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ABSTRACT 
 

 

Indoor positioning systems are used to locate and track objects 

in an indoor environment. Distance estimation is done using 

received signal strength indicator (RSSI) of radio frequency 

signals. However, RSSI is prone to noise and interference which 

can greatly affect the accuracy performance of the system. In 

this paper Internet of Things (IoT) technologies like low energy 

Bluetooth (BLE), WiFi, LoRaWAN and ZigBee are used to 

obtain indoor positioning. Adopting the existing trilateration 

and positioning algorithms, the Kalman, Fast Fourier 

Transform (FFT) and Particle filtering methods are employed to 

denoise the received RSSI signals to improve positioning 

accuracy. Experimental results show that choice of filtering 

method is of significance in improving the positioning accuracy. 

While FFT and Particle methods had no significant effect on the 

positioning accuracy, Kalman filter has proved to be the method 

of choice for BLE, WiFi, LoRaWAN and ZigBee. Compared 

with unfiltered RSSI, results showed that accuracy was 

improved by 2% in BLE, 3% in WiFi, 22% in LoRaWAN and 

17% in ZigBee technology for Kalman filtering method.  
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INTRODUCTION 

The advancement of technology has brought 

forth the generation of digital natives with 

gadgets and devices always connected and 

sharing information. These devices are 

embedded with sensors wirelessly 

connected to improve users’ experience  

(Sadowski & Spachos, 2018). The 

interconnectedness of these sensors forms a 

wireless sensor network (WSN). Through 

development of the Internet of Things (IoT), 

low cost and energy efficient devices 

embedded with the sensors have been 

developed. In smart buildings, warehouses, 

museums, hospitals, airports, parking lots or 

shopping malls, it is of importance that all 

devices can determine their location in real-

time for efficient sorting, delivering and 

management (Sangthong et al., 2020). The 

WSN has been extensively used to develop 

indoor positioning systems using different 

technologies. It is however, observed that in 

designing the indoor positioning systems, 

there is no standard set of

specifications or protocols used to guide the 

localization process (Pande & Ibwe, 2021). 

Different localization techniques, signal 

metrics and wireless technologies are used 

with no single parameter being globally 

accepted as international localization 

standard. Likewise, the wireless and IoT 

technologies currently used were not 
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primarily intended for localization purposes  

(El-Absi et al., 2020).  

To locate objects in a building, indoor 

positioning is performed. Indoor positioning 

is used inside an environment where Global 

Positioning System (GPS) fails. GPS is one 

of the most commonly used positioning 

systems. In GPS, satellites orbiting the Earth 

send time-stamped signals to a receiver 

which is used to estimate the position. 

However, it provides a maximum accuracy 

of five meters, making it challenging to use 

for effective indoor positioning (Zhang et 

al., 2017). It also consumes a large amount 

of energy and can be expensive to 

implement for every node in a large network 

(Al-hadhrami et al., 2016). Due to a 

dependency on Line-of-Sight (LoS) between 

GPS satellites and receivers, GPS cannot be 

used indoors. Therefore, when performing 

indoor positioning, an accuracy of less than 

one meter is required for a proper 

positioning system. Hence, other methods 

need to be used in order to determine a 

device's position in indoor environments 

(Pande & Ibwe, 2021). 

To implement indoor positioning system 

that can accurately track targeted devices, 

WSN is a solution that is often applied. 

WSN consist of dispersed sensors that 

collect environmental information, share the 

collected data with nearby device or 

aggregate to a central location. One 

advantage that WSN has for indoor 

positioning is the portability of the sensor 

nodes (Sadowski & Spachos, 2018). 

Batteries are often used to power the nodes 

which allows them to be placed anywhere. 

The other advantage is the scalability of 

WSN. Using a standard number of nodes to 

achieve positioning is usually not possible 

due to the varying shapes and sizes of 

environments. Using a larger number of 

nodes can often provide increased accuracy 

requiring extra hardware while producing 

additional interference in the area (Kim et 

al., 2017). 

Implementing an indoor positioning system 

has many uses in a variety of areas (Pu et 

al., 2011). It provides the added benefit of 

safety and security and also improve 

efficiency in the working environment. In 

hospitals, the indoor positioning can be used 

to track patients and enable doctors and 

medical personnel to know their exact 

locations inside the building without 

needing to provide constant supervision  

(Tsang et al., 2015). Likewise, in emergency 

situations, stress prevention and 

management are critical for responders to 

stay well and to continue to help in the 

situation. Responders could use indoor 

localization to help quickly guide them to 

anyone who is in distress without needing to 

know the exact layout of the building (El-

Absi et al., 2020). 

The indoor positioning, however, suffers 

from several challenges that are not present 

when performing positioning outdoors. The 

obstacles in the indoor environment 

including furniture, walls, and people, 

which can reflect the signals produced and 

increasing multipath effects (Njima et al., 

2019). The different wireless technologies 

currently used in communication affect the 

performance of the indoor positioning 

systems through noise and interference. The 

interference distorts the quality of signals 

received by the objects and compromise the 

positioning accuracy. The most common 

technologies used in indoor positioning 

include WiFi, Bluetooth, Radio Frequency 

Identification (RFID) (Deng et al., 2018), 

Ultra-Wide Band (UWB) and cellular 

(Singh et al., 2021). However, each of the 

aforementioned technologies have their 

strengths and weaknesses when used 

indifferent environments. The abundance of 

WiFi access points in many buildings, has 

made WiFi the simplest indoor positioning 

option, as any additional hardware that is 

needed is minimal. However, the WiFi 

access points are often placed to maximize 

signal coverage, not for indoor positioning. 

WiFi consumes large amount of power, 

which could easily deplete battery powered 

devices, hence, not ideal for positioning 

systems (Sadowski & Spachos, 2018). The 

emergency of inexpensive IoT devices and 

applications like Bluetooth Low Energy 
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(BLE) (Luo et al., 2018), Zigbee and 

beacons, has made it easy to arrange the 

devices for indoor positioning.  The 

Bluetooth beacons are battery powered 

hence limiting their service time. 

Nevertheless, the mentioned wireless 

technologies can be configured to follow the 

same algorithm in localizing objects in 

given environments. 

The indoor positioning system has three 

parts in deriving the object’s location 

information. These are physical quantity 

measured, measurement method and the 

extraction of useful location information 

based on the measurements (Dolha et al., 

2019).  The sensing devices make use of 

any of signals like ultrasonic, radio 

frequency, infrared or vision to measure 

physical quantity for location. These signals 

travel between transmitters and receivers 

and also carry coordinate information of 

reference nodes. The physical quantity are 

measured as time of arrival (TOA), time 

different of arrival (TDOA), angle of arrival 

(AOA) and received signal strength 

indicator (RSSI) (Singh et al., 2021). With 

the raw information of a physical quantity 

measured, various techniques and 

algorithms are used which transform raw 

data into usable position information. 

Techniques have been classified as 

triangulation/trilateration, Scene Analysis, 

Proximity (Tsang et al., 2015) and 

fingerprinting. Position estimated by 

algorithms may be relative or absolute and it 

varies from system to system like GPS 

estimates absolute positioning for every 

located device. 

TOA is among the most accurate techniques 

which estimate the signal propagation time 

between a source and receiver using the 

synchronized clocks (Njima et al., 2019). It 

uses time stamps embedded in transmitted 

packets along with the received time to 

determine how far the packet had to travel 

to reach the destination. However, when 

using a TOA set up, devices in the network 

need synchronized clocks, which requires 

additional hardware, thus increasing the cost 

of the system. TDOA is similar to TOA in 

that it requires that devices to be 

synchronized in time, but it uses the signal 

propagation time to multiple receivers to 

find the absolute signal propagation time 

(Sadowski & Spachos, 2018). The distance 

can then be calculated by the differences in 

arrival time of the packet to the different 

receivers. AOA systems use an array of 

antennae to determine the angle, from which 

the signal propagated (Liu et al., 2021). It is 

based on the principle of measuring angular 

directions (Azimuth and Elevation) from a 

device placed at a known location. With 

angle it is meant the angle in which the 

signal meets the receiver. The angle is 

measured by computing the phase of the 

receiving radio signals. Triangulation is then 

used along with the geometric principle of 

angles of triangles to determine the position 

of the receiver. AOA techniques often 

require complex hardware and must be 

calibrated in order for an accurate position 

to be obtained. RSSI is one of the most 

popular and simplest methods for 

localization (Pande & Ibwe, 2021). The 

main reason for its popularity is that finding 

the RSSI requires no additional hardware 

and can be found on any device utilizing 

almost any type of wireless communication 

technology. These technologies could be 

BLE, ultrasonic, Zigbee, WiFi, RFID, 

LoRaWAN, UWB and cellular (Sadowski & 

Spachos, 2018). RSSI works by measuring 

the signal strength of packets on 

the receiver. It is often used for finding the 

distance between the transmitter and the 

receiver, since the signal strength decreases 

as the signal propagates outward from the 

transmitter. Since propagating signals are 

greatly susceptible to noise in the 

environment, RSSI often leads to inaccurate 

values that can cause errors in the 

positioning system. To improve estimation 

accuracy, the received RSSI signals should 

be filtered to remove noise (Liu et al., 

2021). 

In this paper, through experimentation, a 

filtering comparison between the 

positioning accuracy of WiFi, BLE, Zigbee, 

and LoRaWAN is performed. The wireless 
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technologies were chosen based on public 

availability, easily connected to one another 

and use in the IoT. Zigbee is also a popular 

low power technology, often used in IoT 

applications. BLE and WiFi are both 

heavily present in society. Most devices are 

able to connect with at least one or both of 

the mentioned technologies, allowing 

creation of WSN. LoRaWAN is a novel 

technology that is not as prevalent as the 

BLE, Zigbee and WiFi. LoraWAN operates 

at 915 MHz with nodes that can reach 

distances of 15000 meters. The tests were 

performed using a trilateration technique 

where the RSSI values were utilized in 

determining the approximate distances 

between the transmitting nodes and the 

receiver. Two different environments were 

used for experimentation as discussed in 

(Sadowski & Spachos, 2018) . In particular, 

the paper presents, analyses, and 

quantitatively compares the effect of 

different techniques such as Fourier 

Transform, Discrete Kalman, and Particle 

for filtering RSSI fluctuations due to signal 

noise, by pointing out how filtering can 

impact on RSSI-based indoor positioning 

system performance. This work uses the 

RSSI data set which is available online1. 

The distance error performance is assessed 

in terms of number of meters. These results 

are obtained using PYTHON® simulation 

platform. 

 

METHODS AND MATERIALS 

RSSI Filtering Methods 

RSSI fluctuations due to signal noise 

significantly affect both stability and 

efficiency of the estimation process. For 

instance, in mobile beacons when the RSSI 

value of the target reader or tag is interfered 

or corrupted by noise, even small RSSI 

fluctuations can produce significant distance 

estimation changes, thus relevantly reducing 

the accuracy. In addition, in those 

conditions RSSI over/under-estimation may 

trigger unnecessary predictions, thus 

 

 

lowering efficiency. The section presents 

three different filtering components that are 

implemented to mitigate RSSI fluctuations. 

These are Fourier Transform, Discrete 

Kalman and Particle. 

Fourier Transform Filtering 

For a given access point, the set of its actual 

RSSI discrete values measured at the 

receiver side is represented as: 

 (1), (2), (3),..., ( )o o o o oR r r r r n=              (1) 

where ro(i) is the RSSI value at discrete time 

i. It is also possible to estimate 
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The proposed Discrete Fourier Transform 

(DFT) filter module extract from Ro, a 

Fourier coefficient set (Ai and Bi) 

representing the RSSI sequence in the 

frequency domain. In a time window of 

duration (Ro size)*(RSSI Sampling Period). 

The coefficient set is extracted with usual 

Fourier equations as: 

1

2 2

1 1
( )

1
0 ( )

N N

o k

n k

N

o N N k

k

A y n t y ;
N N

B B ; A y cos k
N

=

=  =

= = = 

 



    (3) 

1 1

2 2 2
( )

N N

p k

n k

pk
A y n t y cos

N N N
= =

 
=  =  

 
   (4) 

1 1

2 2 2
( )

N N

p k

n k

pk
B y n t y cos

N N N
= =

 
=  =  

 
   (5) 

where p = 1…N/2-1, Δt = T/N, and N is the 

size of Ro. 

The Fourier coefficient set is the basis to 

define an Inverse Discrete Fourier 

Transform (IDFT) to regenerate the RSSI 

signal given as: 
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when IDFT exploits only a subset of the 

series terms in Equation (6), the generated 

RSSI sequence do not exhibit its high 

frequency components and show a more 

regular trend like a low pass filter. In this 

case, the optimal number of N and M are 4 

and 1 respectively. 

 

Discrete Kalman Filter 

The Kalman filter addresses the general 

problem of trying to estimate the state x = 

ℜn of a discrete-time controlled process that 

is governed by the linear stochastic 

difference equation as: 

1 1k k k kx Ax Bu ω− −= + +                             (7) 

with a measurement y = ℜn that is 

k k ky Hx= +                                          (8) 

The random variables ωk and ψk  represent 

the process and measurement noise 

respectively (Park et al., 2019). They are 

assumed to be independent of each other, 

white and with normal probability 

distributions 

( ) ( )p ω N 0,Q=                                           (9) 

( ) ( )p N 0,R =                                          (10) 

The nxn matrix A relates the state at the 

previous time step to the state at the current 

step, in the absence of either a driving 

function or process noise. The n×1 matrix B 

relates the optional control input y ϵ ℜn to 

the state x. The m×n matrix H in the 

measurement equation relates the state to 

the measurement yk.  

In this case, the discrete Kalman filtering 

module will be estimating RSSI values by 

representing the RSSI time evolution as a 

combination of signal noise measurement 

noise and maximum signal evolving process 

noise (Park et al., 2019). The filter works by 

minimizing process noise (ω) through a 

two-phase algorithm: first, a predictor 

performs next RSSI estimation (Equations 

(11) and (12)); then, a corrector improves 

the RSSI estimation by exploiting current 

RSSI measurement (Equations (13), (14) 

and (15)). Therefore, an iteration of the 

proposed Discrete Kalman filtering module 

processes: 

1 1k k kˆ ˆx Ax ω−
− −= +                                    (11) 

1
T

k kP AP A Q−
−= +                                   (12) 

1( )T T
k k kK P H HP H R− − −= +              (13) 

( )k k k k kˆ ˆ ˆx x K z Hx−= + −                           (14) 

(1 )k k kP K H P−= −                                    (15) 

x and z are RSSI values, the state coincides 

with the output (A is a n×n identity matrix) 

and the estimation of the next state estimate 

is equal to the current state (H is a mxn 

matrix). After running several tests, the 

good trade-off between RSSI fluctuation 

mitigation and filtered to actual RSSI delay 

by setting Q = 1.6 and R = 6. 

Particle Filtering 

Particle filtering uses a set of samples to 

represent the posterior distribution of a 

stochastic process given the noisy and/or 

partial observations. The state-space model 

can be nonlinear and the initial state and 

noise distributions can take any form 

required. Particle filter techniques provide a 

well-established methodology for 

generating samples from the required 

distribution without requiring assumptions 

about the state-space model or the state 

distributions (Ata-Ur-Rehman et al., 2021). 

Particle filters update their prediction in an 

approximate manner. The samples from the 

distribution are represented by a set of 

particles; each particle has a likelihood 

weight assigned to it that represents the 

probability of that particle being sampled 

from the probability density function. 

Weight disparity leading to weight collapse 

is a common issue encountered in these 

filtering algorithms, however, it is mitigated 

by including a resampling step before the 

weights become uneven. 

In this case, like the Discrete Kalman, the 

proposed Particle filtering module tries to 

estimate RSSI by minimizing measurement 

and process noise, but without imposing a 

linear equation modeling and without 

imposing normal distribution for signal 
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noise in the deployment stage. The main 

idea at its basis is for the algorithm to 

compute, at each step, several possible 

filtered RSSI values for each measured 

RSSI; then associates each candidate value 

with a weight and choose the most 

promising values from the new measured 

RSSI values as described in (Bellavista et 

al., 2006). It then perturbs the candidate 

values according to the rules described in 

(Bellavista et al., 2006) to obtain a new 

filtered average RSSI value. 

To illustrate Particle filtering, this work 

adopts the example in the work of 

(Bellavista et al., 2006) for the algorithm 

iteration with 10 particles, which represents 

10 possible filtered RSSI values as shown in 

Figure 1. The setup starts with 10 possible 

filtered RSSI values (light circles), all with 

the same weight. Then, the state estimate 

probability is exploited which has been 

obtained from RSSI measurement. The next 

step is to assign a weight at each filtered 

RSSI value (dark circles) and spread the 

heavy RSSI points in different RSSI values 

with the same weight (light circles), while 

discarding the light RSSI values. Lastly, the 

filtered RSSI are randomly perturbed (light 

circles). The number of particles strongly 

influences the Particle filter performance; in 

general, greater is the particle number, 

better the filtered RSSI follows the actual 

RSSI sequence. 

Figure 1: Particle Filtering Steps (Bellavista 

et al., 2006). 

 

 

Trilateration Algorithm 

The trilateration algorithm uses 

measurements of the RSSI values to 

estimate the distance between reference 

node and targeted node reader (Pu et al., 

2011). The distances between reference 

locations and the target location can be 

considered as the radii of many circles with 

centers at every reference location. Hence, 

the target location is the intersection of all 

the sphere surfaces. This work adopts the 

tags’ distance relations derivations in 

(Pande and Ibwe, 2021). Figure 2 shows the 

arrangement of reference (readers) and 

target (Tag) nodes in a simplified fashion. 

The reference sensor nodes are located at 

the corners of the triangular area. This 

technique requires three reference nodes to 

achieve trilateration. Node A(x1,y1) and 

B(x2,y2)  are taken to achieve x value while 

C(x3,y3)  and A(x1,y1)  are used to get y 

value, hence (x,y). The distances among 

sensor nodes/readers (d1, d2 and d3) are 

obtained using a log-distance path loss 

model to convert RSSI values to distances 

from the previous process. The theoretical 

model used in indoor propagation for RSSI 

ranging is called log-normal propagation 

model presented in (Zou et al 2013). The 

model is presented as: 

 10[dB] ( ) - logRX o σ
o

d
P PL d 10η X

d
= +      (16) 

where PRX[dB] is the received RSSI value,  

PL(d0) is the path loss value for a reference 

distance d0, η is the path loss exponent, and 

Xσ is a Gaussian random variable with zero 

mean and variance, σ2, that models the 

random variation of the RSSI value. The 

received signal power is affected by 

attenuation, multipath, reflection, fading, 

interference, noise and shadowing (Luo et 

al., 2018). The position of the tag is likely to 

be erroneous in this way because the point 

of intersection is affected by the RSS value. 

Due to the multipath, interference and noise 

the three circles may not intersect with a 
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common point. The algorithm presented in 

(Pande & Ibwe, 2021) is adopted in this 

work for the best position estimation of the 

target node. 

 

 
Figure 2:  Tags and readers arrangement. 

 

Adopting the values x1 = 0, x2 = u, x3 = 0, y1 

= 0, y2 = 0, y3 = v gives  

2 ( )

2

2 2
1 3u d d

x
u

+ −
=                                   (17) 

2 ( )

2

2 2
1 3v d d

y
v

+ +
=                                  (18) 

 

Environmental Modeling 

The primary goal of RSSI filtering in this 

work is to mitigate RSSI fluctuations due to 

signal noise in order to primarily improve 

indoor positioning accuracy, with 

simultaneous acceptable values for 

efficiency and stability for the selected 

wireless technologies WiFi, BLE, ZigB and 

LoRaWAN. Therefore, to evaluate the 

performance of each wireless technology, 

two environments were built as described in 

(Sadowski & Spachos, 2018). The first 

environment was selected to be a typical 

research lab with dimensions 10.8 m × 7.3 

m. The environment was selected due to the 

large size with large numbers of equipment, 

computers, WiFi and BLE devices that 

could impose interference, mimicking a 

very noisy environment for experimenting. 

The second selected environment had 

dimensions of 5.6 m × 5.9 m representing a 

small meeting room. The second 

environment was a perfect testing area as it 

demonstrated conditions contrasting those in 

the first environment. The second 

environment had much smaller space that 

contained only tables and chairs. No 

equipment, devices or computers were 

present in the environment that could cause 

significant interference in the area, creating 

a low-noise environment for testing. The 

parameters used for environment 1 and 

environment 2 are shown in Table 1 and 

Table 2, respectively. 

To set up for the experiments of the two 

environments, the arrangement in Figure 3 

was set up. The right-angle triangle was 

created between the nodes. The distances of 

the triangle, d meters, between nodes A, B 

and C, were set to be equal. The actual 

coordinates of point A, B and C are (0,0), 

(d,0) and (d,d) respectively. The 

experiments used three selected distances 
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for testing at 1, 3 and 5 meters. The receiver 

was set to one of three positions: in the 

center between nodes A and B (D1), in the 

center between nodes A and C (D2), and in 

the centroid of the triangle (D3). The target 

locations are given in Table 3. The three 

distances were tested using the different 

wireless technologies, WiFi, BLE, ZigBee 

and LoRaWAN, while keeping the same 

arrangement and adjusted target positions 

D1, D2 and D3. 

 

Table 1: Parameters used in environment 1 

 WiFi BLE ZigBee LoRaWAN 

η 2.013 2.511 2.261 1.246 

Xσ -

49.990 

-

75.540 

-

51.100 

- 

31.380 

Table 2: Parameters used in environment 2 

 WiFi BLE ZigBee LoRaWAN 

η 2.162 2.271 1.653 0.519 

Xσ -

45.730 

-

75.480 

-

51.010 

- 

33.440 

 

 
Figure 3: Experimental Setup. 

 
Table 3: Targets Location at Given Distances 

Location 

(m) 

Test Points Coordinates 

D1 (m) D2 (m) D3 (m) 

1 (0.500,0

.000) 

(0.500, 

0.500) 

(0.667, 

0.333) 

3 (1.500,0

.000) 

(1.500, 

1.500) 

(2.000, 

1.000) 

5 (2.500,0

.000) 

(2.500, 

2.500) 

(3.333, 

1.667) 

 

The theoretical propagation models were 

developed and simulated in PYTHON using 

equation 16 and the parameters given in 

Table 1 and Table 2. The channel models 

were developed for each wireless 

technology using the publicly available 

RSSI dataset2. Nine tests were done for each 

wireless technology based on varying the 

distances in Table 3. In each of the test, the 

location of all the nodes was recorded along 

 

 

with the measured RSSI values. The 

measured RSSI values were used to 

approximate the position of the receiver 

with respect to reference nodes. To evaluate 

the accuracy of the filtering technique in      

each wireless technology used, the mean 

squared error (MSE) of the actual and 

approximate distance was used. The MSE is 

measured as 

( ) ( ) −+−=
K

i

ii yyxx
K

MSE
221

            (19) 

where, K is the number of nodes. x and y are 

the actual and xi and yi are the estimated 

coordinates of the target node. These results 

were then passed to Microsoft Excel for 

data analysis. The MSE in each 

environment were estimated and analyzed. 

To demonstrate filtering effect, the filtered 

RSSI has to show smaller MSE compared to 

the unfiltered RSSI with respect to 

environment changes. 
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RESULTS AND DISCUSSION 

The filtering accuracy evaluation between 

the wireless technologies, based on 

minimum MSE given in Equation (19), was 

performed. The results for FFT filtering in 

environment 1 and environment 2 are shown 

in Table 4 and Table 5, respectively.  

In environment 1, the BLE produced an 

average error of 0.655 meters while in 

environment 2 the average error 0.834 

meters. Using the FFT filtering method, 

BLE has demonstrated to have the best error 

performance in environment 1 with 0.654 

meters. 

However, its overall performance for both 

environments of 0.744 meters ranks second 

of the four technologies. WiFi has 

demonstrated to be the second-best 

technology in environment 1 with 0.795 

meters and the best technology in 

environment 2 with 0.662 meters when FFT 

filtering was used. The overall performance 

of WiFi still places it to the first place with 

0.728 meters.  ZigBee is the least 

performing in environment 1 with 0.889 

meters and third in environment 2 with 

0.939 meters. It is also demonstrated to be 

the third best in overall performance with 

0.914 meters. 

 

Table 4: MSE values with distances in Environment 1 for FFT Filtering 

Distance (m) Test 

Point 

Actual 

Coordinates (m) 

Error (m) 

    M N BLE WiFi LoRaWAN ZigBee 

1 D1 0.500 0.000 0.134 0.135 0.349 0.339 

D2 0.500 0.500 0.011 0.116 0.506 0.351 

D3 0.670 0.330 0.186 0.773 0.755 1.765  
Average 0.110 0.341 0.537 0.818 

3 D1 1.500 0.000 1.183 1.169 0.247 1.273 

D2 1.500 1.500 0.048 0.174 0.268 1.230 

D3 2.000 1.000 0.787 0.730 0.917 0.677  
Average 0.673 0.691 0.477 1.060 

5 D1 2.500 0.000 2.351 2.772 1.803 0.178 

D2 2.500 2.500 0.098 0.559 0.847 0.355 

D3 3.330 1.670 1.094 0.726 1.148 1.837 

  Average 1.181 1.352 1.266 0.790 

 
Table 5: MSE values with distances in Environment 2 for FFT Filtering 

Distance(m) Test 

Point 

Actual 

Coordinates (m) 

Error (m) 

  
M N BLE WiFi LoRaWAN ZigBee 

1 D1 0.500 0.000 0.464 0.276 0.492 0.376 

D2 0.500 0.500 0.853 0.313 0.001 0.350 

D3 0.670 0.330 0.312 0.772 0.236 0.226  
Average 0.543 0.454 0.243 0.317 

3 D1 1.500 0.000 1.468 1.051 1.498 1.383 

D2 1.500 1.500 0.507 1.157 0.126 0.630 

D3 2.000 1.000 0.590 0.583 2.900 0.610  
Average 0.855 0.930 1.508 0.874 

5 D1 2.500 0.000 2.222 0.599 2.430 1.843 

D2 2.500 2.500 0.054 1.123 0.507 1.578 
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D3 3.330 1.670 1.032 0.081 2.313 1.456  
Average 1.103 0.601 1.750 1.626 

 

The results for Kalman filtering in 

environment 1 and environment 2 are shown 

in Table 6 and Table 7, respectively. In 

environment 1, the BLE is the best 

performing with an average error of 0.681 

meters while in environment 2, it ranks third 

with the average error 0.800 meters. Using 

the Kalman filtering method, WiFi has 

demonstrated to have the best error 

performance in environment 2 with 0.476  

 

meters. However, its overall performance 

for both environments of 0.740 meters ranks 

third of the four technologies. ZigBee has 

demonstrated to be the second-best 

technology in environment 1 with 0.691 

meters and the in environment 2 with 0.754 

meters when Kalman filtering was used. The 

overall performance of WiFi still places it to 

the first place with 0.623 meters.  

LoRaWAN is the least performing with an 

overall error performance of 0.769 meters.  

 

Table 6: MSE values with distances in Environment 1 for Kalman Filtering 

Distance 

(m) 

Test 

Point 

Actual 

Coordinates (m) 

Error (m) 

  
M N BLE WiFi LoRaWAN ZigBee 

1 D1 0.500 - 0.2334 0.1812 0.3789 0.2378 

D2 0.500 0.500 0.0075 0.0905 0.3992 0.2804 

D3 0.670 0.330 0.1892 0.7007 0.6471 1.3459  
Average 0.143 0.324 0.475 0.621 

3 D1 1.500 - 1.2727 2.3621 0.2406 0.5693 

D2 1.500 1.500 0.0408 0.256 0.2054 0.5518 

D3 2.000 1.000 0.7625 0.3905 0.6528 0.6014  
Average 0.692 1.003 0.366 0.574 

5 D1 2.500 - 2.4348 1.6278 2.1485 0.7623 

D2 2.500 2.500 0.0736 0.3184 0.62 0.276 

D3 3.330 1.670 1.1131 0.9986 1.1327 1.5979  
Average 1.207 0.982 1.300 0.879 

 

Table 7: MSE values with distance in Environment 2 for Kalman Filtering 

Distance 

(m) 

Test 

Point 

Actual 

Coordinates (m) 

Error (m) 

  
M N BLE WiFi LoRaWAN ZigBee 

1 D1 0.500 - 0.478 0.198 0.495 0.428 

D2 0.500 0.500 0.591 0.141 0.032 0.264 

D3 0.670 0.330 0.209 0.031 0.236 0.421  
Average 0.426 0.123 0.254 0.371 

3 D1 1.500 - 1.455 0.203 1.494 1.343 

D2 1.500 1.500 0.355 0.366 0.071 0.401 

D3 2.000 1.000 0.665 0.924 1.285 0.837  
Average 0.825 0.498 0.950 0.860 

5 D1 2.500 - 2.321 1.208 2.469 1.026 

D2 2.500 2.500 0.015 0.615 0.448 1.129 
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D3 3.330 1.670 1.114 0.600 0.886 0.944  
Average 1.150 0.808 1.268 1.033 

 

The results for Particle filtering in 

environment 1 and environment 2 are shown 

in Table 8 and Table 9, respectively. In 

environment 1, still the BLE is the best 

performing with an average error of 0.659 

meters while in environment 2, it ranks 

second with the average error 0.843 meters. 

Particle filtering method has enabled WiFi 

to demonstrated the best error performance 

in environment 2 with 0.474 meters. 

Likewise, its overall performance for both 

 

environments of 0.652 meters ranks first of 

the four wireless technologies. ZigBee has 

demonstrated to be the third-best technology 

with an overall average error performance of 

0.864 meters when Particle filtering was 

used. The overall performance of WiFi still 

places it to the first place with 0.623 meters.  

LoRaWAN is the least performing in with 

an overall error performance of 1.001 meters 

when Particle filtering was used. 

 

Table 8: MSE values with distance in Environment 1 for Particle Filtering 

Distance (m) Test 

Point 

Actual Coordinates 

(m) 

Error (m) 

  
M N BLE WiFi LoRaWAN ZigBee 

1 D1 0.500 - 0.114 0.135 0.334 0.354 

D2 0.500 0.500 0.007 0.120 0.490 0.303 

D3 0.670 0.330 0.182 0.976 0.765 1.764  
Average 0.101 0.410 0.529 0.807 

3 D1 1.500 - 1.224 2.681 0.350 1.170 

D2 1.500 1.500 0.035 0.322 0.279 0.708 

D3 2.000 1.000 0.756 0.492 1.077 0.618  
Average 0.672 1.165 0.569 0.832 

5 D1 2.500 - 2.427 1.355 2.114 0.109 

D2 2.500 2.500 0.094 0.439 0.895 0.349 

D3 3.330 1.670 1.090 0.944 1.117 1.844  
Average 1.204 0.913 1.375 0.768 

  

Table 9: MSE values with distance in Environment 2 for Particle Filtering 

 

Distance 

(m) 

Test 

Point 

Actual Coordinates 

(m) 

Error (m) 

  
M N BLE WiFi LoRaWAN ZigBee 

1 D1 0.500 - 0.540 0.117 0.492 0.402 

D2 0.500 0.500 0.959 0.177 0.053 0.338 

D3 0.670 0.330 0.183 0.122 0.236 0.481  
Average 0.561 0.139 0.260 0.407 

3 D1 1.500 - 1.458 0.284 1.494 1.355 

D2 1.500 1.500 0.413 0.448 0.107 0.531 

D3 2.000 1.000 0.673 0.967 2.565 1.004  
Average 0.848 0.566 1.389 0.963 

5 D1 2.500 - 2.249 0.890 2.431 1.361 

D2 2.500 2.500 0.015 0.799 1.004 1.533 
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D3 3.330 1.670 1.096 0.463 2.297 1.328  
Average 1.120 0.717 1.911 1.407 

 

It is observed that environment 1 had a 

better advantage to ZigBee and LoRaWAN 

technologies whose signals could travel 

farther distances with less obstructions, 

reflections and diffractions. In environment 

2, the LoRaWAN deteriorated due to an 

increased number of objects in the room. It 

is also observed that WiFi has the best 

performance in both environments at all 

distances of 1, 3 and 5 meters at test points 

D2, because of lower amount of 

interference. However, at the edges of the 

triangle as shown in Figure 3, the devices 

experienced high interference level hence 

degrading the estimation accuracy.  

In Figure 4, the comparison of filtering 

performance is done with the unfiltered for 

BLE, WiFi, LoRaWAN and ZigBee 

technologies. It is observed in Figure 4 that 

FFT filtering has no significant 

improvement on the error performance in 

both environmets for all the wireless 

technologies used. In particular, the ZigBee 

and WiFi FFT filtered error performance is 

is outperformed with the unfiltered. This is 

due to the fact that the approximations made 

in the design of the FFT filter cannot cope 

with the differences in reflected signal 

frequencies as the WiFi signal travels across 

multiple objects. As the WiFi signal  

 

reflections of different objects have different 

frequencies; the fluctuations of different 

frequencies are separable in the frequency 

domain. Thus, the approximated FFT filter 

does not perform well on the altered 

frequencies. 

The performance of Particle filtering is also 

the same as the unfiltered for all wireless 

technologies used. This is due to the fact 

that the window size of the selected particles 

of reference were limited to 10. This number 

was limited by the computer resources used 

of 1024 MB memory space and 2.12 GHz. 

This influenced the Particle filter 

performance; in general, greater is the 

particle number, better the filtered RSSI 

follows the actual RSSI sequence. It is 

observed that the Kalman filtering method 

outperforms all filtering methods used. It 

improves overall estimation accuracy by 2% 

in BLE, 3% in WiFi, 22% in LoRaWAN and 

17% in ZigBee as shown in Figure 4. The 

Kalman adaptation has revealed useful 

insights in this study. LoRaWAN works 

well in long distance open spaces with less 

interfering objects. Overall, it has been 

observed that error performance improved 

for both wireless technologies used in this 

study when Kalman filtering was used. The 

experimental results confirm that despite 

the average better error performance of WiFi 

technology, BLE could be the technology of 

choice due to portability and battery 

powering ability. But, the WiFi and 

LoRaWAN are ideal for medium and longer 

ranges respectively. 
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CONCLUSION 

It has been shown that modelling an indoor 

environment has been tedious due to the 

nature of it. This is because of the presence 

of walls, furniture, electronics devices and 

movement of people and objects in small 

confined space unlike outdoor. This forces 

indoor positioning systems to be specific 

for a given environment to cope with 

interference. This research work tries to 

improve positioning accuracy by filtering 

the received RSSI using FFT, Kalman and 

Particle methods. To achieve this existing 

trilateration and positioning algorithms 

have been used with BLE, WiFi, 

LoRaWAN and ZigBee technologies. 

Kalman filtering method has shown 

greater improvement in achieving accurate 

position coordinates with all wireless 

technologies used. However, WiFi 

demonstrated the lowest overall average 

error of 0.639 meters followed by BLE, 

which produced an error of 0.748 meters. 

ZigBee followed with an error of 0.845 

meters and the least performing was 

LoRaWAN with an average error of 0.943 

meters. Furthermore, these findings were 

compared with unfiltered RSSI and 

showed that accuracy was improved 

accuracy by 2% in BLE, 3% in WiFi, 22% 

in LoRaWAN and 17% in ZigBee 

technology for Kalman filtering method. 

These results have shown that improved 

position accuracy could be obtained if the 

RSSI are filtered before processing to 

remove the interference and noise. 

Likewise, the results have given further 

insights on the selection of the filtering 

methods for different types of wireless 

technologies. 
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