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Alterations of oral microbiota and impact 
on the gut microbiome in type 1 diabetes 
mellitus revealed by integrated multi-omic 
analyses
B. J. Kunath1*†, O. Hickl1†, P. Queirós1, C. Martin‑Gallausiaux1, L. A. Lebrun1, R. Halder1, C. C. Laczny1, 
T. S. B. Schmidt2, M. R. Hayward3, D. Becher4, A. Heintz‑Buschart5, C. de Beaufort1,6, P. Bork2,7,8,9, P. May1 and 
P. Wilmes1,10* 

Abstract 

Background: Alterations to the gut microbiome have been linked to multiple chronic diseases. However, the driv‑
ers of such changes remain largely unknown. The oral cavity acts as a major route of exposure to exogenous factors 
including pathogens, and processes therein may affect the communities in the subsequent compartments of the 
gastrointestinal tract. Here, we perform strain‑resolved, integrated meta‑genomic, transcriptomic, and proteomic 
analyses of paired saliva and stool samples collected from 35 individuals from eight families with multiple cases of 
type 1 diabetes mellitus (T1DM).

Results: We identified distinct oral microbiota mostly reflecting competition between streptococcal species. More 
specifically, we found a decreased abundance of the commensal Streptococcus salivarius in the oral cavity of T1DM 
individuals, which is linked to its apparent competition with the pathobiont Streptococcus mutans. The decrease in S. 
salivarius in the oral cavity was also associated with its decrease in the gut as well as higher abundances in facultative 
anaerobes including Enterobacteria. In addition, we found evidence of gut inflammation in T1DM as reflected in the 
expression profiles of the Enterobacteria as well as in the human gut proteome. Finally, we were able to follow trans‑
mitted strain‑variants from the oral cavity to the gut at the individual omic levels, highlighting not only the transfer, 
but also the activity of the transmitted taxa along the gastrointestinal tract.

Conclusions: Alterations of the oral microbiome in the context of T1DM impact the microbial communities in the 
lower gut, in particular through the reduction of “mouth‑to‑gut” transfer of Streptococcus salivarius. Our results indicate 
that the observed oral‑cavity‑driven gut microbiome changes may contribute towards the inflammatory processes 
involved in T1DM. Through the integration of multi‑omic analyses, we resolve strain‑variant “mouth‑to‑gut” transfer in 
a disease context.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Thousands of distinct microbial taxa colonise the dif-
ferent mucosal and skin habitats of the human body 
[1]. These communities and their functional gene com-
plements directly interface with host physiology, most 
notably the immune system [2, 3]. Altered commu-
nity compositions are thought to play crucial roles in 
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triggering inflammatory processes which are most likely 
drivers of chronic diseases [1, 4, 5], including autoim-
mune diseases [6–8]. The human microbiome is influ-
enced by biotic and abiotic factors specific to each body 
site, which leads to distinct microbial community com-
positions [9]. Although closely related taxa can be pre-
sent at multiple sites, most species exhibit differentiation 
into locally adapted strains [10].

Bacterial species usually consist of an ensemble of 
strains which form coherent clades [11]. Thereby they 
are clearly distinguishable from the closest co-occurring 
related species based on their high genetic similarity 
[12, 13]. The classical metagenomic approach consists of 
assembling short DNA reads into contigs and to group 
them into different metagenome-assembled genomes 
(MAGs). However, the assembly produces a patchwork 
of consensus contigs corresponding to the most abun-
dant genotypes in the sample and thus can lose strain 
variations. Multiple approaches exist to retrieve vari-
ant information which typically involves the mapping of 
the metagenomic reads against the assembled contigs 
or reference genomes. Variant calling is then performed 
to determine the alleles or haplotypes [14]. Despite the 
genetic similarity between strains of a single species, 
the individual strains can exhibit different phenotypes. 
Such cases are notably well documented in the context 
of pathogenicity where many species are known to have 
both pathogenic and commensal strains [11]. Therefore, 
strain-level resolution is highly relevant in the study 
of the human microbiome and its links to health and 
disease.

The gut microbiome has been extensively studied pri-
marily in the context of chronic diseases including car-
diovascular diseases [15], inflammatory bowel disease 
[16], obesity [17], cancers [18], neurodegenerative dis-
eases [19] or autoimmune conditions such as rheumatoid 
arthritis [20] or type 1 [21], and type 2 diabetes [22]. Type 
1 diabetes mellitus (T1DM) is a chronic disease charac-
terised by insulin deficiency due to autoimmune destruc-
tion of insulin-producing β-cells within the pancreatic 
islets. T1DM often starts during the early years of life and 
is one of the most common chronic diseases in childhood 
[23]. Its incidence worldwide has reached 15 per 100,000 
people and has been globally increasing in the last dec-
ades in most developed countries [24–26]. Despite a sig-
nificant genetic influence, the rise in T1DM prevalence in 
individuals who are not genetically predisposed strongly 
suggests an interplay between genetic predisposition and 
environmental factors [27].

Among the possible different environmental fac-
tors, the gut microbiome modulates the function of 
the immune system via direct and indirect interactions 

with innate and adaptive immune cells [3, 28]. Sev-
eral studies have shown alterations of the gut micro-
biome composition between individuals with T1DM 
compared to healthy controls [29–32]. However, con-
trasting findings between studies have not led to a gen-
eralisable microbiome signature for T1DM and it still 
remains unclear how microbiome changes affect the 
gastrointestinal tract and immune functions in T1DM.

The oral cavity and the colon sit at opposite sides of 
the gastrointestinal tract. The mouth is considered a 
gateway to different organs of the body, and therefore 
acts as a potential reservoir for different pathogens 
[33]. Poor dental health and dysfunctional periodontal 
immune-inflammatory reactions caused by bacterial 
pathogens may lead to periodontitis and are associated 
with increased risks of developing systemic inflamma-
tory disorders [34]. The development of inflammation 
in the oral cavity has notably been found to be associ-
ated with systemic inflammation and cardiovascular 
disease [35], insulin resistance [36], and complications 
in type 1 and type 2 diabetes [37]. Despite the limited 
number of shared taxa between the oral cavity and 
the lower gut [38] due to the gastric bactericidal bar-
rier, intestinal motility or bile and pancreatic secretions 
[39], a recent study has shown that the oral commu-
nity type was predictive of the community recovered 
from stool [40]. Additionally, Schmidt, Hayward et  al. 
recently found that a subset of 74 species were fre-
quently transmitted from mouth to gut and formed 
coherent strain populations along the gastrointestinal 
tract [41]. Finally, it is known that the physiology of the 
oral cavity is altered in T1DM patients, notably with 
a decrease of salivary flow rate (dry-mouth symptom) 
and an increased concentration of glucose in the saliva 
and subsequent acidification of the oral cavity [42–44]. 
However, the effect of T1DM on the microbiome of the 
oral cavity, or the effect of the microbiome on T1DM in 
general is still poorly understood, with few, and regu-
larly contradicting findings [45].

Here, we apply an integrated multi-omic approach, 
including matched meta- genomics, transcriptomics 
and proteomics together with available clinical data to 
characterise differences in the oral and gut microbi-
omes in the context of T1DM on 35 individuals from 
eight families with multiple case of T1DM per family. 
We identify distinct oral microbiota suggestive of com-
petition between streptococcal species and an acidi-
fied oral cavity. We link these differences to alterations 
in the gut microbiome and the host’s inflammatory 
response. Finally, we explore the level of mouth-to-
gut transmissions in T1DM, highlight transferred and 
active strains, and identify differences in strain-level 
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transmission profiles in T1DM patients compared to 
healthy controls.

Methods
Ethics
Written informed consent was obtained from all sub-
jects enrolled in the study. This study was approved by 
the Comité d’Ethique de Recherche (CNER; reference no. 
201110/05) and the National Commission for Data Pro-
tection in Luxembourg.

Sample acquisition
The study design was an observational study of eight 
selected families (M01-M06, M08, M11) containing at 
least two members with T1DM and healthy individuals 
in two generations or more, from existing patient cohorts 
from the Centre Hospitalier du Luxembourg. Individual 
patients are annotated as a combination of their family 
and a number for each individual per family (e.g. M05.1). 
Recruited families were seen three times (V1, V2, V3) at 
intervals of between 4 and 8 weeks for data and samples 
collection. On enrolment, study participant pedigrees 
were drawn, medical history was collected and a ‘Food 
Frequency Questionnaire’ was completed. During every 
visit, anthropometric data were recorded as previously 
described [46] (Supplementary Data 1). Donors col-
lected 2–3 ml of saliva at home before dental hygiene and 
breakfast in the early morning. Faecal samples were also 
self-collected and both samples were immediately fro-
zen on dry-ice, transported to the laboratory and stored 
at – 80 °C until further processing. Part of the cohort’s 
raw data (families M01–04) [41, 46] as well as the oral 
and gut metagenomics (families M05–11) [41, 46] were 
previously studied and published. The following method 
sections describe the processing of the newly produced 
dataset.

Biomolecular extractions
For each individual and visit, faecal and saliva sam-
ples were subjected to comprehensive biomolecular 
isolations.

For the faecal samples, 150 mg of each snap-frozen 
sample was reduced to a fine powder and homogenised 
in a liquid nitrogen bath followed by the addition of 1.5 
ml of cold RNAlater and brief vortexing prior to incuba-
tion overnight at − 20 °C. After incubation, the sample 
was re-homogenised by shaking for 2 min at 10 Hz in an 
oscillating Mill MM 400 (Retsch) and subsequently cen-
trifuged at 700×g for 2 min at 4 °C. The supernatant was 
retrieved and the cells were pelleted by centrifugation at 
14,000×g for 5 min. Cold stainless steel milling balls and 
600 μl of RLT buffer (Qiagen) were added to the pellet 
and this was re-suspended via quick vortexing. Cells were 

disrupted by bead beating in an Oscillating Mill MM 400 
(Retsch) for 30 s at 25 Hz and at 4 °C. Finally, the lysate 
was transferred onto a QIAshredder column and centri-
fuged at 14,000×g for 2 min and the eluate retrieved for 
multi-omics extraction. The subsequent biomacromo-
lecular extractions were based on the Qiagen Allprep kit 
(Qiagen) using an automated robotic liquid handling sys-
tem (Freedom Evo, Tecan) as described in Roume et  al. 
and in accordance with the manufacturer’s instructions 
[47].

For the saliva samples, the individual snap-frozen sam-
ple was thawed on ice, and 1 ml was subsampled and 
centrifuged at 18,000×g for 15 min at 4 °C. The super-
natant was discarded and the pellet directly refrozen in 
liquid nitrogen. Cold stainless steel milling balls were 
added to the frozen pellet for homogenisation by cryo-
milling for 2 min at 25 Hz in an oscillating Mill MM 400 
(Retsch). Subsequently, 300 μl of methanol and 300 μl of 
chloroform were added before a second passage through 
the Oscillating Mill at 20 Hz for 2 min. After centrifuga-
tion at 14,000×g for 5 min, two phases (polar and non-
polar) and a solid interphase were visible. The two phases 
were discarded and the solid interphase kept for multi-
omics extraction. Stainless steel milling balls and 600 μl 
of RLT buffer (Qiagen) were added to the pellet, re-sus-
pended via quick vortexing and cells were disrupted by 
bead beating in an Oscillating Mill MM 400 (Retsch) for 
30 s at 25 Hz at 4 °C. The lysate was transferred onto a 
QIAshredder column and centrifuged at 14,000×g for 2 
min. The subsequent steps were performed as described 
for the faecal samples.

DNA sequencing
After extraction, the retrieved DNA was depleted of 
leftover RNA by RNAse A treatment at 65 °C for 45 
min. After ethanol precipitation, the samples were re-
suspended in 50 μl nuclease-free water. The quality and 
quantity of the retrieved DNA were assessed both before 
and after treatment via gel electrophoresis and Nanodrop 
analysis (ThermoFisher Scientific).

Sequencing libraries for salivary samples were prepared 
using the NEBNext Ultra DNA Library Prep kit (New 
England Biolabs, Ipswich) using a dual barcoding system, 
and sequenced at 150 bp paired-end on Illumina HiSeq 
4000 and Illumina NextSeq 500 machines.

RNA sequencing
The extracted RNA was treated with DNase I at 37 °C for 
30 min and purified using phenol-chloroform. From the 
aqueous phase, RNA was precipitated with isopropanol 
and re-suspended in 50 μl nuclease free water.

RNA integrity and quantity were assessed before and 
after treatment using the RNA LabChip GX II (Perkin 
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Elmer). Subsequently, 1 μg of RNA sample was rRNA-
depleted using the RiboZero kit (Illumina, MRZB12424). 
Further library preparation of rRNA-depleted samples 
was performed using TruSeq Stranded mRNA library 
preparation kit (Illumina, RS-122-2101) according to the 
manufacturer’s instructions apart from omitting the ini-
tial steps for mRNA pull-down. Prepared libraries were 
checked again using the RNA LabChip GX II (Perkin 
Elmer) and quantified using Qubit (Invitrogen). A 10-nM 
pool of the libraries was sent to the EMBL genomics plat-
form for sequencing on a Illumina NextSeq 500 machine.

Protein processing and mass spectrometry
The following section describes the procedures for 
samples from families M05, M06, M08, and M11. For a 
description of the protein processing of samples from 
families M01–M04 see Heintz-Buschart et al. [46].

Extracted proteins were processed and digested using 
the S-TrapTM system (ProtiFi) following manufacturer’s 
instructions. Briefly, protein suspensions were solubilised 
with SDS then reduced, alkylated and acidified for com-
plete denaturation.

Approximately 200 μl of samples were transferred onto 
the S-Trap column and centrifuged until all of the sample 
volume was transferred. The columns were then washed 
twice with 180 μl S-Trap protein binding buffer. Protein 
digestion was performed by adding 20 μl of 0.04 μg/
μl trypsin solution to each column, to achieve a trypsin 
to protein ratio of 1:50. Incubation was performed for 
three hours at 47 °C in a Thermomixer. Tryptic peptides 
were eluted with 40 μl 50 mM TEAB, 40 μl 0.1% acetic 
acid, and 35 μl 60% acetonitrile with 0.1% acetic acid at 
4000×g for 1 min per elution. Samples were dried at 45 
°C in a vacuum centrifuge and stored at − 20 °C.

Peptides were fractionated into eight fractions using 
the high pH reversed-phase peptide fractionation kit 
 (PierceTM Thermo Fisher Scientific) according to the 
manufacturer’s instructions and using self-made columns 
as previously described [48]. Digested, dried peptides 
were resuspended in 300 μl of 0.1% trifluoroacetic acid 
and suspensions transferred onto the columns. After cen-
trifugation at 3000×g for 2 min the eluate was retained 
as “flow-through”-fraction. Columns were then washed 
with 300 μl water (ASTM Type I) at 3000×g for 4 min. 
Separation of samples into eight fractions was performed 
using 300 μl of elution solutions with increasing con-
centrations of acetonitrile in 0.1% trifluoroacetic acid at 
3000×g for 4 min. Each elution fraction was collected in 
a separate microcentrifuge tube, dried at 45 °C in a vac-
uum centrifuge and stored at − 20 °C.

Peptide concentrations were measured for fraction 
two of each sample using the Quantitative Fluorometric 

Peptide Assay kit  (PierceTM Thermo Fisher Scientific) 
according to the manufacturer’s instructions.

Of each of the samples, for each fraction, the volume 
for 170 ng of peptides were loaded onto in-house built 
columns (100 μm × 20 cm), filled with 3 μm ReproSil-
Pur material and separated using a non-linear 100 min 
gradient from 1 to 99% buffer B (99.9% acetonitrile, 0.1% 
acetic acid in water (ASTM Type I) at a flow rate of 300 
nl/min operated on an EASY-nLC 1200. Measurements 
were performed on an Orbitrap Elite mass spectrometer 
performing one full MS scan in a range from 300 to 1700 
m/z followed by a data-dependent MS/MS scan of the 20 
most intense ions, a dynamic exclusion repeat count of 1, 
and repeat exclusion duration of 30 s.

Metagenomic and metatranscriptomic data analysis
For each individual time point, metagenomic (MG) and 
metatranscriptomic (MT) data were processed and co-
assembled using the Integrated Meta-omic Pipeline 
(IMP) [49] which includes steps for the trimming and 
quality filtering of the reads, the filtering of rRNA from 
the MT data, and the removal of human reads after map-
ping against the human genome (hg38). Pre-processed 
DNA and RNA reads were co-assembled using the IMP-
based iterative co-assembly using MEGAHIT 1.0.3 [50]. 
After co-assembly, prediction and annotation of open-
reading frames (ORFs) were performed using IMP and 
followed by binning and then taxonomic annotation at 
both the contig and bin level. MG and MT read counts 
for the predicted genes obtained using featureCounts 
[51] were linked to the different annotation sources 
(KEGG [52], Pfam [53], Resfams [54], dbCAN [55], Cas 
[56], and DEG [57], as well as to taxonomy (mOTUs 2.5.1 
[58] and Kraken2 using the maxikraken2_1903_140GB 
database [59]). Kraken2 annotations were used to gener-
ate read count matrices for each taxonomic rank (phy-
lum, class, order, family, genus, and species) by summing 
up reads at the respective levels.

Identification of variants
IMP produced the mapping of the processed DNA and 
RNA reads against the final co-assembled contigs with 
the Burrows-Wheeler Aligner tool (BWA 0.7.17) [60] 
using the BWA-MEM algorithm with default parameters. 
Additionally for each individual, the oral DNA reads 
from all available visits were mapped against the gut 
contigs produced from all available visits with the same 
parameters.

All alignment files per sample were used to call vari-
ants using bcftools 1.9 [61, 62]. Bcftools mpileup was run 
on the gut contigs as reference FASTA file with default 
parameters except for the --max-depth being set to 1000 
to increase variant calling certainty. Called variants were 
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filtered based on their quality and read depth with mini-
mum values set to 20 and 10, respectively and indels 
were excluded. Subsequently, in order to reinforce confi-
dence in the variant calling, variants were kept for down-
stream analysis, only if they fitted the following criteria: 
(i) positive allelic depths on both the forward and reverse 
strands for the corresponding gut and oral DNA reads, 
and (ii) presence of an alternative allele (genotype = 1 
in the vcf file) at the oral DNA reads and the gut RNA 
read levels. These criteria ensured that the variants were 
resolved in both the gut and oral samples at both the 
DNA and RNA levels.

Because we have different assemblies, we obtained 
different mappings and different variants. In order to 
perform a comparison between samples, the reads con-
taining the variants were extracted from the mapping 
files and taxonomically annotated using Kraken2. For 
metaproteomics, missense variants (variant that leads to 
a different amino acid) were identified using an in-house 
script [46] and the generated ORFs containing variants 
were added to the metaproteomic database (see below).

Metaproteomic data analysis
As the mass spectrometry analysis of the protein fraction 
was performed at different facilities for families M01-04 
and families M05, M06, M08, and M11, certain parts of 
the preprocessing workflow and analyses had to be tai-
lored to the data, as mentioned below.

Raw files were converted to mzML format using Ther-
moRawFileParser [63] and to ms2 format using Prote-
oWizard’s msconvert [64]. The files for families M01–04 
were filtered for the top 300 most intense spectra, the 
files for the other families for the top 150 most intense 
spectra to optimise protein identifications.

For each sample, microbial protein sequence databases 
were constructed from the Prokka [65] predicted protein 
sequences of the IMP co-assemblies and supplemented 
with variant protein sequences (missense variants) iden-
tified in both the oral cavity and the gut, during the vari-
ant calling step. This was done in order to consider only 
the variant sequences originating from the oral cavity 
that could also be found in the gut. If no database was 
available for a single sample, all databases available from 
the individual were concatenated. If an individual had 
no database, all databases from the individual’s family 
were concatenated. In addition, the human RefSeq pro-
tein sequences (release 92), a collection of plant storage 
proteins that might be present due to food intake as well 
as the cRAP contaminant database (release 04/03/2019) 
were added. The databases were then filtered according 
to size (60–40,000 residues) to eliminate noise from very 
large or small proteins that can be erroneously produced 

during the ORF prediction step. Duplicate sequences 
were removed by sequence using SeqKit [66].

Concatenated target-decoy databases were built using 
Sipros Ensembles sipros_prepare_protein_database.py. 
Using Sipros Ensemble [67], each sample was searched 
against the prepared database for that sample. Identifica-
tions were filtered to a protein FDR of 1%.

After the search, human and microbial protein identifi-
cations were treated separately. Human proteins/protein 
groups that ended up having identical protein identifiers 
after processing the database identifiers in the output 
were collapsed and their spectral counts summed up. The 
same was done for the microbial proteins but gene iden-
tifiers were replaced by the corresponding annotation 
identifiers from the respective source (e.g. KEGG, Pfam. 
(see above)).

Diversity analysis
Raw read counts per taxon for each sample were trans-
formed from absolute counts to relative abundances by 
dividing each value by samples total taxon read counts. 
The richness as a total number of detected species after 
filtering was recorded as well as alpha diversity using 
the Simpson index [68]. Beta diversity was analysed 
using Bray-Curtis as a distance measure with hierar-
chical clustering, distance-based redundancy analy-
sis (dbRDA), and nonmetric multi-dimensional scaling 
(NMDS). Significance tests between groups were carried 
out using the Mann–Whitney–Wilcoxon test (MWW) 
or analysis of variance (ANOVA, dbRDA formula: 
species~condition+family). Analyses were performed in 
R using the picante [69] and vegan [70] packages.

Statistical analyses
An initial screening was performed based on MG and 
MT sequencing and assembly statistics, principal com-
ponent analysis and hierarchical clustering on gene abun-
dances to highlight potential outliers. Samples whose 
sequencing and assembly statistics consistently appeared 
outside ± 1.5× the interquartile range and clustered sub-
stantially differently compared to other samples from the 
same individual with hierarchical clustering were consid-
ered as outliers and removed from the dataset. Similarly, 
filtering was performed for the MP data with MS raw 
data quality and protein identification rate. After qual-
ity control, several individuals were removed because of 
their high variability due to either a very young age (age 
under 4 years old for M08–04 and M11–03) or a comor-
bidity that was not present in the rest of the dataset 
(T2DM for M11–05 and M11–06).

After taxonomic and functional analysis, gene/taxa 
read count and protein spectral count matrices were gen-
erated for differential abundance and expression analysis 
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using the DESeq2 R package [71]. As the sampling vis-
its for each individual are not independent, the median 
value for each gene/protein of the available visits for 
each individual was computed to obtain a matrix with 
one representative value per gene/protein per individual. 
Additionally, genes in read count matrices were removed 
if they did not have at least 20 reads in 25% of all the indi-
viduals, ensuring sufficient representation of the gene in 
the sample set for downstream statistical analyses. Pro-
teins in the spectral count matrices were removed if they 
did not have at least 10 spectra in 25% of all the individu-
als. Finally, family membership was set as confounder for 
the DESeq2 the differential analyses.

Correlation analyses were performed on the same fil-
tered matrices and combined depending on what cor-
relations were tested. Spearman’s rank correlation 
coefficients were calculated with two-sided significance 
tests corrected for multiple testing using the Benjamini-
Hochberg method. For the  correlations between tran-
scripts and differentially active taxa in the oral cavity a 
significance threshold of 0.001 and a correlation thresh-
old of 0.7  were applied and the analysis was performed 
with the  rcorr function of the Hmisc R package (https:// 
github. com/ harre lfe/ Hmisc). All other correlation analy-
ses were performed with a significance threshold of 0.05 
using the rstatix R package (https:// github. com/ kassa 
mbara/ rstat ix).

Results and discussions
Study description
In this study, we performed a multi-omic oral and gut 
microbiome study of eight families with at least two 
T1DM cases per family (Fig. 1A). This expanded on pre-
vious studies focusing on a subset of the data [41, 46]. 
The present work additionally includes metagenomic 
(MG) and metatranscriptomic (MT) analyses of the oral 
cavity for all participants. In total, we analysed 84 stool 
and 76 saliva samples from 35 individuals coming from 
multiple visits. We generated MG data for 84 stool and 
74 saliva, MT data for 64 stool and 71 saliva, and MP data 
for 71 stool sample (Table  1). Of the 35 individuals, 17 
were T1DM patients and 18 were healthy family mem-
bers (Fig.  1A). In total, 653.4 Gbp of DNA sequencing 
data, 870.6 Gbps RNA sequencing data, and 13,833,325 
fragment ion spectra were acquired.

Over all samples, the DNA and RNA sequencing data 
per sample amounted to on average 4.2 ± 0.9 Gbp for 
MG and 6.3 ± 1.6 Gbp for MT. While the gut data con-
sisted of 4.2 ± 0.8 Gbp of MG and 5.6 ± 1.1 Gbp MT 
sequencing data, the oral data represented 4.2 ± 0.9 Gbp 
of MG and 7.0 ± 1.6 Gbp MT sequencing data. For the 
stool samples, on average 95,000 ± 59,000 MS2 scans 
were performed and 4500 ± 3400 proteins identified. For 

samples from families 01–04 on average 63,000 ± 4700 
fragment ion scans were obtained. The database searches 
resulted in 1500 ± 300 proteins on average. A mean of 
203,000 ± 11,800 fragment ion scans were obtained 
for samples from families 05, 06, 08, and 11 and 8000 
± 1600 proteins could be identified. For detailed sta-
tistics see Supplementary Table  1. In the present study, 
we combined information from three omes in order to 
identify and follow strain-variants across the two body 
sites. To be able to do so, the overlap among the different 
omes had to be maximised to preserve all their sample 
specificity. Thus, the complete set of contigs from sam-
ple-specific assemblies were used rather than metagen-
ome-assembled genomes that would have only covered a 
subset of all the multi-omic data (Fig. 1B).

Overall microbial community structure does not differ 
significantly between T1DM and healthy controls
We compared the community structures of both body 
sites between T1DM patients and controls using the MG 
data. Overall, the number of total species detected in the 
gut varied more in healthy individuals, but no significant 
differences in richness (MWW: p val 0.72, Supplemen-
tary Fig.  1A) nor in Simpson’s index of diversity were 
observed (MWW: p val 0.53, Supplementary Fig.  1B). 
Beta diversity differed significantly according to fam-
ily membership but not between T1DM patients and 
controls (ANOVA on dbRDA; p vals 0.001 (family), 0.11 
(condition); R2 0.49; Supplementary Fig. 1C).

The oral microbiota did not differ significantly in spe-
cies richness (MWW: p val 0.48, Supplementary Fig. 1A) 
nor in their Simpson’s Index of Diversity (MWW: p val 
0.90, Supplementary Fig. 1B). The beta diversity, as in the 
gut, showed no significant difference for T1DM but for 
family membership (ANOVA on dbRDA, p vals 0.5 (con-
dition), 0.003 (family); R2 0.37; Supplementary Fig.  1C). 
Thereby, for both body sites, no evidence was found 
that suggested a significant effect of T1DM on the over-
all microbiota community diversity. As shown before, 
observable differences in oral community composition 
may instead be related to family membership [46].

The acidification of the oral cavity in T1DM impacts 
specific taxa and destabilises the equilibrium 
between Streptococcus species
Streptococcus species are the primary colonisers of 
the oral cavity and are key players in oral homeostasis 
and disease [72]. In healthy subjects, there is a balance 
between the abundance of opportunistic pathogens (e.g. 
S. mutans or S. pneumoniae) and non-pathogenic com-
mensal species (e.g. S. salivarius, S. parasanguinis, or 
S. mitis) which compete with each other via different 

https://github.com/harrelfe/Hmisc
https://github.com/harrelfe/Hmisc
https://github.com/kassambara/rstatix
https://github.com/kassambara/rstatix
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mechanisms such as acid or base production, or secre-
tion of bacteriocins [72–75].

In our study, the abundance of several members of the 
genus Streptococcus varied in the oral cavity of T1DM 
patients compared to controls. In particular at the MG 
level, we observed high variability among Streptococcus 
species (Fig. 2). Such variability is in agreement with pre-
vious findings whereby the numbers of different Strepto-
coccus species were found to be increased or decreased 

in T1DM depending on the study [76, 77]. For example, a 
16S rRNA gene-based study of both body sites observed 
an increase in the abundance of the genus Streptococcus 
in the mouth but a decrease in the gut of T1DM patients 
[45].

We observed an increased abundance of the acid-
tolerant but non-pathogenic Streptococcus parasan-
guinis and closely related Streptococcus HMSC073D05 
 (log2 fold changes 3.5 and 3.4, respectively; adj. p val < 
0.05). In contrast, the abundance of the commensal and 

Fig. 1 Description of the cohort and overview of the study workflow. The upper panel (A) shows the different individuals with family membership 
as well as disease status in the cohort. The lower panel (B) describes the integrated multi‑omics analysis workflow to process, integrate and analyse 
metagenomic (MG), metatranscriptomic (MT), and metaproteomic (MP) data from saliva and stool samples
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acid-intolerant Streptococcus salivarius was found to 
be decreased in T1DM  (log2 fold change − 3.5; adj. p 
val < 0.05) [78]. Additionally, we observed a decreased 
abundance of Porphyromonas gingivalis in the cavity of 
T1DM patients. P. gingivalis is usually associated with 
a dysbiotic state but is also known to be unable to grow 
in acidic conditions [79]. Taken together, these results 
indicate a microbial profile corresponding to an acidi-
fied cavity in the case of T1DM patients [42–44, 80].

Further evidence was provided by the metatranscrip-
tomic data, which showed a significantly increased activ-
ity of the pathogenic Streptococcus mutans [81]  (log2 fold 
change 11.3; adj. p val < 0.05), while other Streptococci, 
notably S. salivarius/S. sp. CCH8-H5  (log2 fold change − 
13.3 at adj. p val < 0.05) were less active (Fig. 2). S. mutans 
is a common pathogen of the oral cavity associated with 
periodontal diseases and known for its acid-tolerance 
and acidogenicity, which leads to further microbial acidi-
fication of the oral cavity in T1D patients [82, 83].

In order to better understand the underlying pat-
terns in the oral microbiomes, we looked at correlations 
of the expressed genes with the taxa that were found to 
be differentially active. We observed significant positive 

correlations (rho > 0.7 at p value < 0.001) between S. 
mutans and two specific expressed transcripts related 
to bacterial competition among closely related species, 
namely bacteriocin IIc and pre-toxin TG, which are the 
constituent domains of uberolysin (Fig. 2—network anal-
ysis and Supplementary Fig.  2). This peptidic toxin is a 
circular bacteriocin characterised in the genus Strepto-
coccus and has a broad spectrum of inhibitory activity, 
which includes most streptococci with the notable excep-
tion of S. rattus and S. mutans [84, 85]. The correspond-
ing gene expression was not found to be linked with a 
particular species. However, the fact that S. mutans is 
resistant to the toxin and the observation that S. mutans 
is strongly correlated with both transcripts for this toxin, 
supports our hypothesis that S. mutans is responsible for 
the expression of the bacteriocin. The acidified oral cav-
ity of T1DM patients, originally due to the host patho-
physiology [42–44], according to our data, leads to the 
decreased abundance of acid-intolerant bacteria and 
favours the growth of acid-tolerant pathogenic S. mutans, 
which then further acidifies the environment and out-
competes the commensal S. salivarius by expressing a 
target-specific bacteriocin.

Fig. 2 Taxon‑resolved differential abundance and gene expression in the oral microbiome in T1DM. The differences in abundance (triangles) and 
expression (circle) in T1DM versus healthy individuals using metagenomic and metatranscriptomic data, respectively, are shown on the volcano 
plot. A minimum  log2 fold change of 5 (dashed vertical lines) and an adjusted p value of 0.01 (dashed horizontal line) were required (red dots). Taxa 
that satisfy the fold‑change threshold but not the adjusted p value threshold are displayed in green. A subset of Supplementary Fig. 2 is shown in 
the insert in the upper‑right and highlights the correlation between S. mutans activity and the expression of a target‑specific bacteriocin
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Streptococcus salivarius’ abundance decreases in the gut 
favouring an inflamed environment and an enterobacterial 
bloom
The differential abundance analysis of the gut-derived 
multi-omic data showed few differences between con-
ditions. The lower abundance of S. salivarius in the gut 
follows the trend we observed in the oral cavity (Sup-
plementary Table 2). S. salivarius colonises the intestine 
of adults and contributes to gut homeostasis by anti-
inflammatory effects as well as by preventing the bloom 
of pathogens [86–88]. Previous studies have shown that 
a S. salivarius strain isolated from the oral cavity was 
able to prevent inflammatory responses both in vitro and 
in vivo by significantly reducing the activation of NF-κB 
and IL-8 secretion in intestinal epithelial and immune 
cell lines [86, 89, 90]. Therefore, a decrease of S. sali-
varius abundance may culminate in a more inflamed gut 
environment.

We also observed an increased abundance in the 
Escherichia coli (Enterobacteria) in the gut (Supple-
mentary Table  2). Enterobacteria are among the most 
commonly overgrowing potential pathobionts whose 
expansion is associated with many diseases and, in par-
ticular, inflammation [91].

By investigating gene expression in the gut, we found 
multiple differentially expressed genes in T1DM in com-
parison to healthy controls (Fig. 3). Strikingly, a majority 
of the overexpressed genes are associated with Enterobac-
teria indicating a strong activity of this group in T1DM 
patients. They are usually found in low abundance in the 
gut in close proximity to the mucosal epithelium due to 
their facultative anaerobic metabolism [92]. Enterobacte-
ria are also well known to have their growth favoured in 
many conditions involving inflammation [93]. The iden-
tified overexpressed genes contribute to bacterial viru-
lence, oxidative stress response, cell motility and biofilm 
formation, and general replication and growth. Notably, 
an upregulation of a catalase-peroxidase was identified, 
an enzyme that detoxifies reactive oxygen intermedi-
ates such as  H2O2 and, thus, is involved in protection 
against oxidative stress produced by the host. Enzymes 
associated with biofilm formation (YliH) were also over-
expressed. Finally, OmpA-like transmembrane domain 
was identified as well the protein HokC/D, which corre-
sponds to the E. coli toxin-antitoxin system that ensures 
the transmission of the associated plasmid.

There are multiple possible mechanisms of inflamma-
tion-driven blooms of Enterobacteria in the gut. One 
of them relies on the inflammatory host response that 

Fig. 3 Differential gene expression analysis within the gut in T1DM. Difference in expression using metatranscriptomic data is shown on the 
volcano plot. A minimum  log2 fold change of 2 (dashed vertical lines) and adjusted p value of 0.05 (dashed horizontal line) were required (red dot). 
Functions that satisfy only the fold change or the adjusted p value threshold are displayed in green and blue, respectively. Diamonds and circles 
respectively indicate complementary annotations from both the Pfam and KEGG databases. Genes associated with Enterobacteria are marked in 
pink
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produces a potent antimicrobial agent (peroxynitrite) 
which is quickly converted to nitrate and can then be 
used for bacterial growth through nitrate respiration [93]. 
Since the genes encoding nitrate reductase in the gut are 
mostly encoded by Enterobacteria, this nitrate-rich envi-
ronment provides a growth advantage for Enterobacteria 
such as E. coli. In addition to the genes involved in oxida-
tive stress, we also found the molybdopterin oxidoreduc-
tase 4Fe-4S domain to be overexpressed in T1DM (Fig. 3 
and Supplementary Table  3). This domain is found in a 
number of reductase/dehydrogenase families and notably 
the respiratory nitrate reductase in E. coli which further 
supports our hypothesis of inflamed gut in the context of 
T1DM. Increased abundance of Enterobacteria in T1DM 
has been partially observed before but the signal was not 
necessarily clear [94] or was associated with confounding 
factors like antibiotic-induced acceleration of T1DM [95] 
and no functional evidence were found.

Additionally, we looked at the effect of T1DM on the 
abundance of human proteins in the gut. We hypoth-
esised that inflammation of the gut would lead to higher 
abundances of proteins involved in the host immune 

response. Interestingly, we mostly found evidence of exo-
crine pancreatic insufficiency with several types of pro-
teases, such as pancreatic carboxypeptidases, elastases or 
trypsin-related enzymes, being less abundant in T1DM 
(Fig. 4 and Supplementary Table 4) which can be associ-
ated with T1DM [96]. One protein involved in the host 
immune response, the polymeric immunoglobulin recep-
tor (pIgR), was found at elevated levels in T1DM  (log2 
fold change 0.42 at p val < 0.05) (Fig. 4 and Supplemen-
tary Table 4). pIgR is a transmembrane protein expressed 
by epithelial cells and responsible for the transcytosis of 
the secreted polymeric IgA produced in the mucosa by 
plasma cells to the gut lumen [97, 98]. Binding of poly-
meric IgA to the microbial surface protects the intestinal 
mucosa by preventing attachment to the epithelial cells, 
thus inhibiting infection and colonisation. When look-
ing at differentially expressed proteins taking all visits as 
independent samples into account (see “Methods” sec-
tion), we found similar proteins as when using median 
information but also several additional proteins associ-
ated with the host immune response and inflammation to 
be more expressed in T1DM (Supplementary Fig. 3 and 

Fig. 4 Human proteome differences in T1DM. Heatmap displaying the relative abundances of human proteins with the highest significance in a 
differential analysis of T1DM versus healthy individuals (unadjusted p value < 0.05). The samples are ordered by conditions. Healthy individuals and 
T1DM patients are respectively shown in orange and blue boxes
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Supplementary Table 5). While that approach is statically 
less robust (see “Methods” section), it allows to observe 
additional trends in the dataset. Notably, we found 
higher levels of the lipocalin 2 enzyme (LCN2)  (log2 fold 
change 0.37 at p val < 0.05) which is a typical biomarker 
in human inflammatory disease [99] and has been asso-
ciated with metabolic disorders such as obesity and dia-
betes [100–102]. The analysis also confirmed the higher 
expression of the lactotransferrin (LTF)  (log2 fold change 
0.76 at p val < 0.05), which was already found in our pre-
vious study [46]. LTF plays a role in innate immunity and 
insulin function [103, 104] and its antimicrobial activity 
can influence the gastrointestinal microbiota [105].

Multi‑omics integration highlights the transfer 
and the activity of bacteria from the oral cavity to the gut
Since a lower abundance of S. salivarius was found in 
both the oral cavity and the gut, we sought to explore the 
transmission between both extremities of the gastrointes-
tinal tract and assess the levels of transfer in our cohort. 
To do so, we identified and followed genomic variations 
with read support from both the oral cavity and the gut 
(see “Methods”). In contrast to a previous study that 
only looked at the transmission using MG-based strain-
variants [41], we additionally took advantage of the MT 
and/or MP data to identify not only transferred but also 
functionally active strain-variants. Furthermore, while 
MG and MT analyses are based on sequencing, metapro-
teomics provides an independent layer of information 
based on peptides and mass-spectrometry analyses. This 
provides the opportunity to strongly validate identified 

Fig. 5 Identified variants of genera across multiple omes. The figure indicates the distribution of reads for metagenomic (MG) and 
metatranscriptomic (MT) abundance, and spectra for metaproteomic (MP) abundance for each set of variants associated with a taxa. The numbers 
on top of each box indicate the number of identified variants, the number of samples in which variants have been identified and the median 
number of variants per sample. A and B correspond to the MG‑MT supported variants while C and D show the MG‑only supported variants. 
Comparisons of distributions were also performed and are represented by a light orange (healthy controls) and a light blue box (T1DM patients)
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transferred missense variants by identifying the trans-
lated protein with the variant amino acid sequence. Using 
first all genomic variants (synonymous and missense) 
with read support from both the oral cavity and the gut, 
we identified the genera Prevotella and Bacteroides to be 
transferred and active at the MT level in the gut in the 
majority of our cohort (Fig. 5A). The genus Prevotella is 
relatively common and abundant in the oral cavity but 
less prevalent in the gut. Finding it to be transferred and 
active is thus not surprising. In contrast, while the genus 
Bacteroides is strongly abundant in the gut, it is rarely 
identified in the oral cavity [9, 106]. Indeed, in our study, 
the signal observed from Bacteroides mostly came from a 
few particular individuals and was not representative of 
the entire cohort.

Remarkably, we identified several peptides supporting 
strain-variants at the MP level (Fig. 5B), showing that we 
could follow, and thus validate, variants across all three 
omic layers. Whilst the number of variant-supporting 
peptides is relatively low (due notably to the typical 
lower depth of MP or expected lower abundance of vari-
ant peptides), their identification confirms that the taxa 
we find to be transferred from the oral cavity are also 
active in the gut. Strain-variants belonging to the genus 
Bacteroides is not identified anymore at the variant pep-
tide level, which can be explained by the low number of 
samples in which Bacteroides was identified. More sur-
prising is the absence of the Streptococcus genus using 
MT-supported variants but its presence at the MP level. 
This indicates that the representation of strain-variants 
belonging to the genus Streptococcus was too low at the 
MT but not at the MP level to be detected over their 
respective threshold (see “Methods” section and Supple-
mentary Table 1). Additionally, Streptococci are known to 
inhabit the upper part (small intestine) of the gut rather 
than the lower part (colon) [107, 108]. As RNA tran-
scripts are less stable than proteins, it is not surprising 
that only peptides are identifiable from taxa active in the 
upper gut. We thus hypothesised that the applied strict 
MT read abundance threshold might be too stringent to 
identify transferred bacteria active in the upper part of 
the gut and that MP support would be more appropri-
ate. To test this, we used missense variants with only MG 
read support and performed the metaproteomic search 
including the new protein variants. We distinguish vari-
ants supported by MG from the oral cavity and MG and 
MT from the gut (referred to as MG-MT supported vari-
ants) and variants supported only by MG from the oral 
cavity and MG from the gut (referred to as MG-only sup-
ported variants). Both types of variants can be further 
supported at the MP level (Fig. 5B, D).

By applying only the MG support criterion, around 10 
times more variants across 81 samples were found and 

additional genera including Alistipes, Bifidobacterium, 
and Faecalibacterium were identified as transferred. 
With the exception of Faecalibacterium, all those taxa 
are commonly found at both body sites [9]. As hypoth-
esised, strain-variants belonging to the genus Streptococ-
cus were now found at the MG level (Fig.  5C). Adding 
the MP layer notably confirmed the presence and the 
activity of the Streptococcus strain-variants while those 
from the genera Alistipes and Faecalibacterium (initially 
not found by MG-MT variants) are not found (Fig. 5D). 
Metaproteomics thus essentially supports and validates 
the variants detected via the others omes, either due to 
the higher stability of proteins or to metaproteomics’ dif-
ferent and independent technology (e.g. it does not suf-
fer from sequencing errors). Furthermore, as proteins are 
immunogenic, using metaproteomics to detect strain-
variant peptides adds a valuable layer of information as 
proteins from the oral cavity may fuel inflammation in 
the large intestine.

Streptococcus is less transmitted in T1DM in comparison 
to healthy controls
Being able to identify and follow variants across all omic 
layers and both body sites allowed us to assess the level of 
transfer of the different identified taxa. Streptococcus sal-
ivarius was found to be less abundant and less active in 
both the oral cavity and the gut in TIDM. While the dif-
ference is not significant, a similar trend can be observed 
at the transfer level for the Streptococcus genus. Not only 
does Streptococcus seem less transferred at the MG-only 
level (Fig. 5C), this trend seems to be further supported 
by lower amount of peptides, and thus a lower activity, 
associated to Streptococcus at the metaproteomic level 
using both the MG-MT supported variants and the MG-
only supported variants (Fig.  5B, D). This suggests that 
the lower abundance of S. salivarius in the oral cavity and 
in the gut may indeed be connected. However, the lack of 
taxonomic resolution due to the method employed pre-
vents strong conclusions. Further analyses should use a 
common assembly for all samples and be fully resolved at 
the species level to validate our findings.

Transmission levels strongly correlate with taxa 
abundances in the gut but not in the oral cavity
Correlation analyses between the MG and MT levels of 
the transferred bacteria and their abundance in the oral 
cavity and in the gut were performed in order to verify 
if the taxa abundances at both extremities of the gastro-
intestinal tract were associated. Strong positive correla-
tions (rs = 0.6–0.7 at p value < 0.05) were found between 
the abundance (MG and MG_Only) of the transferred 
bacteria and their abundance in the gut, which indicates 
that the levels of transfer indeed influences the final 
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abundance of the taxa in the gut (Fig.  6). The activities 
(MT) were also positively correlated but at lower values 
(rs = 0.4–0.5 at p value < 0.05). Interestingly, no correla-
tions were found between the oral MG abundance of the 
taxa and their level of transfer (Supplementary Fig.  4), 
which is consistent with the correlations found in our 
previous study [41]. This would suggest that the transfer 
rate does not simply depend on the original abundance 
of the taxa in the oral cavity, but rather is driven by other 
parameters. For example, the host physiology of the oral 
cavity (saliva flow-rate, glucose concentration, pH) might 
affect the levels of transmission along the gastrointestinal 
tract as well as the microbial physiology (e.g. low pH and 
bile acids tolerance). We therefore looked at correlations 
between the level of transfer and the available metadata 
but no strong significant correlations were found (Sup-
plementary Fig. 5, Supplementary Data 1).

Conclusions
In this study, we looked at the microbiota of two impor-
tant body sites at both extremes of the gastrointestinal 
tract, the oral cavity and the gut, and identified differ-
ences in composition, function, and transfer of bacterial 
taxa in a case study of familial T1DM.

In the oral cavity of T1DM patients, the abundances 
of different taxa strongly resembled an acidified cav-
ity. Notably, we found a lower abundance and activity of 
the commensal acid-intolerant S. salivarius and a higher 
activity of the acid-tolerant pathogenic S. mutans, which 
additionally correlated with the expression of a bacteri-
ocin, highlighting competition between the two Strepto-
cocci species (Fig. 2).

In the gut, we observed lower abundance of S. sali-
varius and higher abundance of E. coli as well as an 
overall increased expression of genes involved in bacte-
rial virulence and oxidative stress response related to the 
Enterobacteriaceae family (Fig. 3). Besides the increased 
abundance and activity of Enterobacteria, we found fur-
ther evidence of gut inflammation in T1DM through the 

Fig. 6 Correlations between the abundances of transferred taxa in comparison to the abundance in the gut. The figure shows the correlation 
between the transfer and the gut abundances. Abundances of taxa with either MG or MT labels correspond to the abundances of supported 
variants at the metagenomic and metatranscriptomic levels. MGonly is used if variants were supported with MG reads only and not on the MT 
level. Colored values indicate positive (blue) or negative (red) significant correlations (adj. p value < 0.05). Values with white background indicate 
non‑significant correlations
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overexpression of several human proteins involved either 
in the host immune response or inflammation (Fig. 4 and 
Supplementary Fig. 3).

The multi-omic data for both body sites enabled us for 
the first time to trace the variants and taxa across all three 
omic layers and thus to identify specific taxa that were 
both transmitted along the gastrointestinal tract, and 
active in the gut. This strengthened the identification of 
transmitted variants and brought additional evidence on 
actual gut colonisation by oral bacteria. We found multi-
ple genera to be transmitted and we have highlighted the 
importance of using functional omic support to identify 
taxa active in the gut (Fig. 5). We also discussed the limi-
tations inherent to metatranscriptomics and highlighted 
how metaproteomics can be advantageously used to vali-
date identified variants and explore the upper part of the 
gut.

By contextualising the information concerning oral to 
gut transfer in T1DM, we notably found a trend of lower 
levels of transmission of Streptococcus in T1DM patients, 
thereby reinforcing the notion that the lower abundance 
of S. salivarius in the oral cavity and the gut are indeed 
connected and both in relation to T1DM (Fig.  5B, D). 
However, correlations between the levels of transmission 
of taxa and their abundance at both body sites showed 
strong correlations with the gut but not with the oral cav-
ity (Fig. 6 and Supplementary Fig. 4). As the physiology 
of the oral cavity is altered in T1DM patients [42–44], 
we would hypothesise that some of those factors (e.g. 
saliva flow-rate, glucose concentration, pH) might have 
a stronger influence on the transmission rate of oral 
microbes along the gastrointestinal tract than just their 
initial abundances. A follow-up study could combine dif-
ferent metadata measurements of the oral cavity together 
with the newly developed strain-variant methodology 
and assess if any physiological parameter influences the 
abundance of particular variants and their transmission 
rate along the gastrointestinal tract.
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