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ARTICLE

Computerized adaptive assessment of understanding of 
programming concepts in primary school children
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Amsterdam, Amsterdam, The Netherlands; bLeiden Institute of Advance Computer Sciences, Faculty of 
Science, University of Leiden, Leiden, CA, The Netherlands; cDepartment of Psychological Methods, Faculty 
of Social and Behavioral Sciences, University of Amsterdam, Amsterdam, Amsterdam, The Netherlands

ABSTRACT
Background and Context: Valid assessment of understanding of 
programming concepts in primary school children is essential to 
implement and improve programming education.  
Objective: We developed and validated the Computerized 
Adaptive Programming Concepts Test (CAPCT) with a novel appli-
cation of Item Response Theory. The CAPCT is a web-based and 
resource-efficient adaptive assessment of 4489 questions measur-
ing: the understanding of basic sequences, loops, conditions (if & if- 
else statements), debugging, multiple agents, procedures, and the 
ability to generalize to a new syntax. 
Method: Data was collected through an existing online adaptive 
practice and monitoring system called Math Garden. We collected 
14 million responses from 93,341 Dutch children (ages 4 - 13).  
Findings: The CAPCT demonstrated good psychometric qualities 
because 75% of the variance in question difficulty was explained by 
differences in item characteristics. The CAPCT demonstrated 
robustness against adding new participants and adding new 
items. Differences in player ability (i.e., understanding of CS con-
cepts) were due to differences in age, gender, the number of items 
played, and prior mathematical ability.  
Implications: The CAPCT may be used by teachers to identify the 
level of programming concept understanding of their pupils, while 
researchers may use the CAPCT to construct and validate effective 
teaching resources.
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1. Introduction

Companies, educators, and policymakers alike call for the inclusion of Computer Science 
(CS), Programming, and Computational Thinking (CT) education in (primary) school 
curricula (Google for Education, 2020; SLO, 2015; Wing, 2006). Teaching children to 
program and solve problems computationally prepares them for the future job market 
(World Economic Forum, 2016; sec. Skill Stability), and increases logical and abstract 
thinking, problem-solving ability, and creativity (Cao et al., 2015; Durak & Saritepeci, 
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2018). CS and CT both require the ability to implement common programming concepts 
such as loops and conditionals. CS and CT education promote use of functioning algo-
rithms, but also more conceptual use without computers (e.g., CS Unplugged, 2020). Both 
fields therefore share the need for teaching and evaluating the extent to which pupils 
understand common programming concepts.

Although efforts have been made to assess programming comprehension in primary 
school children; valid and easy to implement assessments are currently lacking (Grover & 
Pea, 2013; International Society for Technology in Education (ISTE) & Computer Science 
Teachers Association (CSTA), 2011; Tang et al., 2020; Voogt et al., 2017). The lack of valid 
assessments prevents researchers from validating and comparing the vast range of 
education tools and curricula currently being created (e.g., Chakarov et al., 2019).

This paper covers the construction, data-collection, and internal validation of a new 
adaptive assessment of programming comprehension suited for administration at (Dutch) 
primary schools (ages 4–13). We developed the Computerized Adaptive Programming 
Concepts Test (CAPCT) to measures comprehension of basic sequences, loops, if- 
statements, if-else statements, procedures, multiple agents, debugging, and generaliza-
tion to a different programming syntax. The CAPCT is part of an existing adaptive online 
measurement environment, called Math Garden, described in more detail in section 1.2

The Math Garden environment has great practical value as an educational tool (simul-
taneously practicing and measuring ability), and scientific value through the collection of 
high quantities of rich data on children’s cognitive development (for overviews see 
Brinkhuis et al., 2018; Hofman et al., 2018). Over 4000 items were created and internally 
validated, advancing the field of CS and CT education in multiple ways. First, teachers may 
use the student-reports in Math Garden to gain insight in the individual abilities of their 
pupils. The reports indicate where pupils stand compared to the content and their peers. 
Math Garden also solves the issues of longitudinal measurement, which is an area that 
needs further development in (primary school) CS education (Vivian et al., 2020). Second, 
the freely available itemset includes the difficulty estimates for all items.1 This may allow 
future research to validate non-adaptive (paper-and-pencil) tests that can measure ability 
of students that do not have access to Math Garden. These tests could then be used for 
informal testing in classrooms (which CS concept requires further instruction?) or as pre- 
and post-tests during research (e.g., the effectivity of lesson plans).

1.1. Assessment of programming concepts comprehension

A wide range of methods have been used to assess Computer Science (CS) comprehen-
sion, programming concept understanding, or Computational Thinking (CT; for overviews 
see: Román-González et al., 2019; Tang et al., 2020). However, three main measurement 
characteristics prevent extensive use across the field (Grover & Pea, 2013; Voogt et al., 
2017).

First, assessments are often highly resource intensive. For example, behavioral obser-
vations (Bers, 2010; Sáez-López et al., 2019), interviews (Zhong et al., 2016), peer- 
assessment (Basogain et al., 2018), and think-out-loud procedures (Atmatzidou & 
Demetriadis, 2016) all require one-to-one contact or extensive scoring procedures. For 
researchers, this may merely be an inconvenience, yet for teachers it makes monitoring 
student ability rather problematic. Automated assessments of code are less resource 
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intensive (e.g., Dr. Scratch), but focus on the product – which costs time to produce – 
rather than directly evaluating concept understanding (Moreno León et al., 2015; 
Román-González et al., 2019).

The second problem with current assessments is the lack of validation studies and 
specific evaluation criteria (Tang et al., 2020). Tang and colleagues found that 49% of the 
96 assessments in their systematic review included reliability evidence, with only 18% 
including validity evidence. The lack of internal validation studies, let alone convergent or 
divergent validity studies, makes it difficult to estimate how existing measurements of CS/ 
CT understanding are related.

Finally, assessments were often created for specific software (e.g., Scratch; Franklin 
et al., 2013), programming languages, teaching methods (Chang, 2014), or age-groups 
(Tang et al., 2020); limiting the use across curricula and educational tools or generalization 
between studies.

Some notable exceptions to the issues mentioned above are the Computational 
Thinking test (CTt; Román-González, 2015; Román-González et al., 2017, 2018), the 
assessment created by Grover and Basu (2017), the Middle Grades Computer Science 
Concept Inventory (MG-CSCI; Rachmatullah et al., 2020), the Lean Computational 
Thinking Abilities Assessment (LCTAA; Wiebe et al., 2019), the Beginners 
Computational Thinking Test (BCCt; Zapata- 
Caceres et al., 2020), and the PESS framework (Mannila et al., 2020).

First, these tests are short and consist of multiple-choice items – reducing the resources 
needed for assessment and scoring. The LCTAA – partially based on the Bebras competi-
tion (Dagienè & Sentance, 2016)– contains some open-answer items, but clearly defined 
correct answers still allow easy scoring.

The abovementioned tests are also exceptions to the lack of validated assessments 
(Tang et al., 2020). The tests include validity evidence through Classical Test Theory (e.g., 
factor analyses) and/or Item Response Theory (e.g., Rasch analyses) procedures. The PESS 
framework was not yet validated but is promising with regards to the generalizability 
problem; it was designed to suit the whole range of Swedish primary school children 
(ages 7– 15), refrains from using specific coding languages and/or software (items based 
on the Computational Thinking test), and combines both self-efficacy and skill-based 
questions.

Finally, the abovementioned tests form exceptions to the generalizability issues 
because they rely on block-based and/or textual representations of code for which the 
participants do not need prior experience. This has the benefit that measurements can 
easily be compared to determine the convergent validity of different measurements 
(Román-González et al., 2019).

The abovementioned tests have many positive characteristics that will benefit 
researchers and teachers. However, they also have shortcomings that we seek to address 
within the Computerized Adaptive Programming Concepts Test (CAPCT). We expanded 
the scope of the measurement both in size (4000+ items vs. ± 30 items) and content 
(different CS/CT concepts). The large item set provides researchers the opportunity to 
create independent pre- and post-tests of equal difficulty (see the discussion in section 
4.3). We collected response data across the range of Dutch primary school children(ages 
4 – 13), showing that very young children were able to correctly answer questions about 
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common programming concepts. Finally, Math Garden allows for adaptive and long-
itudinal measurement of understanding of programming concepts.

When seeking to extend the content of the Computerized Adaptive Programming 
Concepts Test (CAPCT) beyond the concepts included in the already available assess-
ments, we encountered a broad range of concepts and abilities associated with CT and CS. 
To illustrate, the International Society for Technology in Education (ISTE) & Computer 
Science Teachers Association (CSTA) (2011) described CT as – among other skills – the 
ability to persist when working with difficult problems. Measuring such an ability is not 
only extremely complicated, the ISTE & CSTA were also, to the best of our knowledge, the 
only ones to explicitly associate this ability with CT. In contrast, dealing with algorithms 
was included as a critical ability in most sources (e.g., Atmatzidou & Demetriadis, 2016, 
p. 664; “Algorithm is a practice of writing step-by-step specific and explicit instructions for 
carrying out a process. [. . .] selection of appropriate algorithmic techniques is a crucial 
part of CT.”). An extensive review of the differences in CT definitions can be found in Tang 
et al. (2020).

Selecting which CS/CT concepts to assess was further complicated by the realization 
that some concepts were found challenging by undergraduate students, let alone primary 
school children (e.g., recursion; Wu et al., 1998). We, therefore, conferred with experts in 
the fields of test development, software development, and cognitive development to 
compile a list of 19 programming concepts appropriate for assessment in children (see 
Appendix A for the operationalization of all concepts), out of which 7 were included in the 
CAPCT due to the applied design constraints (section 2.1.2).

1.2. Math garden: web-based adaptive data collection

Assessment of CT and CS ability typically occurs by collecting data in face-to-face settings; 
researchers go to schools or have participants visit their lab. Consequently, constraints are 
placed on the number of participants included in studies, the scope of the assessment 
(large item sets cost more valuable resources), and the representativeness of the sample. 
The current study bypasses these issues by collecting data through a web-based platform; 
Math Garden (Klinkenberg et al., 2011). Math Garden is an online practice and monitoring 
environment that allows children to automate arithmetic and general abilities (e.g., 
multiplication, pattern recognition). Over 2000 Dutch primary schools hold licenses for 
their pupils and at times even have mandatory practice sessions scheduled in their weekly 
routines.

Math Garden operates on an Elo-based adaptive algorithm (for an introduction see, 
Klinkenberg et al., 2011; for the statistical foundation see, Maris & van der Maas, 2012). Elo 
rating-systems are common in chess competitions, where each player has a unique rating, 
with higher ratings indicating higher levels of ability. When players compete against each 
other, based on their respective ratings, each player has an expected probability of 
winning the game. After the match, the difference in expected and observed outcome 
is used to update the ability estimate (i.e., Elo rating) of each player. The measurement 
scale produced by the Elo-rating system is a Rasch-scale, the basic model of item response 
theory (van der Linden & Hambleton, 1997). This means that Elo based scales are akin to 
the best measurement scales available in psychometrics. In Math Garden the adaptive 
algorithm is constructed in such a way that players “compete” against items (i.e., 
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questions). If a player answers a question correctly, their ability rating will increase, while 
at the same time the difficulty rating of the item will decrease (and vice versa).

Computer Adaptive Testing (CAT) systems often aim for a success rate of 50% to 
maximize the evidence collected about a persons’ true ability level (van der Maas & 
Nyamsuren, 2017; Wainer et al., 2000). Instead, the Math Garden algorithm strives for 
success rates of 60%, 75%, or 90% – depending on the players’ chosen difficulty setting – 
to ensure a positive learning experience through maximizing success (cf., Jansen et al., 
2016). To compensate for the loss of information from these higher percentages correct – 
the system is less aware of what a person doesn’t know – the Math Garden algorithm 
applies an explicit scoring rule for the trade-off between response time and accuracy 
(correct/incorrect). All items in Math Garden have a time limit, for some games this is 
8 seconds for other 15 or 60 seconds. The score achieved on an item is equal to the 
remaining time for an item if the response is correct, and minus the remaining time for 
incorrect responses. Player ability, or “winning/losing” from an item is thus determined by 
both the speed and the accuracy of the response. Over time this automated scoring rule 
ensures that ratings develop to values that indicate the true ability ratings of players and 
the difficulty ratings of items, holding information on both accuracy and speed (Coomans 
et al., 2016; Maris & van der Maas, 2012).

The adaptive algorithm as described above, is a self-organizing system with multiple 
benefits that surpass classic test development procedures. First, the system does not 
require pilot testing to establish the difficulty of the item-set, or to gather reference 
group data. The item difficulties and reference group data are established on the fly, 
with each response leading to a more accurate estimate of the item’s true difficulty and 
the reference group ability parameters (Klinkenberg et al., 2011). Second, the system 
creates measurement scales that meet the requirements of modern test theory (e.g., 
Maris & van der Maas, 2012). Therefore, estimations of test validity and reliability are not 
constrained by keeping the item set and pool of participants constant. Finally, as is 
demonstrated in section 3.1.1, the adaptive algorithm was robust against system 
changes such as adding a large set of new items and continuously adding new users. 
Note, however, that using an adaptive system in itself does not resolve issues that are 
common in classical and modern test theory. For example, floor and ceiling effects may 
still arise when the content of the test does not match the abilities of the children. This 
may happen when children do not understand task demands due to a lack of instruc-
tion being provided, or when children demonstrate higher levels of ability than 
anticipated.

Adding the CAPCT as part of the Math Garden platform has benefits that go beyond 
the psychometric benefits discussed above. First, the adaptive algorithm and intelligent 
item selection allows children to play at their own level of ability. This means that 
depending on their responses, children may progress and regress through the items at 
their own pace, even encountering the same item multiple times before being able to 
answer it correctly (Hofman et al., 2018). Given the adaptive nature of the system, the 
large set of children that use Math Garden, and the popularity of the game, we were able 
to internally validate a more extensive and diverse set of items than each child would 
have been expected to complete in a classic setting. In Phase 1 we analyzed 520 items, in 
Phase 2 we increased the set to 4486 items (see section 3.1). Finally, as the game was 
made available to all Math Garden users, no active form of participant recruitment was 
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required, thereby allowing the participant pool to grow up until the moment of data- 
analysis.

1.3. Current study

The primary purpose of the current study was to address the lack of validated and 
widely applicable assessments of comprehension of programming concepts in primary 
school children (ages 4 – 13). We have created a set of 4486 items that aimed to 
measure comprehension of sequences, loops, if-statements, if-else statements, proce-
dures, multiple-agents, debugging, and generalization to a different programming 
syntax. Following a two-step procedure, the items (N1 = 520, N2 = 3966) were included 
as a game in the adaptive online environment Math Garden, allowing for large-scale 
data collection across Dutch primary schools. The real-time estimations of player ability 
and item difficulty were used to validate the Computerized Adaptive Programming 
Concepts Test (CAPCT) following Embretson’s Cognitive Design System Approach 
(Embretson, 1998). In short, this entails using the cognitive constructs underlying each 
item as predictors of item difficulty rather than applying conventional analyses based on 
external validation tests.

2. Method

In this method section we will first discuss how the Computerized Adaptive Programming 
Concepts Test (CAPCT) was created (section 2.1). Then we will discuss how the data was 
collected and which exclusion criteria were applied (section 2.2 & 2.3). Finally, the method 
section will conclude by describing how the data was analyzed (section 2.4).

2.1. Assessment design

2.1.1. Graphical design
A number of considerations were taken into account while developing the CAPCT. The 
target population of primary school children (ages 4 – 13) differs considerably in the 
ability to comprehend written instructions. Written instructions are often used for task 
descriptions or block based representations (e.g., the Bebras competition; Dagienè & 
Sentance, 2016). As this would negatively affect the performance of those with poor 
reading abilities, we (a) created a visual syntax style based primarily on symbols, and 
(b) kept task instructions as short and consistent across items as possible. During 
informal user testing, we learned that layout changes between items negatively 
affected children to such an extent that they were no longer evaluating a CS concept, 
but rather differences in user interface characteristics. We thus (c) created one format 
to which all items adhered. Each item consisted of a question, an image depicting the 
current situation (a grid, an algorithm, or a combination of grid and algorithm), and 
four answer-options (for an example see Figure 1). Where possible, (d) the incorrect 
answer-options (i.e., distractors) were constructed to evaluate common misconcep-
tions. For example, in an if-else statement, the set of instructions that is executed 
depends on the evaluation of the conditional statement, executing some instructions 
but not others. In this case, a misconception would be to execute all instructions 
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irrespective of the conditional statement. Finally, we sought to make the game 
appealing for all children and thus (e) chose a gender-neutral gnome as the primary 
agent.

2.1.2. Content design
The operationalization of all concepts are listed in Appendix A. From this list we excluded 
12 concepts they could not be assessed within the specified item format (e.g., data 
structures). The CAPCT therefore includes 7 representative programming concepts, 
which were assessed by 13 unique item types (see Table 1). In total 4486 items were 
generated through custom created R scripts. The design guide provides detailed informa-
tion on the premises of each item type, how the items were created, and how answer- 
options were selected (available via https://osf.io/bmf47/). In short, following Embretson’s 
Cognitive Design System Approach (Embretson, 1998) each item measured a distinct 
cognitive process (e.g., evaluating if-statements), with prior expectations (see Table 1) of 
which cognitive processes were easier/harder. The answer-options were created as ran-
dom mistakes, or as evaluations of known misconceptions (e.g., executing all visible code, 
rather than evaluating a branch of a conditional statement). For each item type between 
44 and 600 unique items were created.

Figure 1. An example of an if-else-if-met item (see Table 1 for other item types). In this item, children 
execute the statements on the first row (left-left-up), and then decide whether the gnome is standing 
on the orange square or not. If the statement is true the gnome will go left, if not the gnome will go 
down. The statements on the last row are always executed (up-up). Children indicate the correct 
answer (the star) by pressing one of the answers (random order for each response). In this case, the 
heart evaluated the misconception that all instructions were executed, where the diamond evaluated 
the misconception that the “else” component of the algorithm was executed. The remaining time is 
represented by coins, with one coin representing one second. Children were allowed to skip one 
question each session by choosing the “?” button. Examples of all items are available online via https:// 
osf.io/bmf47/.
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Table 1. An overview of the programming concepts included in the Computerized Adaptive Programming 
Concepts Test (CAPCT). Each concept includes one or more item types, which measure distinct cognitive 
constructs. The number (N) of instructions served as a proxy for cognitive load. The combination of cognitive 
construct (item type) and cognitive load (N instructions) is classed as the item level. We established prior 
rankings after consultation with multiple experts in the field of software development and education. 
Posterior ranks were calculated from median difficulty ratings, the development of which is portrayed in 
Figure 3. Visual examples of all items, as well as detailed descriptions of the way answer-options were 
selected, are available via https://osf.io/bmf47/.

Programming 
Concept Item Type Description N Instructions

Prior 
Ranking

Posterior 
Ranking

Sequences Sequences Given a grid with a gnome and rainbow 
depicted; which set of up, down, right, and 
left instructions gets the gnome to the 
rainbow?

1 – 8 instr. 1 2

Debugging Debugging Identification Find which 
one of four 
presented 
answers is 
incorrect in 
the sense 
that it does 
not cause 
the gnome 
to reach 
the 
rainbow.

4 instr. 2

9
Debugging Modification The child is presented with an incorrect set of 

instructions which can be modified by 
changing one pre-selected instruction to 
a different orientation.

5 instr. 3 6

Loops For Loops: 
Known

Matching of for-loop algorithms (i.e., repeat the 
enclosed instruction x number of times) to 
one of four grids.

2 – 4 instr. 4 1

For Loops: 
Unknown

How many times should a set of given 
instructions be repeated for the gnome to 
reach the rainbow?

2 – 4 instr. 5 4

Conditions 
(If 
Statement)

If At: Met Where does the gnome end up? The if- 
statements equals true; the gnome is 
standing on the orange square at the time of 
evaluation – the instructions depicted are 
executed.

3 – 9 instr. 6 5

If At: Unmet Where does the gnome end up? The if- 
statement equals false; the gnome is not 
standing on the orange square during 
evaluation – the instructions depicted are not 
executed.

2 – 8 instr. 7 8

Procedures Procedures Where does the gnome end up? Included in the 
set of instructions is a procedure call. This 
means that the instructions included in the 
procedure (e.g., up, up) are “inserted” when 
the procedure was called.

6 – 8 instr. 8 13

(Continued)
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2.2 Implementation and data collection2

The items were implemented in Math Garden as a game called “Codetaal” with translates 
as “Codelanguage”. As a minimum level of reading ability was required to understand task 
demands, the game was made available to children who were able to add and subtract at 
a grade three level (± 6 years old, US grade 1). On the premises that Dutch children will 
have learned to read at a fundamental level during this phase of their primary school 
education. We should note that the adaptive nature of Math Garden allows children to 
progress to ability levels well beyond their age or grade– thus allowing younger children 
who have reached the specified entry requirements to also play Codetaal. Children were 
free to start and stop playing Codetaal at their own discretion. It is Math Garden policy to 
return players to the home screen after completing ten items: discouraging children from 
over-practicing or neglecting singular abilities. After returning to the home screen, 
children were free to reselect the game and continue playing.

The planned analyses rely on stable data (discussed in more detail in section 3.1), 
requiring a large number of responses per item. As the popularity of games within Math 
Garden vary from time to time, we opted to release the game with a subset of items 
(N = 520; Phase 1), ensuring sufficient data per item to validate the CAPCT. Phase 1 was 
conducted over a period of 101 days until the 2nd of August (2018) and comprised of 
school days (N = 55), weekends (N = 20 days), and national- and school-holidays (N = 26). 
Due to the high volume of responses in Phase 1 (N = 3,744,355), with item ratings 
stabilizing after two days (Figure 2), we felt confident that we could collect the responses 
required to validate the remaining items that had been created (N = 3966; Phase 2). The 
complete item set (N = 4486) will continue to be available to children for the time-being, 
however, the response data was analyzed up until the 1st of June (2019), comprising of 
school days (N = 160), weekends (N = 55 days), and national- and school-holidays (N = 88).

Table 1. (Continued).
Programming 
Concept Item Type Description N Instructions

Prior 
Ranking

Posterior 
Ranking

Conditions 
(If-Else 
Statement)

If Else: If Met Where does the gnome end up? The If 
statement equals true; the gnome is standing 
on the orange square during evaluation – the 
instructions depicted after the if are 
executed, but the instructions after else are 
not.

4 – 12 instr. 9 12

If Else: Else Met Where does the gnome end up? The if 
statement equals false; the gnome is not 
standing on the orange square during 
evaluation – the instructions depicted after 
the if are not executed, but the instructions 
after else are.

4 – 12 instr. 10 11

Multiple 
Agents

Multiple 
Agents

Two agents are placed in a single grid, where 
can they meet each other in the least 
number of steps?

2 – 8 instr. 11 3

Generalization Generalization- 
Regular

The ability of a child to utilize relative directions 
(i.e., take x steps forward, turn left/right) to 
solve the same grids as were included in the 
simple algorithm items.

3 – 8 instr. 12 7

Generalization- 
Reversed

Given a solution algorithm of relative 
directions – which grid shows the 
corresponding problem?

3 – 7 instr. 13 10
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Figure 2. Pairwise correlations between item difficulties on consecutive days (Lag 1). The magnitude 
of the pairwise correlations was plotted over days, with significant dates marked on the x-axis (e.g., “S: 
Summer Holidays” = Start of the Summer Holidays). The red line represents the set of 520 items that 
were launched for Phase 1, the blue line represents the remaining 3966 items of the total item set 
(N = 4486) that were launched for Phase 2. Higher pairwise correlations indicate higher levels of 
stability over days.

Figure 3. The relative difficulty of cognitive constructs (i.e., item types; Table 1) over weeks. The ranks 
were determined based on the median item difficulty per item type. In Phase 1, the total item set 
consisted of 520 items with 20 to 60 items per item type. In Phase 2 we added 3966 items, making 
a total item set of 4486 items, with 44 to 600 items per item type. During Phase 3 (discussed in more 
detail in Section 3.4), we manually reset 52 item difficulties.
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2.3. Exclusion criteria

Math Garden relies on demographic data, especially grade information, to ensure that 
appropriate results are presented to the players. Schools who provide their pupils with 
accounts often use the automated connection between Math Garden and the students’ 
administrative system. This ensures that grade information remains reliable even when 
children move classes, or the next school year starts. Some players (1.7% of the included 
players in this paper) have so-called family accounts; privately owned accounts admini-
strated by their parents. Even with regular reminders, the family accounts tend to show 
more missing and/or inconsistent data (e.g., failing to update the players’ grade at the 
start of a new school year). These anonymous player data showed that some players 
warranted exclusion from further analyses that relied on demographical data.

First, the personal data of 10,039 players were missing. Second, 1,816 players fell 
outside the age range of Dutch primary schools (below 4 or above 13; e.g., teachers) 
and 885 were registered as secondary school students or above (grade above 8; US 
grade 6). Consequently, the data of 12,740 players were excluded from analyses that 
rely on demographic information (e.g., predictors of player ability). Note that the 
responses of these players (8.4% of the total amount of responses) were not removed 
from analyses that relied on response data (e.g., differences in item difficulty), as response 
data are updated on-the-fly (Klinkenberg et al., 2011), and removal of these responses 
would create data irregularities that, for example, prevent accurate analysis of rating 
stabilization (section 3.1.1).

2.4 Data analyses

The primary purpose of the data analyses was to establish the internal validity and 
reliability of the CAPCT. However, before being able to conduct these analyses we first 
established stability of the data. As the adaptive nature of Math Garden allows the 
outcome variables (e.g., item difficulty) to change continuously, we needed to ensure 
that the variance between days was no longer of a conclusion changing magnitude. We 
explored the stability of item difficulties in two ways. First, we computed pairwise 
correlations with Lag 1; a procedure common in time series analysis (e.g., Shumway & 
Stoffer, 2017, sec. 3.1.1). Second, we showed that the relative difficulty of underlying 
cognitive concepts was stable over time in a rank-based analyses (section 3.1.2).

After we established that the data was stable, we explored the construct validity of the 
CAPCT. Embretson discussed that construct validity for cognitive assessments can be 
established by “ . . . the overall fit of a mathematical model. The dependent variable of the 
mathematical model is item performance (i.e., accuracy or response time) and the 
independent variables are the item stimulus features.” (Embretson, 1998, p. 383). In the 
case of the CAPCT the performance of an item was captured in item difficulties as they 
were an aggregation of both accuracy and response times (Klinkenberg et al., 2011), and 
the independent variables were CS concept, Item Type (i.e., cognitive construct), and/or 
the Number of Instructions. The number of instructions that required evaluation was 
included as a proxy for cognitive load. For example, a sequence (easy concept) with eight 
arrows may put a larger strain on the cognitive load than an if-else statement (hard 
concept) with four arrows. Following Embretson’s logic we created four linear regression 
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models with above mentioned parameters (section 3.2). We have computed these models 
on a weekly basis to show that even though the performance measure (item difficulty) 
fluctuates slightly over time, our ability to explain the variance does not.

From these analyses it became evident that we were unable to explain a small portion 
of the variance in item difficulty. We explored this by conducting visual analyses of item 
clusters and response patterns to the items (section 3.3). These analyses then led us to 
conduct an exploratory analysis; the manual reset and follow-up analyses of 52 item 
difficulties (section 3.4).

Our final set of analyses explored the variance in player ability, or in other words how 
well children were able to apply CS and CT concepts in a multiple-choice format. We 
computed seven linear regressions, again on a weekly basis, with the predictors age, gender, 
the number of items completed, and prior mathematical ability (section 3.5). We conclude 
with an analyses of potential gender bias in over- and underperforming on clusters of items.

3. Results

Codetaal was played by 93,341 Dutch children who were between 4 and 13 years old 
(M = 10.2, SD = 1.6, Median = 10) in grades one through eight (M = 5.9, SD = 1.5, 
Median = 6). The players were registered at 3401 different schools, with a minimum of 1 
and maximum of 383 children listed per school (M = 27, SD = 46, Median = 4). The analyzed 
sample (a) included only three of the youngest children (4 years old) generally enrolled in 
Dutch primary schools, (b) spanned across all grades (1 – 8), and (c) included children from 
approximately 50% of all Dutch primary schools (3401 out of 6739; Centraal Bureau der 
Statistiek, 2018). We, therefore, believe that the degree of representation achieved through 
our data collection was an accurate representation of all Dutch primary schools.

Relatively speaking a limited number of children from the lower grades played the 
game. This was most likely due to the set entry requirement which made the game 
available only to children who were able to perform additions and subtractions at a grade 
three level (US grade 1; see section 2.2). Therefore, when viewing the results, one should 
take into account that the children from grades one and two are likely performing at 
a level well beyond their peers. 

The children provided 14,154,189 responses. Each unique item (N1 = 520, N2 = 3966) 
was responded to between 506 and 109,516 times (M = 3155, SD = 6296, Median = 1848). 
We observed a ceiling effect for the best players in our sample. For 7.2% of the children, 
the content was too simple as indicated by them performing above the difficulty level of 
99% of the items. This ceiling effect has had minor effects on the results, which we will 
discuss in section 3.2.

The code and outcome of all analyses below are available via the Open Science 
Framework (https://osf.io/bmf47/). These files include colored and zoomable figures; 
descriptives; additional visualizations, general descriptions of data structures, and exam-
ples of all item types.
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3.1. Stabilization of data

3.1.1 Item difficulties
In order to establish the stability over time of the primary outcome variable 'item difficulty' 
we conducted a lagged pairwise correlation analysis (Shumway & Stoffer, 2017). For 
each day an item was played, a new item difficulty was saved. Consequently, on days 
where few responses were logged (e.g., holidays), a range of items may not have had 
updated item difficulties saved. These missing data were excluded in a pairwise manner, 
with the correlations between item difficulties on consecutive days (Lag 1) plotted in 
Figure 2.

The pairwise correlations show multiple interesting patterns. First, as is common in 
Math Garden data, the repetitive fluctuations in correlations are due to a weekend effect, 
with weekends showing higher pairwise correlations than schooldays. This effect, which is 
similar to the increase in correlations seen during holidays, is due to a relatively small 
number of children playing a small number of items. Although the repetitive nature of this 
effect is apparent, it is also evident that the difference between schooldays and holidays/ 
weekends becomes smaller over time declining to less than 0.1 difference.

Second, Figure 2 shows that after a single day of collecting data (122,793 responses) the 
item difficulties have already converged to stable ratings, as indicated by the high pairwise 
correlation (.98) with the item difficulties logged on the second day (137,221 responses). In 
addition, the system proved to “bounce back” from changes to the system. The first change 
we made was expand the content of the CAPCT from 520 items (Phase 1) to 4486 items 
(Phase 2). This caused the pairwise correlation to drop, however the self-organizing nature 
of the system returned to stable ratings after the summer holidays were over and sufficient 
numbers of responses were collected. The second change to the system was to manually 
reset a subset (N = 52) item difficulties in Phase 3 (see section 3.4 for further explanation). 
Again, the pairwise correlation dropped, but quickly returned to highly stable ratings.

3.1.2 The relative difficulty of concepts
For policy makers and educators, it is especially relevant to know which concepts are 
easier or harder, as it may provide useful guidelines towards creating curricula guidelines 
for teaching Computer Science (CS) concepts to primary school children. However, at 
times a CS concept can require different levels of understanding and cognitive processes. 
For example, an If-statement that evaluates to true, requires the same cognitive proce-
dures as a sequence without the conditional statement (executing all depicted instruc-
tions). In contrast, and If-statement that evaluates to false, requires the understanding 
that some instructions are depicted, yet not executed by the agent. We therefore 
conducted the analyses based on the relative difficulty of the cognitive constructs in 
the different item types (see Table 1). We computed ranks based on the median item 
difficulty of each item type. As the sample size between, and the variance within item 
types varies greatly (e.g., Procedures; N = 44, SD = 2.03, Debugging-Identification; N = 100, 
SD = 0.25) we have refrained from conducting significance analysis (Brunner et al., 2018). 
Rather, we have plotted the ranks for each day that data was collected (N = 404) to show 
that the relative difficulty of item types is stable, though interchangeable in some cases 
(e.g., For-Loop-Known, Sequences, Multiple-Agents; Figure 3). The interchangeability of 
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ranks between item types is discussed in more detail in section 3.3 where we show how 
items cluster together within and across item types.

3.2. Internal validity of the CAPCT

In section 3.1 we showed that the data was stable over time – thus allowing for internal 
validity analysis of the CAPCT. Following Embretson’s logic for validating cognitive 
assessments, we fitted four different linear regressions. All models seek to explain the 
variance in item difficulty, as this aggregates the performance parameters „accuracy„ and 
“response time” (Embretson, 1998; Klinkenberg et al., 2011).

As the CAPCT measures understanding of CS concepts, the first model explores the 
predictive value of Computer Science (CS) concepts as a whole (see Table 1). However, as 
discussed above, we consider the CS concepts too broad a clustering. The second model 
therefore explored the predictive value of the different cognitive constructs (i.e., item 
type). In the third model, we have included the number of instructions depicted in the 
algorithm as a proxy for cognitive load. All arrows, conditional-, and loop-statements 
count as an instruction. This third model thereby accounts for the possibility that an easy 
construct with eight arrows may be more difficult than a difficult construct with 2 arrows. 
The fourth model additionally includes the number of item responses (NIR) of each item. 
We noticed that at times items are more difficult than others for no apparent reason other 
than that they have been responded to a significant amount more (see section 3.4 for 
further explanation).

The results of the linear regression analyses of the last day are listed in Table 2. In 
addition, we have plotted the explained variance of each of the models over time in 
Figure 4.

The Figure and Table show that the fourth model – taking into account cognitive 
construct (i.e., item type), cognitive load (Number of Instructions), and the Number of Item 
responses – always outperforms the other models. Interestingly, the difference between 
Model 3 and 4 disappears after a manual reset of item difficulties in Phase 3. Note that the 
lower explained variance in phase 2 and 3, compared to phase 1, is due to the increase in 
the number of items and thus to be expected.

3.3 Cluster analysis

In the previous section we saw that the variance in item difficulty was explained for ± 75% 
by the cognitive construct (item type), Number of Instructions, and the Number of Item 
Responses (NIR). However, in section 3.1 we also saw that the relative difficulty of item 

Table 2. An overview of the four linear regressions at the time of data-analysis. The model with the lowest 
AIC and BIC is preferred (model 4; bold). For an overview of the different CS concepts, item types, and 
number of instructions please see Table 1.

Model df R2 Adj. R2 AIC BIC

CS Concepts 9 0.60 0.59 20,395 20,453
Item Type (IT) 14 0.64 0.63 19,940 20,030
IT + N Instructions (NI) 15 0.74 0.74 18,466 18,562
IT + NI + Number of Item Responses (NIR) 16 0.75 0.75 18,295 18,398
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types were at times interchangeable. We, therefore, explored the variance of item diffi-
culty within and between items that measure the same cognitive construct (i.e., item type) 
and have the same number of instructions depicted (our proxy for cognitive load; 
Figure 5).

The item difficulty scale, which is on the same scale as player ability, is centered at 0 but 
unconstrained in its’ limits. The scale is directly influenced by the number and ability/ 
difficulty of players and items. Consequently, an absolute score of „5„ will provide little 
information. Which is, in fact, similar again to Chess ratings; a score of 2600 offers little 
information about ability, unless you know the mean and standard deviation of chess 
ratings. Similar, an item with score of 5 is interpreted as difficult only when you know that 
1.7% of the 4000+ items were more difficult than that. We thus discuss item difficulty and 
player ability from a relative perspective rather than absolute.

Figure 5 provides valuable insight into what makes questions easy or difficult. When 
comparing these results to those in Figure 3 (the stability of item type ranks over 
time), we should note that the clusters are not directly comparable. In Figure 3, all 
item types were grouped together, regardless of the number of instructions in each 
question. The current figure does show however that the medians of clusters lie very 
close together, and thus are likely to be interchangeable given the minor variations of 
the adaptive algorithm. From the presented visualization additional effects become 
noteworthy.

First, some clusters exhibit bimodality (e.g., Sequence_2– the third row from the 
bottom). We explored the difference between these modes by visualizing each item, 
including the response patterns made by the children as a percentage of the given 
answers. For the Sequence items it was quickly evident what made a question easy or 
hard; did the gnome make a turn? To illustrate; the easy items were the items where 

Figure 4. The explained variance (Adjusted R2) for each of the four linear regressions on a weekly basis. 
Significant dates were marked on the x-axis (e.g., “S: Summer Holidays” = Start of the Summer 
Holidays).
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the gnome travelled in a single direction (e.g., “up-up”), while the harder items were 
those where the gnome travelled in two directions (e.g., “up-right”). However, there 
are other clusters, such as the “Generalization-Regular”, where not only did we not find 
an explanation for the bimodality, nor were we able to explain the patterns of 
(singular) outliers. The inability to explain why (singular) outliers and bimodalities 
occurred led us to initiate Phase 3; manually resetting item difficulties for outlying 
items.

3.4. Exploratory analysis: phase 3

The two primary reasons for conducting Phase 3 were the significant predictive value of 
Number of Item Responses on item difficulty (section 3.2), and our inability to explain 
patterns of (singular) outliers (section 3.3). The aim of Phase 3 was therefore to explore 
whether these items were outliers due to their content or whether other parameters 
were influencing item difficulties. We reset 52 items to the median item difficulty of the 
respective CS Concept clusters (3 x Multiple-Agents, 4 x If-At-Met, 5 x Debugging- 
Identification, 5 x If-Else-If-Met, and 35 x Generalization-Reversed). If items were true 
outliers, after a manual reset, they would migrate again to their phase 2 difficulty (i.e., an 
outlier position). This would happen, for example, if an item was tagged with an 
incorrect answer, or had duplicate answer options. We determined extreme outliers 
based on a visual analysis of Figure 6, where the orange X’s represented the old 
situation.

From the data it becomes apparent that the manual reset was effective in the sense 
that the outlying items remained stable among their peers. Consequently, after Phase 3, 
the unexplained bimodality of Generalization-Reversed no longer existed. However, an 
undesirable consequence of Phase 3 was that other items started to drift away from their 
clusters. This effect was most visible among the more complicated items, such as the 
Procedures.

The primary reason for this drift is the ceiling effect with 7.2% of the players out-
performing 99% of the items. Such a mismatch between subjects and test content in IRT 
and computerized testing is always problematic. The manual reset of Phase 3 demon-
strated that the items were outliers due to other effects than design mistakes (e.g., all 
answers being incorrect). However, resetting items unfortunately is only a temporary 
solution. Permanent solutions include the exclusion of outperforming players from the 
game (a reasonable approach seeing that they “passed” the test) or adding more difficult 
items. In a future version of the CAPCT we will opt for the latter solution by converting the 
CAPCT to an (interactive) open-answer format.

3.5. Reliability: what predicts player ability?

The main purpose of the CAPCT was to measure the extent to which children understand 
common programming concepts. Our final analyses were therefore concerned with the 
extent to which we can predict the ability of children from the available player 
characteristics.
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3.5.1. Age x gender
We first explored the effects of age (5 – 13) and gender (male/female) on player ability 
(continuous) with a Wilcox non-parametric independent two-way ANOVA with 20% 
trimmed means (Mair & Wilcox, 2019). The distributions of players across these groups 
are displayed in Figure 7. We excluded the four-year old users from the analysis because 
the number of users in each group (two females, one male), did not allow us to compare 
means. The analysis showed evidence for main and interaction effects (F (1, 93,340) = 51, 
p < .001). On average, males (M = 1.7, SD = 4.5) outperformed females (M = 0.46, SD = 3.1; 
F (1, 93,340) = 90, p < .001), and children in the higher grades generally attained higher 
levels of ability (F (7, 93,340) = 6028, p < .001). There is a small interaction effect indicating 
an increasing gender difference with age.

3.5.2. Prior ability
The ANOVA showed that gender and age predicted player ability, but prior levels of ability 
may also play a role. Ideally, prior ability would be measured by pre-testing CT or CS skills 
(e.g., the Computational Thinking test; Román-González, 2015), or via self-report of 
programming experience. Such estimates of prior ability were not possible within the 
Math Garden environment – but we do have access to players’ scores on other games. As 
a proxy for prior ability, we chose the games Addition and Subtraction, which also serve as 
the entry criteria for new players (section 2.2). Prior ability was established as the last 
standardized score attained in the two months prior to first playing Codetaal. With 
a maximum of ± 25 games available to a child, data sparsity arises from allowing children 
to freely choose which games to play (see the drop in N’s in Table 3).

Figure 7. An overview of the achieved player abilities as differentiated by age and gender. Each player 
is represented by a data-point, with group statistics (median, and 1st and 3rd quartiles) displayed by 
the violin- and boxplots. The top x-axis describes the difference in mean abilities of gender per age- 
group. Note; there are only three players of age 4.
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In order to explore the effect of prior ability beyond gender and age effects, we 
computed seven linear regression models of player ability. We first explored the effects 
of age (continuous) and gender (male/female). We then added the Number of Responses 
(NoR) made by a player to the predictive model – which was also a predictor of item 
difficulty (section 3.2). The predictor NoR was log transformed to normalize the positively 
skewed distribution. Model 6 and 7 then take prior ability into account (Table 3).

The number of players per week varies greatly. For example, during the Christmas 
holiday ± 1.000 players were included in the regression models, which is in sharp contrast 
to other weeks (M = 8.344, SD = 5,874). Differences in the number of players per week 
were expected, as children were free to choose which games to play and may only have 
played during school hours. For this reason, when talking about the predictors of player 
ability, we will discuss average explained variance. The longitudinal analysis, which was 
similar to the item analyses in section 2.3, is available in the online Appendix (https://osf. 
io/bmf47/).

3.5.3. Gender bias in item reponses
Math Garden collects a range of data, including whether the players’ accuracy (correct/ 
incorrect) and speed when answering an item were above or below expectation. This 
expectation is based on the current ability of the player and the difficulty of the item (for 
the formula for expected score see Maris & van der Maas, 2012). In general, the difference 
between scores and expected scores should be zero, but it is possible that a player or 
a group of players systematically over- or underperform on specific items or sets of items. 
The 14 million records collected for Codetaal thus allow us to explore whether different 
groups of players consistently perform above or below expectation on specific item clusters.

In the following analysis we explore under- and overperformance of gender (Male, 
Female) on clusters of items. We chose to conduct two different clusters: items that 
measure the same underlying constructions (item types; see Table 1) and items that 
require the same cognitive load (N Instructions). We computed the under-/overperfor-
mance for each record with known gender information (N > 12,000,000). Some of these 
players, most of whom are outperformers, have responded extremely often to a single 
item (e.g., > 400 times). By averaging their responses, we reduce the impact these players 
may have on the analysis. The gender bias was computed from differences in average 

Table 3. An overview of the linear regressions of player ability. The model with the lowest AIC and BIC is 
preferred (model 7; bold). Mean and SD adjusted R2 were computed from the weekly analyses available 
via https://osf.io/bmf47.

Model df R2 Adj R2 AIC BIC N
Mean 

Adj. R2
SD 

Adj. R2

1: Age 2 0.10 0.10 518,310 518,328 93,341 0.18 0.09
2: Gender 3 0.10 0.10 518,006 518,034 93,341 0.18 0.07
3: Age x Gender 5 0.16 0.16 511,039 511,086 93,341 0.26 0.10
4: Number of Responses (NoR) 2 0.21 0.21 506,210 506,229 93,341 0.29 0.08
5: NoR + Age x Gender 6 0.49 0.49 463,970 464,026 93,341 0.58 0.05
6: Addition + Subtraction (Prior Ability) 3 0.17 0.17 349,955 349,982 63,802 0.28 0.11
7: NoR + Age x Gender + Prior Ability 8 0.57 0.57 308,815 308,888 63,802 0.64 0.05

Note: the Number of Players (N) included in Models 1 – 5 differs from Models 6 – 7. The data sparsity results from free 
playing choice – some players will not have played Addition and Subtraction in the two months prior to playing 
Codetaal.
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score per gender per item. Figure 8 shows the mean gender bias for all the items in 
a cluster, with the error bars indicating the 95% Confidence Interval of the mean.

The scoring scale, upon which Figure 8 is based, reaches from −1 to 1; the found 
gender biases were thus relatively small. The results, however, are based on large samples 
sizes (N’s per cluster) with aggregated scores from more than 12 million responses. The 
magnitude of the data therefore allows for some preliminary evidence of subtle gender 
bias effects that appear to be related to the difficulty of items/clusters.

Table 2 (section 3.2) shows that the combination of Number of Instruction (Figure 8A) 
and Item Type (Figure 8B) explains 74% of the variance in item difficulty. This makes the 
subtle gender effects even more interesting. The Number of Instructions shows a clear 
pattern where easier items (low cognitive load) see more over-performing male players 
than female players (Figure 8A). At the same time, items with 7 – 10 instructions (high 
cognitive load) show more over-performing female players. Figure 8B, however, shows 
that the relative difficulty of the measured CS concept shows a less pronounced and more 
random relationship with gender bias. It appears as if most concepts see over-performing 
male players, while three distinct concepts show predominantly over-performing female 
players. A possible explanation is provided in the discussion.

4. General discussion

In the current study, we sought to create and validate a new assessment of programming 
concepts comprehension suited for (Dutch) primary school children (ages 4 – 13); the 
Computerized Adaptive Programming Concepts Test (CAPCT). Overall, the CAPCT (4486 
items) showed good psychometric qualities. Since across the item set, 75% of the variance 
in item difficulty could be explained by differences in item characteristics, internal validity 
appears to be high (Embretson, 1998). On average, we were able to explain 64% of the 
variance in player ability, taking into account the age, gender, number of responses, and 
prior mathematical ability of players.

4.1. Items

Our data showed that the CAPCT was highly reliable with item difficulties remaining 
stable over time. The CAPCT may thus reliably be used by researchers and educators to 
estimate the understanding of programming concepts in (Dutch) primary school children. 
We should note, however, that the construct validity of certain Computer Science (CS) 
Concepts warrants further exploration. For example, the prior difficulty estimations of our 
experts, did not match the data-based posterior rank of the concept “Multiple-Agents”. 
When looking at the items post-hoc,3 it becomes evident that the intended concept 
Multiple-Agents (“The ability to identify that two or more conditions must be true, so that 
task demands can be met. For example; a scale can only be balanced when two weights of 
equal weight are placed at either end of the scale”; see Appendix A), may not have been 
measured by these items. The data, however, also showed that the items themselves were 
not the problem; they were highly stable and clustered well together (Figure 6). Therefore, 
rather than dismissing these items, we propose that these items were in fact a different 
way of measuring the understanding of basic Sequences.
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From the differences in expert estimated prior-ranks, and data based posterior-ranks 
we also learned that adult experts may not be the best judges of what the primary school 
children understand of programming concepts. This calls for more data driven 
approaches such as the current study, and the need for more complicated content. We, 
for example, did not include concepts such as recursion because we believed them to be 
too complicated for primary school children to understand. Further research will have to 
demonstrate, if we were correct in our assumptions, or whether children are more capable 
than we expected.

In conclusion, even though some constructs warrant redefinition, the items themselves 
are highly reliable and retain a stable difficulty over time.

4.2 Users

Our data showed that, on average, we could explain 64% of the variance in user 
ability based on age, gender, the number of responses, and prior mathematical 
ability of players. With an average of 28% of the variance explained by differences 
in the number of responses made. The fact that more responses lead to higher 
levels of ability may provide evidence for a (self) learning trajectory. Such evidence 
is of value to the educators and policymakers seeking to implement programming 
as part of (formal) education, as it provides concrete guidelines about how one 
could build up a programming-oriented lesson plan. However, external validity 
studies are required to verify whether the found trajectory was merely 
a byproduct of the assessment design, or whether the found trajectory replicates 
when utilizing different assessment measures (e.g., the Computational Thinking 
test; Román-González, 2015).

In creating the new assessment, we aimed to reduce the resources required to 
measure understanding of programming concepts. To do so, we opted for 
a multiple-choice format which allows easy administration and scoring. However, 
programming ability is often referred to in a problem-solving context (Chang, 
2014), where one actively searches for a solution, without being provided with 
explicit guidelines as to what the solution should be. The adopted multiple-choice 
format provided players with answer possibilities, thereby considerably reducing 
the search-space available for finding the correct solution. Future research might 
thus explore whether open-ended questions (e.g., creating the algorithms by drag-
ging arrows to an answer box) will result in similar item difficulties and CS concept 
ranking as we found in the current study. Adopting open-answer formats with 
increased search-spaces may also resolve the issue that approximately 7.5% of 
the users outperformed 99% of the items (a ceiling-effect), thus creating 
a measurement that is suited for a larger range of abilities.

In section 3.5.3 we explored the gender bias of different item clusters; the Number of 
Instructions (proxy for cognitive load) and the item type (CS construct). Figure 8A showed 
a clear pattern where items with fewer steps to process (low cognitive load), on average, 
saw more over-performing male players. In contrast, items with more steps to process (high 
cognitive load) showed more over-performing female players. A possible explanation for 
these subtle gender effects is a gender difference in the applied speed-accuracy trade-off.
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The algorithm behind Math Garden computes ability as a function of accuracy (correct/ 
incorrect) and response time (Klinkenberg, 2014). A player thus receives the optimum 
score by responding both accurate and fast. However, to discourage guessing, the scoring 
algorithm also penalizes players for giving the wrong answer by retracting the number of 
coins earned (see Figure 1). The speed-accuracy trade-off necessary to navigate the Math 
Garden algorithm may cause differences in response patterns (fast/slow). In fact, prior 
research of multiplication items demonstrated that male players were more likely to give 
a fast answer than female players (Hofman et al., 2018). If items with fewer instructions 
require less cognitive processing, faster speed-accuracy trade-offs may be rewarded as 
“hasty” and “slow” thinking may lead to the same accuracy. However, items with more 
instructions to process may see higher accuracy in those that are “slow” rather than 
“hasty” players. Research will have to determine whether the speed-accuracy trade-off in 
Codetaal and/or Math Garden is indeed different across genders and may explain sys-
tematic but subtle under- and overperformance.

In Figure 8B we saw that Multiple-Agents, If-At-Met, and If-Else-If-Met clusters saw 
relatively more female over-performance than male over-performance. We are not sure 
why this may be the case. The difficulty of the Multiple-Agents and If-At-Met items falls 
neatly together with male over-performing constructs (e.g., Sequences; Figure 6). And in 
fact, if the same cognitive strategy is applied to Sequence and If-At-Met items; they would 
both result in the correct answer. Future research will have to uncover whether male and 
female players adopt the same strategies to solve the items. This could be done, for 
example, by using mouse tracking technologies to study underlying thought processes 
(e.g., de Mooij et al., 2020).

4.3 Future research

In this paper we have presented the first steps towards validating a new assessment of 
programming concepts understanding; the Computerized Adaptive Programming 
Concepts Test (CAPCT). The potential of the CAPCT is great, but future research has to 
determine when the CAPCT is/isn’t suited to determine understanding of programming 
concepts.

We created the CAPCT item set with the intention of allowing researchers and teachers 
to create their own paper-and-pencil tests (materials available via https://osf.io/bmf47/). 
However, paper-and-pencil tests are often non-adaptive and include only a limited num-
ber of items (e.g., 20). Extra validation studies are required to determine the validity of 
a non-adaptive CAPCT, including the effects of non-randomized answer options. After all, 
in Math Garden the answer options are randomized so that the difficulty of the item is not 
determined by the position (1 – 4) of the correct answer option. It stands to reason that 
paper-and-pencil tests will carefully have to balance the position of the correct answer 
options among items that measure the same cognitive construct.

The size of the CAPCT item bank further has the potential to create non-adaptive 
paper-and-pencil tests that measure understanding of single CS concepts (e.g., If-At). 
Because the answer options include common misconceptions (e.g., executing all visible 
arrows) as the incorrect answers, repeated errors may signal teachers which instructions 
their pupils may benefit from most. Research could explore whether teachers could 
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actually benefit from informal testing of single CS concept assessments and determine 
the consequential validity of the CAPCT for everyday use.

A third focus should be on establishing the convergent and divergent validity of the 
CAPCT versus other available assessments. Román-González and colleagues already con-
ducted a convergent validity study of the Computational Thinking test, the Bebras, and 
Dr. Scratch (Román-González et al., 2019). However, a large-scale international study 
across all six existing and CAPCT assessments would greatly benefit the field. 
Comparing results across different nationalities may also shed light on cross-cultural 
and language-based differences in the understanding of block-based programming 
languages.

Convergent and divergent validity studies should be considered from the perspective 
of multiple-choice assessments, but also from the perspective of natural programming 
contexts. For example, the multiple-choice questions of the CAPCT can easily be con-
verted to an open-answer enviroment (i.e., drag-and-drop). In an open-answer environ-
ment is is easy to constrict the search-space for the correct answer by allowing players to 
use only a limited set of building blocks. Comparing the results of multiple-choice and 
(un)restricted open-answer items may shed light on how multiple-choice assessments 
compare to real-life programming contexts.

The method of data collection did not lend itself for analysis of the effect of prior 
programming and CS experience. Nor were we able to determine whether children with 
high levels of ability on the Codetaal game would also demonstrate high levels of ability 
in other programming contexts (e.g., creating a game of pong with Scratch; Resnick 
et al., 2009). The significance of prior Mathematical ability on CAPCT ability ratings may 
indicate the need for external validity research of prior CT/CS or programming ability on 
ability.

5. Conclusion

Altogether the current study and the created assessment take a significant step towards 
programming concepts understanding assessments that are generic, easy to implement, 
and low in the required resources. The Computerized Adaptive Programming Concepts 
Test (CAPCT) showed good psychometric qualities with 75% of the variance in item 
difficulty explained by item characteristics, and an average of 64% of the variance in 
player ability explained by demographical data, number of responses, and prior mathe-
matical ability. As children proved more able than we expected, future versions of the 
CAPCT will include more complicated concepts and open-answer questions.

Notes

1. Available via the Open Science Framework: https://osf.io/bmf47.
2. Before conducting the study, ethical approval was granted by the Ethics Review Board from 

the Psychological Methods department at the University of Amsterdam (2018-PML-8835). 
Users of Math Garden provide informed consent prior to using the products and have the 
option to opt-out of their data being used for research.

3. We have created overview images of each item, together with response percentages, to allow 
for post-hoc exploration. These overviews are available via https://osf.io/bmf47.
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Appendix A

We compiled a list of 19 programming concepts that were deemed appropriate for evalua-
tion in primary school children (ages 4 – 13). The list was compiled after an extensive 
literature study and consultations with experts in the field of Computer Science, Education, 
Cognitive Development, and Game Design. From these concepts, seven (denoted with an *) 
were included in the Computerized Adaptive Programming Concepts Test (CAPCT). The other 
concepts were excluded based on their inability to be assessed within the design constraints 
(section 2.1). 
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ABILITY OPERATIONAL DEFINITION

Abstraction The ability to recognize when a specific algorithm may be altered – by the inclusion of parameters – to 
meet a wider range of task demands. For example; one can walk a square of size 10 by executing “Do 
4 times; walk 10 steps forward, turn 90 degrees left.”. Abstraction occurs when the specific indices are 
swapped for general parameters: “Do x times, walk y steps forward, turn z degrees left.” By entering 
values for x, y, and z, a wider range of task demands (e.g., walk a triangle) can be met by the same 
algorithm.

Algorithm* In its simplest form, algorithms are a sequence of instructions which – when executed – will resolve the 
problem at hand. As of such, all items that require the execution of two or more instructions are 
considered algorithms. 
[Included as “Sequences”]

Conditionals* If-conditions: a block of code is executed only when a condition is met. For example; if age is below 18 say 
“You are a child” -> consequently nothing will be said if the age is above 18. 
If-else conditions: a block is executed when a condition is met, whereas a different block is executed in 
all other cases. For example, if age is below 18 say “You are a child”, else say “You are an adult”-> 
consequently depending on age the message will be “You are a child/adult”. Note: in contrast to the 
if-condition a message will always be said.

Data Data Structures: The ability to identify the logical data structures for a given context. For example, storing 
one’s birthday wishes in a list, as opposed to separate variables named “wish_1 = . . ., wish_2 = . . . ”. 
- strings [e.g., a name, a place, a color] 
- numbers [e.g., birthdates, ages, house-numbers] 
- unordered lists [e.g., groceries, all names in a class, all streets in a town] 
- ordered lists [e.g., length of family members, finish positions in a competition] 
Data Properties: The ability to understand inherent properties of data types. For example; one cannot 
add a number (1) to a string (“a”). 
Data Probability: The ability to differentiate between probable and improbable data. For example, the 
data for all the names in a class are improbable to contain 20 x “Gregg”.

Debugging* The ability to identify incorrect algorithms (i.e., algorithms that do not meet task demands), and modify 
them so that task demands are met.

Effectivity The ability to distinguish between correct solutions (i.e., task demands are met) and incorrect solutions 
(i.e., task demands are not met). 
[Similar to: “Debugging” with the exclusion of modification abilities]

Efficiency The ability to identify the most efficient solutions, in the sense that efficiency constitutes the number of 
instructions required to meet task demands (e.g., use of loops and functions to reduce the number of 
instructions), or in the sense that real-life resources (e.g., time or energy) are reduced to a minimum.

Events The ability to account for trigger-based behaviors; conditionals are specified which – when true – will 
elicit distinct sets of behaviors. For example; “”walk” [event] until “apple” [event], then execute “eat 
apple””.

Functions The ability to identify the output of a function given the input (i.e., parameters). For example; the 
function “add 2” -> [output = x + 2] will return 4 for x = 2, and 12 for x = 10.

Generalization* The ability to recognize when problems require the same solutions, or when the application of the same 
algorithm in different situations will result in equivalent outcomes. 
[Similar to “Abstraction” with the exception that problems are concrete instead of 
abstract during “Generalization”]

Loops* Use of infinite-loops (i.e., repeat a behavior continuously). For example; an automatic clock repeats “add 
one minute” continuously. 
Use of for-loops (i.e., repeat the execution of a block of code). For example; repeat 4 times “draw one 
stroke forward, turn left” (drawing a square). 
Use of while–loops (i.e., repeat the execution of a block of code while a condition is met). For example; 
walk forward while no obstacles encountered.

Modularization The ability to identify segments of code/instructions that are repeated at multiple phases of the 
algorithm. For example; “stopping at a traffic light” is a behavior that may occur at multiple phases 
of cycling through a town. 
[Similar to “Procedures” with the exception that procedures require an understanding of 
the behaviors included, whereas “Modularization” is simply the recognition of repeated 
components.]

Multiple 
Agents*

The ability to identify that two or more conditions must be true, so that task demands can be met. For 
example; a scale can only be balanced when two weights of equal weight are placed at either end of 
the scale.

Ordering The ability to order given data according to a specified criterion. For example; ordering everyone in your 
class by birthdate.

(Continued)
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ABILITY OPERATIONAL DEFINITION

Parallelization The ability to recognize that a process may be executed more efficiently (time and resources) when 
multiple processes are executed simultaneously. For example; two people wish to do laundry (wash & 
dry). Although both can wait their turn, the process will be faster if the second person starts washing 
while the first uses the drier.

Pattern 
Recognition

The ability to identify patterns of meaningful data amongst distractors. For example; identifying the 
sequence 123 in the data 835-476-123-895

Procedures* The ability to identify a sub-routine – a section of stand-alone instructions in a larger algorithm. For 
example; “move left, move right” as dancing [procedure] in an algorithm modelling dancefloor 
behaviors. 
[Similar to: “Functions” with the exception that although “Procedures” take input, they do 
not return output.]

Sorting The ability to sort given data into separate categories according to a specified criterion. For example; 
sorting the class into boys and girls.

Variables Variable Assignment: The ability to understand (multiple) assignments to variables. For example; if the 
variable “x” is assigned the value 5, and then is assigned the value 8, what is the value of “x”? Answer: 
8 (the last assignment to the variable is stored). 
Variable Names: The ability to differentiate between informative and uninformative variable names. 
For example; the variable name “right” could indicate properties of a direction (i.e., turning right) and 
correctness.
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