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ABSTRACT: The majority of liquid chromatography (LC) methods are still developed in
a conventional manner, that is, by analysts who rely on their knowledge and experience to
make method development decisions. In this work, a novel, open-source algorithm was
developed for automated and interpretive method development of LC(−mass
spectrometry) separations (“AutoLC”). A closed-loop workflow was constructed that
interacted directly with the LC system and ran unsupervised in an automated fashion. To
achieve this, several challenges related to peak tracking, retention modeling, the automated
design of candidate gradient profiles, and the simulation of chromatograms were
investigated. The algorithm was tested using two newly designed method development
strategies. The first utilized retention modeling, whereas the second used a Bayesian-
optimization machine learning approach. In both cases, the algorithm could arrive within 4−10 iterations (i.e., sets of method
parameters) at an optimum of the objective function, which included resolution and analysis time as measures of performance.
Retention modeling was found to be more efficient while depending on peak tracking, whereas Bayesian optimization was more
flexible but limited in scalability. We have deliberately designed the algorithm to be modular to facilitate compatibility with previous
and future work (e.g., previously published data handling algorithms).

■ INTRODUCTION
A major component of method development in liquid
chromatography (LC) is the selection of kinetic (e.g., column
length and particle size) and thermodynamic (e.g., gradient
profiles and temperature) parameters. To tackle this problem,
several tools utilizing design-of-experiment workflows and
retention modeling based on experimental data and/or
chemical structure information have been developed and
even commercialized. Notable examples of the latter include
DryLab1 (Molnar Institute), ChromSword2 (Merck KGaA),
and LC & GC Simulator3,4 (ACD/Labs). Meanwhile,
researchers all over the world continued to improve method
development workflows, by further developing retention
models5 and kinetic plots for kinetic parameter selection,6

accounting for injection profiles,7 evaluating alternative
retention mechanisms such as HILIC,8,9 and investigating
the use of neural networks for retention modeling and method
optimization.10

The prospect of simplifying method development is
particularly vital for two-dimensional LC (2D-LC) which still
is challenging to use routinely, requiring a large number of
parameters to be simultaneously optimized relative to 1D-
LC.11,12 Innovations in modulation technology have improved
the compatibility and sensitivity of the technique13,14 but
arguably rendered numerical optimization of all parameters

even more daunting. To support innovation in research and
society, this challenge must be addressed.

Our groups have previously proposed a workflow for the
optimization of gradient parameters in comprehensive 2D-
LC,15 inspired by the work of Dolan and co-workers1 and
Schoenmakers.16 Schoenmakers was inspired by the inter-
pretive design of the work by Laub and Purnell for GC.17 The
term interpretive refers to the capability of the workflow to
improve a method by unsupervised interpretation of chromato-
graphic data (i.e. data from a scouting method). The utility of
this approach is that the workflow can be applied to samples of
unknown composition. This is in stark contrast to most of the
previously listed approaches in which the user is required to
specify chemical structural information or retention times of all
compounds of interest. The latter requires that sample
complexity is limited and a mass spectrometer is available.
This prospect is not feasible for the highly complex mixtures
usually targeted by ultrahigh-performance LC (UHPLC) and
LC × LC methods. Indeed, although our previous workflow
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for developing 2D-LC methods was a step in the right
direction, a fair criticism of that work was that manual
assignment of all peaks was not practically feasible.

Fortunately, the chemometrics community has developed a
plethora of tools that may support method development,
including but not limited to peak detection, background
correction, peak tracking optimization algorithms, and
optimization criteria.18 However, these tools often require a
high level of expertise to be used effectively. To make things
worse, there are very few published studies that critically
compare and numerically evaluate the developed algorithms.18

For example, we found 15 background correction algorithms
developed in the past 10 years, in addition to the plethora of
existing metrics for background correction, yet not a single
study that offered any meaningful comparison of their
performance.19 Nevertheless, these and many other develop-
ments, including the use of artificial intelligence,20 look
promising as tools that could potentially accelerate method
development.

The number of parameters that can be adjusted to fine-tune
LC and mass spectrometry (MS) methods is too high to
routinely implement their optimization during method
development. Thus, many users resort to trial-and-error and
experience-driven selection of method parameters. It would
thus be advantageous to combine the best available theory and
tools from the chromatographic and chemometric commun-
ities into automated closed-loop method development systems.
Such strategies are not new. Indeed, I and co-workers
investigated the use of decision trees for LC optimization for
four pharmaceutical compounds.21 The group of Kell
published their robot chromatographer system for gas
chromatography (GC)−MS in metabolomics22,23 and later
extended it for a one-step optimization for LC−MS.24 Their
solution utilized a PESA-II genetic multiobjective optimization
algorithm operated using a combination of Microsoft Excel and
mouse-click macros. For LC, Susanto et al. also applied a
multiobjective genetic algorithm to find optimal separation
conditions for the three proteins, lysozyme, ribonuclease A,
and cytochrome C in gradient LC.25 More recently, Bradbury
et al. introduced the MUSCLE software26,27 to develop an
LC−MS/MS method for several vitamin D metabolites. While
impressive, the above works focus exclusively on very specific
applications that typically involve a limited number of analytes;
thus, these approaches are difficult to generalize.

To address this challenge, here we present an interpretive
algorithm workflow for automated LC−MS and LC-DAD
method development (“AutoLC”) suitable for complex
samples. Novel scientific algorithms were developed to
facilitate automation including improved LC−MS peak
tracking, exhaustive retention modeling, Bayesian optimization
(BO), and generation of gradient profiles that potentially yield
meaningful improvements. This AutoLC algorithm directly
and iteratively programs the LC with new method parameters
following the analysis of raw experimental data obtained from
previous iterations of the algorithm until convergence of a
specified objective function is reached. To our knowledge, this
is the first time such an interpretive closed-loop system has
been reported for LC. To demonstrate the modularity of the
approach, we investigate a strategy based on exhaustive
retention modeling and an exploratory strategy based on the
machine learning (ML) method called BO. We would like to
stress that the workflow was deliberately designed to be
modular, to be inclusive, and compatible with other tools

published in the literature. Our goal is to publish an open-
source tool that all chromatographers can use to their benefit
with the ability for others to test and exploit their own
algorithms. This tool is the first step of the paradigm shift
toward fully automated method development and its prototype
is provided in the Supporting Information.

■ EXPERIMENTAL SECTION
Instrumentation. Two chromatographic systems were

used for the experiments.
System A. System A was an Agilent Infinity II 2D-LC

system, with a binary pump (G7120), a Jet Weaver V35 mixer
(G7120-68135), an autosampler (G4226A), a column oven
(G7116B), and a Q-TOF mass spectrometer (G6549A, MS).
A Poroshell HPH-C18 (693675-702, 150 × 2.1 mm, dp = 1.9
μm) column was used for all experiments. Control and
computations were conducted using a system featuring an
AMD Ryzen 9 5950X (16 CPU) on an Asus TUF GAMING
X570-PLUS (WI-FI) motherboard. The system featured an
NVIDIA Quadro P620 GPU with 4 × 32GB T-FORCE
XTREEM ARGB DDR4 running at 3200 MHz.
System B. System B was an Agilent Infinity II 2D-LC

system with a binary pump (G7120), a Jet Weaver V35 mixer
(G7120-68135), two 12-pos/13-port bio-inert solvent selec-
tion valves (5067-4159), an autosampler (G7129B), column
oven (G7116B) outfitted with an 8-pos/18-port valve (5067-
4233) for column selection, and a diode-array detector
(G7117B, DAD). The system also employed a TraceDec
contactless conductivity detector (C4D) connected to the
outlet of the mixer to record the actual shape of the gradient.
To allow UHPLC conditions, the original probe connection
was replaced with a fused-silica capillary. An Agilent 1290
Infinity in-line filter was used in front of the Poroshell 120 SB-
C18 (685775-902, 100 × 2.1 mm, dp = 2.7 μm) column used
for all experiments. Instrument control and AutoLC algorithm
computations were all carried out on an AMD Ryzen
Threadripper 3970W (32 CPU, 64 Threads) on an Asus
ROG STRIX TRX40-XE motherboard with an NVIDIA
Quadro RTX 4000 8GB GDDR6 GPU and 8 × 32GB
G.Skill DDR4 Ripjaws-V RAM 3200 MHz running at 2666
MHz.
Chemicals. Milli-Q water (18.2 MΩ cm) was obtained

from a purification system (Arium 611UV, Sartorius,
Germany). Acetonitrile (LC−MS grade) was obtained from
Biosolve (Valkenswaard, The Netherlands). Triethylamine
(≥99.5%) and formic acid (reagent grade, ≥95%) were
obtained from Sigma-Aldrich (Darmstadt, Germany).

Sample A (retention modeling) was prepared by digesting a
monoclonal antibody with trypsin. This is the same sample
described and used in two of our prior studies,28 one of which
found 189 different compounds using MS detection.29 Sample
B (BO) was a solution of 80 degraded dyestuffs provided by
the Dutch Cultural Heritage Agency and was used also in an
earlier study.30 More details on these mixtures and sample
preparation can be found in Supporting Information Section
S1.
Procedures. For system A, a 0.1% formic acid aqueous

solution was used as eluent A and acetonitrile as eluent B. The
flow rate was set to 0.4 mL•min−1. For system B, the mobile
phase was a mixture of 95% aqueous 5 mM triethylamine
solution brought to pH 3.0 using formic acid and 5%
acetonitrile (v/v) (eluent A). The organic modifiers were
acetonitrile and 5% aqueous 5 mM triethylamine solution
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brought to pH 3.0 using formic acid (eluent B). The flow rate
was set to 0.65 mL•min−1.
Software. The core AutoLC algorithms were written in

Python 3.9 using PyCharm 2021.1.2 (JetBrains, Prague, Czech
Republic). The Python environment was set up using
Anaconda 3 (Anaconda Inc., Austin, TX, USA). To interface
with the LC instrument, an algorithm was written in C++ using
Microsoft Visual Studio 2022 (Microsoft, Redmond, WA,
USA) to interface with the OpenLAB CDS Chemstation
Edition (rev. C.01.10 [287]). For retention modeling, the
AutoLC algorithm and signal processing was done in Python
3.9 using PyCharm 2021.1.2 and MATLAB 2021b (Math-
works, Natick, MA, USA), which was used for the peak
detection, tracking, and optimization algorithms, whereas peak
detection was supported by the findpeaks MATLAB
function.31 To monitor progress, the AutoLC algorithm was
programmed to report its status and data continuously in Slack
4.22 (San Francisco, CA, USA) using the Python Slack SDK.

■ RESULTS AND DISCUSSION
In anticipation of the inevitable desire to incorporate
knowledge beyond the scope of this work (e.g., peak detection
strategies published previously, or in the future), the AutoLC

algorithm was designed as a chain of independent operations
with controlled input and output criteria. In this workflow,
which is shown in Figure 1, the LC is used as a subordinate,
controlled by the AutoLC algorithm with method parameters
and a start signal as input and raw data as output. Further
method development iterations (MDI) can be initiated by the
AutoLC algorithm without operator intervention until the
objective criteria are met.

Although the workflow was inspired by our earlier
MOREPEAKS protocol,15,32 several scientific challenges had
to be addressed with respect to peak tracking, retention
modeling, gradient profile optimization, and performance score
functions. These will be explained along with the two different
optimization strategies that were investigated.

Retention modeling is based on first determining the
retention coefficients of analytes through several scouting
runs.33 These coefficients can then be used to construct
retention models that allow the simulation of separations
under a large number of different chromatographic conditions
(i.e., methods). The separation performance can then be
assessed for each simulated method. The method that led to
the best-simulated chromatogram can then be selected as
optimal and�in our case�directly programmed into the LC

Figure 1. Schematic overview of the generic workflow employed by the AutoLC algorithm using retention modeling (top, blue) or BO (bottom,
pink). Optimization through retention modeling with peak tracking.

Figure 2. Example of peak tracking results using system A and sample A during automated optimization of LC−MS separations of an antibody
digest during MDI 1 (A) and MDI 4 (B). See Supporting Information Section S2 for extended peak tables, and tracked chromatograms for other
MDIs. Note that (A) features peak labels as detected and tracked during the first three MDIs, whereas (B) features peak labels after the first retrack
(see main text). Consequently, peak numbers do not match in this example. Dotted purple lines depict the programmed solvent gradient
(graphically uncorrected for dwell volume).
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system by the AutoLC algorithm without input from the
operator. For this workflow, the selection of scouting gradients
(Figure 1, phase I) was based on our earlier work,33 sampling
the modifier fraction (φ)-range with three different gradient
slopes. For retention modeling, no data preprocessing (phase
II) was conducted.

However, the construction of models for all individual
(unknown) analytes requires each to be linked in all measured
chromatograms. For this to be conducted automatically, peak
tracking algorithms (Figure 1, phase III) can use features
related to the peak shape and spectra to search the
chromatogram. For this, we developed a new peak tracking
algorithm that was based on earlier preliminary work.34 In that
work, we solely based the peak detection on the total-intensity
chromatogram. To improve peak detection in the present
work, we added a second peak detection stage which
exclusively uses the m/z data. In brief, the algorithm uses the
average m/z spectrum for the entire chromatogram. Next, the
algorithm would iteratively (i) investigate the most intense m/
z signal on the spectrum, (ii) use the extracted ion current
signal to investigate whether this m/z represented a chromato-
graphic peak (one or multiple singular peaks vs noise across the
chromatogram). In the event that (ii) was true, the algorithm
adds m/z and related retention time to the peak list, and the
signal was removed from the full m/z spectrum. This sequence
would reiterate until 80% of the full area of the original full m/
z spectrum was described or no peaks could be found on the
current m/z. This number (80%) was not optimized. Further
study is required to investigate the validity of this number.

The results for one of the scouting gradients in MDI 1 and
the proposed gradient for MDI 4 are shown in Figure 2A,B,
respectively, with the numbers depicting the analytes found
and tracked across the two chromatograms. The peak tracking
results for all chromatograms, including peak tables and
chromatograms can be found in Supporting Information
Section S2. One point of concern was that the peak tracking
algorithm would exclusively search for analytes found during
the scouting runs. However, as the optimization process
continued, the likelihood of separating new, previously
coeluting compounds increased. Consequently, we developed
so-called retrack subroutines after the fourth and ninth MDI
(i.e., every 5n − 1 MDI), where the algorithm would restart the
peak detection process, without using any knowledge from
previous separations.

As such a retrack considers all LC−MS chromatograms
generated thus far, the computational time needed increases
exponentially. Thus, while ideally a retrack would be executed
after every single MDI, we opted for every 5 MDI to limit the
computational impact. Retracking is only sensible after MDI 4
with data from three scouting gradients and one proposed
optimum to consider. The peak tracking table in Supporting
Information Section S2 features the composite tracking table
after MDI 13. This also explains why more peaks are tracked in
MDI 4 (Figure 2B) compared to those tracked in MDI 1
(Figure 2A).
Retention Modeling. In phase IV, the obtained peak

tables were used to create retention models using equations
derived for multistep gradients.35 For this study, we employed
the so-called log-linear exponential (commonly referred to as,
LSS) model

k k Sln ln 0= + (1)

where k is the retention factor, φ is the mobile phase modifier
fraction, and k0 and S are fitting coefficients. The LSS model
was chosen for this example to minimize the number of scan
measurements needed and reduce computation time, recogniz-
ing that we sacrifice some accuracy in the model in doing so.
For each detected analyte, the algorithm initialized 20
simultaneous fmincon (MATLAB) regressions that each
searched for the minimum of a nonlinear multivariable
function within set constraints to determine the best fits for
k0 and S. Each was allowed to loop for a maximum of 3000
function evaluations using randomized but constrained starting
parameters (see Supporting Information Section S3). For each
analyte, the best retention model (i.e., lowest sum-of-squared
residuals) was then used in phase V for subsequent separation
simulations.
Generation of Meaningful Candidate Gradient

Methods. When deciding what method parameters to use in
a subsequent MDI, one essential aspect was the generation of
candidate gradient methods that would produce meaningful
(i.e., better separation and shorter analysis time) improvements
over standard linear scouting gradients while also providing
flexibility for samples that exhibit multiple peak clusters across
a scouting chromatogram. This flexibility was designed into the
process by using 16-parameter, 5-segment gradient programs
(see Supporting Information Section S4 for a schematic and
parameter overview). The five-segment gradient program was
chosen to give the algorithm the possibility to form complex
gradients providing good separations without making the
required computational time unreasonable. Each segment
started with an isocratic section of length tn at φn, followed
by a gradient section of length tG,n increasing to φn+1. After five
such segments, the gradient would end at φ6. To avoid
situations where one or more analytes would not elute from
the column, a final segment was added that immediately set the
organic modifier to φ7 = 1 and maintain this for a time tfinal.
For φ, the algorithm was constrained to positive gradient
slopes of dφ/dt by enforcing φn ≤ φn+1. As a time constraint,
the analysis was limited to a set tmax, defined as ∑tn + ∑tG,n ≤
tmax. In this study, tmax was limited to 40 min, but this value can
be considered case-specific.

However, the increased number of parameters (i.e., gradient
segments) needed to provide method flexibility to generic
unknown samples also increased the dimensionality of the
optimization problem. This rendered the search for candidate
methods that actually yield a meaningful improvement with
respect to earlier MDIs challenging. Nevertheless, these
sophisticated gradients were necessary to allow the algorithm
to be generally applicable to samples of unknown composition
as is also visually demonstrated by the dotted purple gradient
programs plotted in Figure 2 for a linear and segmented
gradient. To increase the likelihood of finding useful candidate
gradients, a two-stage optimization strategy was investigated.
Including the gradient programs from the previous xMDIs, the
algorithm generated 2000 − x new candidate methods with
very different parameter values (see Supporting Information
Section S4 for further constraints).
Evaluation of Simulated and Experimental Separa-

tions. As a first step of the optimization, each of the 2000
candidate methods was individually optimized using fmincon
as described above. For this optimization, the retention times
for all analytes were predicted using the equations for multistep
gradients as published earlier within the MOREPEAKS
environment in MATLAB,35 and peak widths were computed
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using the gradient peak compression model by Hao et al.36 The
model by Hao et al. required an estimate of the plate number
N, which was estimated for each peak from the scouting MDI
experimental data (i.e., MDI 1−3) by fitting the Hao model to
the peak widths for each analyte. For each MDI, the
optimization was driven by the evaluation of a resolution
score ORS

(lower is better, see Supporting Information Section
S5 for a guiding graphical depiction), which was calculated
using eq 2

O
R

n
1

2( 1)R
S

S
=

(2)

where ∑RS is the adapted sum of all resolution values of all
unique neighboring peak pairs within one chromatogram and n
is the number of peaks detected. Within this sum, each
individual RS value (i.e., between two adjacent peaks) was set
to 2 if the resolution was greater than 2 to penalize
unnecessarily large RS values and n is the number of peaks.

A representative result set for 2000 different optimized
gradient programs calculated from a single MDI is shown in
Figure 3A. As expected, due to the allowance of a large range of
parameter values, most of these candidate gradients did not
yield satisfactory scores. This is reflected in the large number
(∼600) of nonideal scores (i.e., O 1RS

= ) in Figure 3A and
highlights the value of exploring a large number of candidate
gradient profiles.

In the second stage of this gradient optimization, a genetic
algorithm was employed to fine-tune the top 200 candidates
from the original pool of 2000 gradients (Figure 3A, purple
bars). Longer gradients generally give rise to better separation.
However, following optimization, shorter gradients in time
result in more efficient methods. To discourage the algorithm
from producing very long gradients, a time score, Ot, was
incorporated in this stage (lower is better) defined by eq 3

O
t t

tt
n nG,

max
=

+
(3)

A final performance score (Operf, lower is better) was
calculated as a weighted combination of ORS

and Ot. Our
employed weights were 1.00 for wRds

and 0.05 for wt, as shown
in eq 4. These weights were chosen so that the algorithm
would prioritize the resolution before the time score would be
significant.

O w O w OR R t tperf s S
= · + · (4)

Figure 3B displays how the performance score improved as
the pool of the 200 top candidates progressed through roughly
1500 iterations of the genetic algorithm. The blue dots depict
the mean (i.e., Operf ) score for the 200 candidates in each
iteration of the genetic algorithm, and the black solid line
reflects the best value obtained for any of the previous
iterations. In the terminology of genetic algorithms, the
objective criteria (in this case Operf) is referred to as fitness.
From the resulting 200 optimized gradient programs, the best
was selected and used for the next MDI (Figure 3B, arrow).

The optimized gradients resulting from the two-stage
optimization described in the preceding section, as well as
the scouting gradients used to initiate the algorithm, are shown
in Figure 3C. Using the retention models, the algorithm tried
to employ the first gradient segments to optimize the bulk of
the analyte separation observed in the first linear scouting run
(Figure 2A, MDI 1) and consistently employed the second last
gradient segment to close the gap between analyte
distributions. Figure 3D displays the predicted and achieved
∑RS of resolution values found for all MDI. MDI 1 through 3
are predetermined scouting gradients, and MDI 4 is the first
gradient programmed by the algorithm. The first observation
here is that the algorithm immediately proposed a method that
appears to achieve an improvement in optimization within the

Figure 3. (A) Overview of performance assessment for a representative set of 2000 candidate gradients simulated within one MDI in phase V.
Purple bars depict the 200 best (minimum ORS

) candidate gradients, which are further optimized. (B) Mean Operf for the population of 200
candidate gradients as a function of the genetic algorithm iterations (blue dots) and the best value encountered thus far among all iterations (black
line). Arrow depicts the optimal candidate programmed in the next MDI. (C) Optimized gradient used for each experimental MDI (solid lines)
and the scouting gradients (dashed lines). (D) ∑RS (light blue) and predicted value (dark blue) for each experimental MDI. Data obtained using
system A with sample A.
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limits of the sampled optimization space. Indeed, further
iterations at the best yield limited further improvement. This
was expected as the algorithm is designed to leverage the
strength of retention modeling, the ability to describe retention
as a function of method parameters as opposed to purely
exploratory methods such as ML (see below).

The second observation from Figure 3D is that the predicted
value is consistently lower than what was achieved. This was
found to be largely affected by prediction errors in retention
time and peak shape, which significantly improved after the
first five MDI (see Supporting Information Section S6). We
have implemented a minimum peak width during the
prediction of 0.3 min at the base. We did this to ensure a
safety margin (i.e., the algorithm would never overestimate the
separation). We have provided a table with one example of
predicted and experimental widths in Supporting Information
Section S7. In addition, there is a possibility that compounds in
the sample are not being detected or tracked successfully,
leading to an incomplete model. The errors were not found to
significantly affect the ability of the algorithm to conduct the
optimization. With respect to the number and design of
scouting gradients, the optimum number of scouting gradients
is likely compound-dependent, and thus by having a standard
set of initial gradients that sample the complete φ-range, the
workflow remains more general. Our findings here, as well as in
Supporting Information Section S8, do not seem to suggest
that more than three scouting gradients are necessary.

To further investigate the impact of the availability of data
points (i.e., retention times from previous MDI) on the
robustness of the retention modeling, we also investigated the
optimization of a simple mixture with a unique UV−vis-based
peak tracking algorithm.37 Here, the quadratic model for the
dependence of retention on solvent strength was employed,

and we found that for analytes that were difficult to track, up to
10 MDIs were needed to get the retention model to converge.
However, this could also be intrinsic to the use of UV−vis data
for peak tracking, which was not found to be very robust.
Readers interested in further discussion on this aspect of the
work are referred to Supporting Information Sections S8 and
S9.
BO of Chromatographic Separations. An alternative to

the use of retention models to find candidate gradient elution
profiles is to use ML, which is extremely attractive for method
development workflows as it does not rely on retention models
and thus also does not require peak tracking. Most ML tools
require a volume of data that would be considered impractical
in order to be functional in the context of chromatographic
method development. However, the BO approach generally
requires less data to be functional.38 We have earlier
investigated BO for use in 2D-LC and found it potentially
interesting as simulations involving a limited number of
iterations were sufficient.39 To demonstrate the flexibility of
our workflow illustrated in Figure 1, we have also carried out
the workflow using BO.

In this case, the algorithm was restricted to the development
of three-step gradients that always started at a pre-set φinit at
tinit = 0.25 min, and then progressed to φA at tA, to φB at tB, and
ended at a pre-set φfinal at tfinal (see Supporting Information
Section S10 for a graphical depiction of this gradient). This
means that the algorithm was, in fact, optimizing φA, φB, tA,
and tB. All operations of this algorithm were run in a Python
programming environment. The results are shown in Figure 4.

The impressive efficiency of BO becomes immediately
apparent in Figure 4. Panels A and B show the ranges of φA
and φB (Figure 4A), and tA and tB (Figure 4B) explored by the
algorithm in each MDI. After about 8 MDIs, the values

Figure 4. Overview of results using BO. (A,B) Used values for φA and φB (A) and tA and tB (B) as a function of iteration number. (C−E) Observed
score according to the number of connected components (C), reweighted resolution (D), and product of resolution (E) as a function of iteration
number. In (A−E), the dashed line indicates optimal MDI 8. (F−H) Chromatograms of iterations 1 (F), 4 (G), and 8 (H) in dark blue. Dotted
line indicates the gradient program; yellow dots indicate the detected peaks. For panel (F), the raw signal (light blue) and fitted baseline (purple)
are also indicated. Data measured on system B with sample B.
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stabilize, suggesting that the algorithm converges to an
optimum. This is supported by the score plot in Figure 4C,
where the algorithm assesses the number of connected
components39 (Figure 4C). It can be seen that this number
approximates the actual number of detected peaks (Figure
4D). In 1D-LC, the number of connected components
amounts to the sum of the number of (unseparated) peak
clusters (Rs < 1.5) and the number of separated peaks. The
importance of the features of the objective function becomes
apparent in Figure 4E, where the product of resolution (all
obtained resolution values between all adjacent peaks multi-
plied with each other) is used similar to our earlier 2D
optimization work.15 Relative to the first experiment (Figure
4F, MDI 1, 22 connected components, 50 detected peaks), the
optimum according to the product of resolution function
(Figure 4G, MDI 5, 34 connected components, 73 detected
peaks) does not yield the same number of separated species as
the optimum according to the score functions of connected
components and detected peaks (Figure 4H, MDI 8, 40
connected components, 75 detected peaks).

It is important to note that, different from the retention
modeling strategy, there were just four parameters optimized
in this BO study. It is expected that increasing the
dimensionality of this gradient to reach the complexity of the
sophisticated gradient used in combination with the retention
modeling approach would increase the number of MDIs
needed to converge to an optimum. Nevertheless, the present
example demonstrates the potential of BO for method
optimization and we will investigate this further in the future.

■ ROADMAP FOR FUTURE DEVELOPMENT
The algorithm and its implementations described here by no
means represent a final solution; there is plenty of room for
future improvement. Arguably, both implementations (reten-
tion modeling, BO) exhibit attractive characteristics for use in
unsupervised, automated method development. While the
complexities of the samples used for these two cases were
different, the strengths and weaknesses of several operations
for each implementation became apparent. Based on these
observations, we identified key areas that future research
should focus on.

In any method development process, the decision to
continue requires a careful cost-benefit balance. This is also
true for our workflow, where there is an experimental and
computational cost associated with continuing with each
strategy that is mainly expressed through the number of
required iterations to reach an optimum and the length of each
iteration. In the present study, the ML strategy required
approximately 10 MDIs to optimize four parameters, relative
to the 4−5 MDIs required to optimize 16 parameters when
using the retention modeling strategy. However, the perform-
ance of retention modeling strongly depends on the success of
peak tracking, prediction of separations, and fitting an accurate
retention model. This is very different from BO, where there is
no such dependence, yet more MDI are required to map the
relation between chromatographic parameters and the
objective function score. In addition, the quality and
robustness of the objective function are crucial to the
effectiveness of BO. This will be of significant relevance for
the application of this workflow for 2D-LC, where the number
of parameters is doubled, and thus, the search space grows
exponentially due to the interdependence of the first- and
second-dimension parameters.

Finally, the objective function quantifies the goal of method
development and drives the optimization process. Traditional
objective functions quantify the performance of the separation
method using quality descriptors such as peak capacity, or
orthogonality in 2D separations. However, as can be seen in
Figure 4C−E, maximization of such descriptors does not
necessarily lead to a better separation. There is a need for
chromatographic response functions that comprehensively
summarize quality descriptors such as resolution and peak
capacity and also quantify the practical component of an
analytical question.
Signal Processing: Background Correction, Peak

Detection, and Peak Tracking. The performance of an
algorithm is likely to improve when provided with better input
data. For either strategy, this is certainly true; one mistake can
result in a cascade reaction (i.e., background correction
anomalies affecting retention modeling or the optimization
process later on). This already starts with background
correction and peak detection, which is critical for all
optimization strategies. The use of MS simplifies this problem
for 1D separations. Nevertheless, quantitative performance
comparisons of data processing algorithms barely exist, in
particular not for multivariate data,18 and we found that it is
difficult to rely on a single algorithm since these often depend
on signal characteristics. One solution may be the Autoencoder
which was recently developed40 and shown to be rather
robust.19

Peak detection is another focus point, which is important in
phase II of any implementation of the algorithm because it
supplies the number of analyte peaks to separate and also
drives the peak tracking process. The latter is particularly
crucial when using retention modeling in phase IV.
Unsurprisingly, we find that the use of a mass spectrometer
almost appears mandatory, with the UV−vis peak tracking
exclusively useful for mixtures of compounds with distinct
spectra such as the dye mixture used in this work.
Retention Modeling and Gradient Deformation. The

use of retention data from gradient elution experiments rather
than isocratic measurements to construct retention models has
been a point of concern.41 For automated method develop-
ment, we find our results encouraging. Looking forward to
method development for applications that utilize fast
separations (e.g., 2D-LC), we are concerned about gradient
deformation when steep gradients are utilized.35 Nevertheless,
our current data suggests that the deformation of the used
gradients was minimal (see Supporting Information Section
S11). However, when a less advanced LC pump is used in
combination with steep gradients or low flow rates, this
deformation may have an influence on the retention model and
prediction of retention times.

■ CONCLUSIONS AND OUTLOOK
We have developed and demonstrated an interpretive
algorithm that is capable of unsupervised, automated method
development for LC separations. Based on our findings, we
draw the following conclusions:

• Our workflow allows unsupervised method development
and facilitates complete automation from executing the
scouting gradients all the way through obtaining fine-
tuned methods.

• The use of retention modeling appears to quickly (<5
MDIs) yield useful improvements over the initial
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scouting gradients when optimizing a sophisticated
gradient program (16 correlated parameters). This
approach, however, heavily relies on peak detection
and tracking.

• We find BO promising for the optimization of
chromatographic methods. While our assessment in
this study only tasked BO with the optimization of four
parameters, we found that BO indeed offers rapid
improvements (8−10 MDIs) without relying on knowl-
edge from prior experiments (e.g., peak tracking). We
also see the potential for BO in other analytical
optimization tasks as long as an accurate objective
function can be defined.

• We envisage further opportunities for extending
automation to include selectivity screening, 2D-LC,
and kinetic optimization.

We do not feel that the algorithm discussed here represents
a finished product, and we thus have proposed areas to focus
on in subsequent work. While the algorithm technically does
not require information about the sample, the user still must
decide on the stationary phase selectivity and kinetic
parameters (e.g., flow rate). We believe that this is fair because
if one knows the sample type (e.g., peptides), this dictates
column chemistry. Column dimensions and flows are
determined by analysis time and can be estimated using
determined using tools such as kinetic plots.6 To allow the
community to benefit and improve this work, a prototype
version of the algorithm is shared in the Supporting
Information in Section S12.
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