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Abstract
Many analyses of notion of metainferences in the non-transitive logic ST have tackled
the question of whether ST can be identified with classical logic. In this paper, we
argue that the primary analyses are overly restrictive of the notion of metainference.
We offer a more elegant and tractable semantics for the strict-tolerant hierarchy based
on the three-valued function for the LP material conditional. This semantics can be
shown to easily handle the introduction of mixed inferences, i.e., inferences involving
objects belonging to more than one (meta)inferential level and solves several other
limitations of the ST hierarchies introduced by Barrio, Pailos, and Szmuc.

Keywords ST · LP · Non-transitive · Substructural logics · Classical logic ·
Metainferences · Semantics

1 Introduction

Since its introduction in a series of papers by Pablo Cobreros, Paul Egré, David Rip-
ley and Robert van Rooij [6, 7, 16, 17], the strict-tolerant approach to paradox has
been the subject of philosophical discussion sparked by the authors’ suggestion that
ST might not be all that different from classical logic.

On the one hand, two papers by Eduardo Barrio, Lucas Rosenblatt and Diego
Tajer, and Barrio, Federico Pailos and Damian Szmuc, respectively, put forward some
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interesting results: First, Barrio, Rosenblatt and Tajer discuss ST in relation to both
classical logic and LP [14]. They refuse to identify ST with either logic, mainly
because unlike them, ST presents a mismatch between its notions of internal and
external validity. Then, in [3], Barrio, Pailos and Szmuc generalize the idea behind
ST and show that for any level of metaninferential reasoning, there is a non-classical
logic which takes metan−1inferences as its objects, and which behaves classically at
all the lower levels. This leads them to propose a new criterion for the identity of log-
ics, namely that there must be no level of inference at which the behavior of the two
logics does not match. We will, in what follows, refer to this collection of results as
the Buenos Aires plan (for the ST hierarchy).

On the other hand, Bogdan Dicher and Francesco Paoli have recently argued con-
tra the Buenos Aires plan, that ST is indeed LP. Using the notion of a logic as an
abstract consequence relation, they show that the behavior of the consequence rela-
tions involved in e.g. ST and LP is independent of their respective objects, and exactly
the same in both cases. Consequently, they also provide strong grounds to reject the
claim that ST is pretty much a different presentation for classical logic.

In this paper, we will focus on the ideas developed in [3]. We will claim that there
are at least two major shortcomings in the approach to the ST hierarchy presented
in that paper: it makes no room for the inclusion of mixed inferences as objects of
reasoning that can be studied formally, and it seems to suggest that there might not
be a clear limit to the hierarchy. Our proposal will be that these shortcomings can
be remedied by providing a semantics for the hierarchy including each stage. The
semantics for this limit witnesses that there is no level of metainferential reasoning
that cannot be encoded by the conditional of LP. Besides providing a much needed
limit, this also vastly simplifies the semantics for the hierarchy, and allows for the
evaluation of mixed inferences in a rather natural way. We then close off our proposal
by discussing the case of the deep ST-theorist, an individual who upholds the ST
standard at all levels of reasoning. We briefly discuss some issues related to such a
position and lay the groundwork for further work on the subject.

The plan of the paper is as follows. Sections 2 and 3 introduce the background
needed to understand both discussions. In Section 2, we introduce the relevant formal
definitions, as well as a brief overview of the strict-tolerant approach to paradox.
Section 3 provides an abridged version of the results put forward by Barrio and his
collaborators.

Then, Sections 4 and 5 constitute our negative and positive proposals, respectively.
In Section 4, we make a case for the idea that mixed inferences are natural objects of
reasoning that cannot be easily dealt with within the Buenos Aires approach to the ST
hierarchy. We also note that a secondary issue is that the ST hierarchy seems to lack
a clear-cut limit and we briefly describe the expectations one ought to have regarding
such a limit. Section 5 proposes an alternative approach to the ST hierarchy where the
main motivation is to provide a limit to the hierarchy by showing that the interaction
between strict and tolerant assertion is already encoded in the LP conditional.

Before offering some concluding remarks in Section 7, we cover the case of the
deep ST-theorist in Section 6. The deep ST-theorist believes that the strict-tolerant
standard should be the standard of evaluation for all levels of reasoning, including
those involving mixed inferences. This gives rise to some interesting issues, such as
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the deep ST-theorist’s constancy with respect to inferential principles, a constancy
perhaps only conspicuously seen in the case of intuitionistic reasoning; the treatment
of paradox outside the object language, and the issue of whether full classicality can
actually be recovered or not.

2 Strict-Tolerant Logic

In this section, we will make a closer survey of the primary results and intuitions
underlying the strict-tolerant account of logical consequence.

2.1 Formal Definitions

Importantly, one of the goals behind the introduction of ST is the resolution of para-
doxes of self-reference. Hence, the first-order language in which we work includes a
constant term �ϕ� for every formula ϕ and a truth predicate T that takes such constant
terms as its arguments.

For purposes of clarity, we will be agnostic with respect to the particular signature
σ of the language to be defined, assuming only that there exists a set Atσ that includes
atomic formulae of that signature constructed in the usual fashion.

Definition 1 Lbase is a first-order language in a signature with ψ ∈ Atσ and x ∈
Var: ϕ ::= ψ | T (�ϕ�)|∼ϕ|ϕ ∨ ϕ|ϕ ∧ ϕ|ϕ ⊃ ϕ|∃xϕ|∀xϕ

We now define models for such a language, pausing to make two observations.
First concerns the underlying domains. The denotation of a distinguished name �ϕ�
is most naturally construed as the formula ϕ itself; it is thus natural to expect that the
domain on which a model is built includes the language.

Second, models will evaluate complex formulae by the strong Kleene truth tables:

∼ ∧ 1 1
2 0 ∨ 1 1

2 0

1 0 1 1 1
2 0 1 1 1 1

1
2

1
2

1
2

1
2

1
2 0 1

2 1 1
2

1
2

0 1 0 0 0 0 0 1 1
2 0

and the strong Kleene interpretation of the quantifiers, where X is a set of truth
values:

∀(X) = min(X) ∃(X) = max(X)

Definition 2 A Kleene-Kripke model for a language L is a pair 〈D, I 〉 where D is a
domain of elements such that Lbase ⊆ D and I is an interpretation such that:

• for a term t , I (t) ∈ D; for tuples �t = (t0, ..., tn−1), I (�t) = (I (t0), ..., I (tn−1))
• where �ϕ� is a distinguished name for ϕ, I (�ϕ�) = ϕ
• for an n-ary predicate R, I (R) maps n-tuples from Dn to {0, 1

2 , 1}
• for atoms R(t0, ..., tn−1), with R an n-ary predicate, I (R(t0, ..., tn−1)) =

I (R)(I (t0), ..., I (tn−1))
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• sentential connectives and quantifiers are given the strong Kleene interpretation
above

• for a truth predicate T , I (T �ϕ�) = I (ϕ) for all formulae ϕ

As usual, a Kleene-Kripke model induces a valuation v that can be recursively
extended through the language.

Then we define strict-tolerant validity, first introducing some preliminary
definitions:

Definition 3 An ST-counterexample to a sequent [� >− �] is a Kleene-Kripke
valuation v such that v[�] ∩ {0, 1

2 } = ∅ and v[�] ∩ { 1
2 , 1} = ∅.

To give meaning to this, consider the interpretation of the value 1
2 as a “paradoxical”

value. A standard example of such a use would be assigning a Liar sentence 1
2 as an

indicator that the sentence is both true and false.
Given such an interpretation, we can consider the verification of a formula ϕ in

two modes: One may be concerned with establishing that ϕ is true and only true—a
strict verification—corresponding to v assigning ϕ the value 1. But one could take
a more relaxed approach, accepting v as a tolerant verifier in case ϕ is at least true,
although it may yet hold that ∼ϕ is likewise true.

In other words, v is an ST counterexample to a sequent when it strictly veri-
fies every formula in the antecedent but fails to tolerantly verify any member of the
succedent.

If v does not serve as a counterexample to a sequent, we consider it a verifier of
that sequent. To make matters more explicit, we make this precise:

Definition 4 An ST-verifier of a sequent [� >− �] is a Kleene-Kripke valuation v

such that either v[�] ∩ {0, 1
2 } = ∅ or v[�] ∩ { 1

2 , 1} = ∅.

The strict-tolerant intuition of ST is manifested in the corresponding notion of
validity, according to which [� >− �] is valid when any valuation that strictly verifies
each formula in � must tolerantly verify some formula in �.

More precisely:

Definition 5 We say that a sequent [� >− �] is ST-valid, and write this �ST [� >− �]
if for all Kleene-Kripke valuations v, if v[�] = {1}, then v[�] ∩ { 1

2 , 1} = ∅.

The definition of ST-validity clearly can be recapitulated in multiple ways. For
example, we could just as easily have stated that �ST [� >− �] if [� >− �] has no
ST-counterexamples.

2.2 ST and Classical Logic

Classical validity for the T -free fragment of the language is preserved in ST, since
every classical countermodel can be extended into an ST-countermodel and every
ST-countermodel immediately becomes a classical countermodel. Furthermore, the
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preservation of classical validity for the T -free fragment remains unaffected even
when the full language is under consideration. In other words, the collection of clas-
sically valid T -free inferences is included in the collection of ST-valid inferences.1

Example 1 The sequent [ϕ >− ϕ] is ST-valid. For any Kleene-Kripke valua-
tion v, if v(ϕ) = 1, it trivially follows that v(ϕ) ∈ { 1

2 , 1}, so there can be no
ST-counterexample to [ϕ >− ϕ].

Critically, ST is non-transitive in the sense that in general the derivability of
sequents [� >− ϕ] and [ϕ >− �] is insufficient to establish the derivability of
[� >− �], i.e., the rule Cut

[� >− �, ϕ] [ϕ, �′ >− �′]
[�, �′ >− �, �′]

is not admissible.
The case of a formal Liar sentence λ—e.g., for a λ = ∼ T (�λ�)—provides a

further opportunity for an illustration of the properties of ST.

Example 2 The sequents [λ >−] and [>− λ] are ST-valid, although the empty sequent
[>−] is not. The semantics guarantee that for any valuation v, v(λ) = 1

2 , i.e., although
λ has no strict verifiers, it is nevertheless tolerantly verified by every v. These two
facts establish the validity of [λ >− ] and [ >− λ], respectively. However, because
v[∅] = ∅, every v is an ST-counterexample to [ >− ].

The fact that ST is a conservative extension of CL has been received with varied
degrees of optimism. One of ST’s biggest selling points is that it can be used to
develop a theory able to accommodate a fully transparent truth predicate. And since
there is no need to forfeit any classically valid inference, there is also no need to
enhance the resulting theory with “the ‘classical recapture’ that so exercises many
non-classical theorists. If the classical bird is never let out of the cage in the first
place, there is no need to recapture it” [17].

But even if arguments such as Ripley’s merely imply some degree of closeness
between ST and classical logic, the conclusion that they are identical is but a few steps
away. The fact that ST collects every classically valid inference while adding no new
ones into the mix, plus the fact that a well-known criterion for the identity of logics
is that they share the same collection of valid inferences yields the (un)desirable
conclusion that ST is classical logic.

Several groups of logicians have recently launched similar challenges to the asser-
tion that the “classical bird” has not flown. On the one hand, the Cagliari plan [8]
includes an argument to the effect that ST most definitely is not classical logic, it is
indeed (very close to) LP. On the other hand, the Buenos Aires plan was born out of
a more skeptical stance: They refuse to identify ST with either LP or classical logic,
and offer a novel criterion for the identity of logics that gives some traction to their
conclusion. We will reconstruct each of their criticism in turn.

1For a detailed exposition of these results, see [7, pp. 847–853].
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Dicher and Paoli [8] point out that, besides attributing the same collection of valid
inferences to ST and classical logic, another maneuver that Cobreros, Egré, Ripley
and van Rooij rely on to make “things appear reassuringly classical” is choosing a
standard sequent calculus presentation for classical logic without Cut as the proof-
theoretic presentation for ST. Thus, Dicher and Paoli can level a double criticism
to the identification of ST with classical logic: not only does ST present failures of
classically valid inferences, but the sequent calculus system chosen by Cobreros et al
is shown to be “badly incomplete” with respect to the valid metainferences of ST.2

By providing a complete proof-theoretic presentation of ST, Dicher and Paoli are
able to highlight a major difference between ST and classical logic: there is a piece
of vocabulary—to wit, the constant λ—which classical logic deems as having a bad
inferential role while ST judges its role as a good one. Thus, ST cannot be classi-
cal logic, since it accommodates a piece of vocabulary known to non-conservatively
extend classical logic. Furthermore, they recognize that the reason why λ conserva-
tively extends ST but not classical logic is because ST does away with the unrestricted
validity of Cut. In this regard, Barrio and his collaborators consider that the unre-
stricted validity of Cut is an essential component of classical logic. Moreover, their
proposal for a criterion to evaluate the identity of logics consists in taking into
consideration every single metainferential level instead of restricting oneself to the
collection of valid inferences (between formulas). In other words, rather than only
looking at inferences which tell us which formulas follow from others, we should also
be looking at inferences which tell us what inferences follow from other inferences,
and so on.3 At the core of their approach lies the following observation:

For classical logic, there is no difference between validity and external validity.
Every valid argument is externally valid and viceversa. It turns out that for sub-
structural logics such as ST these two notions no longer coincide.[2, pp. 555–
556]

To make sense of this observation, we begin by recovering the notions of internal
and external validity from [1, p. 163] and [13, p. 451]:

Let S be a sequent calculus system over a language L. Then, a sequent [� >− �] is

• a sequent [� >− �] is internally valid iff [� >− �] is a provable sequent of
S. As Mares and Paoli note, this defines a multiset consequence relation for
any calculus that proves all instances of [ϕ >− ϕ] and in which Cut is at least
admissible.

• A sequent [� >− ϕ] is externally valid iff [>− ϕ] is provable once the sequents
[>− ψ1], ..., [>− ψn] for each ψ ∈ � are added to the system as axioms and the
rule Cut is taken as primitive.

We are now prepared to explain the core observation from the Buenos Aires plan.
Since primitiveness implies admissibility, classical logic has Cut as a primitive rule

2The emphasis is theirs.
3The key idea here is that, for any inferential level n, there is an inferential level n + 1 which takes
inferencesn as its premises and conclusions.
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and then takes advantage of its admissibility by allowing us to do without the appli-
cations of Cut in the proof of any classically valid sequent. Thus, as long as we begin
from the assumption that Cut is primitive, as in the Buenos Aires plan, external valid-
ity and internal validity will match. However, if we begin from the admissibility of
Cut and build up from there, we will find that, if we want to validate any sequent
built out from the formulas of an L that contains λ, Cut cannot be primitive in said
system, and so internal validity will not match external validity.

Thus, even if classical logic coincides with ST at the level of validity, they differ
with respect to what they take to be externally valid. With this in mind, the Buenos
Aires plan’s proposal to enrich the traditional criterion to include what is counted as
externally valid by each logic seems quite reasonable. Moreover, a generalization of
their proposal is within reach: If two logics L1 and L2 differ at some metaninferential
level, then L1 = L2. We will not stop to evaluate the merits of this new criterion
for the identity of logics. Rather, we will simply point out that, although both the
Buenos Aires and the Cagliari plan take different roads to reach the conclusion that
ST and classical logic are not identical, both proposals are built upon the same fact:
the non-transitivity of ST.

2.3 The Role of Bounds Consequence

Ripley’s argument against Cut in [17] presupposes a bounds consequence interpre-
tation of sequents. As described by Greg Restall in [15], a sequent [� >− �] is
interpreted as a position or state that may be adopted by an agent.

In what follows, we will use the notion of a state. Given a particular language,...
a state expressed in that language is a pair of sets of statements expressed in that
language... A state might be used to represent the outlook of an agent which we
take to accept each statement in � and reject each statement in �. We might
also use a state to represent the context in some dialogue or discourse at which
each statement � is asserted and each statement in � is denied.[15]

According to this interpretation, the derivability of a sequent corresponds to
proscription against taking the corresponding position, i.e., that the position is out-
of-bounds in the sense that it would violate some norm. Notably, insofar as bounds
consequence places acceptance and rejection on equal footing, it may be thought of
as a bilateralist theory.

The consequent interpretation of Cut is an extensibility condition, i.e., that for any
statement φ, either it is in-bounds to assert φ or it is in-bounds to deny φ. In the case
of e.g. a Liar sentence, it is out-of-bounds both to assert and to deny the statement;
neither is an acceptable position to take.

The necessity of the failure of Cut can be easily seen by observing that—if we
take [� >− �] to mean that the position that asserts everything in � and denies at
least one member of � is out of bounds—when λ is the formula ∼T (�λ�) (that is,
the Liar), we have the following:
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1. Every position [� >− λ] is out of bounds, since denying λ is always out of
bounds. As a result, [� >− λ] is valid. This is of special importance in those cases
in which asserting every member of � is in bounds.

2. Since asserting λ is always out of bounds, there is no way to be in a position
[λ >− �] such that it is in bounds. In particular, seeing that we are already out
of bounds when asserting λ, we can deny every member of � without any major
consequence, even when it is not out of bounds to deny the elements of �. Thus,
for all �, [λ >− �] is valid.

As a consequence of the latter two facts, we can see that unrestricted applications
of Cut would lead us to believe that no position which asserts every member of � but
denies every member of � is ever in-bounds, which would entail the validity of any
sequent [� >− �] whatsoever. Thus, as we already saw above, in order to avoid this
undesirable result, the validity of Cut has to be restricted.

Both groups of logicians remark upon another important fact that follows from
ST’s substructurality: that each of the elements in the collection of ST-invalid metain-
ferences have a counterpart in the collection of LP-invalid inferences. For example,
instances of the metainferences meta Modus Ponens

[>− ϕ] [>− ϕ ⊃ ψ]
[>− ψ]

and meta Explosion
[>− ϕ] [>− ∼ϕ]

[>− ψ]
described in [2] are invalid every time ϕ is set to λ and ψ is set to any formula such
that v(ψ) = 0. This leads Dicher and Paoli to embrace the closeness between ST and
LP, arguing that there is very little room to deny that ST and LP are indeed the same
logic. According to the Buenos Aires plan, one can genuinely resist the claim that ST
can be identified with either classical logic or with LP.4

What is most important about this common ground is that it allows the expression
of the criticism against ST as classical logic within the bounds consequence frame-
work. An important piece in Ripley’s strategy is that Cut need not be an essential
component of the bilateralist framework. He relates this to the eliminativity of Cut in
sequent proof systems for classical logic: we do not need to make any special pro-
visions for Cut, since the set of classically valid arguments is already closed under
it. Likewise, it might be that assertion and denial do not depend on any vital way on
the availability of Cut; rather, it might just be that assertion and denial are transitive
when one restricts oneself to classical vocabulary.

Just as Barrio and his collaborators take Cut to be an essential component of
classical validity, so too has Greg Restall argued for Cut as vital for assertion and
denial in [15]. If Restall were right then, contra Ripley, the logic of assertion and
denial would match classical logic in that it too would be closed under Cut at the
metainferential level.

4The discussion of why ST is not classical logic can be found in [3, p. 114]. Moreover, for the rejection of
the idea that ST is LP, see [3, pp. 116-8].
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As we saw, bounds consequence is crucial because sentences whose assertion and
denial are both out of bounds are supposed to be an expected component of the
framework. But this is not a framework like the one Restall has in mind, in which
out-of-bounds assertion corresponds with in-bounds denial and viceversa. Such a
framework includes the assumptions that (1) assertion corresponds with truth and
denial with untruth, and (2) assertion and denial are mutually exclusive. Given all of
this, Liar sentences would be as non-conservative in this kind of bilateralist context
as they are in plain classical logic, since we would be forced to both assert and deny
λ, breaking our initial assumptions.

Notice that the above paragraph contains no explicit mention of Cut or transitivity
for assertion or denial, and still, we have not been able to accommodate λ without
breaking one of our starting assumptions. Here, as Barrio et al. point out, the parallel
between Cut being non-essential for assertion and denial and the eliminability of
Cut in some proof systems break down. Even if we did not specify anything about
transitivity in a bilateralist framework, it almost appears as if it were already baked
into the framework.

We are now back at the idea (introduced in Section 2.2) that the explicit mention
of Cut can be eliminated when proving classical validities because in some sense the
rule is already there. This is why sentences such as the Liar become non-conservative
extensions of classical logic. In contrast, Cut seems to be merely admissible in ST
for completely different reasons: it seems like we are able to help ourselves to just
enough Cut to coincide with classical logic but then stop. That we are able to do this
is due to the distinction between strict and tolerant assertion and denial, which, as
Ripley rightfully points out, collapse in the presence of Cut. If, as we have stated, Cut
is eliminable because it was already there, then it is unsurprising that classical logic
would be unable to distinguish between strict and tolerant acts.

But how could we be able to decide just how much Cut is enough? Dicher and
Paoli argue that an important role of � and ⊥ is to encode strict assertion and denial,
respectively. Their claim is then that although Ripley is right in construing tolerant
assertion/denial as “silent partners” of their strict counterparts, he fails to notice that
classical logic has no way of distinguishing between both kinds of attitudes. For them,
λ is the mark of tolerant attitudes, which is to say, it is the signal that an application of
Cut is no longer safe. Without this indication, classical logic “would happily cut all
over the place, which, under appropriate circumstances, has disastrous effects” [8].

3 Strict-Tolerant Hierarchies

Regardless of where one stands on the issue of identifying ST with LP, there is an
agreement between both sides of this particular issue regarding the fact that ST has
simply pushed non-classicality up one level, to the level of metainferences. More
importantly, we must recall that the Buenos Aires proposal for a new criterion for the
identity of logics involves considering every inferential level, not just the first two.
This is because they have proven a result to the effect that “it is possible to obtain a
sequence of logics which can be progressively [i.e., linearly] ordered in terms of their
degree of classicality” [3].
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To understand what the components of the hierarchy are, we will begin by recall-
ing that a sequent [� >− �] is an ordered pair (�, �) of finite, possibly empty
subsets of Lbase. SEQ0(Lbase) is the set of all such sequents. Sequents are typi-
cally intended to encode inferences, arguments or some such relation between a set
of formulas which encode premises and a further set which encodes conclusions.
Metainferences are then inferences between sets of inferences and are thus encoded
by metasequents (sequents of sequents).

Formally, metainferences of the first level and onwards can be recursively defined
as follows: SEQn(Lbase) is the set of sequents [� >− �], which in turn are under-
stoood as ordered pairs (�, �) of finite, possibly empty subsets of SEQn−1(Lbase).
Then, the set of metainferences is the set of ordered pairs (�, �) of finite, possibly
empty subsets of SEQ0(Lbase). Rules from a sequent calculus are the paradigmatic
examples of metainferences. Frequently, we wish to distinguish metainferences from
sequents, whence a metainference of level n will often be represented as � ⇒ 	

where � ∪ {	} is a set of metainferences of level n − 1.
Different sources have informally defined metainferences as

• schematic principles about the consequence relation, which have inferences as
instances [cf. Barrio et al., [2], pp. 555-7]

• “[...] syntactic objects of the system under consideration”, [8]
• “[...] closure properties on the set of valid arguments [16], or
• “[...] principles under which a consequence relation might or might not be

closed”. [7].

Although we are partial to construing metainferences as syntactic objects rather
than schemas, we will not go into the details behind this choice. It will suffice to
say that construing inferences as syntactic objects makes it easier to give an uniform
treatment to all levels of the hierarchy.

3.1 The Logic TS

The notion of strict-tolerant consequence has tolerant-strict consequence as its dual,
yielding the logic TS described by French in [11]. As a dual to ST, one can charac-
terize TS by appeal to tolerant-strict counterexamples to a sequent, i.e., valuations v

that tolerantly verify every member of the antecedent but strictly verify no member
of the succedent. Explicitly, this is:

Definition 6 A TS-counterexample to a sequent � >− � is a Kleene-Kripke
valuation v such that v[�] ⊆ { 1

2 , 1} and 1 /∈ v[�].

As before, all Kleene-Kripke valuations that are not TS-counterexamples for a
sequent are considered its TS-verifiers.

Definition 7 A TS-verifier of a sequent � >− � is a Kleene-Kripke valuation v such
that either 0 ∈ v[�] or 1 ∈ v[�].
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Definition 8 We say that a sequent [� >− �] is TS-valid and write this �TS [� >− �]
if [� >− �] has no TS-counterexamples.

A few facts about this: For one, we can notice that there are no valid sequents in
TS. For any signature σ there is a Kleene-Kripke model that maps all atoms—and
hence, all complex formulae—to the value 1

2 , Hence, for all sets of formula � ∪ �,
there is a v such that v[� ∪ �] ⊆ { 1

2 }. Such a v will serve as a TS-counterexample to
the sequent [� >− �]; as � ∪ � was arbitrary, there are no valid sequents.

Although the discussion of TS in [11] is interesting, our interest in TS is primarily
limited to the role it plays in the definition of systems in the hierarchy.

3.2 Constructing Hierarchies

Having complemented the notion of strict-tolerant evaluation with the notion of
tolerant-strict evaluation up to the level of metainferences, one may generalize the
intuitions as shown in e.g., [2] and [3].

The characteristic features of strictness and tolerance with respect to verifiers as
described above can be captured by appeal to the level of permissivity each brings
to verification. A tolerant verifier is more liberal in which formulae it affirms—e.g.,
∼ T (�λ�)—than its more conservative relative. Yet one can be more or less permis-
sive not only to validity of a position, but also to the validity of a metainference,
providing a suitable anchor point on which to focus a generalization.

Crucially, we may observe that ST is more permissive than TS in the sense that
ST verifies the validity of more positions than its cousin. This permissivity shows
that strict-tolerant validity is itself a tolerant notion. Conversely, inasmuch as TS has
no validities, its account of validity is maximally strict, whence it is appropriate to
consider TS validity as a strict notion.

We formulate the technique described in [3] for generating metainferential logics
in the hierarchy:

Definition 9 We take the notions of strictness and tolerance and generalize them to
an infinite hierarchy. Let us take the following definitions:

• Strict1 = TS, and
• Tolerant1 = ST

Then for each n ∈ ω, we define a tier:

• Strictn+1 = Tolerantn/Strictn, and
• Tolerantn+1 = Strictn/Tolerantn

For example, TSST is, per this definition, Strict1/Tolerant1 = Tolerant2.
As a referee has observed, Definition 9 assumes that each stage follows either

a strict-tolerant or tolerant-strict paradigm. But just as truth-functional semantics
for Priest’s LP reveal that it could be considered a tolerant-tolerant logic, one
could evaluate metainferences as either tolerant-tolerant or strict-strict. Thus, the
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uniformity presupposed in the definition rules out many available permutations of
metainferential logics, e.g., the metainferential logic STST.

While the definition is restrictive in this way, the metainferential logics Definition
9 covers enjoy a sort of stability absent in those outside its scope. In each system it
defines, inferences of all stripes—metainferences of all levels—follow a uniform pat-
tern: Either metainferences are guided by a strict-tolerant principle or they are guided
by a tolerant-strict principle. Of all these metainferential logics, the ones interest-
ing to us are those that endorse a thesis that all inferences—metainferences of any
level—are strict-tolerant. As each of these systems is covered by Definition 9, it is
broad enough in its scope for our purposes, at least.

The definitions of [3] can be further recast as follows, starting with TSST and
STTS as bases:

Definition 10 An TSST-countermodel for an inference {[�0 >− �0], ..., [�n >−
�n]} ⇒ [� >− �] is a Kleene-Kripke valuation v such that:

• v is a TS-verifier for every sequent [�i >− �i] for i ≤ n
• v is an ST-counterexample for the sequent [� >− �]

Definition 11 An STTS-countermodel for an inference {[�0 >− �0], ..., [�n >−
�n]} ⇒ [� >− �] is a Kleene-Kripke valuation v such that:

• v is a ST-verifier for every sequent [�i >− �i] for i ≤ n
• v is an TS-counterexample for the sequent [� >− �]

Definition 12 A metainference’s Strict1-counterexamples and verifiers are its TS-
counterexamples and verifiers, respectively (described in Definition 3).

Definition 13 A metainference’s Tolerant1-counterexamples and verifiers are its ST-
counterexamples and verifiers, respectively (described in Definition 6).

These provide the bases for counterexamples and verifiers which may be extended:

Definition 14 We define Strictn and Tolerantn counterexamples and verifiers by
simultaneous induction. Definitions 12 and 13 give the case in which n = 1. For
n > 1, we employ the following:

• A Strictn-counterexample for a metainference {	0, ..., 	n} ⇒ 	 is a Kleene-
Kripke valuation v such that:

• v is a Tolerantn−1-verifier for each 	i

• v is a Strictn−1-counterexample for 	

A Strictn-verifier for a metainference is any valuation v that is not a counterexam-
ple to it.

• A Tolerantn-counterexample for a metainference {	0, ..., 	n} ⇒ S is a Kleene-
Kripke valuation v such that:

• v is a Strictn−1-verifier for each 	i
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• v is a Tolerantn−1-counterexample for 	

A Tolerantn-verifier for a metainference is any valuation v that is not a counterex-
ample to it.

Just as metainferences (evaluated by TSST or STTS) are defined as collections of
inferences imbued with a particular structure—the types of objects evaluated by TS
or ST—the objects evaluated by the inferences at some level in the hierarchy will be
sets of objects at the previous level.

Barrio and his collaborators have indicated in conversations that they view metain-
ferences of any of such metainferential logics to be non-linguistic in nature. In other
words, the Buenos Aires plan resists describing the metainferences considered by
e.g., TSST as formulas. But, certainly, a metainference such as

If [ >− ϕ] and [ >− ϕ ⊃ ψ] then [ >− ψ].
is correlated with readily-identifiable and precise linguistic description (whence
metainferences can be described at least metalinguistically) and is constructed
according to recursive processes. These facts, we feel, provide adequate grounds for
formally describing the class of metainferences of any particular tier as a formal
language. We make this precise by describing an infinite collection of languages.

Definition 15 The languages Li for the following purposes will be defined as
follows:

• L0 = Lbase
• L1 = {[� >− �] | �, � ⊂ L0}
• for i > 1, Li = {{ϕ0, ..., ϕn−1} ⇒ ψ | {ϕ0, ..., ϕn−1, ψ} ⊆ Li−1}

4 The Limitations of the ST Hierarchy

The notion of a metainferential logic is noteworthy for its making explicit that
metainferences, too, are subject to their own canons of reason to which we may apply
formal techniques. Moreover, we believe that, if one accepts the generalized ST the-
sis that inference in general is best understood by a strict-tolerant interpretation, any
member of the ST hierarchy describing the inferential interactions holding between
metainferences of a particular tier correctly captures those interactions.

However, we believe that there exist several glaring defects in the scope of any
of the metainferential logics lying in the hierarchies described by Barrio and his
collaborators—whether they are in the ST hierarchy, the TS hierarchy, or otherwise.
In this section, we will identify several difficult features of the general approach that
are critical obstacles to its application and conceptual soundness. Roughly, these can
be described as:

• The regimented nature of the hierarchy’s operands excludes many obviously
“metainferential” arguments used in practice.

• The nature of its construction hinders the definition of a limit to the hierarchy.
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• As one moves up the hierarchy, the semantics swiftly (almost immediately)
becomes impractical

We will consider these three points in order over the course of the following
subsections.

4.1 Mixed Inferences

As we have noted, the regimentation of the languages treated by any of these hierar-
chies is extremely strict—a metainferential logic of tier n+1 takes as its objects only
inferences of tier n—and the severity of this regimentation entails a commensurately
severe restriction to the logic’s expressivity.

Two consequences are especially important: First, note that the language treated
by a metainferential logic is disjoint with the language of the previous tier, e.g., while
the construction of Ln+1 is defined in terms of Ln, Ln+1 is not its closure. Thus, there
is no common language that purports to describe metainferences in toto. That Lm and
Ln are pairwise disjoint whenever m = n complicates the matter of defining a hier-
archy’s limit. The disjointedness means that a limit cannot be obtained by iterative
applying an operation to the base class and finding a fixed point. The alternative—
that the inferences serving as the limit’s operands are infinitary objects—seems
implausible. This matter, we will argue, can be satisfactorily resolved by a solution
to the second consequence, which we now treat in more detail.

The second consequence, we suggest, is that the sharp limitations to the expressiv-
ity of any one of these logics leads to an equally sharp limitation to its applicability.
Insofar as only metainferences from a single tier n are considered by a logic in
a hierarchy, one cannot straightforwardly represent metainferences of distinct tiers
in the same setting, much less correctly characterize any consequences which may
be inferred from their joint validity. The impoverishment of the individual systems’
expressivity proscribes from consideration an incredibly rich and natural range of
natural inferential practices, namely, inferences that take as premises metainferences
of distinct tiers. We will call such inferences mixed inferences.5

A cursory appraisal of human inferential practices reveals that mixed inferences
are incredibly prevalent. Frequently, as logicians and philosophers, we unabashedly
appeal to both inferential and metainferential principles concurrently. The following,
for example, seems to be a perfectly coherent argument form:

The sentence ϕ is a theorem. Moreover, it holds that whenever ϕ is a theorem,
ψ ⊃ ϕ will, too, be a theorem. Thus, ψ ⊃ ϕ is a theorem.

Obviously, not all will accept the validity of this argument; many relevant logi-
cians will disagree with the second premise. However, even the relevant logician will
recognize the above as an intelligible principle that can be resisted. In other words,
the intelligibility of the assertion is not diminished for its appeal to both inferential
and metainferential principles in tandem.

5Formally, we include inferences whose premises are drawn from the same tier as degenerate cases,
although we will often consider cases to be “authentically” mixed when making a rhetorical point.
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Indeed, in formal practice, we assert the validity of such mixed inferences cease-
lessly. A proof theorist proving e.g. Cut elimination for some sequent calculus, for
example, may appeal to provable sequents, admissible rules, and known patterns gov-
erning which rules are admissible in the same proof. Similarly, if a modal logician
establishes both that a sentence is true in each member of a class of Kripke models
and that rule necessitation—recognizably a metainference—holds for this class, these
facts may be fruitfully applied to infer that other sentences are true in these models.

Let us fix a particular (semi-formal) mixed inference to serve as an illustration.
Intuitively, despite its appeal to multiple tiers, the following is an intelligible (if
informal) argument:

The sequent [ >− ϕ] is valid and the rule

[� >− ϕ, �]
[� >− ϕ ∨ ϕ, �]

is correct. Therefore the sequent [ >− ϕ ∨ ϕ] is valid.

To ensure that we accurately consider such arguments we recall our earlier defini-
tion of formal languages for metainferences and provide a formal language Lmix of
mixed inferences.

Definition 16 The language Lmix of mixed inferences is the set

L1 ∪ {{	0, ..., 	n−1} >−  | {	0, ..., 	n−1, } ⊆
⋃

i∈ω

Li}

Our foregoing example of a mixed inference may serve to illustrate Lmix by
showing its correlate in the formal language. This metainference is captured by the
formula:

{[ >− ϕ], {[� >− ϕ, �]} ⇒ [� >− ϕ ∨ ψ, �]} ⇒ [>− ϕ ∨ ψ]
One might object that appealing to examples of practical uses of mixed inferences

at relatively low levels doesn’t establish a need for mixed inferences at arbitrarily
high levels. Surely, there is some relatively low level of the hierarchy such that no
human reasoner has yet made use of a mixed inference involving this tier. But a theory
of inference clearly should not limit itself only to inferences that have been expressed
historically but should be expressive enough to capture all inferences that can be
expressed. Classical logic still governs inferences between formulae with millions of
atoms even if no human will ever make such an expression; this case is no different.

As an analogy, consider that for any formal programming language there is a rel-
atively small number for which the syntactic complexity of any expression in use
does not exceed that threshold. But this does not mean that the formal definition of
the language can stop at this threshold, for a need may arise for an expression of a
slightly greater complexity than this. Likewise, it is not that in practice we presently
use mixed inferences of arbitrarily high tiers that demands that Lmix includes mixed
inferences across any tiers; rather, the demand follows from the fact that we can
employ them—and can expect to find them intelligible—if the need should arise.
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We now consider a potential rejoinder to our charge of inadequate expressivity,
namely, that on translation, any inference or metainference of Lm can be translated to
a corresponding metainference of Ln for any n > m. Thus, by encoding the premises
and conclusion of any mixed inference so that their translations uniformly lie in a
Lj , the putatively mixed inference itself thereby enjoys a representation in Lj+1—
a statement describing an inferential relation between metainferences of Lj —which
may be analyzed by an appropriate logic in the ST hierarchy.

To provide a simple illustration of the suggestion, the sequents [ >− ϕ] and
[ >− ϕ ∨ ψ] from the above example are members of L0 while the metainference
{[� >− ϕ, �]} ⇒ [� >− ϕ ∨ ψ, �] is a member of L1. The rejoinder suggests
that the informal mixed argument is adequately captured by first translating the L0
objects [ >− ϕ] and [ >− ϕ ∨ ψ] to corresponding L1 objects {} ⇒ [ >− ϕ] and
{} ⇒ [ >− ϕ ∨ ψ], respectively. As the premises and conclusion are all in L1, the
regimented definition of L2 includes

{{} ⇒ [ >− ϕ], {[� >− ϕ, �]} ⇒ [� >− ϕ ∨ ψ, �]} ⇒ {} ⇒ [ >− ϕ ∨ ψ]
the validity of which can be evaluated against e.g. TSST.

There are, we admit, some elements of this position that are compelling. On one
reading, our example’s taking the sequent [>− ϕ] as a premise was tantamount to
hypothesizing its validity. And, in such cases, it may seem plausible to equate the
validity of a sequent [>− ϕ] with the admissibility of the rule

[ >− ϕ]
After all, one might say, there is nothing to validity of a sequent in a proof system

beyond its derivability from any arbitrary set of premises.
The outward equivalence between a metainference and its translation wears thin,

however, as we consider more general cases. Considering such cases reveals that
this technique too swiftly identifies objects that are clearly conceptually dissimilar.
Intuitively, this is simple enough: The two assertions are about different things and
differ in subject matter. To claim that something holds is obviously different than
to claim that all inferences to it are valid; were they not distinct, then the relevant
logician could not embrace the validity of ϕ ∨ ∼ϕ while resisting the validity of
ψ → (ϕ ∨ ∼ϕ) for arbitrary ψ .

Recall that ST rests on the foundation of bounds consequence, according to which
the sequent [ >− ϕ] is read not as “ϕ is a consequence of the empty set,” but rather,
as “to deny ϕ would be out-of-bounds.” Two options exist for interpreting metain-
ferences: One can resist retaining the bounds consequence reading, in which case
metainferences are understood operationally, or one can maintain the bounds con-
sequence reading. It seems to us that on either choice, the conceptual distinction
between e.g. validity of [ >− ϕ] and the corresponding rule remain clear. We will
now examine both of these interpretations.

4.1.1 The Operational Reading

If one reads metainferences operationally—in which case the sequent’s transla-
tion would be read “from any sequent, one may infer the sequent [ >− ϕ]”—the
inference and its translation would seem far less synonymous. One could, after all,
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stipulate the that it is out-of-bounds to deny ϕ (e.g., for argument’s sake) without
thereby assuming the sequent [ >− ϕ] to be derivable from all premises.

Furthermore, the operational reading allows for a parallel between the current sit-
uation and one involving true formulas and theorems of L0. Recall that in the Buenos
Aires approach to the hierarchy, the difference between

• [ϕ, ϕ ⊃ ψ >− ψ] (Modus Ponens, an inference); and
• {[ >− ϕ], [ >− ϕ ⊃ ψ]} ⇒ [ >− ψ] (Meta Modus Ponens, a metainference).

is often stressed, especially when arguing against the identity of ST and LP or
classical logic.

Some of the most important things that we know about Modus Ponens (MP) and
Meta Modus Ponens (mMP) is that although they are both valid in classical logic,
they differ in their subject-matter. Andreas Fjellstad puts it nicely when he states that,
“While (MP) expresses that the inference from A → B and A to B is valid, (mMP)
expresses that the inference from the validity of A and the validity of A → B to the
validity of B is valid in the meta-theory” [10, p. 3]. In other words, MP is a schema
of inferences that should hold between sentences of the object language, while mMP
is a schema that describes a kind of closure for the logical laws which are applied to
the object language.6

Moreover, we know not to conflate them, it is possible for a logic to be closed
under one, but not the other. Non-transitive approaches to logical consequence
are an example, but also consider relevant logics, which include a rule form of
Modus Ponens (mMP), without necessarily including the axiom form (MP) in their
axiomatization (see, for instance [18, p. 287].

There is, however, a point of convergence between both MP and mMP. When
evaluating the validity of MP from the supposition that its premises are satisfied,
we find that there are two sorts of verifiers: (contingently) true formulas and logical
truths. Of these, we know that the latter are precisely the verifiers for the premises of
mMP, albeit in a different sense. From the fact that ϕ is a logical truth, two different
facts follow:

1. There is a valuation v such that, v(ϕ) = 1; and,
2. The sequent [ >− ϕ] has no counterexamples, i.e. ϕ follows from any set of

premises.

Consider that, for a logical truth ϕ and a contingent truth ψ , there will be at least
one model in which they will both be true, namely, there is a (possibly empty) � such
that ∀ξ ∈ �, v(ξ) = 1 and v(ϕ) = 1/v(ψ) = 1; with v a classical valuation function.
The difference will be that it is not the case that not all � will be such that ∀ξ ∈ �,
v(ξ) = 1 and v(ψ) = 1, while it will certainly be the case that for whichever �,
∀ξ ∈ �, v(ξ) = 1 and v(ψ) = 1. But the latter fact is one about validity, even if it
is stated in terms of truth (like the former). Thus, even if two facts are stated in the
same terms or treated under the same reading, their subject-matter can still differ.

6For a related, but opposing, view that at their core MP and mMP share subject-matter and thus should
stand or fall together, see [19].
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The following quote further advances our point:

(MP) expresses that 〈{A → B, A}, {B}〉 is in R [the validity relation] and
(mMP) expresses that if 〈∅, {A}〉 and 〈∅, {A → B}〉 are in R, then 〈∅, {B}〉
is also in R. This means that in the entailment-relation for the meta-language,
RM , we will find 〈{� A, � A → B, {� B}〉 [10, p. 4].

Recall that our preferred definition of the objects in all the levels of the hierarchy
was as syntactic objects because it allowed for a uniform treatment. Thus, by treat-
ing formulas, sequents and metan sequents as objects of the same kind, we should
expect to be able to look at them from both perspectives. Thus, we should be able to
distinguish between the validity of a (metan)sequent with respect to an arbitrary val-
uation and its following from the empty set of premise (metan)sequents; that is, its
meta-validity expressed in terms of validity.

4.1.2 The Bounds Consequence Reading

A drawback of the bounds consequence reading is that it is not meant to be applied
to levels above inferences. But then, one of the main benefits of doing this exercise
is that it provides an alternative, truly uniform and non-operational reading of infer-
ences at all levels. Taking [ >− ϕ] and {} ⇒ [ >− ϕ] as examples, we can roughly
say that

• [ >− ϕ] is stating that “it is (always) out-of-bounds to deny ϕ”, while
• {} ⇒ [ >− ϕ] amounts to stating that “it is (always) out-of-bounds to deny that

‘it is always out-of-bounds to deny ϕ’”

On this reading, it becomes clear that the two differ in meaning; while [ >− ϕ]
sets a condition about how we should speak about ϕ, {} ⇒ [ >− ϕ] sets conditions
on how to speak about this condition. An initial concern might be that on the first
case, we are (meta-)asserting that “it is (always) out-of-bounds to deny ϕ”; while in
the second “it is (always) out-of-bounds to deny that...” might be taken to imply that
it is always in-bounds to assert that ‘it is always out-of-bounds to deny ϕ’.

Clearly, asserting that denying ϕ is out-of-bounds falls short of an assertion of
ϕ. Likewise, that it is out-of-bounds to deny that denying ϕ is out-of-bounds falls
short of an assertion of “it is (always) out-of-bounds to deny ϕ” unless further
assumptions—such as the equivalence between out-of-bounds denial and in-bounds
assertion—are taken in. These additional assumptions about assertion and denial
would need further justification, and thus would be up for debate.

In the context of intuitionism, the distinction between assertion and out-of-bounds
denial is illustrated by an example discussed by Dummett in [9, p. xviii]. Although
the formula ∼∼(ϕ ∨∼ϕ) (which amounts to denying that bivalence is out-of-bounds
due to the existence of counterexamples) is intuitionistically valid, this is a distinct
principle than the positive ϕ ∨ ∼ϕ (“ϕ or not ϕ”). In other words, the intuitionist’s
claim that one cannot falsify instances of excluded middle does not necessitate an
acceptance of excluded middle itself.

First, we need to relate the bounds consequence reading to intuitionism. We will
assume that [� >− ϕ] is read as “it is out of bounds to assert every member of � and

1278



Deep ST

deny ϕ” corresponds to the intuitionistic reading that there is a constructive proof of
ϕ from �.7 If it is not the case that it is out of bounds to assert every member of �

and deny ϕ, then there is a proof of ∼ϕ from �.
Thus, the intuitionist should accept the principle that

If the sequent
[� >− ϕ]

is valid, and the rule [� >− ψ, �]
[� >− ψ ∨ ξ, �]

is valid, then the sequent
[� >− ϕ ∨ ∼ϕ]

is also valid.

namely,

If one asserts that
[� >− ϕ]

and takes it as out-of-bounds to assert any instance of [� >− ψ, �] while
denying the corresponding instance of [� >− ψ ∨ ξ, �], then one cannot deny

[� >− ϕ ∨ ∼ϕ]
We know this is the case because we are zeroing in on the behavior of a spe-

cific ϕ in an arbitrary valuation. Thus, there is a ϕ that verifies the first part of the
statement—i.e. that the sequent [� >− ϕ] is valid—in virtue of its being either a con-
tingent or a logical truth. Otherwise, the statement will be falsified by the existence of
a constructive proof of ∼ϕ, guaranteeing that ϕ is not derivable, at least with respect
to the arbitrary valuation. Notice that by requiring that the sequent be valid, we are
already ruling out potential cases in which the (in)validity of the sequent cannot be
determined. Thus, the validity of the argument will be preserved.

In contrast, the following should turn out to be intuitionistically unacceptable:

The validity of the rules

[� >− ϕ]
and [� >− ψ, �]

[� >− ψ ∨ ξ, �]
entails the validity of the rule

[� >− ϕ ∨ ∼ϕ]
which has the following bounds consequence reading:

If it is out-of-bounds to

1. assert the empty (sequent) set while denying [� >− ϕ]; and,
2. assert [� >− ψ, �] while denying [� >− ψ ∨ ξ, �]

7As per usual, � is possibly the empty set of premises.
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then, it is out-of-bounds to assert the empty (sequent) set while denying [� >−
ϕ ∨ ∼ϕ]
That this is unacceptable stems from the fact that, as happened with the illustra-

tion of the operational reading above, there is a slight change of meaning that turns
this argument into something any intuitionist would not accept, even if they readily
admit that they do not have a counterexample at hand. When we switch from the sup-
position that a particular ϕ may verify or falsify the claim that [� >− ϕ] is valid to the
general conditions under which such a position would be out-of-bounds—encoded
by the metainference from the empty sequent set to the conclusion [� >− ϕ]—we are
able to incorporate metainferential generalizations of intuitionistic practice. What we
discover is that there will be instances in which we cannot determine the (in)validity
of [� >− ϕ] and consequently of the corresponding metainference.

Thus, we will be in a position in which it will be difficult to reject one of the
premises, for one would be unable to provide the required proof of ∼ϕ. However, the
conclusion amounts to stating that it is always out-of-bounds to deny that it is out-of-
bounds to assert the empty premise set, and deny that one has either a constructive
proof of ϕ or of its negation. Since the intuitionist is open to this possibility, they will
be prepared to, minimally, not reject the premises but openly deny the conclusion.

We chose to illustrate the variation of meaning between mixed and uniform infer-
ences using an example from intuitionism because, apart from providing an example
of uniformity across metainferences at all levels, the chosen example illustrates a sec-
ondary but important point: that although variations of meaning sometimes entail the
rejection of one of the versions of an argument (as in the case of the intuitionist), the
acceptance of two different versions of an argument does not entail that their mean-
ings coincide. Thus, from the fact that the deep ST-theorist would readily admit two
apparently interchangeable versions of an argument need not license the conclusion
that the disposition to accept both versions is due to their not seeing a difference in
meaning in any of the cases.

4.2 The Need for a Limit

If we aim to subsume metainferential practice at an arbitrary level within the hier-
archies, there is a need to define a limit within which all such inferences—i.e.,
inferences of any order—can be described. This is certainly something that classical
logic is capable of doing; the character of e.g. metametainferences in classical logic
certainly satisfy classical principles.

In [3], Barrio, Pailos, and Szmuc suggest a difficulty with considering the distinc-
tion between ST and classical logic to be simply that the two have a metainferential
disagreement. After pointing to how the classical fragment of ST and classical logic
coincide at the inferential level but diverge at the metainferential level, they phrase
the difficulty:

The reason for this is... that the previously discussed phenomenon can be repli-
cated. By this we mean that—just like ST is a system which coincides with
Classical Logic at the inferential level, but not at the metainferential level—it
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is possible to obtain a system which coincides with Classical Logic at the infer-
ential and the metainferential level, but which does not coincide with it at the
level of the metametainferences, i.e. of the inferences between metainferences.
[3, p. 96]

A clear problem, of course, is that each stage in the construction of Barrio
et al. includes a necessary point of disharmony, i.e., the prima facie classicality of
metainferences of any particular tier will be revealed as nonclassical in the next tier
up.

We propose that the most direct way to defuse this problem—i.e., to eliminate the
eventual non-classicality that necessarily appears at some level in any of the metain-
ferential logics described by Barrio et al.—is to define a limit in which all inferential
features share a uniform foundation. This calls for a limit to the hierarchy.

There are several desiderata that we could expect of such a limit. For one, an
adequate limit would have to meet the condition that for any tier of metainferences
described by the limit, the metametainferences by which it is governed are like-
wise described and characterized by the limit. More succinctly, we would expect that
a limit of metainferential logics would be capable of reflecting the metainferential
principles that hold between metainferences of any level. For two, adequacy would
require that the operands of the limit include the objects treated by any STi , that is,
metainferences of any finite tier should continue to be represented in the limit.

There are several a priori plausible approaches with which to define a limit. The
simplest is to simply gather the individually valid metainferences of each logic in
the hierarchy and take their union. Alternatively, we could propose that one takes the
metainferential logic whose operands are infinitary metainferences of length ω.

Both of these seem to have drawbacks. The former approach involves a sort of
inertness between objects of different tiers and misses the types of mixed inferences
that we have described. The latter approach would introduce infinitary objects as
its operands and would suffer the same conceptual difficulties that one faces when
considering what a non-standard Gödel number is meant to encode. Although (as a
referee has kindly pointed out), non-standard Gödel numbers are well-defined math-
ematical objects, it is far from clear how the proofs they encode resemble logical
reasoning as performed by humans.

4.3 Semantics

The metainferential logics in the ST hierarchy are concerned with representing the
validity of particular metainferences. Consequently, the utility of any of these systems
is in large part determined by the feasibility of determining when a metainference is
valid.

Unfortunately, the impracticality of determining validity or finding counterex-
amples grows rapidly as one rises through the hierarchy. In [3], validity for a
metainference in the logic TSST requires evaluating the validity of subobjects in both
TS and ST. The pattern of alternating between strict and tolerant while climbing back
down the hierarchy is repeated at each stage.
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To illustrate, suppose that we are working with a metainference in the metainfer-
ential logic Strict/Tolerant4.

{	0, ..., 	n−1} ⇒ 	n

The metainference is valid if every Strict3-verifier for each 	i (with i < n) is
a Tolerant3-verifier for 	n. The sensible approach to showing validity would work
from the hypothesis that a Kleene-Kripke valuation v Strict3-verifies all 	i and
demonstrates that v must Tolerant3-verify 	n.

Yet the rapid alternations between strictness and tolerance (on the one hand) and
verifiers and counterexamples (on the other) entails that even to fully articulate these
conditions soon becomes treacherously complicated. Each 	i is itself, of course, a
metainference of the form

{	i,0, ..., 	i,mi−1} ⇒ 	i,mi

whence the hypothesis that v is a Strict3-verifier for 	i decomposes into the hypoth-
esis that v is either a Tolerant2-counterexample for a 	i,j (where j < mi) or is a
Strict2-verifier for 	i,mi

. But these objects 	i,j themselves are metainferences whose
operands are sequents. Hence, the hypothesis must be stated in terms of even finer
conditions on whether v is, e.g., a Strict1-verifier for some formula in the antecedent
of the antecedent of 	i,j .

Suffice it to say that the mere act of informally describing the steps required
to establish validity of a metainference in Strict/Tolerant4 is dizzying. The actual
execution of the task of demonstrating validity is nigh intractable. Given the clear
and recursive definitions in [3], writing a program to search for counterexamples
may be straightforward but attempting to practically leverage the calculus—proving
the validity of some metainference with pen-and-paper, for example—would be
unreasonable.

In practice, this intractability serves to obscure the conceptual basis of any mem-
ber in the hierarchy—going through exercises is regarded as the most direct path to
conceptually grasping a mathematical object. Providing a uniform account that is as
tractable at level 8 as it is at level 2 is, we believe, a worthy project. Even if the philo-
sophical merit of our preferred interpretation is found lacking, we believe that the
simplicity and elegance of the semantics described below should be welcomed by
proponents of the approach of Barrio and his collaborators.

5 An Alternative Approach

We now wish to supply an alternative to the methods described in [3] of a metain-
ferential logic that solves the difficulties we have just described. Our approach will
encompass and respect every level in the Barrio, Pailos, and Szmuc’s hierarchy but
will bring a uniform semantics to the logic that acknowledges mixed inferences,
provides a limit to the hierarchy, and drastically simplifies the semantics.

The trick in what we will describe is simple: We will show that for all of the prima
facie impracticality in the approach outlined in [3]—the complicated alternations
between strict and tolerant metainferential logics of lower and lower levels—all of
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the information in these alternations is encoded in the humble three-valued material
conditional of LP described in [14].

5.1 Semantics, Generalized

In order to establish semantics for objects in Lmix, we first introduce natural
generalizations of strict and tolerant counterexamples and verifiers.

Definition 17 For a sequent , v is a Tolerant�-counterexample (respectively,
Tolerant�-verifier, Strict�-counterexample, Strict�-verifier) when v is a Tolerant1-
counterexample (respectively, Tolerant1-verifier, Strict1-counterexample, Strict1-
verifier). For any other  = {	0, ..., 	i} ⇒ 	, v is a:

Tolerant�-counterexample to  if v is a Strict�-verifier for each 	i and a Tolerant�-
counterexample to 	.

Strict�-counterexample to  if v is a Tolerant�-verifier for each 	i and a Strict�-
counterexample to 	.

This enables us to define a metainferential logic that extends the ST intuitions to
all levels of metainferential reasoning, including mixed reasoning.

Definition 18 We define STω-validity of a  ∈ Lmix for sequents and metainfer-
ences in parallel.

• For  = [� >− �],  is STω-valid when every v that Strict�-verifies all formulae
in � is a Tolerant�-verifier for some formula in �.

• For  = {	0, ..., 	i} ⇒ 	,  is STω-valid when every v that Strict�-verifies
all 	j is a Tolerant�-verifier for 	.

The adequacy should be easily seen by noting that the general verifiers and coun-
terexamples in Definition 17 agree with the earlier verifiers and counterexamples
tailored to any particular tier in appropriate cases.

Thus, we are immediately guaranteed agreement with the systems in the ST
hierarchy:

Theorem 1 For a non-mixed metainference  ∈ Li ,

 is Stricti/Toleranti-valid iff  is STω-valid

One may reasonably ask why we consider ω to be an adequate ordinal for the task
of defining a limit to the hierarchy. Surely, one could define hierarchies with greater
ordinals. While this indeed worth considering—and we look forward to returning to
this question—we find STω to satisfy a goldilocks principle. For one, ω is sufficiently
large in the sense that for any finite set of metainferences, any metainference assert-
ing that a conclusion follows therefrom is expressible in its language. On the other
hand, moving past ω to a greater ordinal β would require that STβ includes some
infinitary metainferences. As we have indicated at several points, it is not obvious
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that a reasoner with finite resources can survey—much less make use of—a proof of
infinite length.

5.2 The Subtlety of the LP Conditional

Two things can be said of the system we have defined in terms of Strict� and Tolerant�

verifiers and counterexamples: First, it is at least adequate to the task of governing
mixed inferences in a way that is harmonious with the individual strict-tolerant logics
in the ST hierarchy. Second, the semantics as we have described them do nothing to
solve the problem of tractability. We now turn to showing how a simple approach
suffices.

Recall the three-valued truth function for the material conditional of Priest’s LP of
[14]:

⊃ 1 1
2 0

1 1 1
2 0

1
2 1 1

2
1
2

0 1 1 1

We will show that the function f ⊃
LP provides all the machinery to define a straight-

forward semantics for STω (and, consequently, any metainferential logic in Barrio,
Pailos, and Szmuc’s hierarchy).

As an intermediate step, however, our countenancing mixed inferences requires
that we extend the translation of [8] or [3] to accommodate such objects as well.

Given a translation function τ , we can map metainferences to first order formulae.

Definition 19 For a sequent [� >− �], [� >− �]τ =df

∧
� ⊃

∨
�.

Definition 20 For any non-sequent object in Lmix of the form {	0, ..., 	i} ⇒ 	,
({	0, ..., 	i} ⇒ 	)τ = ∧

j≤i 	τ
j ⊃ 	τ

In other words, the material conditional ⊃ is used to translate both the sequent
separator and meta-sequent separators of any level.

As an auxiliary to the following proofs, we explicitly identify the following obvi-
ous features of the truth function f ⊃

LP , which may be confirmed by consulting its
truth-table:

Observation 1 The three-valued function f ⊃
LP enjoys the following properties:

• f ⊃
LP(x, y) = 0 iff x = 1 and y = 0

• f ⊃
LP(x, y) ∈ {0, 1

2 } iff x = 0 and y = 1

This observation provides sufficient leverage to establish a theorem, the proof of
which will require that we define a notion of depth:

Definition 21 For a  ∈ Lmix, the depth of  (depth()) is defined recursively:

• depth() = 1 for  ∈ L1 (i.e. sequents)
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• depth({	0, ..., 	i} ⇒ 	) = max(depth(	0), ..., depth(	i), depth(	)) + 1

Theorem 2 For all  ∈ Lmix and all Kleene-Kripke valuations v, the following
facts hold:

• Fact I: v is a Tolerant�-counterexample to  iff v(τ ) = 0.

• Fact II: v is a Strict�-counterexample to  iff v(τ ) ∈ {0, 1
2 }.

Proof We prove this by an induction on the depth of  ∈ Lmix. In case depth() =
1,  is a sequent [� >− �], whence the basis step requires establishing the facts for
ST and TS (in which case Tolerant� and Strict� reduce to Tolerant1 and Strict1, respec-
tively). Although the basis step isn’t novel, its rehearsal should serve as a conceptual
guide to the following double induction. Then we establish Facts I and II individually
for sequents :

Basis for Fact I: v is a Tolerant1 (i.e., ST) counterexample to sequent  iff v[�] = {1}
and v[�] = {0}. This holds iff v(

∧
�) = 1 and v(

∨
�) = 0. But Observation 1

ensures that this holds iff f ⊃
LP(

∧
�,

∨
�) = 0, i.e., this holds iff v(τ ) = 0.

Basis for Fact II: v is, on the other hand, a Strict1 (i.e., TS) counterexample to  iff
v[�] ⊆ { 1

2 , 1} and 1 /∈ v[�]. These conditions are jointly equivalent to the case in
which v(

∧
�) = 0 and v(

∨
�) = 1. By Observation 1, such cases are exactly those

in which f ⊃
LP(v(

∧
�), v(

∨
�)) ∈ {0, 1

2 }, i.e., when v(τ ) ∈ {0, 1
2 }.

Now, we establish that Facts I and II are true for all n, assuming as induction
hypothesis that the properties hold for all m less than n. In such cases,  will be
of a metainference of the form {	0, ..., 	j } ⇒ S. Again, we treat the two cases
individually:

Induction Step for Fact I: By definition, v is a Tolerant�-counterexample to  iff v

is a Strict�-verifier for each 	i and v is a Tolerant�-counterexample to 	. By the
induction hypothesis, the former conjunct holds iff for each 	i , v(	τ

i ) = 1 (which,
in turn, holds iff v(

∧
i 	τ

i ) = 1). Similarly, the induction hypothesis ensures the
equivalence between the second conjunct the case in which v(	τ ) = 0. Hence, the
previous conjunction is equivalent to the case in which both v(

∧
i 	τ

i ) = 1 and
v(	τ ) = 0. But by Observation 1, these conditions hold iff f ⊃

LP(v(
∧

i 	τ
i ), v(	τ ) =

0, i.e., precisely when v(τ ) = 0.

Induction Step for Fact II: Again, v is a Strict�-counterexample to  precisely when
v is both a Tolerant�-verifier for every 	i as well as a Strict�-counterexample for 	.
By the induction hypothesis, the former conjunct is holds iff for no 	i is v(	τ

i ) = 0;
similarly, the latter conjunct holds iff v(	τ ) ∈ {0, 1

2 }. Furthermore, these two cases
are equivalent to the cases in which v(

∧
i 	τ

i ) = 0 and v(	τ ) = 1, respectively.
Again, Observation 1 shows this conjunction to be equivalent to the case in which
f ⊃

LP(v(
∧

i 	τ
i ), v(	τ )) ∈ {0, 1

2 }, i.e., when v(τ ) ∈ {0, 1
2 }.
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From this, we are able to establish what is at once a correspondence theorem and
an alternative semantics for STω.

First, let us recall the logic LPTT—Priest’s LP with a transparent truth predicate—
described semantically in [7, p. 846] so that:

Definition 22 For sets of first-order formulae of Lbase �, �, � �LPTT if for all
Kleene-Kripke valuations v, whenever v[�] ⊆ { 1

2 , 1}, then for some ϕ ∈ �, v(ϕ) ∈
{ 1

2 , 1}.

Importantly, when no formulae in � or � include an instance of the truth predicate,
LPTT coincides with LP.

Theorem 3 For all metainferences  ∈ Lmix, the following are equivalent:

•  is STω-valid
• �LPTT τ

Proof Without loss of generality, let  be of the form {	0, ..., 	j } ⇒ 	.  will be
STω-valid precisely when for all Strict�-verifiers v of each 	i , v is also a Tolerant�-
verifier for 	. By Theorem 2 and the properties of conjunction, this is equivalent to
the case in which for all v such that v(

∧
i 	τ

i ) = 1, also v(	τ ) = 0. But, as made
explicit in Observation 1, this holds iff for no v, f ⊃

LP(v(
∧

i 	τ
i ), v(	τ ) = 0, i.e., τ

can never receive an assignment to 0. But this is just to say that τ is valid in (and
hence a theorem of) LPTT.

As STω includes each strict-tolerant metainferential logic in the hierarchy, we can
establish that this semantics applies to the individual metainferential logics.

Corollary 1 For all formulae  from Ln (i.e., a sequent from L1 or a metainference)
and all Kleene-Kripke valuations v, the following facts hold:

• Fact I: v is a Tolerantn-counterexample to  iff v(τ ) = 0.

• Fact II: v is a Strictn-counterexample to  iff v(τ ) ∈ {0, 1
2 }.

Corollary 2 For all formulae  from Ln, the following are equivalent:

•  is Strict/Tolerantn-valid
• �LPTT τ

There are many potential lenses from which one may view the consequences of
the foregoing observations.

It is, for example, surprising that the complicated nature of these metainferential
consequence relations should be reduced to something so simple, i.e., that there exists
an immediate translation between the elaborate and recursively-defined consequence
relations of the Strict/Tolerantn metainferential logics and the humble three-valued
truth function f ⊃

LP . One might be inclined to take a dismissive stance concerning
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the ST hierarchy and infer that, for all its apparent depth, it is “merely” a dressed-
up version of the pedestrian LP. Despite the apparent sophistication of the notions
of strict and tolerant verifiers and counterexamples of increasing scale, one might
conclude, such sophistication only obscured its simple origins.

We favor the opposite approach. The core concepts upon which the ST hierar-
chy rests need not be considered tarnished by this correspondence; indeed, they are
clearly meaningful and successfully lift the core ideas of ST to a unified account of
metainference at all levels. What is astonishing is not that such an intriguing milieu
should be so easily reduced to LP, but rather, that such a prima facie uncomplicated
logic like LP should so efficiently encode these robust concepts into the disarmingly
unpretentious material conditional f ⊃

LP .

5.3 Dissolving the Limitations

In the foregoing section we had described three formal limitations of Barrio, Pailos,
and Szmuc’s hierarchies and set out to show that our suggested approach served to
improve on these authors’ core idea.

First, we had claimed that the lack of interaction between any two distinct tiers of
metainferences among the hierarchy was a limitation in the sense that the regimen-
tation is artificial and fails to account for common metainferential patterns. Insofar
as the operands of the metainferential logic we have defined include mixed infer-
ences, we believe that our proposal is a better fit to the patterns of reasoning actually
employed in practice.

Second, we had claimed that the ST hierarchy lacked a natural limit; one could
propose e.g. that one takes the union of all metainferential logics in the hierar-
chy, but with no interaction between the tiers, desired dynamism would be absent.
Our proposal does provide a natural and reasonable limit; it agrees with the valid
metainferences of each tier while appropriately extending the same intuitions to
metainferences that make use of inferences of different levels.

Finally, we had described a problem for the utility of any of the members of the
hierarchy, i.e., that the unwieldiness in the recursive definitions of verifiers and fal-
sifiers made their use impractical in e.g. finding counterexamples or semantically
proving validity. The uniform semantics we have described require no more over-
head than any three-valued logic, eliminating the problem of utility. Moreover, this
unwieldiness obscures the uniformity that our semantics wears on its face, winning
our account additional elegance and clarity.

Along these lines alone, we feel that the merit of the foregoing results should be
clear. Nevertheless, our interest in our proposal runs deeper than merely its utility as
a formalism; we also believe that it clears new ground for a satisfying fulfillment of
the strict-tolerant intuitions, to which we will now turn.

6 Deep ST

We believe that the foregoing has more weight than the mere resolution of a handful
of difficulties with the original ST hierarchy. Indeed, we believe that it sets the stage
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on which the strict-tolerant intuitions can be expanded and promoted to an authentic
theory of reasoning.

Consider two activities: Defining a formal calculus and describing a philosophi-
cal theory of inference. Although these activities may be closely related—often the
suitability of a formal calculus is judged on the degree to which it corresponds to
a theory of reasoning—there are distinctions between them. One crucial component
of the distinction, we think, is the whether there is an expectation of constancy.
Although the rules one defines for some novel sequent calculus may be more-or-less
plausible, their scope is restricted to the manipulation of symbols; one is not charged
with inconstancy for deviating from these rules when describing its metatheory. On
the other hand, justifying any particular theory of inference requires that one reason
about its content and consequences, and this reasoning necessarily presupposes some
facts about inference.

To provide an example, consider two ways of interpreting intuitionistic logic. One
may be interested in a intuitionistic logic qua calculus with one’s interest limited to
finding its model theory mathematically interesting. In such a case, one can hardly
be called unprincipled for appealing to excluded middle during a proof of some fea-
ture of its Kripke models. But if one is a proponent of constructivism as a theory of
reasoning, constancy demands that one avoid violating intuitionistic principles at any
stage of reasoning.

Thus, just as a constructive mathematician takes intuitionistic logic to be governed
by an intuitionistic metatheory, if the strict-tolerant theorist accepts that metainfer-
ences themselves (and metametainferences, and so on) are governed by strict-tolerant
conceptions of consequence, then ST can be viewed as classical all the way down.

With a limit—i.e., a uniform semantics that governs all tiers of inference and
meta-inference—in place, the ST-theorist is free to say that the bounds consequence
principles governing sequents in ST are not logical artifacts or formal curiosities.
Rather, the dedicated ST-theorist can say that these intuitions are intuitions about
reasoning. We will call the position induced by this picture deep ST.

6.1 Constancy in Inferential Principles

If one intends for one’s formal calculus to authentically reflect a true theory of
inference, a constancy with respect to inferential principles seems imperative. The
canonical example is, of course, intuitionism. Although such constancy is clear in
Brouwer’s formulation—which was not reliant on a symbolic calculus but rather
described a holistic theory of practice—a constancy between the formalism and its
study is clear from his inheritors as well.8 E.g., Heyting’s archetypal intuitionist
describes the relationship between constructivism and its formalization like so:

[I]ntuitionism proceeds independently of the formalization, which can but
follow after the mathematical construction. [12, p. 5]

8For discussion of the relationship between reasoning and mathematical practice in Brouwer, see [4],
reprinted with commentary in [5].
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In other words, although the intuitionistic calculus may be designed to represent
intuitionistic practice, it remains a mathematical object and must be studied along the
intuitionistic principles it reflects.

We propose that the uniformity of the above semantic analysis of the limit STω

reveals the logic to enjoy this very type of constancy. In the same way that Heyt-
ing’s intuitionist of [12] insists on general constructive principles both in the formal
calculus and reasoning about the calculus, so does STω supply the apparatus for the
committed ST-theorist to lift the strict-tolerant approach from the sequent calculus to
any tier of reasoning. STω thus arguably clears a space for the strict-tolerant intuition
to evolve from a position about formal logic to a position about reasoning.

When we turn our attention to bounds consequence as the core of the strict-
tolerant intuition, this constancy enjoys especially pleasing consequences. As we
have suggested, the standard reading of ST gives a bounds consequence reading
to the deducibility of a particular sequent but retains an operational reading to
metainferences.

Given the uniform semantics for every tier of metainference, we are licensed to lift
the bounds consequence interpretation from sequents to metainferences and provide a
bounds consequence reading to all types of metainferences. (Recall that Section 4.1.1
described the shape of a bounds consequence reading to metainferences). This option
frees bounds consequence from being associated merely with metainferences of a
particular level, allowing its full realization as a theory concerning consequence
without restriction.

This may give one pause—we have elsewhere suggested that a consequence is
that deep ST is the total materialization of reasoning—but this material flavor is part
and parcel of the notion of bounds. If one feels free to interpret the sequent—an
object already loaded with an inferential character—as a material position, to con-
sider inference and metainference as sharing a common basis presupposes such a
material reading of metainferences as well. In short, the approach we have described
is a full-throated application of the plausible and attractive approach outlined by
bounds consequence, taking the underlying thesis to its natural conclusion.

6.2 Treatment of Paradox Outside Object Language

As presented, the objects of metainferences of e.g., TSST are more restricted in
expressivity than the first-order formulae that compose a position. While the comma
separating objects in antecedent positions serves a cognate function to conjunction,
notions like disjunction or negation are lacking. Such weakened expressivity is thus
inherited by our presentation of STω.

In practice, however, it makes sense to consider such operations when considering
metainferences. The following seem consonant with practice:

• Either the metainference 	 is valid or the metainference  is valid
• The metainference � is not valid

So a very natural project to embark on—whether or not one accepts the approach
we’ve outlined above—is to attempt to capture these very natural speech acts in the
formal language itself and to study its logic.
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We will pause to say that the uniformity offered by the simple semantics for STω

provides an obvious path forward. By saying that conjunction in the object language
is semantically uniform with conjunction in the metalanguage, a promising semantics
for e.g. disjunctions of metainferences is immediately available. Thus, the obvious
enrichment of the language—i.e., an enrichment including objects like ∼[� >− �]—
has a corresponding semantic analysis waiting in the wings.

Although we leave such tasks for future investigation, this consideration does
expose an attractive feature available to the deep ST-theorist not available to
out-of-the-box ST.

Recall that the bounds-consequence reading of the derivability of a position [� >−
�] is understood as the statement “it is out-of-bounds to take the position [� >− �].”
This natural-language statement, of course, is truth-evaluable; it is entirely mean-
ingful to debate whether or not a particular position is out-of-bounds. Formally, the
sentence

• “It is true that: The position [� >− �] is out-of-bounds.”

would reasonably correspond to a formula of the form T (�{} ⇒ {[� >− �]}�),
where �{} ⇒ {[� >− �]}� is a term denoting the derivability of the position. As the
expressivity of the language is enhanced, then, it is appropriate not only to enrich the
complexity of available formulae but also widen the breadth of terms.

Now, if this is a reasonable next step—and we think it is at least as reasonable
than including a term naming each formula—one might expect that the open for-
mula ∼ T (x) will have a fixed point among the terms that name metainferences.9

Intuitively, it is easy to come up with corresponding cases for what paradoxical
applications of the truth predicate to positions would look like.

What is important here is that the approach that we have described allows us to
not only extend the strict-tolerant intuition to account for mixed inferences, but also
makes available new increases in expressivity. ST provides transparent truth only if
we consider truth predicates applied to the object language. The deep ST-theorist
will insist that logic considers our natural uses of the concept of truth in discourses
in the metalanguage as well; for the deep ST-theorist, an approach such as the one
described here will be necessary.

6.3 Classicality Recovered?

A deficiency in strict-tolerant approaches identified by Barrio and his collaborators
in [3] is the ineliminability of non-classicality, that is, that the failures of Cut at
some metainferential level cannot be wholly eliminated. That the appearance of non-
classicality is always guaranteed at some level for any of their metainferential logics
guarantees the general approach has little chance of being thought to be classical.

The results of this paper, we submit, provide a serviceable remedy to this concern.
For every tier of metareasoning covered in a logic among the hierarchy, the semantics
encompasses not only that tier but also the metareasoning about that tier.

9Certainly, adding such a predicate to any STi in the hierarchy would yield a fixed point. We do not know
that one has a guarantee that there will be such fixed points and leave this only as conjecture.
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As a corollary to Theorem 3, we have the following result:

Corollary 3 For all metainferences  ∈ Lmix including no instances of the truth
predicate, the following are equivalent:

•  is STω-valid
• �CL τ

Proof If  includes no instances of the truth predicate, then τ is formulated in a
standard first-order language. Definition 22 thus entails that τ is LPTT-valid pre-
cisely when it is LP-valid, and thus a theorem of LP. It is well-known (since [14] and
discussed in this context in [16]) that LP and CL share the same theorems. Thus, from
this equivalence and Corollary 2, this corollary follows.

From Corollary 3, we see that for any metainference governing strictly classical
formulae, the metainferential behavior is indeed entirely classical. We may observe,
e.g., not only that Cut is valid, but also that the metainferential counterpart for any
level of inference is also valid.

It seems to be an entirely rational position to take that if one is to reject the clas-
sicality of STω—or to assert that its introduction of a truth operator abrogates the
classicality of its foundation—one must be able to provide an example of how the
two differ. And, given the above result, such a case cannot be provided.

If one objects to the deep ST-theorist’s refusal to infer the validity of [ >− ]
from the validity of [λ >− ] and [ >− λ], the deep ST-theorist can readily reply
that, since they endorse the strict-tolerant standard of reasoning at all levels, it fol-
lows that their endorsement of ST at the level of metametainferences licenses their
simultaneous acceptance of the validity of [ >− ] from the validity of [λ >− ] and
[ >− λ]. Moreover, the deep ST-theorist is always prepared to falsify the claim that
there is a level n such that there is a truly non-classical instance of reasoning which
takes place at that level.

Briefly, Corollary 3 ensures that we can never really provide a concrete instance
of metareasoning that is inherently non-classical in the strictly classical language.
Furthermore, notice that the deep ST-theorist can argue that their logic is just classical
logic to the same extent that the standard ST-theorist is able to and then some. If we
take a logic to be a collection of valid inferences, then both theorists are entitled to
the same conclusion. The advantage that the deep ST-theorist holds over the standard
ST-theorist is that while the latter is not in a position to argue that they can overturn
the criterion for the identity of logics proposed in [3], the former definitely can.
There is a sense in which the deep ST-theorist can argue that their preferred theory
of reasoning is classical at all levels.

Because it is not obvious that one can stop the deep ST-theorist from applying Corol-
lary 3 at any given point of the hierarchy, one cannot argue that their reasoning at
that level is inherently non-classical. After all, if the classical theorist is to charge the
deep ST-theorist with non-classicality, she should point out a classical thesis that the
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deep ST-theorist does not accept. But insofar as Corollary 3 demonstrates a type of
conservativity of STω over classical reasoning, such a counterexample does not exist.

Another possible way of resisting the deep ST-theorist might involve pointing out
that their reasoning being classical at all levels is a technicality, rather than a feature
“naturally” built into the theory. This, we believe, would amount to a departure from
the original criterion that appears in [3]. Although this might trigger a necessary,
perhaps expected move towards more sophisticated identity criteria, it would still be
a rejection of the intuitive requirement that it suffices for two logics to match in their
validities at all levels to be identical.10

Finally, we would like to point out that it is Dicher and Paoli’s criterion which
poses a challenge for the deep ST-theorist. Since their position is one which prior-
itizes abstract consequence relations over collections of (meta)inferences, it might
come across as immune to the results stated in Corollary 3. The immediate reaction,
from the point of view of Dicher and Paoli’s position, is that the deep ST-theorist has
simply chosen to endorse LP as their preferred abstract logical consequence relation,
regardless of the kinds of objects of reasoning they might be dealing with. In that
case, deep ST-theorists might as well be renamed deep LP-theorists, opposed to stan-
dard LP-theorists, who endorse LP as their preferred consequence relation exclusively
at the level of formulas.

7 Conclusions

We have intended the foregoing to serve several purposes and believe that we have
made a compelling case for taking the approach outlined above seriously.

From a formal perspective, the results provide some improvements to—and a nat-
ural extension complementing—the approach outlined in [3]. The application of the
LP conditional as an interpretation for sequent separators and meta-sequent separa-
tors should provide a simplification for working with any of these logics and, we
hope, may serve as a uniform and feasible lens clarifying Barrio, Pailos, and Szmuc’s
hierarchy.

From a philosophical perspective, the results clear a space in which the strict-
tolerant intuition can be extended to a robust philosophical position concerning
reasoning in general. The deep ST theorist, like the intuitionist, has the semantic
tools to illustrate how bounds consequence applies to all reasoning and that the class
of paradoxes solved by the strict-tolerant approach do not stop at the object language,
but address those induced by truth predicates in the metalanguage as well.

There is clearly more work to do, of course. We have indicated a wish to e.g.
extend the formalization of the metalanguage to enhance the expressivity. It makes
sense to say that if a sequent is valid then either of two other sequents must be valid,
something not expressible in the metalanguage of [3]. We suspect that results like
Theorem 3 will immediately carry over to extend to these cases as well.

10A detailed overview of this statement is unfortunately outside of the bounds of this paper.
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