
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Computerized adaptive assessment of understanding of programming concepts
in primary school children

Hogenboom, S.A.M.; Hermans, F.F.J.; Van der Maas, H.L.J.
DOI
10.1080/08993408.2021.1914461
Publication date
2022
Document Version
Final published version
Published in
Computer Science Education
License
CC BY-NC-ND

Link to publication

Citation for published version (APA):
Hogenboom, S. A. M., Hermans, F. F. J., & Van der Maas, H. L. J. (2022). Computerized
adaptive assessment of understanding of programming concepts in primary school children.
Computer Science Education, 32(4), 418-448.
https://doi.org/10.1080/08993408.2021.1914461

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:14 Apr 2023

https://doi.org/10.1080/08993408.2021.1914461
https://dare.uva.nl/personal/pure/en/publications/computerized-adaptive-assessment-of-understanding-of-programming-concepts-in-primary-school-children(915af17e-1e85-4089-84df-d7a8b114dd9b).html
https://doi.org/10.1080/08993408.2021.1914461

ARTICLE

Computerized adaptive assessment of understanding of
programming concepts in primary school children
Sally A. M. Hogenboom a, Felienne F. J. Hermans b and Han L. J. Van der Maas c

aInstitute for Logic, Language, and Computation, Faculty of Humanities, University of Amsterdam,
Amsterdam, Amsterdam, The Netherlands; bLeiden Institute of Advance Computer Sciences, Faculty of
Science, University of Leiden, Leiden, CA, The Netherlands; cDepartment of Psychological Methods, Faculty
of Social and Behavioral Sciences, University of Amsterdam, Amsterdam, Amsterdam, The Netherlands

ABSTRACT
Background and Context: Valid assessment of understanding of
programming concepts in primary school children is essential to
implement and improve programming education.
Objective: We developed and validated the Computerized
Adaptive Programming Concepts Test (CAPCT) with a novel appli-
cation of Item Response Theory. The CAPCT is a web-based and
resource-efficient adaptive assessment of 4489 questions measur-
ing: the understanding of basic sequences, loops, conditions (if & if-
else statements), debugging, multiple agents, procedures, and the
ability to generalize to a new syntax.
Method: Data was collected through an existing online adaptive
practice and monitoring system called Math Garden. We collected
14 million responses from 93,341 Dutch children (ages 4 - 13).
Findings: The CAPCT demonstrated good psychometric qualities
because 75% of the variance in question difficulty was explained by
differences in item characteristics. The CAPCT demonstrated
robustness against adding new participants and adding new
items. Differences in player ability (i.e., understanding of CS con-
cepts) were due to differences in age, gender, the number of items
played, and prior mathematical ability.
Implications: The CAPCT may be used by teachers to identify the
level of programming concept understanding of their pupils, while
researchers may use the CAPCT to construct and validate effective
teaching resources.

ARTICLE HISTORY
Received 18 September 2020
Accepted 6 April 2021

KEYWORDS
Computational thinking;
programming; elementary
education; computerized
assessment

1. Introduction

Companies, educators, and policymakers alike call for the inclusion of Computer Science
(CS), Programming, and Computational Thinking (CT) education in (primary) school
curricula (Google for Education, 2020; SLO, 2015; Wing, 2006). Teaching children to
program and solve problems computationally prepares them for the future job market
(World Economic Forum, 2016; sec. Skill Stability), and increases logical and abstract
thinking, problem-solving ability, and creativity (Cao et al., 2015; Durak & Saritepeci,

CONTACT Sally A. M. Hogenboom sally.hogenboom@gmail.com Institute for Logic, Language and Computation
(ILLC), University of Amsterdam, Science Park 107, 1098 XG Amsterdam, The Netherlands
This article has been republished with minor changes. These changes do not impact the academic content of the article.

COMPUTER SCIENCE EDUCATION
2022, VOL. 32, NO. 4, 418–448
https://doi.org/10.1080/08993408.2021.1914461

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any med-
ium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

http://orcid.org/0000-0003-3222-0019
http://orcid.org/0000-0003-0722-0156
http://orcid.org/0000-0001-8278-319X
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2021.1914461&domain=pdf&date_stamp=2022-11-23

2018). CS and CT both require the ability to implement common programming concepts
such as loops and conditionals. CS and CT education promote use of functioning algo-
rithms, but also more conceptual use without computers (e.g., CS Unplugged, 2020). Both
fields therefore share the need for teaching and evaluating the extent to which pupils
understand common programming concepts.

Although efforts have been made to assess programming comprehension in primary
school children; valid and easy to implement assessments are currently lacking (Grover &
Pea, 2013; International Society for Technology in Education (ISTE) & Computer Science
Teachers Association (CSTA), 2011; Tang et al., 2020; Voogt et al., 2017). The lack of valid
assessments prevents researchers from validating and comparing the vast range of
education tools and curricula currently being created (e.g., Chakarov et al., 2019).

This paper covers the construction, data-collection, and internal validation of a new
adaptive assessment of programming comprehension suited for administration at (Dutch)
primary schools (ages 4–13). We developed the Computerized Adaptive Programming
Concepts Test (CAPCT) to measures comprehension of basic sequences, loops, if-
statements, if-else statements, procedures, multiple agents, debugging, and generaliza-
tion to a different programming syntax. The CAPCT is part of an existing adaptive online
measurement environment, called Math Garden, described in more detail in section 1.2

The Math Garden environment has great practical value as an educational tool (simul-
taneously practicing and measuring ability), and scientific value through the collection of
high quantities of rich data on children’s cognitive development (for overviews see
Brinkhuis et al., 2018; Hofman et al., 2018). Over 4000 items were created and internally
validated, advancing the field of CS and CT education in multiple ways. First, teachers may
use the student-reports in Math Garden to gain insight in the individual abilities of their
pupils. The reports indicate where pupils stand compared to the content and their peers.
Math Garden also solves the issues of longitudinal measurement, which is an area that
needs further development in (primary school) CS education (Vivian et al., 2020). Second,
the freely available itemset includes the difficulty estimates for all items.1 This may allow
future research to validate non-adaptive (paper-and-pencil) tests that can measure ability
of students that do not have access to Math Garden. These tests could then be used for
informal testing in classrooms (which CS concept requires further instruction?) or as pre-
and post-tests during research (e.g., the effectivity of lesson plans).

1.1. Assessment of programming concepts comprehension

A wide range of methods have been used to assess Computer Science (CS) comprehen-
sion, programming concept understanding, or Computational Thinking (CT; for overviews
see: Román-González et al., 2019; Tang et al., 2020). However, three main measurement
characteristics prevent extensive use across the field (Grover & Pea, 2013; Voogt et al.,
2017).

First, assessments are often highly resource intensive. For example, behavioral obser-
vations (Bers, 2010; Sáez-López et al., 2019), interviews (Zhong et al., 2016), peer-
assessment (Basogain et al., 2018), and think-out-loud procedures (Atmatzidou &
Demetriadis, 2016) all require one-to-one contact or extensive scoring procedures. For
researchers, this may merely be an inconvenience, yet for teachers it makes monitoring
student ability rather problematic. Automated assessments of code are less resource

COMPUTER SCIENCE EDUCATION 419

intensive (e.g., Dr. Scratch), but focus on the product – which costs time to produce –
rather than directly evaluating concept understanding (Moreno León et al., 2015;
Román-González et al., 2019).

The second problem with current assessments is the lack of validation studies and
specific evaluation criteria (Tang et al., 2020). Tang and colleagues found that 49% of the
96 assessments in their systematic review included reliability evidence, with only 18%
including validity evidence. The lack of internal validation studies, let alone convergent or
divergent validity studies, makes it difficult to estimate how existing measurements of CS/
CT understanding are related.

Finally, assessments were often created for specific software (e.g., Scratch; Franklin
et al., 2013), programming languages, teaching methods (Chang, 2014), or age-groups
(Tang et al., 2020); limiting the use across curricula and educational tools or generalization
between studies.

Some notable exceptions to the issues mentioned above are the Computational
Thinking test (CTt; Román-González, 2015; Román-González et al., 2017, 2018), the
assessment created by Grover and Basu (2017), the Middle Grades Computer Science
Concept Inventory (MG-CSCI; Rachmatullah et al., 2020), the Lean Computational
Thinking Abilities Assessment (LCTAA; Wiebe et al., 2019), the Beginners
Computational Thinking Test (BCCt; Zapata-
Caceres et al., 2020), and the PESS framework (Mannila et al., 2020).

First, these tests are short and consist of multiple-choice items – reducing the resources
needed for assessment and scoring. The LCTAA – partially based on the Bebras competi-
tion (Dagienè & Sentance, 2016)– contains some open-answer items, but clearly defined
correct answers still allow easy scoring.

The abovementioned tests are also exceptions to the lack of validated assessments
(Tang et al., 2020). The tests include validity evidence through Classical Test Theory (e.g.,
factor analyses) and/or Item Response Theory (e.g., Rasch analyses) procedures. The PESS
framework was not yet validated but is promising with regards to the generalizability
problem; it was designed to suit the whole range of Swedish primary school children
(ages 7– 15), refrains from using specific coding languages and/or software (items based
on the Computational Thinking test), and combines both self-efficacy and skill-based
questions.

Finally, the abovementioned tests form exceptions to the generalizability issues
because they rely on block-based and/or textual representations of code for which the
participants do not need prior experience. This has the benefit that measurements can
easily be compared to determine the convergent validity of different measurements
(Román-González et al., 2019).

The abovementioned tests have many positive characteristics that will benefit
researchers and teachers. However, they also have shortcomings that we seek to address
within the Computerized Adaptive Programming Concepts Test (CAPCT). We expanded
the scope of the measurement both in size (4000+ items vs. ± 30 items) and content
(different CS/CT concepts). The large item set provides researchers the opportunity to
create independent pre- and post-tests of equal difficulty (see the discussion in section
4.3). We collected response data across the range of Dutch primary school children(ages
4 – 13), showing that very young children were able to correctly answer questions about

420 S. A. M. HOGENBOOM ET AL.

common programming concepts. Finally, Math Garden allows for adaptive and long-
itudinal measurement of understanding of programming concepts.

When seeking to extend the content of the Computerized Adaptive Programming
Concepts Test (CAPCT) beyond the concepts included in the already available assess-
ments, we encountered a broad range of concepts and abilities associated with CT and CS.
To illustrate, the International Society for Technology in Education (ISTE) & Computer
Science Teachers Association (CSTA) (2011) described CT as – among other skills – the
ability to persist when working with difficult problems. Measuring such an ability is not
only extremely complicated, the ISTE & CSTA were also, to the best of our knowledge, the
only ones to explicitly associate this ability with CT. In contrast, dealing with algorithms
was included as a critical ability in most sources (e.g., Atmatzidou & Demetriadis, 2016,
p. 664; “Algorithm is a practice of writing step-by-step specific and explicit instructions for
carrying out a process. [. . .] selection of appropriate algorithmic techniques is a crucial
part of CT.”). An extensive review of the differences in CT definitions can be found in Tang
et al. (2020).

Selecting which CS/CT concepts to assess was further complicated by the realization
that some concepts were found challenging by undergraduate students, let alone primary
school children (e.g., recursion; Wu et al., 1998). We, therefore, conferred with experts in
the fields of test development, software development, and cognitive development to
compile a list of 19 programming concepts appropriate for assessment in children (see
Appendix A for the operationalization of all concepts), out of which 7 were included in the
CAPCT due to the applied design constraints (section 2.1.2).

1.2. Math garden: web-based adaptive data collection

Assessment of CT and CS ability typically occurs by collecting data in face-to-face settings;
researchers go to schools or have participants visit their lab. Consequently, constraints are
placed on the number of participants included in studies, the scope of the assessment
(large item sets cost more valuable resources), and the representativeness of the sample.
The current study bypasses these issues by collecting data through a web-based platform;
Math Garden (Klinkenberg et al., 2011). Math Garden is an online practice and monitoring
environment that allows children to automate arithmetic and general abilities (e.g.,
multiplication, pattern recognition). Over 2000 Dutch primary schools hold licenses for
their pupils and at times even have mandatory practice sessions scheduled in their weekly
routines.

Math Garden operates on an Elo-based adaptive algorithm (for an introduction see,
Klinkenberg et al., 2011; for the statistical foundation see, Maris & van der Maas, 2012). Elo
rating-systems are common in chess competitions, where each player has a unique rating,
with higher ratings indicating higher levels of ability. When players compete against each
other, based on their respective ratings, each player has an expected probability of
winning the game. After the match, the difference in expected and observed outcome
is used to update the ability estimate (i.e., Elo rating) of each player. The measurement
scale produced by the Elo-rating system is a Rasch-scale, the basic model of item response
theory (van der Linden & Hambleton, 1997). This means that Elo based scales are akin to
the best measurement scales available in psychometrics. In Math Garden the adaptive
algorithm is constructed in such a way that players “compete” against items (i.e.,

COMPUTER SCIENCE EDUCATION 421

questions). If a player answers a question correctly, their ability rating will increase, while
at the same time the difficulty rating of the item will decrease (and vice versa).

Computer Adaptive Testing (CAT) systems often aim for a success rate of 50% to
maximize the evidence collected about a persons’ true ability level (van der Maas &
Nyamsuren, 2017; Wainer et al., 2000). Instead, the Math Garden algorithm strives for
success rates of 60%, 75%, or 90% – depending on the players’ chosen difficulty setting –
to ensure a positive learning experience through maximizing success (cf., Jansen et al.,
2016). To compensate for the loss of information from these higher percentages correct –
the system is less aware of what a person doesn’t know – the Math Garden algorithm
applies an explicit scoring rule for the trade-off between response time and accuracy
(correct/incorrect). All items in Math Garden have a time limit, for some games this is
8 seconds for other 15 or 60 seconds. The score achieved on an item is equal to the
remaining time for an item if the response is correct, and minus the remaining time for
incorrect responses. Player ability, or “winning/losing” from an item is thus determined by
both the speed and the accuracy of the response. Over time this automated scoring rule
ensures that ratings develop to values that indicate the true ability ratings of players and
the difficulty ratings of items, holding information on both accuracy and speed (Coomans
et al., 2016; Maris & van der Maas, 2012).

The adaptive algorithm as described above, is a self-organizing system with multiple
benefits that surpass classic test development procedures. First, the system does not
require pilot testing to establish the difficulty of the item-set, or to gather reference
group data. The item difficulties and reference group data are established on the fly,
with each response leading to a more accurate estimate of the item’s true difficulty and
the reference group ability parameters (Klinkenberg et al., 2011). Second, the system
creates measurement scales that meet the requirements of modern test theory (e.g.,
Maris & van der Maas, 2012). Therefore, estimations of test validity and reliability are not
constrained by keeping the item set and pool of participants constant. Finally, as is
demonstrated in section 3.1.1, the adaptive algorithm was robust against system
changes such as adding a large set of new items and continuously adding new users.
Note, however, that using an adaptive system in itself does not resolve issues that are
common in classical and modern test theory. For example, floor and ceiling effects may
still arise when the content of the test does not match the abilities of the children. This
may happen when children do not understand task demands due to a lack of instruc-
tion being provided, or when children demonstrate higher levels of ability than
anticipated.

Adding the CAPCT as part of the Math Garden platform has benefits that go beyond
the psychometric benefits discussed above. First, the adaptive algorithm and intelligent
item selection allows children to play at their own level of ability. This means that
depending on their responses, children may progress and regress through the items at
their own pace, even encountering the same item multiple times before being able to
answer it correctly (Hofman et al., 2018). Given the adaptive nature of the system, the
large set of children that use Math Garden, and the popularity of the game, we were able
to internally validate a more extensive and diverse set of items than each child would
have been expected to complete in a classic setting. In Phase 1 we analyzed 520 items, in
Phase 2 we increased the set to 4486 items (see section 3.1). Finally, as the game was
made available to all Math Garden users, no active form of participant recruitment was

422 S. A. M. HOGENBOOM ET AL.

required, thereby allowing the participant pool to grow up until the moment of data-
analysis.

1.3. Current study

The primary purpose of the current study was to address the lack of validated and
widely applicable assessments of comprehension of programming concepts in primary
school children (ages 4 – 13). We have created a set of 4486 items that aimed to
measure comprehension of sequences, loops, if-statements, if-else statements, proce-
dures, multiple-agents, debugging, and generalization to a different programming
syntax. Following a two-step procedure, the items (N1 = 520, N2 = 3966) were included
as a game in the adaptive online environment Math Garden, allowing for large-scale
data collection across Dutch primary schools. The real-time estimations of player ability
and item difficulty were used to validate the Computerized Adaptive Programming
Concepts Test (CAPCT) following Embretson’s Cognitive Design System Approach
(Embretson, 1998). In short, this entails using the cognitive constructs underlying each
item as predictors of item difficulty rather than applying conventional analyses based on
external validation tests.

2. Method

In this method section we will first discuss how the Computerized Adaptive Programming
Concepts Test (CAPCT) was created (section 2.1). Then we will discuss how the data was
collected and which exclusion criteria were applied (section 2.2 & 2.3). Finally, the method
section will conclude by describing how the data was analyzed (section 2.4).

2.1. Assessment design

2.1.1. Graphical design
A number of considerations were taken into account while developing the CAPCT. The
target population of primary school children (ages 4 – 13) differs considerably in the
ability to comprehend written instructions. Written instructions are often used for task
descriptions or block based representations (e.g., the Bebras competition; Dagienè &
Sentance, 2016). As this would negatively affect the performance of those with poor
reading abilities, we (a) created a visual syntax style based primarily on symbols, and
(b) kept task instructions as short and consistent across items as possible. During
informal user testing, we learned that layout changes between items negatively
affected children to such an extent that they were no longer evaluating a CS concept,
but rather differences in user interface characteristics. We thus (c) created one format
to which all items adhered. Each item consisted of a question, an image depicting the
current situation (a grid, an algorithm, or a combination of grid and algorithm), and
four answer-options (for an example see Figure 1). Where possible, (d) the incorrect
answer-options (i.e., distractors) were constructed to evaluate common misconcep-
tions. For example, in an if-else statement, the set of instructions that is executed
depends on the evaluation of the conditional statement, executing some instructions
but not others. In this case, a misconception would be to execute all instructions

COMPUTER SCIENCE EDUCATION 423

irrespective of the conditional statement. Finally, we sought to make the game
appealing for all children and thus (e) chose a gender-neutral gnome as the primary
agent.

2.1.2. Content design
The operationalization of all concepts are listed in Appendix A. From this list we excluded
12 concepts they could not be assessed within the specified item format (e.g., data
structures). The CAPCT therefore includes 7 representative programming concepts,
which were assessed by 13 unique item types (see Table 1). In total 4486 items were
generated through custom created R scripts. The design guide provides detailed informa-
tion on the premises of each item type, how the items were created, and how answer-
options were selected (available via https://osf.io/bmf47/). In short, following Embretson’s
Cognitive Design System Approach (Embretson, 1998) each item measured a distinct
cognitive process (e.g., evaluating if-statements), with prior expectations (see Table 1) of
which cognitive processes were easier/harder. The answer-options were created as ran-
dom mistakes, or as evaluations of known misconceptions (e.g., executing all visible code,
rather than evaluating a branch of a conditional statement). For each item type between
44 and 600 unique items were created.

Figure 1. An example of an if-else-if-met item (see Table 1 for other item types). In this item, children
execute the statements on the first row (left-left-up), and then decide whether the gnome is standing
on the orange square or not. If the statement is true the gnome will go left, if not the gnome will go
down. The statements on the last row are always executed (up-up). Children indicate the correct
answer (the star) by pressing one of the answers (random order for each response). In this case, the
heart evaluated the misconception that all instructions were executed, where the diamond evaluated
the misconception that the “else” component of the algorithm was executed. The remaining time is
represented by coins, with one coin representing one second. Children were allowed to skip one
question each session by choosing the “?” button. Examples of all items are available online via https://
osf.io/bmf47/.

424 S. A. M. HOGENBOOM ET AL.

https://osf.io/bmf47/
https://osf.io/bmf47/
https://osf.io/bmf47/

Table 1. An overview of the programming concepts included in the Computerized Adaptive Programming
Concepts Test (CAPCT). Each concept includes one or more item types, which measure distinct cognitive
constructs. The number (N) of instructions served as a proxy for cognitive load. The combination of cognitive
construct (item type) and cognitive load (N instructions) is classed as the item level. We established prior
rankings after consultation with multiple experts in the field of software development and education.
Posterior ranks were calculated from median difficulty ratings, the development of which is portrayed in
Figure 3. Visual examples of all items, as well as detailed descriptions of the way answer-options were
selected, are available via https://osf.io/bmf47/.

Programming
Concept Item Type Description N Instructions

Prior
Ranking

Posterior
Ranking

Sequences Sequences Given a grid with a gnome and rainbow
depicted; which set of up, down, right, and
left instructions gets the gnome to the
rainbow?

1 – 8 instr. 1 2

Debugging Debugging Identification Find which
one of four
presented
answers is
incorrect in
the sense
that it does
not cause
the gnome
to reach
the
rainbow.

4 instr. 2

9
Debugging Modification The child is presented with an incorrect set of

instructions which can be modified by
changing one pre-selected instruction to
a different orientation.

5 instr. 3 6

Loops For Loops:
Known

Matching of for-loop algorithms (i.e., repeat the
enclosed instruction x number of times) to
one of four grids.

2 – 4 instr. 4 1

For Loops:
Unknown

How many times should a set of given
instructions be repeated for the gnome to
reach the rainbow?

2 – 4 instr. 5 4

Conditions
(If
Statement)

If At: Met Where does the gnome end up? The if-
statements equals true; the gnome is
standing on the orange square at the time of
evaluation – the instructions depicted are
executed.

3 – 9 instr. 6 5

If At: Unmet Where does the gnome end up? The if-
statement equals false; the gnome is not
standing on the orange square during
evaluation – the instructions depicted are not
executed.

2 – 8 instr. 7 8

Procedures Procedures Where does the gnome end up? Included in the
set of instructions is a procedure call. This
means that the instructions included in the
procedure (e.g., up, up) are “inserted” when
the procedure was called.

6 – 8 instr. 8 13

(Continued)

COMPUTER SCIENCE EDUCATION 425

https://osf.io/bmf47/

2.2 Implementation and data collection2

The items were implemented in Math Garden as a game called “Codetaal” with translates
as “Codelanguage”. As a minimum level of reading ability was required to understand task
demands, the game was made available to children who were able to add and subtract at
a grade three level (± 6 years old, US grade 1). On the premises that Dutch children will
have learned to read at a fundamental level during this phase of their primary school
education. We should note that the adaptive nature of Math Garden allows children to
progress to ability levels well beyond their age or grade– thus allowing younger children
who have reached the specified entry requirements to also play Codetaal. Children were
free to start and stop playing Codetaal at their own discretion. It is Math Garden policy to
return players to the home screen after completing ten items: discouraging children from
over-practicing or neglecting singular abilities. After returning to the home screen,
children were free to reselect the game and continue playing.

The planned analyses rely on stable data (discussed in more detail in section 3.1),
requiring a large number of responses per item. As the popularity of games within Math
Garden vary from time to time, we opted to release the game with a subset of items
(N = 520; Phase 1), ensuring sufficient data per item to validate the CAPCT. Phase 1 was
conducted over a period of 101 days until the 2nd of August (2018) and comprised of
school days (N = 55), weekends (N = 20 days), and national- and school-holidays (N = 26).
Due to the high volume of responses in Phase 1 (N = 3,744,355), with item ratings
stabilizing after two days (Figure 2), we felt confident that we could collect the responses
required to validate the remaining items that had been created (N = 3966; Phase 2). The
complete item set (N = 4486) will continue to be available to children for the time-being,
however, the response data was analyzed up until the 1st of June (2019), comprising of
school days (N = 160), weekends (N = 55 days), and national- and school-holidays (N = 88).

Table 1. (Continued).
Programming
Concept Item Type Description N Instructions

Prior
Ranking

Posterior
Ranking

Conditions
(If-Else
Statement)

If Else: If Met Where does the gnome end up? The If
statement equals true; the gnome is standing
on the orange square during evaluation – the
instructions depicted after the if are
executed, but the instructions after else are
not.

4 – 12 instr. 9 12

If Else: Else Met Where does the gnome end up? The if
statement equals false; the gnome is not
standing on the orange square during
evaluation – the instructions depicted after
the if are not executed, but the instructions
after else are.

4 – 12 instr. 10 11

Multiple
Agents

Multiple
Agents

Two agents are placed in a single grid, where
can they meet each other in the least
number of steps?

2 – 8 instr. 11 3

Generalization Generalization-
Regular

The ability of a child to utilize relative directions
(i.e., take x steps forward, turn left/right) to
solve the same grids as were included in the
simple algorithm items.

3 – 8 instr. 12 7

Generalization-
Reversed

Given a solution algorithm of relative
directions – which grid shows the
corresponding problem?

3 – 7 instr. 13 10

426 S. A. M. HOGENBOOM ET AL.

Figure 2. Pairwise correlations between item difficulties on consecutive days (Lag 1). The magnitude
of the pairwise correlations was plotted over days, with significant dates marked on the x-axis (e.g., “S:
Summer Holidays” = Start of the Summer Holidays). The red line represents the set of 520 items that
were launched for Phase 1, the blue line represents the remaining 3966 items of the total item set
(N = 4486) that were launched for Phase 2. Higher pairwise correlations indicate higher levels of
stability over days.

Figure 3. The relative difficulty of cognitive constructs (i.e., item types; Table 1) over weeks. The ranks
were determined based on the median item difficulty per item type. In Phase 1, the total item set
consisted of 520 items with 20 to 60 items per item type. In Phase 2 we added 3966 items, making
a total item set of 4486 items, with 44 to 600 items per item type. During Phase 3 (discussed in more
detail in Section 3.4), we manually reset 52 item difficulties.

COMPUTER SCIENCE EDUCATION 427

2.3. Exclusion criteria

Math Garden relies on demographic data, especially grade information, to ensure that
appropriate results are presented to the players. Schools who provide their pupils with
accounts often use the automated connection between Math Garden and the students’
administrative system. This ensures that grade information remains reliable even when
children move classes, or the next school year starts. Some players (1.7% of the included
players in this paper) have so-called family accounts; privately owned accounts admini-
strated by their parents. Even with regular reminders, the family accounts tend to show
more missing and/or inconsistent data (e.g., failing to update the players’ grade at the
start of a new school year). These anonymous player data showed that some players
warranted exclusion from further analyses that relied on demographical data.

First, the personal data of 10,039 players were missing. Second, 1,816 players fell
outside the age range of Dutch primary schools (below 4 or above 13; e.g., teachers)
and 885 were registered as secondary school students or above (grade above 8; US
grade 6). Consequently, the data of 12,740 players were excluded from analyses that
rely on demographic information (e.g., predictors of player ability). Note that the
responses of these players (8.4% of the total amount of responses) were not removed
from analyses that relied on response data (e.g., differences in item difficulty), as response
data are updated on-the-fly (Klinkenberg et al., 2011), and removal of these responses
would create data irregularities that, for example, prevent accurate analysis of rating
stabilization (section 3.1.1).

2.4 Data analyses

The primary purpose of the data analyses was to establish the internal validity and
reliability of the CAPCT. However, before being able to conduct these analyses we first
established stability of the data. As the adaptive nature of Math Garden allows the
outcome variables (e.g., item difficulty) to change continuously, we needed to ensure
that the variance between days was no longer of a conclusion changing magnitude. We
explored the stability of item difficulties in two ways. First, we computed pairwise
correlations with Lag 1; a procedure common in time series analysis (e.g., Shumway &
Stoffer, 2017, sec. 3.1.1). Second, we showed that the relative difficulty of underlying
cognitive concepts was stable over time in a rank-based analyses (section 3.1.2).

After we established that the data was stable, we explored the construct validity of the
CAPCT. Embretson discussed that construct validity for cognitive assessments can be
established by “ . . . the overall fit of a mathematical model. The dependent variable of the
mathematical model is item performance (i.e., accuracy or response time) and the
independent variables are the item stimulus features.” (Embretson, 1998, p. 383). In the
case of the CAPCT the performance of an item was captured in item difficulties as they
were an aggregation of both accuracy and response times (Klinkenberg et al., 2011), and
the independent variables were CS concept, Item Type (i.e., cognitive construct), and/or
the Number of Instructions. The number of instructions that required evaluation was
included as a proxy for cognitive load. For example, a sequence (easy concept) with eight
arrows may put a larger strain on the cognitive load than an if-else statement (hard
concept) with four arrows. Following Embretson’s logic we created four linear regression

428 S. A. M. HOGENBOOM ET AL.

models with above mentioned parameters (section 3.2). We have computed these models
on a weekly basis to show that even though the performance measure (item difficulty)
fluctuates slightly over time, our ability to explain the variance does not.

From these analyses it became evident that we were unable to explain a small portion
of the variance in item difficulty. We explored this by conducting visual analyses of item
clusters and response patterns to the items (section 3.3). These analyses then led us to
conduct an exploratory analysis; the manual reset and follow-up analyses of 52 item
difficulties (section 3.4).

Our final set of analyses explored the variance in player ability, or in other words how
well children were able to apply CS and CT concepts in a multiple-choice format. We
computed seven linear regressions, again on a weekly basis, with the predictors age, gender,
the number of items completed, and prior mathematical ability (section 3.5). We conclude
with an analyses of potential gender bias in over- and underperforming on clusters of items.

3. Results

Codetaal was played by 93,341 Dutch children who were between 4 and 13 years old
(M = 10.2, SD = 1.6, Median = 10) in grades one through eight (M = 5.9, SD = 1.5,
Median = 6). The players were registered at 3401 different schools, with a minimum of 1
and maximum of 383 children listed per school (M = 27, SD = 46, Median = 4). The analyzed
sample (a) included only three of the youngest children (4 years old) generally enrolled in
Dutch primary schools, (b) spanned across all grades (1 – 8), and (c) included children from
approximately 50% of all Dutch primary schools (3401 out of 6739; Centraal Bureau der
Statistiek, 2018). We, therefore, believe that the degree of representation achieved through
our data collection was an accurate representation of all Dutch primary schools.

Relatively speaking a limited number of children from the lower grades played the
game. This was most likely due to the set entry requirement which made the game
available only to children who were able to perform additions and subtractions at a grade
three level (US grade 1; see section 2.2). Therefore, when viewing the results, one should
take into account that the children from grades one and two are likely performing at
a level well beyond their peers.

The children provided 14,154,189 responses. Each unique item (N1 = 520, N2 = 3966)
was responded to between 506 and 109,516 times (M = 3155, SD = 6296, Median = 1848).
We observed a ceiling effect for the best players in our sample. For 7.2% of the children,
the content was too simple as indicated by them performing above the difficulty level of
99% of the items. This ceiling effect has had minor effects on the results, which we will
discuss in section 3.2.

The code and outcome of all analyses below are available via the Open Science
Framework (https://osf.io/bmf47/). These files include colored and zoomable figures;
descriptives; additional visualizations, general descriptions of data structures, and exam-
ples of all item types.

COMPUTER SCIENCE EDUCATION 429

https://osf.io/bmf47/

3.1. Stabilization of data

3.1.1 Item difficulties
In order to establish the stability over time of the primary outcome variable 'item difficulty'
we conducted a lagged pairwise correlation analysis (Shumway & Stoffer, 2017). For
each day an item was played, a new item difficulty was saved. Consequently, on days
where few responses were logged (e.g., holidays), a range of items may not have had
updated item difficulties saved. These missing data were excluded in a pairwise manner,
with the correlations between item difficulties on consecutive days (Lag 1) plotted in
Figure 2.

The pairwise correlations show multiple interesting patterns. First, as is common in
Math Garden data, the repetitive fluctuations in correlations are due to a weekend effect,
with weekends showing higher pairwise correlations than schooldays. This effect, which is
similar to the increase in correlations seen during holidays, is due to a relatively small
number of children playing a small number of items. Although the repetitive nature of this
effect is apparent, it is also evident that the difference between schooldays and holidays/
weekends becomes smaller over time declining to less than 0.1 difference.

Second, Figure 2 shows that after a single day of collecting data (122,793 responses) the
item difficulties have already converged to stable ratings, as indicated by the high pairwise
correlation (.98) with the item difficulties logged on the second day (137,221 responses). In
addition, the system proved to “bounce back” from changes to the system. The first change
we made was expand the content of the CAPCT from 520 items (Phase 1) to 4486 items
(Phase 2). This caused the pairwise correlation to drop, however the self-organizing nature
of the system returned to stable ratings after the summer holidays were over and sufficient
numbers of responses were collected. The second change to the system was to manually
reset a subset (N = 52) item difficulties in Phase 3 (see section 3.4 for further explanation).
Again, the pairwise correlation dropped, but quickly returned to highly stable ratings.

3.1.2 The relative difficulty of concepts
For policy makers and educators, it is especially relevant to know which concepts are
easier or harder, as it may provide useful guidelines towards creating curricula guidelines
for teaching Computer Science (CS) concepts to primary school children. However, at
times a CS concept can require different levels of understanding and cognitive processes.
For example, an If-statement that evaluates to true, requires the same cognitive proce-
dures as a sequence without the conditional statement (executing all depicted instruc-
tions). In contrast, and If-statement that evaluates to false, requires the understanding
that some instructions are depicted, yet not executed by the agent. We therefore
conducted the analyses based on the relative difficulty of the cognitive constructs in
the different item types (see Table 1). We computed ranks based on the median item
difficulty of each item type. As the sample size between, and the variance within item
types varies greatly (e.g., Procedures; N = 44, SD = 2.03, Debugging-Identification; N = 100,
SD = 0.25) we have refrained from conducting significance analysis (Brunner et al., 2018).
Rather, we have plotted the ranks for each day that data was collected (N = 404) to show
that the relative difficulty of item types is stable, though interchangeable in some cases
(e.g., For-Loop-Known, Sequences, Multiple-Agents; Figure 3). The interchangeability of

430 S. A. M. HOGENBOOM ET AL.

ranks between item types is discussed in more detail in section 3.3 where we show how
items cluster together within and across item types.

3.2. Internal validity of the CAPCT

In section 3.1 we showed that the data was stable over time – thus allowing for internal
validity analysis of the CAPCT. Following Embretson’s logic for validating cognitive
assessments, we fitted four different linear regressions. All models seek to explain the
variance in item difficulty, as this aggregates the performance parameters „accuracy„ and
“response time” (Embretson, 1998; Klinkenberg et al., 2011).

As the CAPCT measures understanding of CS concepts, the first model explores the
predictive value of Computer Science (CS) concepts as a whole (see Table 1). However, as
discussed above, we consider the CS concepts too broad a clustering. The second model
therefore explored the predictive value of the different cognitive constructs (i.e., item
type). In the third model, we have included the number of instructions depicted in the
algorithm as a proxy for cognitive load. All arrows, conditional-, and loop-statements
count as an instruction. This third model thereby accounts for the possibility that an easy
construct with eight arrows may be more difficult than a difficult construct with 2 arrows.
The fourth model additionally includes the number of item responses (NIR) of each item.
We noticed that at times items are more difficult than others for no apparent reason other
than that they have been responded to a significant amount more (see section 3.4 for
further explanation).

The results of the linear regression analyses of the last day are listed in Table 2. In
addition, we have plotted the explained variance of each of the models over time in
Figure 4.

The Figure and Table show that the fourth model – taking into account cognitive
construct (i.e., item type), cognitive load (Number of Instructions), and the Number of Item
responses – always outperforms the other models. Interestingly, the difference between
Model 3 and 4 disappears after a manual reset of item difficulties in Phase 3. Note that the
lower explained variance in phase 2 and 3, compared to phase 1, is due to the increase in
the number of items and thus to be expected.

3.3 Cluster analysis

In the previous section we saw that the variance in item difficulty was explained for ± 75%
by the cognitive construct (item type), Number of Instructions, and the Number of Item
Responses (NIR). However, in section 3.1 we also saw that the relative difficulty of item

Table 2. An overview of the four linear regressions at the time of data-analysis. The model with the lowest
AIC and BIC is preferred (model 4; bold). For an overview of the different CS concepts, item types, and
number of instructions please see Table 1.

Model df R2 Adj. R2 AIC BIC

CS Concepts 9 0.60 0.59 20,395 20,453
Item Type (IT) 14 0.64 0.63 19,940 20,030
IT + N Instructions (NI) 15 0.74 0.74 18,466 18,562
IT + NI + Number of Item Responses (NIR) 16 0.75 0.75 18,295 18,398

COMPUTER SCIENCE EDUCATION 431

types were at times interchangeable. We, therefore, explored the variance of item diffi-
culty within and between items that measure the same cognitive construct (i.e., item type)
and have the same number of instructions depicted (our proxy for cognitive load;
Figure 5).

The item difficulty scale, which is on the same scale as player ability, is centered at 0 but
unconstrained in its’ limits. The scale is directly influenced by the number and ability/
difficulty of players and items. Consequently, an absolute score of „5„ will provide little
information. Which is, in fact, similar again to Chess ratings; a score of 2600 offers little
information about ability, unless you know the mean and standard deviation of chess
ratings. Similar, an item with score of 5 is interpreted as difficult only when you know that
1.7% of the 4000+ items were more difficult than that. We thus discuss item difficulty and
player ability from a relative perspective rather than absolute.

Figure 5 provides valuable insight into what makes questions easy or difficult. When
comparing these results to those in Figure 3 (the stability of item type ranks over
time), we should note that the clusters are not directly comparable. In Figure 3, all
item types were grouped together, regardless of the number of instructions in each
question. The current figure does show however that the medians of clusters lie very
close together, and thus are likely to be interchangeable given the minor variations of
the adaptive algorithm. From the presented visualization additional effects become
noteworthy.

First, some clusters exhibit bimodality (e.g., Sequence_2– the third row from the
bottom). We explored the difference between these modes by visualizing each item,
including the response patterns made by the children as a percentage of the given
answers. For the Sequence items it was quickly evident what made a question easy or
hard; did the gnome make a turn? To illustrate; the easy items were the items where

Figure 4. The explained variance (Adjusted R2) for each of the four linear regressions on a weekly basis.
Significant dates were marked on the x-axis (e.g., “S: Summer Holidays” = Start of the Summer
Holidays).

432 S. A. M. HOGENBOOM ET AL.

Fi
gu

re
 5

. T
he

 d
is

tr
ib

ut
io

n
of

 it
em

s
gr

ou
pe

d
ac

ro
ss

 c
og

ni
tiv

e
co

ns
tr

uc
ts

 (i
.e

.,
ite

m
 ty

pe
; s

ee
 T

ab
le

 1
) a

nd
 th

e
nu

m
be

r o
f i

ns
tr

uc
tio

ns
 th

at
 n

ee
d

to
 b

e
pr

oc
es

se
d

(e
.g

.,
M

ul
tip

le
-A

ge
nt

s_
2

=
 i

te
m

 t
yp

e_
2

in
st

ru
ct

io
ns

).
Ea

ch
 it

em
 in

cl
ud

ed
 i

n
th

e
CA

PC
T

(N
 =

 4
48

6)
 i

s
de

pi
ct

ed
 i

n
bl

ue
 (

no
rm

al
 i

te
m

)
or

 r
ed

 (
ou

tli
er

).
O

ut
lie

rs
 w

er
e

in
di

ca
te

d
as

 s
uc

h
w

he
n

th
e

ite
m

 d
iffi

cu
lty

 d
iff

er
ed

 m
or

e
th

an
 1

.5
 ti

m
es

 th
e

IQ
R

fr
om

 Q
1

or
 Q

3
of

 th
e

cl
us

te
r.

Th
e

m
ed

ia
n

is
 in

di
ca

te
d

by
 th

e
bl

ac
k

ve
rt

ic
al

 li
ne

. T
he

to

p-
m

ar
gi

n
sh

ow
s

th
e

di
st

rib
ut

io
n

of
 it

em
s

ac
ro

ss
 th

e
ite

m
 d

iffi
cu

lty
 ra

ng
e,

 th
e

rig
ht

-m
ar

gi
n

lis
ts

 th
e

nu
m

be
r o

f i
te

m
s

an
d

th
e

m
in

im
um

 a
nd

 m
ax

im
um

 ra
tin

g
of

ea

ch
 c

lu
st

er
. A

 z
oo

m
ab

le
 p

lo
t

is
 a

va
ila

bl
e

vi
a

ht
tp

s:
//

os
f.i

o/
bm

f4
7.

COMPUTER SCIENCE EDUCATION 433

https://osf.io/bmf47

the gnome travelled in a single direction (e.g., “up-up”), while the harder items were
those where the gnome travelled in two directions (e.g., “up-right”). However, there
are other clusters, such as the “Generalization-Regular”, where not only did we not find
an explanation for the bimodality, nor were we able to explain the patterns of
(singular) outliers. The inability to explain why (singular) outliers and bimodalities
occurred led us to initiate Phase 3; manually resetting item difficulties for outlying
items.

3.4. Exploratory analysis: phase 3

The two primary reasons for conducting Phase 3 were the significant predictive value of
Number of Item Responses on item difficulty (section 3.2), and our inability to explain
patterns of (singular) outliers (section 3.3). The aim of Phase 3 was therefore to explore
whether these items were outliers due to their content or whether other parameters
were influencing item difficulties. We reset 52 items to the median item difficulty of the
respective CS Concept clusters (3 x Multiple-Agents, 4 x If-At-Met, 5 x Debugging-
Identification, 5 x If-Else-If-Met, and 35 x Generalization-Reversed). If items were true
outliers, after a manual reset, they would migrate again to their phase 2 difficulty (i.e., an
outlier position). This would happen, for example, if an item was tagged with an
incorrect answer, or had duplicate answer options. We determined extreme outliers
based on a visual analysis of Figure 6, where the orange X’s represented the old
situation.

From the data it becomes apparent that the manual reset was effective in the sense
that the outlying items remained stable among their peers. Consequently, after Phase 3,
the unexplained bimodality of Generalization-Reversed no longer existed. However, an
undesirable consequence of Phase 3 was that other items started to drift away from their
clusters. This effect was most visible among the more complicated items, such as the
Procedures.

The primary reason for this drift is the ceiling effect with 7.2% of the players out-
performing 99% of the items. Such a mismatch between subjects and test content in IRT
and computerized testing is always problematic. The manual reset of Phase 3 demon-
strated that the items were outliers due to other effects than design mistakes (e.g., all
answers being incorrect). However, resetting items unfortunately is only a temporary
solution. Permanent solutions include the exclusion of outperforming players from the
game (a reasonable approach seeing that they “passed” the test) or adding more difficult
items. In a future version of the CAPCT we will opt for the latter solution by converting the
CAPCT to an (interactive) open-answer format.

3.5. Reliability: what predicts player ability?

The main purpose of the CAPCT was to measure the extent to which children understand
common programming concepts. Our final analyses were therefore concerned with the
extent to which we can predict the ability of children from the available player
characteristics.

434 S. A. M. HOGENBOOM ET AL.

Fi
gu

re
 6

. T
he

 d
is

tr
ib

ut
io

n
of

 it
em

s
pe

r c
og

ni
tiv

e
co

ns
tr

uc
ts

 (i
.e

.,
ite

m
 ty

pe
; s

ee
 T

ab
le

 1
).

Th
e

ite
m

s
th

at
 w

er
e

m
an

ua
lly

 re
se

t d
ur

in
g

Ph
as

e
3

ar
e

de
pi

ct
ed

 in
 o

ra
ng

e,

w
ith

 t
he

 X
 m

ar
ki

ng
 t

he
 s

itu
at

io
n

be
fo

re
 t

he
 r

es
et

, a
nd

 t
he

 c
irc

le
s

th
e

cu
rr

en
t

si
tu

at
io

n.
 It

em
s

th
at

 w
er

e
no

t
m

ov
ed

 a
re

 m
ar

ke
d

as
 n

or
m

al
 (b

lu
e)

 o
r

ou
tli

er
s

(r
ed

)
ba

se
d

on
 a

 1
.5

 IQ
R

di
st

an
ce

 f
ro

m
 Q

1
or

 Q
3.

 T
he

 m
ed

ia
n

is
 in

di
ca

te
d

by
 t

he
 b

la
ck

 v
er

tic
al

 li
ne

. T
he

 t
op

-m
ar

gi
n

sh
ow

s
th

e
di

st
rib

ut
io

n
of

 it
em

s
ac

ro
ss

 t
he

 it
em

di

ffi
cu

lty
 r

an
ge

, t
he

 r
ig

ht
-m

ar
gi

n
lis

ts
 t

he
 n

um
be

r
of

 it
em

s
an

d
th

e
m

in
im

um
 a

nd
 m

ax
im

um
 r

at
in

g
of

 e
ac

h
cl

us
te

r.

COMPUTER SCIENCE EDUCATION 435

3.5.1. Age x gender
We first explored the effects of age (5 – 13) and gender (male/female) on player ability
(continuous) with a Wilcox non-parametric independent two-way ANOVA with 20%
trimmed means (Mair & Wilcox, 2019). The distributions of players across these groups
are displayed in Figure 7. We excluded the four-year old users from the analysis because
the number of users in each group (two females, one male), did not allow us to compare
means. The analysis showed evidence for main and interaction effects (F (1, 93,340) = 51,
p < .001). On average, males (M = 1.7, SD = 4.5) outperformed females (M = 0.46, SD = 3.1;
F (1, 93,340) = 90, p < .001), and children in the higher grades generally attained higher
levels of ability (F (7, 93,340) = 6028, p < .001). There is a small interaction effect indicating
an increasing gender difference with age.

3.5.2. Prior ability
The ANOVA showed that gender and age predicted player ability, but prior levels of ability
may also play a role. Ideally, prior ability would be measured by pre-testing CT or CS skills
(e.g., the Computational Thinking test; Román-González, 2015), or via self-report of
programming experience. Such estimates of prior ability were not possible within the
Math Garden environment – but we do have access to players’ scores on other games. As
a proxy for prior ability, we chose the games Addition and Subtraction, which also serve as
the entry criteria for new players (section 2.2). Prior ability was established as the last
standardized score attained in the two months prior to first playing Codetaal. With
a maximum of ± 25 games available to a child, data sparsity arises from allowing children
to freely choose which games to play (see the drop in N’s in Table 3).

Figure 7. An overview of the achieved player abilities as differentiated by age and gender. Each player
is represented by a data-point, with group statistics (median, and 1st and 3rd quartiles) displayed by
the violin- and boxplots. The top x-axis describes the difference in mean abilities of gender per age-
group. Note; there are only three players of age 4.

436 S. A. M. HOGENBOOM ET AL.

In order to explore the effect of prior ability beyond gender and age effects, we
computed seven linear regression models of player ability. We first explored the effects
of age (continuous) and gender (male/female). We then added the Number of Responses
(NoR) made by a player to the predictive model – which was also a predictor of item
difficulty (section 3.2). The predictor NoR was log transformed to normalize the positively
skewed distribution. Model 6 and 7 then take prior ability into account (Table 3).

The number of players per week varies greatly. For example, during the Christmas
holiday ± 1.000 players were included in the regression models, which is in sharp contrast
to other weeks (M = 8.344, SD = 5,874). Differences in the number of players per week
were expected, as children were free to choose which games to play and may only have
played during school hours. For this reason, when talking about the predictors of player
ability, we will discuss average explained variance. The longitudinal analysis, which was
similar to the item analyses in section 2.3, is available in the online Appendix (https://osf.
io/bmf47/).

3.5.3. Gender bias in item reponses
Math Garden collects a range of data, including whether the players’ accuracy (correct/
incorrect) and speed when answering an item were above or below expectation. This
expectation is based on the current ability of the player and the difficulty of the item (for
the formula for expected score see Maris & van der Maas, 2012). In general, the difference
between scores and expected scores should be zero, but it is possible that a player or
a group of players systematically over- or underperform on specific items or sets of items.
The 14 million records collected for Codetaal thus allow us to explore whether different
groups of players consistently perform above or below expectation on specific item clusters.

In the following analysis we explore under- and overperformance of gender (Male,
Female) on clusters of items. We chose to conduct two different clusters: items that
measure the same underlying constructions (item types; see Table 1) and items that
require the same cognitive load (N Instructions). We computed the under-/overperfor-
mance for each record with known gender information (N > 12,000,000). Some of these
players, most of whom are outperformers, have responded extremely often to a single
item (e.g., > 400 times). By averaging their responses, we reduce the impact these players
may have on the analysis. The gender bias was computed from differences in average

Table 3. An overview of the linear regressions of player ability. The model with the lowest AIC and BIC is
preferred (model 7; bold). Mean and SD adjusted R2 were computed from the weekly analyses available
via https://osf.io/bmf47.

Model df R2 Adj R2 AIC BIC N
Mean

Adj. R2
SD

Adj. R2

1: Age 2 0.10 0.10 518,310 518,328 93,341 0.18 0.09
2: Gender 3 0.10 0.10 518,006 518,034 93,341 0.18 0.07
3: Age x Gender 5 0.16 0.16 511,039 511,086 93,341 0.26 0.10
4: Number of Responses (NoR) 2 0.21 0.21 506,210 506,229 93,341 0.29 0.08
5: NoR + Age x Gender 6 0.49 0.49 463,970 464,026 93,341 0.58 0.05
6: Addition + Subtraction (Prior Ability) 3 0.17 0.17 349,955 349,982 63,802 0.28 0.11
7: NoR + Age x Gender + Prior Ability 8 0.57 0.57 308,815 308,888 63,802 0.64 0.05

Note: the Number of Players (N) included in Models 1 – 5 differs from Models 6 – 7. The data sparsity results from free
playing choice – some players will not have played Addition and Subtraction in the two months prior to playing
Codetaal.

COMPUTER SCIENCE EDUCATION 437

https://osf.io/bmf47/
https://osf.io/bmf47/
https://osf.io/bmf47

Fi
gu

re
 8

. T
he

 m
ea

n
ge

nd
er

 b
ia

s
in

 “
sc

or
e

–
ex

pe
ct

ed
 s

co
re

”
fo

r
ite

m
s

in
 d

is
tin

ct
 c

lu
st

er
s.

 (
A)

 it
em

s
w

er
e

cl
us

te
re

d
by

 t
he

 n
um

be
r

of
 in

st
ru

ct
io

ns
 t

ha
t

re
qu

ire
d

ev
al

ua
tio

n.
 T

hi
s

m
ea

su
re

 s
er

ve
d

as
 a

 p
ro

xy
 fo

r
co

gn
iti

ve
 lo

ad
. (

B)
 it

em
s

w
er

e
cl

us
te

re
d

by
 t

he
 c

og
ni

tiv
e

co
ns

tr
uc

t
(it

em
 t

yp
e;

 T
ab

le
 1

) t
he

y
m

ea
su

re
d.

 T
he

 it
em

ty

pe
s

w
er

e
or

de
re

d
by

 m
ed

ia
n

ite
m

 d
iffi

cu
lty

, s
ho

w
in

g
th

e
ea

si
er

 c
on

st
ru

ct
s

at
 th

e
bo

tt
om

 o
f t

he
 fi

gu
re

. E
rr

or
 b

ar
s

re
pr

es
en

t t
he

 9
5%

 C
on

fid
en

ce
 In

te
rv

al
 o

f t
he

m

ea
n.

 C
ol

or
s

in
di

ca
te

 w
he

th
er

, o
n

av
er

ag
e,

 m
al

e
or

 fe
m

al
e

pl
ay

er
s

te
nd

ed
 to

 o
ve

r-
pe

rf
or

m
 o

n
th

is
 c

lu
st

er
 o

f i
te

m
s.

 A
 b

ia
s

is
 c

la
ss

ed
 a

s
“u

nd
efi

ne
d”

 w
he

n
th

e
95

%

CI
 in

cl
ud

es
 0

. T
he

 n
um

be
r

of
 it

em
s

in
 e

ac
h

cl
us

te
r

is
 li

st
ed

 o
n

th
e

rig
ht

-h
an

d
si

de
 o

f e
ac

h
pl

ot
. N

ot
e;

 p
lo

t
A

an
d

B
ha

ve
 d

iff
er

en
tly

 s
ca

le
d

x-
ax

es
.

438 S. A. M. HOGENBOOM ET AL.

score per gender per item. Figure 8 shows the mean gender bias for all the items in
a cluster, with the error bars indicating the 95% Confidence Interval of the mean.

The scoring scale, upon which Figure 8 is based, reaches from −1 to 1; the found
gender biases were thus relatively small. The results, however, are based on large samples
sizes (N’s per cluster) with aggregated scores from more than 12 million responses. The
magnitude of the data therefore allows for some preliminary evidence of subtle gender
bias effects that appear to be related to the difficulty of items/clusters.

Table 2 (section 3.2) shows that the combination of Number of Instruction (Figure 8A)
and Item Type (Figure 8B) explains 74% of the variance in item difficulty. This makes the
subtle gender effects even more interesting. The Number of Instructions shows a clear
pattern where easier items (low cognitive load) see more over-performing male players
than female players (Figure 8A). At the same time, items with 7 – 10 instructions (high
cognitive load) show more over-performing female players. Figure 8B, however, shows
that the relative difficulty of the measured CS concept shows a less pronounced and more
random relationship with gender bias. It appears as if most concepts see over-performing
male players, while three distinct concepts show predominantly over-performing female
players. A possible explanation is provided in the discussion.

4. General discussion

In the current study, we sought to create and validate a new assessment of programming
concepts comprehension suited for (Dutch) primary school children (ages 4 – 13); the
Computerized Adaptive Programming Concepts Test (CAPCT). Overall, the CAPCT (4486
items) showed good psychometric qualities. Since across the item set, 75% of the variance
in item difficulty could be explained by differences in item characteristics, internal validity
appears to be high (Embretson, 1998). On average, we were able to explain 64% of the
variance in player ability, taking into account the age, gender, number of responses, and
prior mathematical ability of players.

4.1. Items

Our data showed that the CAPCT was highly reliable with item difficulties remaining
stable over time. The CAPCT may thus reliably be used by researchers and educators to
estimate the understanding of programming concepts in (Dutch) primary school children.
We should note, however, that the construct validity of certain Computer Science (CS)
Concepts warrants further exploration. For example, the prior difficulty estimations of our
experts, did not match the data-based posterior rank of the concept “Multiple-Agents”.
When looking at the items post-hoc,3 it becomes evident that the intended concept
Multiple-Agents (“The ability to identify that two or more conditions must be true, so that
task demands can be met. For example; a scale can only be balanced when two weights of
equal weight are placed at either end of the scale”; see Appendix A), may not have been
measured by these items. The data, however, also showed that the items themselves were
not the problem; they were highly stable and clustered well together (Figure 6). Therefore,
rather than dismissing these items, we propose that these items were in fact a different
way of measuring the understanding of basic Sequences.

COMPUTER SCIENCE EDUCATION 439

From the differences in expert estimated prior-ranks, and data based posterior-ranks
we also learned that adult experts may not be the best judges of what the primary school
children understand of programming concepts. This calls for more data driven
approaches such as the current study, and the need for more complicated content. We,
for example, did not include concepts such as recursion because we believed them to be
too complicated for primary school children to understand. Further research will have to
demonstrate, if we were correct in our assumptions, or whether children are more capable
than we expected.

In conclusion, even though some constructs warrant redefinition, the items themselves
are highly reliable and retain a stable difficulty over time.

4.2 Users

Our data showed that, on average, we could explain 64% of the variance in user
ability based on age, gender, the number of responses, and prior mathematical
ability of players. With an average of 28% of the variance explained by differences
in the number of responses made. The fact that more responses lead to higher
levels of ability may provide evidence for a (self) learning trajectory. Such evidence
is of value to the educators and policymakers seeking to implement programming
as part of (formal) education, as it provides concrete guidelines about how one
could build up a programming-oriented lesson plan. However, external validity
studies are required to verify whether the found trajectory was merely
a byproduct of the assessment design, or whether the found trajectory replicates
when utilizing different assessment measures (e.g., the Computational Thinking
test; Román-González, 2015).

In creating the new assessment, we aimed to reduce the resources required to
measure understanding of programming concepts. To do so, we opted for
a multiple-choice format which allows easy administration and scoring. However,
programming ability is often referred to in a problem-solving context (Chang,
2014), where one actively searches for a solution, without being provided with
explicit guidelines as to what the solution should be. The adopted multiple-choice
format provided players with answer possibilities, thereby considerably reducing
the search-space available for finding the correct solution. Future research might
thus explore whether open-ended questions (e.g., creating the algorithms by drag-
ging arrows to an answer box) will result in similar item difficulties and CS concept
ranking as we found in the current study. Adopting open-answer formats with
increased search-spaces may also resolve the issue that approximately 7.5% of
the users outperformed 99% of the items (a ceiling-effect), thus creating
a measurement that is suited for a larger range of abilities.

In section 3.5.3 we explored the gender bias of different item clusters; the Number of
Instructions (proxy for cognitive load) and the item type (CS construct). Figure 8A showed
a clear pattern where items with fewer steps to process (low cognitive load), on average,
saw more over-performing male players. In contrast, items with more steps to process (high
cognitive load) showed more over-performing female players. A possible explanation for
these subtle gender effects is a gender difference in the applied speed-accuracy trade-off.

440 S. A. M. HOGENBOOM ET AL.

The algorithm behind Math Garden computes ability as a function of accuracy (correct/
incorrect) and response time (Klinkenberg, 2014). A player thus receives the optimum
score by responding both accurate and fast. However, to discourage guessing, the scoring
algorithm also penalizes players for giving the wrong answer by retracting the number of
coins earned (see Figure 1). The speed-accuracy trade-off necessary to navigate the Math
Garden algorithm may cause differences in response patterns (fast/slow). In fact, prior
research of multiplication items demonstrated that male players were more likely to give
a fast answer than female players (Hofman et al., 2018). If items with fewer instructions
require less cognitive processing, faster speed-accuracy trade-offs may be rewarded as
“hasty” and “slow” thinking may lead to the same accuracy. However, items with more
instructions to process may see higher accuracy in those that are “slow” rather than
“hasty” players. Research will have to determine whether the speed-accuracy trade-off in
Codetaal and/or Math Garden is indeed different across genders and may explain sys-
tematic but subtle under- and overperformance.

In Figure 8B we saw that Multiple-Agents, If-At-Met, and If-Else-If-Met clusters saw
relatively more female over-performance than male over-performance. We are not sure
why this may be the case. The difficulty of the Multiple-Agents and If-At-Met items falls
neatly together with male over-performing constructs (e.g., Sequences; Figure 6). And in
fact, if the same cognitive strategy is applied to Sequence and If-At-Met items; they would
both result in the correct answer. Future research will have to uncover whether male and
female players adopt the same strategies to solve the items. This could be done, for
example, by using mouse tracking technologies to study underlying thought processes
(e.g., de Mooij et al., 2020).

4.3 Future research

In this paper we have presented the first steps towards validating a new assessment of
programming concepts understanding; the Computerized Adaptive Programming
Concepts Test (CAPCT). The potential of the CAPCT is great, but future research has to
determine when the CAPCT is/isn’t suited to determine understanding of programming
concepts.

We created the CAPCT item set with the intention of allowing researchers and teachers
to create their own paper-and-pencil tests (materials available via https://osf.io/bmf47/).
However, paper-and-pencil tests are often non-adaptive and include only a limited num-
ber of items (e.g., 20). Extra validation studies are required to determine the validity of
a non-adaptive CAPCT, including the effects of non-randomized answer options. After all,
in Math Garden the answer options are randomized so that the difficulty of the item is not
determined by the position (1 – 4) of the correct answer option. It stands to reason that
paper-and-pencil tests will carefully have to balance the position of the correct answer
options among items that measure the same cognitive construct.

The size of the CAPCT item bank further has the potential to create non-adaptive
paper-and-pencil tests that measure understanding of single CS concepts (e.g., If-At).
Because the answer options include common misconceptions (e.g., executing all visible
arrows) as the incorrect answers, repeated errors may signal teachers which instructions
their pupils may benefit from most. Research could explore whether teachers could

COMPUTER SCIENCE EDUCATION 441

https://osf.io/bmf47/

actually benefit from informal testing of single CS concept assessments and determine
the consequential validity of the CAPCT for everyday use.

A third focus should be on establishing the convergent and divergent validity of the
CAPCT versus other available assessments. Román-González and colleagues already con-
ducted a convergent validity study of the Computational Thinking test, the Bebras, and
Dr. Scratch (Román-González et al., 2019). However, a large-scale international study
across all six existing and CAPCT assessments would greatly benefit the field.
Comparing results across different nationalities may also shed light on cross-cultural
and language-based differences in the understanding of block-based programming
languages.

Convergent and divergent validity studies should be considered from the perspective
of multiple-choice assessments, but also from the perspective of natural programming
contexts. For example, the multiple-choice questions of the CAPCT can easily be con-
verted to an open-answer enviroment (i.e., drag-and-drop). In an open-answer environ-
ment is is easy to constrict the search-space for the correct answer by allowing players to
use only a limited set of building blocks. Comparing the results of multiple-choice and
(un)restricted open-answer items may shed light on how multiple-choice assessments
compare to real-life programming contexts.

The method of data collection did not lend itself for analysis of the effect of prior
programming and CS experience. Nor were we able to determine whether children with
high levels of ability on the Codetaal game would also demonstrate high levels of ability
in other programming contexts (e.g., creating a game of pong with Scratch; Resnick
et al., 2009). The significance of prior Mathematical ability on CAPCT ability ratings may
indicate the need for external validity research of prior CT/CS or programming ability on
ability.

5. Conclusion

Altogether the current study and the created assessment take a significant step towards
programming concepts understanding assessments that are generic, easy to implement,
and low in the required resources. The Computerized Adaptive Programming Concepts
Test (CAPCT) showed good psychometric qualities with 75% of the variance in item
difficulty explained by item characteristics, and an average of 64% of the variance in
player ability explained by demographical data, number of responses, and prior mathe-
matical ability. As children proved more able than we expected, future versions of the
CAPCT will include more complicated concepts and open-answer questions.

Notes

1. Available via the Open Science Framework: https://osf.io/bmf47.
2. Before conducting the study, ethical approval was granted by the Ethics Review Board from

the Psychological Methods department at the University of Amsterdam (2018-PML-8835).
Users of Math Garden provide informed consent prior to using the products and have the
option to opt-out of their data being used for research.

3. We have created overview images of each item, together with response percentages, to allow
for post-hoc exploration. These overviews are available via https://osf.io/bmf47.

442 S. A. M. HOGENBOOM ET AL.

https://osf.io/bmf47
https://osf.io/bmf47

Acknowledgments

We would like to acknowledge the contributions of prof. dr. J.M. Voogt (University of Amsterdam,
the Netherlands) for sharing her expertise on Computational Thinking. In addition, we thank
Oefenweb by Prowise – owners of Math Garden – for their contributions to hosting & collecting
data on the Computerized Adaptive Programming Concepts Test.

Disclosure statement

Funding. This research was conducted as a Thesis project for the Research Master Psychology at the
University of Amsterdam. Consequently, no external funding was received for conducting this
research.

Employment. H. L. J. van der Maas was employed as a senior advisor at the company who owns
Math Garden, while the study was conducted. S. A. M. Hogenboom was employed by the same
company for a year and a half after the study was conducted. The company has not affected the
outcome of this research in any way and has agreed to make the materials of the Computerized
Adaptive Programming Concepts Test freely available for researchers and teachers. Please note that
both authors are no longer employed by the company.

Notes on contributors

Sally A.M. Hogenboom is a PhD candidate with the Institute for Logic, Language and Computation
at the University of Amsterdam. Her work focusses on the impact of exposure to (online) media and
stereotypical beliefs and actions. The present work is, however, part of her Research Master
Psychology thesis – also at the University of Amsterdam – which focused on current developments
in Computational Thinking / Programming Education.

Felienne F. J. Hermans is an associate professor at the Leiden Institute of Advanced Computer
Science at Leiden University. She specializes in the instructional strategies and mental models of
programming, and the creation and evaluation of educational programming languages.

Han L. J. Van der Maas is a professor at the department of Psychological Methods at the University
of Amsterdam. He specializes in formalizing and testing psychological theories in areas such as
cognition, expertise, development, attitudes and intelligence.

ORCID

Sally A. M. Hogenboom http://orcid.org/0000-0003-3222-0019
Felienne F. J. Hermans http://orcid.org/0000-0003-0722-0156
Han L. J. Van der Maas http://orcid.org/0000-0001-8278-319X

Data availability statement

We have made an overview of the contents of the Computerized Adaptive Programming Concepts
Test (CAPCT) available via the Open Science Framework (https://osf.io/bmf47). This includes
a Design Guide and Item Overviews. The Design Guide allows readers to understand how/why
certain item types were created, and importantly how the (in)correct answer options were selected.
The Item Overviews (10 items per item type) allow for a brief exploration of what makes an item
easy/difficult. The complete set of materials of the CAPCT item bank are available upon request.

COMPUTER SCIENCE EDUCATION 443

https://osf.io/bmf47

References

Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ computational thinking skills through
educational robotics: A study on age and gender relevant differences. Robotics and Autonomous
Systems, 75(part B), 661–670. https://doi.org/10.1016/j.robot.2015.10.008

Basogain, X., Olabe, M. Á., Olabe, J. C., & Rico, M. J. (2018). Computational thinking in pre-university
blended learning classrooms. Computers in Human Behavior, 80, 412–419. https://doi.org/10.
1016/j.chb.2017.04.058

Bers, M. U. (2010). The TangibleK robotics program: Applied computational thinking for young
children. Early Childhood Research and Practice, 12(2), 1–20. https://eric.ed.gov/?id=EJ910910

Brinkhuis, M., Savi, A., Hofman, A., Coomans, F., van der Maas, H., & Maris, G. (2018). Learning as it
happens: a decade of analyzing and shaping a large-scale online learning system. Journal of
Learning Analytics, 5(2), 29–46. https://doi.org/10.18608/jla.2018.52.3

Brunner, E., Bathke, A. C., & Konietschke, F. (2018). Rank and pseudo-rank procedures for independent
observations in factorial designs – Using R and SAS. Springer Series in Statistics. Springer
International Publishing. https://www.springer.com/gp/book/9783030029128

Cao, J., Fleming, S. D., Burnett, M., & Scaffidi, C. (2015). Idea garden: Situated support for problem
solving by end-user programmers. Interacting with Computers, 27(6), 640–660. https://doi.org/10.
1093/iwc/iwu022

Centraal Bureau der Statistiek. (2018). Aantal scholen in het primair onderwijs. Centraal Bureau der
Statistiek. https://www.onderwijsincijfers.nl/kengetallen/po/instellingen/aantallen-instellingen-
po

Chakarov, A. G., Recker, M., Jacobs, J., Horne, K. V., & Sumner, T. (2019). Designing a middle school
science cur-riculum that integrates computational thinking and sensor technology. SIGCSE
2019 – Proceedings of the 50th ACM Technical Symposium on Computer Science Education,
USA,818-824. https://doi.org/10.1145/3287324.3287476

Chang, C.-K. (2014). Effects of using alice and scratch in an introductory programming course for
corrective instruction. Journal of Educational Computing Research, 51(2), 185–204. https://doi.org/
10.2190/EC.51.2.c

Coomans, F., Hofman, A., Brinkhuis, M., van der Maas, H. L. J., & Maris, G. (2016). Distinguishing fast
and slow processes in accuracy – Response time data. PLoS ONE, 11(5), e0155149. https://doi.org/
10.1371/journal.pone.0155149

Dagienè, V., & Sentance, S. (2016). It’s computational thinking! Bebras tasks in the curriculum. In
A. Brodnik & F. Tort (Eds.), Informatics in schools: Improvement of informatics knowledge and
perception (pp. 28–39). Springer International Publishing.

de Mooij, S. M. M., Raijmakers, M. E. J., Dumontheil, I., Kirkham, N. Z., & van der Maas, H. L. J. (2020).
Error detection through mouse movement in an online adaptive learning environment. Journal of
Computer Assisted Learning, July, 37(1),242-252. https://doi.org/10.1111/jcal.12483

Durak, H. Y., & Saritepeci, M. (2018). Analysis of the relation between computational thinking skills
and various variables with the structural equation model. Computers & Education, 116, 191–202.
https://doi.org/10.1016/j.compedu.2017.09.004

Embretson, S. E. (1998). A cognitive design system approach to generating valid tests: Application to
abstract reasoning. Psychological Methods, 3(3), 380–396. https://doi.org/10.1037/1082-989X.3.3.
380

Franklin, D., Conrad, P., Boe, B., Nilsen, K., Hill, C., Len, M., Dreschler, G., Aldana, G., Almeida-Tanaka,
P., Kiefer, B., Laird, C., Lopez, F., Pham, C., Suarez, J., & Waite, R. (2013). Assessment of computer
science learning in a scratch-based outreach program. SIGCSE 2013 – Proceedings of the 44th ACM
Technical Symposium on Computer Science Education, USA, 371–376. https://doi.org/10.1145/
2445196.2445304

Google for Education. (2020). Code with Google. https://edu.google.com/code-with-google/?modal_
active=none&story-card_activeEl=enhance-any-subject

Grover, S., & Basu, S. (2017). Measuring student learning in introductory block-based programming:
Examining misconceptions of loops, variables, and Boolean logic. SIGCSE 2017 - Proceedings of

444 S. A. M. HOGENBOOM ET AL.

https://doi.org/10.1016/j.robot.2015.10.008
https://doi.org/10.1016/j.chb.2017.04.058
https://doi.org/10.1016/j.chb.2017.04.058
https://eric.ed.gov/?id=EJ910910
https://doi.org/10.18608/jla.2018.52.3
https://www.springer.com/gp/book/9783030029128
https://doi.org/10.1093/iwc/iwu022
https://doi.org/10.1093/iwc/iwu022
https://www.onderwijsincijfers.nl/kengetallen/po/instellingen/aantallen-instellingen-po
https://www.onderwijsincijfers.nl/kengetallen/po/instellingen/aantallen-instellingen-po
https://doi.org/10.1145/3287324.3287476
https://doi.org/10.2190/EC.51.2.c
https://doi.org/10.2190/EC.51.2.c
https://doi.org/10.1371/journal.pone.0155149
https://doi.org/10.1371/journal.pone.0155149
https://doi.org/10.1111/jcal.12483
https://doi.org/10.1016/j.compedu.2017.09.004
https://doi.org/10.1037/1082-989X.3.3.380
https://doi.org/10.1037/1082-989X.3.3.380
https://doi.org/10.1145/2445196.2445304
https://doi.org/10.1145/2445196.2445304
https://edu.google.com/code-with-google/?modal_active=none%26story-card_activeEl=enhance-any-subject
https://edu.google.com/code-with-google/?modal_active=none%26story-card_activeEl=enhance-any-subject

the 2017 ACM SIGCSE Technical Symposium on Computer Science Education,USA, 267–272. https://
doi.org/10.1145/3017680.3017723

Grover, S., & Pea, R. (2013). Computational Thinking in K-12: A Review of the State of the Field.
Educational Researcher, 42(1), 38–43. https://doi.org/10.3102/0013189X12463051

Hofman, A. D., Jansen, B. R. J., de Mooij, S. M. M., Stevenson, C. E., & van der Maas, H. L. J. (2018).
A solution to the measurement problem in the idiographic approach using computer adaptive
practicing. Journal of Intelligence, 6(1), 14. https://doi.org/10.3390/jintelligence6010014

International Society for Technology in Education (ISTE), & Computer Science Teachers Association
(CSTA). (2011). Computational thinking. teacher resources (2nd ed.). http://csta.hosting.acm.org/
csta/csta/Curriculum/sub/CompThinking.html

Jansen, B. R. J., Hofman, A. D., Savi, A., Visser, I., & van der Maas, H. L. J. (2016). Self-adapting the
success rate when practicing math. Learning and Individual Differences, 51, 1–10. https://doi.org/
10.1016/j.lindif.2016.08.027

Klinkenberg, S. (2014). High speed high stakes scoring rule. In M. Kalz & E. Ras (Eds.), Computer
assisted assessment. Research into E-assessment (pp. 114–126). Springer International Publishing.

Klinkenberg, S., Straatemeier, M., & van der Maas, H. L. J. (2011). Computer adaptive practice of
Maths ability using a new item response model for on the fly ability and difficulty estimation.
Computers and Education, 57(2), 1813–1824. https://doi.org/10.1016/j.compedu.2011.02.003

Mair, P., & Wilcox, R. (2019). Robust statistical methods in R using the WRS2 package. Behavior
Research Methods, 52(2), 464–488. https://doi.org/10.3758/s13428-019-01246-w

Mannila, L., Heintz, F., Kjällander, S., & Åkerfeldt, A. (2020). Programming in primary education:
Towards a research based assessment framework. WiPSCE '20: Proceedings of the 15th Workshop
on Primary and Secondary Computing Education, USA,1 - 10. https://doi.org/10.1145/3421590.
3421598

Maris, G., & van der Maas, H. (2012). Speed-accuracy response models: Scoring rules based on
response time and accuracy. Psychometrika, 77(4), 615–633. https://doi.org/10.1007/s11336-012-
9288-y

Moreno León, J., Robles, G., & Román González, M. (2015). Dr. Scratch: Automatic analysis of scratch
projects to assess and foster computational thinking. RED. Revista De Educación a Distancia, 46,
1–23. https://www.um.es/ead/red/46/

Rachmatullah, A., Akram, B., Boulden, D., Mott, B., Boyer, K., Lester, J., & Wiebe, E. (2020).
Development and validation of the middle grades computer science concept inventory
(MG-CSCI) assessment. Eurasia Journal of Mathematics, Science and Technology Education, 16(5),
em1841. https://doi.org/10.29333/ejmste/116600

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A.,
Rosenbaum, E., Silver, J., Silverman, B., & Kafai, Y. (2009). Scratch: Programming for all.
Communications of the ACM, 52(11), 60–67. https://doi.org/10.1145/1592761.1592779

Román-González, M. (2015). Computational thinking test: Design guidelines and content validation.
Proceedings of the 7th Annual International Conference on Education and New Learning
Technologies (EDULEARN 2015), Barcelona, 2436–2444. https://doi.org/10.13140/RG.2.1.4203.4329

Román-González, M., Moreno-León, J., & Robles, G. (2019). Combining assessment tools for
a comprehensive evaluation of computational thinking interventions. In S.-C. Kong &
H. Abelson (Eds.), Computational thinking education (pp. 79–98). Springer. https://doi.org/10.
1007/978-981-13-6528-7_6

Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2017). Which cognitive abilities
underlie computational thinking? Criterion validity of the computational thinking test. Computers
in Human Behavior, 72, 678–691. https://doi.org/10.1016/j.chb.2016.08.047

Román-González, M., Pérez-González, J. C., Moreno-León, J., & Robles, G. (2018). Extending the
nomological network of computational thinking with non-cognitive factors. Computers in
Human Behavior, 80, 441–459. https://doi.org/10.1016/j.chb.2017.09.030

Sáez-López, J. M., Sevillano-García, M. L., & Vazquez-Cano, E. (2019). The effect of programming on
primary school students’ mathematical and scientific understanding: Educational use of mBot.
Educational Technology Research and Development, 67(6), 1405–1425. https://doi.org/10.1007/
s11423-019-09648-5

COMPUTER SCIENCE EDUCATION 445

https://doi.org/10.1145/3017680.3017723
https://doi.org/10.1145/3017680.3017723
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.3390/jintelligence6010014
http://csta.hosting.acm.org/csta/csta/Curriculum/sub/CompThinking.html
http://csta.hosting.acm.org/csta/csta/Curriculum/sub/CompThinking.html
https://doi.org/10.1016/j.lindif.2016.08.027
https://doi.org/10.1016/j.lindif.2016.08.027
https://doi.org/10.1016/j.compedu.2011.02.003
https://doi.org/10.3758/s13428-019-01246-w
https://doi.org/10.1145/3421590.3421598
https://doi.org/10.1145/3421590.3421598
https://doi.org/10.1007/s11336-012-9288-y
https://doi.org/10.1007/s11336-012-9288-y
https://www.um.es/ead/red/46/
https://doi.org/10.29333/ejmste/116600
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.13140/RG.2.1.4203.4329
https://doi.org/10.1007/978-981-13-6528-7_6
https://doi.org/10.1007/978-981-13-6528-7_6
https://doi.org/10.1016/j.chb.2016.08.047
https://doi.org/10.1016/j.chb.2017.09.030
https://doi.org/10.1007/s11423-019-09648-5
https://doi.org/10.1007/s11423-019-09648-5

Shumway, R. H., & Stoffer, D. S. (2017). Time series regression and exploratory data analysis. In: Time
Series Analysis and Its Applications. Springer Texts in Statistics. Springer, Cham. https://doi.org/
10.1007/978-3-319-52452-8_2

SLO. (2015). Voorbeeld leerdoelen computational thinking. https://slo.nl/vakportalen/vakportaal-
digitale-geletterdheid/computational-thinking/voorbeeld-leerdoelen

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic
review of empirical studies. Computers and Education, 148, 103798. https://doi.org/10.1016/j.
compedu.2019.103798

CS Unplugged (2020). Computer Science without a computer. https://csunplugged.org/en
van der Linden, W. J., & Hambleton, R. K. (1997). Handbook of modern item response theory. Springer,

New York, NY. https://doi.org/10.1007/978-1-4757-2691-6
van der Maas, H. L. J., & Nyamsuren, E. (2017). Cognitive analysis of educational games: The number

game. Topics in Cognitive Science, 9(2), 395–412. https://doi.org/10.1111/tops.12231
Vivian, R., Franklin, D., Frye, D., Peterfreund, A., Ravitz, J., Sullivan, F., Zeitz, M., & Mcgill, M. M. (2020).

Evaluation and assessment needs of computing education in primary grades. ITiCSE '20:
Proceedings of the 2020 ACM Conference on Innovation and Technology in Computer Science
Education, USA,124-130. https://doi.org/10.1145/3341525.3387371

Voogt, J., Brand-Gruwel, S., & Van Strien, J. (2017). Effecten van programmeeronderwijs op computa-
tional thinking : Reviewstudie. Open Universiteit, Heerlen, the Netherlands. https://dare.uva.nl/
search?identifier=14732dea-6d83-410d-8548-20ff8eef8e0f

Wainer, H., Dorans, N. J., Eignor, D., Flaugher, R., Green, B. F., Mislevy, R. J., Steinberg, L., & Thissen, D.
(2000). Computerized adaptive testing: A primer. Routledge, NY. https://www.routledge.com/
Computerized-Adaptive-Testing-A-Primer/author/p/book/9781138866621

Wiebe, E., Mott, B. W., London, J., Boyer, K. E., Aksit, O., & Lester, J. C. (2019). Development of a lean
computational thinking abilities assessment for middle grades students. SIGCSE 2019 –
Proceedings of the 50th ACM Technical Symposium on Computer Science Education, USA, 456-461.
https://doi.org/10.1145/3287324.3287390

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.
org/10.1145/1118178.1118215

World Economic Forum. (2016). The future of jobs – Reports – World economic forum. http://reports.
weforum.org/future-of-jobs-2016

Wu, C. C., Dale, N. B., & Bethel, L. J. (1998). Conceptual models and cognitive learning styles in
teaching recursion. SIGCSE 1998 - Proceedings of the 29 SIGCSE technical symposium on Computer
science education, USA, 292–296. https://doi.org/10.1145/273133.274315

Zapata-Caceres, M., Martin-Barroso, E., & Roman-Gonzalez, M. (2020). Computational thinking test
for beginners: Design and content validation. IEEE Global Engineering Education Conference,
EDUCON,Porto (Portugal), 1905–1914. https://doi.org/10.1109/EDUCON45650.2020.9125368

Zhong, B., Wang, Q., Chen, J., & Li, Y. (2016). An Exploration of three-dimensional integrated
assessment for computational thinking. Journal of Educational Computing Research, 53(4),
562–590. https://doi.org/10.1177/0735633115608444

Appendix A

We compiled a list of 19 programming concepts that were deemed appropriate for evalua-
tion in primary school children (ages 4 – 13). The list was compiled after an extensive
literature study and consultations with experts in the field of Computer Science, Education,
Cognitive Development, and Game Design. From these concepts, seven (denoted with an *)
were included in the Computerized Adaptive Programming Concepts Test (CAPCT). The other
concepts were excluded based on their inability to be assessed within the design constraints
(section 2.1).

446 S. A. M. HOGENBOOM ET AL.

https://doi.org/10.1007/978-3-319-52452-8_2
https://doi.org/10.1007/978-3-319-52452-8_2
https://slo.nl/vakportalen/vakportaal-digitale-geletterdheid/computational-thinking/voorbeeld-leerdoelen
https://slo.nl/vakportalen/vakportaal-digitale-geletterdheid/computational-thinking/voorbeeld-leerdoelen
https://doi.org/10.1016/j.compedu.2019.103798
https://doi.org/10.1016/j.compedu.2019.103798
https://csunplugged.org/en
https://doi.org/10.1007/978-1-4757-2691-6
https://doi.org/10.1111/tops.12231
https://doi.org/10.1145/3341525.3387371
https://dare.uva.nl/search?identifier=14732dea-6d83-410d-8548-20ff8eef8e0f
https://dare.uva.nl/search?identifier=14732dea-6d83-410d-8548-20ff8eef8e0f
https://www.routledge.com/Computerized-Adaptive-Testing-A-Primer/author/p/book/9781138866621
https://www.routledge.com/Computerized-Adaptive-Testing-A-Primer/author/p/book/9781138866621
https://doi.org/10.1145/3287324.3287390
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/1118178.1118215
http://reports.weforum.org/future-of-jobs-2016
http://reports.weforum.org/future-of-jobs-2016
https://doi.org/10.1145/273133.274315
https://doi.org/10.1109/EDUCON45650.2020.9125368
https://doi.org/10.1177/0735633115608444

ABILITY OPERATIONAL DEFINITION

Abstraction The ability to recognize when a specific algorithm may be altered – by the inclusion of parameters – to
meet a wider range of task demands. For example; one can walk a square of size 10 by executing “Do
4 times; walk 10 steps forward, turn 90 degrees left.”. Abstraction occurs when the specific indices are
swapped for general parameters: “Do x times, walk y steps forward, turn z degrees left.” By entering
values for x, y, and z, a wider range of task demands (e.g., walk a triangle) can be met by the same
algorithm.

Algorithm* In its simplest form, algorithms are a sequence of instructions which – when executed – will resolve the
problem at hand. As of such, all items that require the execution of two or more instructions are
considered algorithms.
[Included as “Sequences”]

Conditionals* If-conditions: a block of code is executed only when a condition is met. For example; if age is below 18 say
“You are a child” -> consequently nothing will be said if the age is above 18.
If-else conditions: a block is executed when a condition is met, whereas a different block is executed in
all other cases. For example, if age is below 18 say “You are a child”, else say “You are an adult”->
consequently depending on age the message will be “You are a child/adult”. Note: in contrast to the
if-condition a message will always be said.

Data Data Structures: The ability to identify the logical data structures for a given context. For example, storing
one’s birthday wishes in a list, as opposed to separate variables named “wish_1 = . . ., wish_2 = . . . ”.
- strings [e.g., a name, a place, a color]
- numbers [e.g., birthdates, ages, house-numbers]
- unordered lists [e.g., groceries, all names in a class, all streets in a town]
- ordered lists [e.g., length of family members, finish positions in a competition]
Data Properties: The ability to understand inherent properties of data types. For example; one cannot
add a number (1) to a string (“a”).
Data Probability: The ability to differentiate between probable and improbable data. For example, the
data for all the names in a class are improbable to contain 20 x “Gregg”.

Debugging* The ability to identify incorrect algorithms (i.e., algorithms that do not meet task demands), and modify
them so that task demands are met.

Effectivity The ability to distinguish between correct solutions (i.e., task demands are met) and incorrect solutions
(i.e., task demands are not met).
[Similar to: “Debugging” with the exclusion of modification abilities]

Efficiency The ability to identify the most efficient solutions, in the sense that efficiency constitutes the number of
instructions required to meet task demands (e.g., use of loops and functions to reduce the number of
instructions), or in the sense that real-life resources (e.g., time or energy) are reduced to a minimum.

Events The ability to account for trigger-based behaviors; conditionals are specified which – when true – will
elicit distinct sets of behaviors. For example; “”walk” [event] until “apple” [event], then execute “eat
apple””.

Functions The ability to identify the output of a function given the input (i.e., parameters). For example; the
function “add 2” -> [output = x + 2] will return 4 for x = 2, and 12 for x = 10.

Generalization* The ability to recognize when problems require the same solutions, or when the application of the same
algorithm in different situations will result in equivalent outcomes.
[Similar to “Abstraction” with the exception that problems are concrete instead of
abstract during “Generalization”]

Loops* Use of infinite-loops (i.e., repeat a behavior continuously). For example; an automatic clock repeats “add
one minute” continuously.
Use of for-loops (i.e., repeat the execution of a block of code). For example; repeat 4 times “draw one
stroke forward, turn left” (drawing a square).
Use of while–loops (i.e., repeat the execution of a block of code while a condition is met). For example;
walk forward while no obstacles encountered.

Modularization The ability to identify segments of code/instructions that are repeated at multiple phases of the
algorithm. For example; “stopping at a traffic light” is a behavior that may occur at multiple phases
of cycling through a town.
[Similar to “Procedures” with the exception that procedures require an understanding of
the behaviors included, whereas “Modularization” is simply the recognition of repeated
components.]

Multiple
Agents*

The ability to identify that two or more conditions must be true, so that task demands can be met. For
example; a scale can only be balanced when two weights of equal weight are placed at either end of
the scale.

Ordering The ability to order given data according to a specified criterion. For example; ordering everyone in your
class by birthdate.

(Continued)

COMPUTER SCIENCE EDUCATION 447

ABILITY OPERATIONAL DEFINITION

Parallelization The ability to recognize that a process may be executed more efficiently (time and resources) when
multiple processes are executed simultaneously. For example; two people wish to do laundry (wash &
dry). Although both can wait their turn, the process will be faster if the second person starts washing
while the first uses the drier.

Pattern
Recognition

The ability to identify patterns of meaningful data amongst distractors. For example; identifying the
sequence 123 in the data 835-476-123-895

Procedures* The ability to identify a sub-routine – a section of stand-alone instructions in a larger algorithm. For
example; “move left, move right” as dancing [procedure] in an algorithm modelling dancefloor
behaviors.
[Similar to: “Functions” with the exception that although “Procedures” take input, they do
not return output.]

Sorting The ability to sort given data into separate categories according to a specified criterion. For example;
sorting the class into boys and girls.

Variables Variable Assignment: The ability to understand (multiple) assignments to variables. For example; if the
variable “x” is assigned the value 5, and then is assigned the value 8, what is the value of “x”? Answer:
8 (the last assignment to the variable is stored).
Variable Names: The ability to differentiate between informative and uninformative variable names.
For example; the variable name “right” could indicate properties of a direction (i.e., turning right) and
correctness.

448 S. A. M. HOGENBOOM ET AL.

	Abstract
	1. Introduction
	1.1. Assessment of programming concepts comprehension
	1.2. Math garden: web-based adaptive data collection
	1.3. Current study

	2. Method
	2.1. Assessment design
	2.1.1. Graphical design
	2.1.2. Content design

	2.2 Implementation and data collection<xref ref-type="en" rid="en0002">²</xref>
	2.3. Exclusion criteria
	2.4 Data analyses

	3. Results
	3.1. Stabilization of data
	3.1.1 Item difficulties
	3.1.2 The relative difficulty of concepts

	3.2. Internal validity of the CAPCT
	3.3 Cluster analysis
	3.4. Exploratory analysis: phase 3
	3.5. Reliability: what predicts player ability?
	3.5.1. Age x gender
	3.5.2. Prior ability
	3.5.3. Gender bias in item reponses

	4. General discussion
	4.1. Items
	4.2 Users
	4.3 Future research

	5. Conclusion
	Notes
	Acknowledgments
	Disclosure statement
	Notes on contributors
	ORCID
	Data availability statement
	References

