble 
guanylate cyclases (sGC). Ligands for sGC include nitric oxide (NO) and carbon monoxide 
(CO). Activation of NPRs, that are present in the brain, have been described to be associated 
with increased TH activity when induced by natriuretic peptides 212,269,270. Thus, a specifically 
expressed pGC or sGC in a dopamine neuron is another potential therapeutic target as it may 
lead to increased TH activity (Fig. 5, left segment).
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Figure 5: Cyclic nucleotide-dependent activation of TH

Proposed signaling routes on TH activation after activation of AC-coupled GPCRs, pGCs or sGCs. The targets are 
activated by an exogenous ligand, which leads to intracellular catalysis of secondary messengers cAMP or cGMP. 
Elevated levels of cAMP or cGMP directly activate its respective protein kinase, that phosphorylates TH at Ser40, 
boosting TH activity and dopamine biosynthesis. Abbreviations: AADC, aromatic amino acid decarboxylase; AC, 
adenylyl cyclase; pGC, particulate guanylyl cyclase; sGC, soluble guanylyl cyclase; G-protein-coupled receptor (GPCR); 
Gs, large guanine-nucleotide-binding regulatory protein α stimulatory subunit; TH, Tyrosine hydroxylase.

 
Scope and aim of this thesis
In this chapter, we discussed the major drawbacks of current therapies used in movement 
disorders such as PD. Progressive degeneration of dopamine neurons leads to loss 
of dopamine signaling in the basal ganglia and substantia nigra. Dopamine production is 
targeted by exogenous application of L-DOPA and is successful for the early stages of the 
disease. However, L-DOPA therapy leads to severe side-effects, such as L-DOPA induced 
dyskinesias and atypical extranigral actions. Also, the therapeutic window in which the 
therapeutic response is effective narrows in later stages of the disease. Subsequently, the 
use of dopamine agonists has some major drawbacks, as the efficacy of these therapeutics 
diminishes when disease progresses and aspecificity of expression towards different brain 
areas, such as the cortical regions. To increase dopamine bioavailability and release to 
commemorate the loss of dopamine signaling and relieve symptoms, we propose a different 
route. We aim to target TH, which is the rate-limiting enzyme in dopamine synthesis. As TH 
is the limiting enzyme in the reaction, and dopamine interacts with the catalytic region of 
TH to decrease its activity, increasing the activity of the enzyme could accelerate dopamine 
biosynthesis in an endogenous manner. We propose that increasing endogenous enzyme 
activity specifically in nigrostriatal neurons by activation of upstream cAMP/cGMP routes, will 
lead to enhanced local dopamine production in the target area of interest, which reduces 
potential side effects and counteracts the dopamine depletion. 

In chapter 2, we first revisited the AC-cAMP-PKA signaling route on Th Ser40 and Ser31 
phosphorylation in dopaminergic MN9D cells. We confirm that various cAMP analogs 
increase Th Ser40 phosphorylation. Interestingly, Ser31 phosphorylation was downregulated 
in response to the same second messengers. 
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Using small chemical kinase inhibitors, we show crosstalk between the upstream kinases of 
Ser40 and Ser31 pathway. Finally, we investigated hierarchical phosphorylation of Th, as it 
is proposed that phosphorylation of one serine could affect the rate of phosphorylation of the 
other serine. With the use of phospho-mimetic mutants, we show that phosphorylation of Th 
at Ser40 is required for phosphorylation of Ser31, whereas we find no evidence to support 
the reported claim this is the other way around. This suggests Th Ser40 could be the most 
relevant phosphorylation site increasing the enzyme’s activity as well as function.

In the 3rd chapter, we describe an ex vivo approach to investigate Th phosphorylation 
in microdissected striatal or midbrain mouse brain slices. This was performed in order to 
provide a more detailed picture on upstream signaling routes of Th in an ex vivo setting. 
The distribution of Th Ser31 and Ser40 phosphorylation in these micro-dissected areas were 
examined, and cAMP-dependent routes on Th phosphorylation were explored. Using our ex 
vivo model, we demonstrated abundant expression of (phosphorylated) Th protein present 
in the corpus striatum, and the ability to modulate Th Ser40 phosphorylation via cAMP-
dependent routes. We first revisited PKA and ERK1/2 crosstalk in the mouse striatum. Using 
a library of kinase specific small inhibitors, we demonstrated a trend towards downregulated 
Ser40 phosphorylation levels mediated by PKA. However, we show that ERK1/2 is upstream 
of Th Ser31 phosphorylation. In sum, we were able to increase Th Ser40 in microdissected 
mouse striatal slices by inducing cAMP-dependent signaling routes.

Chapter 4 was focused on the effect of catecholamines L-DOPA and dopamine on Th 
phosphorylation. The influence of increased levels of L-DOPA and dopamine was investigated 
on Th Ser40 phosphorylation in dopamine terminals in the mouse striatum. L-DOPA 
downregulates Ser40 phosphorylation, suggesting an inhibitory feedback mechanism on Th 
activity. Possibly, these effects are caused by an autoregulatory feedback inhibition route 
mediated by D2R. Indeed, dopamine application downregulated Ser40 phosphorylation as 
well. Strikingly, the negative effects of L-DOPA on Th phosphorylation could be reversed by 
activating cAMP signaling. Altogether, we propose that an endogenous approach to boost 
dopamine synthesis by targeting upstream signaling pathway routes of Th phosphorylation 
could especially be effective in early PD stages and may even boost the effectiveness of 
L-DOPA therapy.

In chapter 5, we investigated the guanylyl cyclase receptor (GC-C, or GUCY2C gene) as 
a potential upstream target for Th phosphorylation in dopaminergic neurons. Using a set of 
endogenous peptide ligands, together with custom peptide analogs, we demonstrate that 
targeting the GC-C receptor is a successful method for increasing Th Ser40 phosphorylation 
in dopamine neurons. As GC-C is specifically and exclusively expressed in dopaminergic 
midbrain neurons, targeting this receptor in vivo may be considered as a possible therapeutic 
target to increase dopamine production in PD. 

Finally, the main findings from our experimental chapters are summarized and implications 
are discussed in chapter 6.
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