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Abstract

During the process of immune response to the infection caused by dengue virus, antibodies are generated by
plasma cells which are produced by B-cells. In some cases, it is observed that there is a delay in the production
of plasma cells from B-cells which causes a delay in the immune response. We propose a SIVA within-host
model of the virus transmission with delayed immune response to articulate the dynamics of the cell and virus
population. The stability analysis of different equilibrium states is also studied. The basic reproduction number
(BRN) of the model is computed using next generation matrix (NGM) method. The local stability analysis
is discussed using the method of linearisation. The stability conditions of the equilibrium states are validated
using the Liénard - Chipart criterion. Hopf bifurcation analysis is carried out as the system has time lag in
the immune response. Three equilibrium states, namely, virus free equilibrium state, endemic equilibrium state
with and without immune response, have been observed. It has been found that the virus free equilibrium state
is locally asymptotically stable if BRN is less than or equal to 1. Additionally, the conditions for the stability
of the endemic equilibrium points are derived and elaborated. Numerical simulations for different values of
time delay parameter τ are presented and illustrated using graphs. A Hopf bifurcation is observed if the
delay parameter τ crosses a threshold value and then the system becomes unstable with periodic solution. To
determine the relative importance of the model parameters to the virus transmission and prevalence, sensitivity
analysis of the parameters is illustrated using graphs. Due to the time lag in the immune response, an increase
in the virus growth is observed in large quantity. As a result, the infection spreads more quickly within the
host.
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1. INTRODUCTION

Dengue fever is an infectious viral fever that has affected more than 100 nations around the world.
Dengue fever (DF) or dengue hemorrhagic fever (DHF), caused by dengue virus (DENV), infects 50− 100
millions/year, resulting in half a million hospitalizations and 12,500 fatalities [1]. WHO estimates that the
number of reported cases of dengue has increased 8 times in the last two decades and 505, 430 and 5.2
million cases were reported in the year 2000 and 2019, respectively [2]. According to a study, 3.9 billion
people in 129 different countries, of which 70% are from the Asian continent, are at a higher risk of the
infection [3], [4]. The tropical and subtropical regions are considered to be the primary hotspot for dengue
spread. However, cases are reported around the globe in the recent years [5].

Female mosquitoes, viz., Aedes aegypti, and partly Aedes albopictus, are the primary carriers of DENV
[6]. DENV has four unique variants, namely, DENV-1, 2, 3, and 4. Various symptoms are observed in the
patients, caused by these variants. In 2013, the fifth serotype, namely DENV-5, was discovered [7], [8].
Generally, DF is benign in nature. DHF or dengue shock syndrome (DSS) may be observed in some cases
[9]. If DHF/DSS is not treated properly and in a timely manner, it can be fatal.

The process of immune response during the infection, caused by DENV, is discussed in-depth to formulate
a with-in host model of dengue virus transmission with delayed immune response. Once the virus infects the
cells, it starts replicating and emerges out in huge numbers [10], [11], [12]. The newly formed viruses infect
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the other healthy cells again and escalates the transmission. In this situation, the immune system attempts to
counter this problem on its own.

Generally, the immune system works in two ways, namely, adaptive and innate immune response. The
cell-mediated and the humoral immune response make up the adaptive immune response. The infection is
washed out and immunity is provided by both immune responses [13], [14]. It has been found that the humoral
immune response plays a more prominent role than the other immune mechanisms during the infection period
[15], [16]. During this process, the B-cells attached with the antigen and activate the production of antibodies
which in turn neutralize the virus [17]. In most cases, infection takes 4 − 7 days to build up and later the
immune response acts [18]. A patient gets infected during the phase of viremia, from which either the patient
recovers or continues to be in the leaking phase, which may lead to DHF/DSS [19].

If a person is exposed to DENV first time, then it is called primary infection. Some studies show that long-
term immunity against the infection with a serotype is more common [13]. In other words, the immunity
against the infection is serotype-specific [20]. Cross-immunity against all variants of DENV is temporary
[21]. Furthermore, if someone, who has been already infected by one of the variant of DENV, gets infection
by another variant, then it is called as secondary infection. The secondary infection causes serious illness
and in some cases, it may be fatal. When the short-term cross-immunity is over, the patients with secondary
infection are at a higher risk [22], [23].

The transmission dynamics of DENV in human and mosquito populations have been studied using math-
ematical modeling by several authors [24], [25]. Halstead et al. [26] presented a mathematical model based
on age specific sequential infection rates. May and Nowak [27] proposed mathematical models for virus
transmissions inside the body. Several studies have shown the dynamics of the internal transmission of the
virus [30], [40], [28], [29], [31]. The concept of delayed immunological response was introduced by Dibrov
et al. [32], [33]. Fowler [34] has proposed an approximate solution of a with-in host model with delayed
immunity.

Gourley et al.[35] and Li and Shu [36] presented the stability analysis of with-in host models which
incorporates the inter-cellular delay. Global stability of an epidemic model with a constant time delay and
infectious period is discussed by Huang et al. [37]. Yang et al. [38] illustrated the global dynamics of a with-
in host model describing delayed transmission of both virus to cell and cell to cell. The in-host modeling
of humoral immunity with inter-cellular delay is illustrated by Wang and Zou [39]. Tanvi and Ambika [17]
considered a model of dengue virus transmission involving humoral immune response incorporating two
different time delays to account for the delayed time it takes for B-cells to become plasma cells and generate
antibodies. Kanumoori et al. [41] illustrated both immune response combining the time lag in the formulation
of antibodies from B cells. Recently, Camargo et al. [42] studied the severity of secondary infection. Sebayang
et al. [43] presented a qualitative study of the immune response mediated by antibodies. The detailed biological
aspects of the innate immune response are discussed in [44].

Here, a delayed SIVA with-in-host model of dengue virus transmission is presented. A constant delay is
thought to be caused by a lag in plasma cell formation from B cells, which causes a delay in the development of
antibodies. The suggested model depicts the dynamics of virus transmission with a delayed immune response,
as well as the behavior of susceptible, infected, and immune cells.

The model is formulated in Section 2. Section 3 and 4 deal with the analysis of the model and the
equilibrium states. The derivation of BRN is presented in Section 5 using NGM method. The detailed stability
analysis is discussed in Section 6, using the stability criterion of Liénard - Chipart. Section 7 deals with the
bifurcation analysis of the system. The numerical simulation of the model is discussed in Section 8. The
sensitivity analysis due to the change in parameters of interest is performed in Section 9. In Section 10, we
present the conclusions.

2. MATHEMATICAL FORMULATION

In the development of the mathematical model, the whole cell population N(t) may be divided into four
distinct classes S, I, V, and A denoting susceptible cells, infected cells, virus particles and the immune cells,
respectively. It is to be noted that the size of these four classes changes with time, i.e., S(t), I(t), V (t),
and A(t). The susceptible class denotes the healthy cells which are at a risk of infection and their size is
denoted by S(t). The infected class, denoted by I(t), consists of those cells that are already infected by the
virus. The virus class describes the free virus particles which are injected in the host and the size of this
class is V (t). The A(t) class consists of the immune cells which start the process of immune response. The
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Figure 1: Transmission Diagram.

proposed model represents an approximation to the real life scenario with suitable assumptions such as no
other microorganisms attack the body except the dengue virus of one serotype only [30].

To get insight of the dynamics of S, I, V , and A, the following first order coupled system of ODE is
proposed:

dS

dt
= α− β SV − δ S,

dI

dt
= β SV − σ I,

dV

dt
= k I − γ V − p AV,

dA

dt
= f H(t− τ) V (t− τ)− q AV − ε A.

(1)

This SIVA model can be elaborated into disjoint compartments as in Figure 1. In Figure 1, every class
occupies exactly one compartment and can move from one compartment to another. Each compartment is
described as a box and indexed by the class name. The arrows denote the direction of movements of the cells
from one class to another. The virus is injected into a healthy individual after the mosquito’s bite and attacks
the target cells. The target cells are assumed to be the monocytes or macrophages [45]. After coming into
contact with V , S become infected and the cells move to the I compartment. The number of infected cells
which move from S class to I class, is the product of the densities of S and V , and the associated constant
rate is β. It is assumed that α is the rate at which healthy cells enter into the system and δ is the rate at
which S is washed out of the system. The virus starts replicating inside the infected cells and comes out in
large numbers of new viruses at a rate k, which will again infect the susceptible cells. Hence, the number
of virus moving from I class to V , is k I , as in Figure 1. σ and γ are assumed to be the decay rates of I
and V , respectively. Here, H(t) is the Heaviside step function given as [17],

H(t) =

{
0, if t < 0,

1, if t ≥ 0.
(2)

The produced antibodies A attack V and the resulting complex is removed. Thus, a decrease in V and
A is observed which is assumed to be the product of V and A [34]. p is considered as the rate at which
V is neutralized by A. Antibody-virus complex affects the growth of A at a rate q. It is assumed that the
production of plasma cells from B-cells cause a constant delay τ . The change in A is directly proportional to
V (t− τ) and the associated rate is f . The Heaviside step function H(t− τ) indicates that the generation of
plasma cells does not start until a time τ . ε is natural degradation rate of A. Table 1 describes the parameters.
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Table 1: Parameter Description of (1).

Parameter Symbol Parameter Description Dimensions

α Production rate of S cells day−1 ml−1

δ Death rate of S day−1

β Rate of infection ml virions−1 day−1

σ Death rate of I day−1

k Production rate of V virions day−1

γ Elimination rate of V day−1

p Neutralizing rate of V by A virions day−1

q Rate at which antibody-virus complex day−1

affects the immune cell growth
ε Degradation rate of A day−1

f Associated rate at day−1

which B-cells produce plasma cells

3. ANALYSIS OF THE MODEL

3.1. Positive nature of Solutions
We will prove that the solution of (1) remains positive for all time t if initial conditions are positive. Using

(1), we get;

dS

dt

∣∣∣∣
S=0

= α ≥ 0,
dI

dt

∣∣∣∣
I=0

= β S V ≥ 0,
dV

dt

∣∣∣∣
V=0

= k I ≥ 0, and
dA

dt

∣∣∣∣
A=0

= f V ≥ 0. (3)

From (3), it may be noted that the rates are greater than or equal to zero on the planes which is described
as S = 0, I = 0, V = 0, and A = 0 of the first octant of IR4. The direction of the vector field of (1) is
towards inside on the bounding planes [41]. As a result, if a solution begins within this region then it will
remain within this region only, throughout time t. Hence, we conclude that the solutions of (1) continue to
be positive if the initial values are always positive for t > 0.

3.2. Boundedness of Solutions
To prove the boundedness of the solution, we have N = S + I + V +A. Then, we have the following:

dN

dt
=

dS

dt
+

dI

dt
+

dV

dt
+

dA

dt
. (4)

Using (1) in (4), we get:

dN

dt
=

dS

dt
+

dI

dt
+

dV

dt
+

dA

dt
=
(
α− βSV − δS

)
+
(
βSV − σI

)
+
(
kI − γV − pAV

)
+
(
fV − qAV − εA)

)
= α+ kI + fV −

(
δS + σI + γV + pAV + qAV + εA

)
≤ α+ kI + fV. (5)

As k > f , then rewriting Equation (5) we get:

dN

dt
≤ α+ k(I + V ). (6)

From (5), we have lim sup
t→∞

N =
α

k
. Therefore, all the solutions of S, I, V , and A are bounded by

α

k
. To

show that the system (1) is bounded in space, we simulate the System at different arbitrarily chosen initial
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points, namely, P1 = (400, 50, 100, 50), P2 = (200, 20, 80, 200), and P3 = (250, 100, 150, 1000) and the
analysis is discussed in the Section 8.

The region of interest is given as,

Ω =
{

(S, I, V,A) ∈ IR4 : 0 ≤ S, I, V,A ≤ α

k

}
. (7)

4. EQUILIBRIUM STATES OF THE SYSTEM

4.1. Virus-free Equilibrium (VFE) State E0

The system (1) exhibits a VFE state E0 which implies that no virus particles are present in the body.
As a result, there is no infected and immune cells. The virus-free equilibrium state E0 which belong to the
boundary of Ω, is given as E0 = (

α

δ
, 0, 0, 0).

4.2. Endemic Equilibrium State without immune response E1

The system (1) has an ineffective immune response equilibrium state E1 which incorporates that there is
no presence of immune response in the body. Thereby, the ineffective immune response equilibrium state E1

on the boundary of Ω, is given as E1 =
(
S1

∗, I1
∗, V1

∗, 0
)

where,

S1
∗ =

γ σ

β k
, I1

∗ =
α β k − δ σ γ

β σ k
, and V1

∗ =
α β k − δ σ γ

β σ γ
. (8)

4.3. Endemic Equilibrium (EE) State E2

The EE state E2 of (1) is given as E2 = (S2
∗, I2

∗, V2
∗, A2

∗) where,

S2
∗ =

α

(δ + β V2
∗)
, I2

∗ =
α β V2

∗

σ (δ + β V2
∗)
, A2

∗ =
f V2

∗

(ε+ q V2
∗)

and V2
∗ is the zero of

c0 V2
∗2 + c1 V2

∗ + c2 = 0 where, (9)

c0 = σβ
(
γq + pf

)
, c1 =

(
β γ σ ε+ δ σ γ q + δ σ p f − α β k q

)
, and c2 = ε

(
δ σ γ − α β k

)
. (10)

5. BASIC REPRODUCTION NUMBER (BRN) (R0)
The number of probable infections caused by one infected cell when remaining cells are not infected is

termed as R0. R0 < 1 implies that less production of newly infected cells from one infected cell, which
results a decrease in the virus population. In the case of R0 > 1, more newly infected cells are produced
which spread the infection rapidly.

To compute R0, we use the next generation matrix (NGM) method [49]. We consider
( dI

dt
,
dV

dt

)
and

follow the same notation as in [49] and compute the vectors F and U as follows [48]:

F =

(
β S V
k I

)
and U =

(
σ I

γ V + p A V

)
. (11)

Now, we have the following Jacobian matrices:

F = Jacobian of F at E0 =

(
0

β α

δ
k 0

)
and U = Jacobian of U at E0 =

(
σ 0
0 γ

)
. (12)

It follows that:

F U−1 =

 0
α β

δ γ
k

σ
0

 . (13)
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The dominant characteristic value of F U−1 is R0 and is given as,

R0 =

√
α β k

δ σ γ
. (14)

In the following propositions, we write the conditions for existence of the equilibrium states E1 and E2

as in Sections 4.2 and 4.3, respectively. It may be noted that these conditions depend on the value of R0 as
in (14).

Proposition 1. Endemic equilibrium state without immune response E1 exists if R0 > 1.

Proof: From (8), we have the equilibrium values of S, I , and V . Now, substituting R0 in the expressions
of S1

∗, I1
∗, and V1

∗, we have

S∗
1 =

α

δR2
0

, I∗1 =
α

δR2
0

(
R2

0 − 1
)
, and V ∗

1 =
δ

β

(
R2

0 − 1
)
. (15)

It is noted that to get the positive equilibrium values of S∗
1 , I

∗
1 , and V ∗

1 , the following condition must hold,

R2
0 − 1 > 0, (16)

(16) can be interpreted as,
R0 > 1. (17)

Hence, the proof is completed.

Proposition 2. A unique EE state E2 exists if R0 > 1.

Proof: From (9),

V ∗
2 =

−c1 ±
√
c12 − 4c0c2
2c0

. (18)

(18) shows that the product of the two roots is
c2
c0

. If the product of the roots is negative then, it implies that

one root is positive and other one is negative.
From (10), the expression for c0 shows that c0 > 0. Thus, the product of the roots is negative iff c2 < 0.
Now, rewriting c2 in terms of R0, we get,

c2 = γδσε
(
1−R0

2
)
. (19)

Therefore, to obtain a unique EE state E2, we must have

1−R0
2 < 0. (20)

(20) can be written as,
R0 > 1. (21)

It is worth mentioning that the discriminant c12 − 4c0c2 in (18) is also positive as R0 > 1. Thus, we will
have a real unique positive EE state E2 if R0 > 1. The proof is concluded.

6. STABILITY ANALYSIS

6.1. Stability Analysis of E0

Theorem 6.1. The VFE state E0 is l.a.s iff R0 < 1 and unstable if R0 ≥ 1.

Proof: To illustrate the stability of VFE state E0, we linearise (1) about E0 and get:

dY (t)

dt
= J1 Y (t) + J2 Y (t− τ) where, (22)
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J1 =


−δ 0 −α β

δ
0

0 −σ
β α

δ
0

0 k −γ 0
0 0 0 −ε

 and J2 =

 0 0 0 0
0 0 0 0
0 0 0 0
0 0 f 0

 ,

for all t > τ and Y = (S, I, V, A)T .
The characteristic equation of (22) is given as follows:

(λ+ δ) (λ+ ε)

(
λ2 + (γ + σ)λ+ γσ − αβk

δ

)
= 0. (23)

From equation (23), it is observed that the characteristic values are −δ, −ε and the zeros of

λ2 + (γ + σ)λ− γ σ (R2
0 − 1) = 0, (24)

which are given as

λ1,2 =
−(γ + σ)±

√
(γ + σ)2 + 4 γ σ (R2

0 − 1)

2
. (25)

Now, we consider the following two cases.
1) Case I, R0 < 1: From (25), we get:

4 γ σ (R2
0 − 1) < 0,

(γ + σ)2 + 4 γ σ (R2
0 − 1) < (γ + σ)2. (26)

Taking square root of both the sides of the inequality (26),

±
√

(γ + σ)2 + 4 γ σ (R2
0 − 1) < ±(γ + σ),

−(γ + σ)±
√

(γ + σ)2 + 4 γ σ (R2
0 − 1) < −(γ + σ). (27)

This implies that, if R0 < 1 then the zeros of (24) have negative real values.
2) Case II, R0 > 1: From (25), we get:

4 γ σ (R2
0 − 1) > 0. (28)

The last term of (24), i.e., −γ σ (R2
0 − 1) is the product of the two zeros and using Equation (28), the

product of the two zeros is negative. This implies that if R0 > 1 then one zero has non-negative real value
and the other one has a negative real value.

3) Case III, R0 = 1: From (25), we have λ1 = 0 and λ2 = −(γ + σ). Thus one root is exactly equal to
0. Thus, if R0 = 1 then the E0 is not stable. Hence, E0 is l.a.s when R0 < 1 and unstable if R0 ≥ 1.
This completes the proof.

6.2. Stability Analysis of E1

We linearise (1) near E1 and get:

dY (t)

dt
= L1 Y (t) + L2 Y (t− τ), (29)

where

L1 =

 −δ − β V1
∗ 0 −β S1

∗ 0
β V1

∗ −σ β S1
∗ 0

0 k −γ −p V1
∗

0 0 0 −ε− q V1
∗

 and L2 =

 0 0 0 0
0 0 0 0
0 0 0 0
0 0 f 0

 . (30)

for all t > τ and Y = (S, I, V, A)T . The values of S1
∗, I1

∗, and V1
∗ are given in (8).
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The characteristic values of the linearised system (29) are the zeros of,

λ4 + a1 λ3 + a2 λ2 + a3 λ+ a4 + e−λτ (a5 λ2 + a6 λ+ a7) = 0, (31)

where

a1 = δ + σ + γ + ε+ βV ∗
1 + qV ∗

1 ,

a2 = σ(ε+ γ + qV ∗
1 ) + (ε+ qV ∗

1 )γ − βkS∗
1 + (δ + βV ∗

1 )(ε+ γ + σ + qV ∗
1 ),

a3 = γσ(ε+ qV ∗
1 )− βkS∗

1 (ε+ qV ∗
1 ) + (δ + βV ∗

1 )((ε+ γ + qV ∗
1 )σ

+ (ε+ qV ∗
1 )γ − βkS∗

1 ) + β2kS∗
1V

∗
1

a4 = (δ + βV ∗
1 )(γσ(ε+ qV ∗

1 )− βkS∗
1 (ε+ qV ∗

1 )) + β2kS∗
1V

∗
1 (ε+ qV ∗

1 )

a5 = pfV ∗
1 , a6 = pfV ∗

1 (δ + βV ∗
1 ) + pσfV ∗

1 , and a7 = pσfV ∗
1 (δ + βV ∗

1 ).

Now we consider the following two cases:
1) Case I, τ = 0 : If τ = 0, then (31) becomes;

λ4 +D1 λ3 +D2 λ2 +D3 λ+D4 = 0 where, (32)

D1 = a1, D2 = a2 + a5, D3 = a3 + a6, and D4 = a4 + a7.

In order to check the nature of the zeros of (32), we construct a Hurwitz matrix H of (32), which is given
as:

H =

D1 D3 0 0
1 D2 D4 0
0 D1 D3 0
0 1 D2 D4

 . (33)

Using the stability criterion of Liénard and Chipart [46], [47], all the zeros of (32) have negative real parts
iff D4 > 0, D2 > 0;∆1 > 0,∆3 > 0 where, ∆1 = D1 and

∆3 =

∣∣∣∣∣D1 D3 0
1 D2 D4

0 D1 D3

∣∣∣∣∣ . (34)

Hence, the real part of all the four characteristic values of (32) is negative iff it satisfies the following
condition:

D1 D2 D3 −D2
1 D4 −D2

3 > 0. (35)

The above discussion can be concluded in the following theorem:

Theorem 6.2. The endemic equilibrium state without immune response E1 of (1) with τ = 0 is l.a.s iff it
satisfies the condition (35) provided that D1, D2, and D4 are greater than 0.

2) Case II, τ > 0 : If τ > 0, then (31) is a transcendental equation which has infinitely many roots. By
Rouché Theorem [50] and continuity in τ , (31) has a zero with positive real part iff it has purely imaginary
root. In other words, all the zeros of (31) will have negative real part if none of them is purely imaginary.

To check that (31) has a purely imaginary zero or not, we put λ = i ω, where, ω ∈ IR, in the equation
(31). After the substitution, we separate the real and imaginary parts and get:

ω4 − a2 ω2 + a4 = (a5 ω2 − a7) cosωτ − a6ω sinωτ, (36)
−a1 ω3 + a3 ω = −(a5 ω2 − a7) sinωτ − a6ω cosωτ. (37)

Squaring and adding (36) and (37), we get:(
ω4 − a2 ω2 + a4

)2
+
(
a3 ω − a1 ω3

)2
=
(
a5 ω2 − a7

)2
+ a26ω

2. (38)

Now, we substitute ω2 = m in (38) and get the following:

m4 +R1m
3 +R2m

2 +R3m+R4 = 0 where, (39)
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R1 = a21 − 2a2, R2 = a22 + 2a4 − 2a1a3 − a25, R3 = a23 − 2a2a4 + 2a5a7 − a26, and R4 = a24 − a27.

It is observed that (39) will have all the zeros with negative real part iff it satisfies the stability criterion of
Liénard and Chipart.

Using the stability criterion of Liénard and Chipart, all the zeros of the equation (39) have negative real
parts iff R4 > 0, R2 > 0;∆1 > 0,∆3 > 0 where, ∆1 = R1 and

∆3 =

∣∣∣∣∣R1 R3 0
1 R2 R4

0 R1 R3

∣∣∣∣∣ . (40)

Therefore the zeros of (39) will have negative real part iff R4 > 0, R2 > 0;∆1 = R1 > 0 and it satisfies the
following condition:

R1R2R3 −R2
1R4 −R2

3 > 0. (41)

The following theorem summarises the preceding discussion.

Theorem 6.3. When τ > 0, the endemic equilibrium state without immune response E1 of (1) is l.a.s iff it
satisfies (41) provided that R1 > 0, R2 > 0, and R4 > 0.

6.3. Stability Analysis of E2

We linearize (1) around the point E2 to investigate the stability of the EE state.
After linearizing the system (1), we get:

dY (t)

dt
= G1 Y (t) +G2 Y (t− τ) where, (42)

G1 =

 −δ − β V2
∗ 0 −β S2

∗ 0
β V2

∗ −σ β S2
∗ 0

0 k −γ − p A2
∗ −p V2

∗

0 0 −q A2
∗ −ε− q V2

∗

 and G2 =

 0 0 0 0
0 0 0 0
0 0 0 0
0 0 f 0

 (43)

for all t > τ and Y = (S, I, V, A)T .
The characteristic values of (42) are the zeros of;

λ4 + b1 λ3 + b2 λ2 + b3 λ+ b4 + e−λτ (b5 λ2 + b6 λ+ b7) = 0 where, (44)

b1 = δ + σ + γ + ε+ βV ∗
2 + qV ∗

2 + pA∗
2,

b2 = σ(ε+ γ + qV ∗
2 + pA∗

2) + (ε+ qV ∗
1 )(γ + pA∗

2)− βkS∗
2 + (δ + βV ∗

2 )

(ε+ γ + σ + qV ∗
2 + pA∗

2)− pqA∗
2V

∗
2 ,

b3 = (δ + βV ∗
2 )
(
(pA∗

2 + γ)(qV ∗
2 + ε)− pqA∗

2V
∗
2 + σ(pA∗

2 + γ + qV ∗
2 + ε)

)
+ β2kS∗

2V
∗
2

− βkS∗
2 (qV

∗
2 + ε+ δ + βV ∗

2 ) + σ
(
(pA∗

2 + γ)(qV ∗
2 + ε)− pqA∗

2V
∗
2

)
,

b4 = (δ + βV ∗
2 )
(
σ(pA∗

2 + γ)(qV ∗
2 + ε)− pqσA∗

2V
∗
2 − βkS∗

2 (qV
∗
2 + ε)

)
+ β2kS∗

2V
∗
2 (qV

∗
2 + ε),

b5 = pfV ∗
2 , b6 = pfV ∗

2 (δ + σ + βV ∗
2 ), and b7 = pσfV ∗

2 (δ + βV ∗
2 ).

Now we consider the following two cases:
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1) Case I: τ = 0: When τ = 0, the stability analysis of E2 is similar to the stability analysis of E1 as
described in the Section 6.2.1. Thereby, the characteristic equation (44) becomes as follows:

λ4 +M1 λ3 +M2 λ2 +M3 λ+M4 = 0 where, (45)

M1 = b1, M2 = b2 + b5, M3 = b3 + b6, and M4 = b4 + b7.

Using the stability criterion of Liénard and Chipart, all the zeros of (45) have negative real parts iff M4 >
0,M2 > 0;∆1 > 0,∆3 > 0 where, ∆1 = M1 and

∆3 =

∣∣∣∣∣M1 M3 0
1 M2 M4

0 M1 M3

∣∣∣∣∣ . (46)

Hence,the zeros of (45) will have negative real part iff M4 > 0,M2 > 0;∆1 = M1 > 0 and it satisfies the
following condition:

M1M2M3 −M2
1M4 −M2

3 > 0. (47)

We sum up the above discussion in the form of the following theorem:

Theorem 6.4. When τ = 0, the EE state E2 of (1) is l.a.s iff it satisfies (47) provided that M1 > 0,M2 > 0,
and M4 > 0.

2) Case II: τ > 0: If τ > 0, the stability analysis of (44) is similar to Section 6.2.2.
We substitute λ = i ω, where, ω ∈ IR, in (44) and separate the real and imaginary parts;

ω4 − b2 ω2 + b4 = (b5 ω2 − b7) cosωτ − b6ω sinωτ, (48)
−b1 ω3 + b3 ω = −(b5 ω2 − b7) sinωτ − b6ω cosωτ. (49)

After squaring and adding (48) and (49), we get:(
ω4 − b2 ω2 + b4

)2
+
(
b3 ω − b1 ω3

)2
=
(
b5 ω2 − b7

)2
+ b26ω

2. (50)

Now, we substitute ω2 = m in (50);

m4 + T1m
3 + T2m

2 + T3m+ T4 = 0 where, (51)

T1 = b21 − 2b2, T2 = b22 + 2b4 − 2b1b3 − b25, T3 = b23 − 2b2b4 + 2b5b7 − b26, and T4 = b24 − b27. (52)

It may be noted that the zeros of (51) will have negative real part iff it satisfies the stability criterion of
Liénard and Chipart, i.e., iff T4 > 0, T2 > 0;∆1 > 0,∆3 > 0 where, ∆1 = T1 and

∆3 =

∣∣∣∣∣T1 T3 0
1 T2 T4

0 T1 T3

∣∣∣∣∣ . (53)

Thereby, the zeros of (51) will have negative real part iff T1 > 0, T4 > 0, and T2 > 0 and satisfies the
following condition:

T1T2T3 − T 2
1 T4 − T 2

3 > 0. (54)

It may be noted that (51) will have at least one positive root if T4 < 0. In other words, if b4 < b7, then (51)
will have a positive root. The preceding discussion is outlined as the following theorem:

Theorem 6.5. When τ > 0, the EE state E2 of (1) is l.a.s iff it satisfies (54) provided that T1 > 0, T2 > 0,
and T4 > 0.
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7. BIFURCATION ANALYSIS

Here, τ is used as a bifurcation parameter. We consider the polynomial (44), as a function of τ .

z(λ) = λ4 + b1 λ3 + b2 λ2 + b3 λ+ b4 + e−λτ (b5 λ2 + b6 λ+ b7) (55)

Let, λ(τ) = η(τ) + iω(τ) be the characteristics values of (55). It is assumed that a positive root of (51) is
ω(τk) = ω1 for some random value of the bifurcation parameter τk. From the equation (48) and (49), we
have the following:

ω4 − b2 ω2 + b4 = (b5 ω2 − b7) cosωτ − b6ω sinωτ and (56)
− b1 ω3 + b3 ω = −(b5 ω2 − b7) sinωτ − b6ω cosωτ. (57)

Assuming ω1 > 0, we have the following:

τj =
1

ω1
arccos

[
(b5ω

2
1 − b7)(ω

4
1 − b2ω

2
1 + b4)− b6ω1(b3ω1 − b1ω

3
1)

(b5ω2
1 − b7)

2
+ b26ω

2
1

]
+ 2jπ, j = 0, 1, 2, · · · (58)

It is important to mention that the value of τ for which (1) is stable, is given in (58).
Differentiating (44) w.r.t τ , we get:(

dλ

dτ

)−1

=
4λ3 + 3b1λ

2 + 2b2λ+ b3
e−λτ (b5 λ2 + b6 λ+ b7)

+
2b5 λ+ b6

λ(b5 λ2 + b6 λ+ b7)
− τ

λ
(59)

Using (50) in (59), [
Re

(
dλ

dτ

)−1
]
λ=iω1

=
1

ω1
2

(
3ω1

8 + T1ω1
6 + T2ω1

4 − T4

)
(60)

where, T1, T2, and T4 are as in (52). From (52), it is easy to say that T1 > 0 and T2 > 0. If T4 < 0 then[
Re

(
dλ

dτ

)−1
]
λ=iω1

> 0. In other words,

[
Re

(
dλ

dτ

)−1
]
λ=iω1

> 0 iff b4 < b7. (61)

If (61) holds, then
dRe (λ(τ))

dτ
> 0 and by continuity Re(λ) > 0. Hence, the transversality condition for

Hopf bifurcation is satisfied [54] and encapsulate the above discussion in the following Theorem:

Theorem 7.1. If b4 < b7, then the EE state E2 is l.a.s when τ < τ0 (using Butler’s Lemma [52]) and
becomes unstable when τ > τ0.

When τ = τ0, a Hopf bifurcation occurs and the System (1) obtains periodic solutions as τ passes through
τ0 [53].

8. NUMERICAL SIMULATION

We use MATLAB to solve (1) numerically. Table 2 refers to the input data used in the simulation. The
initial values of S, I, V,A are given as P = (S, I, V,A) = (200, 50, 100, 50). Using the input data, given
in the Table 2, R0 = 2, the VFE point E0 = (200, 0, 0, 0), the endemic equilibrium point without immune
response E1 = (50, 15, 150, 0) and the EE point is E2 = (79.23, 12.08, 76.21, 1.95). Now, we consider three
scenarios.
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Table 2: Description of the input data.

Parameter Symbol Parameter Description Value Source

α Production rate of S 10 [41]
δ Death rate of S 0.05 [17]
β Rate of infection 0.001 [17]
σ Death rate of I 0.5 [17]
k Production rate of V 5 [40]
γ Elimination rate of V 0.5 [17]
p Neutralizing rate of V by A 0.001 [17]
q Rate at which antibody-virus complex 0.001 [17]

affects the immune cell growth
ε Degradation rate of A 0.002 [51]
f Associated rate at 0.3 [41]
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0 3 6 9 12 15
0

50

100

150

200

S(
t)

Time (Days)

(a) t vs S

0 3 6 9 12 15
0

10

20

30

40

50

60

70

80

I(t
)

Time (Days)

(b) t vs I

0 3 6 9 12 15
0

100

200

300

400

500

V
(t)

Time (Days)

(c) t vs V

0 3 6 9 12 15
0

50

100

150

200

250

300

A
(t)

Time (Days)

(d) t vs A

Figure 2: Numerical simulation of S, I, V, and A of (1) when τ = 0.

1) Case I, τ = 0: When τ = 0, for the data provided in Table 2, the maximum number of I is 80.7
which is attained approximately in 3 days as shown in Figure 2(b). From Figure 2(c), we observe that the
maximum number of V is 644 and the time it takes to get there is about 5 days.. The dynamics of S and I
are also shown in the Figures 2(a) and 2(d), respectively.

It may be noted that for E1, the values of D1, D2, D3, and D4 are 1.35, 0.43, 0.1 and 0.01, respectively. It
is also observed that the value of the stability condition given by (35) is 0.03. Hence the endemic equilibrium
state without the immune response E1 is l.a.s when τ = 0. For the EE state E2, the values of M1,M2,M3,
and M4 are 1.21, 0.1, 0.03 and 0.00001, respectively. The value of the condition of stability for the endemic
equilibrium state E2, given in the equation (47), is 0.00212. Thereby, the EE state E2 is l.a.s when τ = 0.



STUDY OF A DELAYED SIVA WITHIN-HOST MODEL OF DENGUE VIRUS TRANSMISSION 113

We simulate (1) for randomly chosen initial points P1, P2, and P3, as mentioned earlier. The graphs of
the simulation are presented in the Figure 3.
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Figure 3: Numerical simulation of S, I, V, and A for different starting points P1, P2, and P3.

2) Case II, τ = 0.8: We present the dynamics of S, I, V, and A for τ = 0.8 in Figure 4(a). It may be
noted that the maximum number of I is 78.95 which is attained approximately in 3 days. The maximum
number of virus particles is 526.1 and the time taken to achieve the maximum number of virus particles is
approximately 3.7 days. It is observed that the susceptible cells decrease exponentially and increase again
approximately 8 days after the infection. We also observe an exponential growth in the case of immune cells.

3) Case III, τ = 5: For τ = 5, the numerical simulation of S, I, V, and A is shown in Figure 4(b). The
maximum number of I and V are 79.52 and 613.21, respectively. It may be noted that the time taken to
achieve the maximum number of I and V are approximately 3.5 days and 5 days, respectively. The susceptible
cells follow the same behavior as described in the case of τ = 0.8. The growth of the immune cells is slow
initially but approximately after 6 days the growth of A is exponential.

8.1. Stability Diagram

In this section, we illustrate the stability diagram for both cases τ = 0 and τ > 0 for the equilibrium
states E1 and E2. We vary the parameter α from 0 to 30 and k from 0 to 300. Other parameters are fixed
as in Table 2. Figure 5 illustrates the stability diagram for the equilibrium state E1. Figure 5(a) shows that
when τ = 0, the condition (35) takes positive values as R0 increases. When τ > 0, the condition (41) takes
negative values as in Figure 5(b).

Figure 6 refers to the stability diagram for E2. When τ = 0, (47) takes positive values with an increasing
value of R0 as shown in Figure 6(a). Figure 6(b) shows the similar behavior for the condition (54).
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Figure 4: Numerical simulations of S, I, V, and A of (1) when τ > 0.
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Figure 5: Stability diagram of E1: left: ∆3 as in (35) and right: ∆3 as in (41).
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Figure 6: Stability diagram of E2: left: ∆3 as in (47) and right: ∆3 as in (54).

8.2. Bifurcation Simulation

Using the value of k = 59, f = 0.7 and other values as in Table 2, we solve (44) and find that (44)
has a pair of purely imaginary root ±0.65i for the critical value τ0 = 1.53. It may be noted that the value
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Figure 7: Numerical simulation of S, I, V, and A of (1) when τ < τ0 and τ > τ0.
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Figure 8: Impact of β on Model (1).

of b4 = 0.063 and b7 = 0.3220. Thus,

[
Re

(
dλ

dτ

)−1
]
λ=iω1

> 0. The numerical simulation of S, I, V,

and A for τ < τ0 and τ > τ0 is presented in Figure 7. The initial value of S, I, V, and A is taken as
P = (200, 50, 100, 50). We observe that the EE state E2 exhibits a stable behavior when τ < τ0. When
τ > τ0, the System obtains a periodic solution or more complex behavior as the Hopf bifurcation occurs.

8.3. Data Sensitivity
The sensitivity analysis is done to see the impact of changes in the data on (1).
1) Sensitivity of β: We solve (1) numerically for β = 0.001, β = 0.002, and β = 0.003 to analyze the

sensitivity, as presented in Figure 8. The other input data are fixed as in Table 2. It may be noted that as β
increases, I reaches to its peak faster, as shown in Figure 8(b). The same behavior is observed in the case of
V , as shown in 8(c). The change in S and A, due to the change in the values of β, is presented in Figures
8(a) and 8(d), respectively.

2) Sensitivity of k: To observe the effect of different values of k, we solve (1) for k = 3, k = 10, and
k = 15 and the analysis is presented in Figure 9. The other input data remain same as in Table 2. It is
observed that V increase exponentially as the value of k increases, as shown in Figure 9(c). From the Figure
9(a), as k increases, the susceptible cells decreases exponentially. The dynamics of I and A due to the change
in the values of k is presented in the Figures 9(b) and 9(d), respectively.

3) Sensitivity of q: Furthermore, we observe the sensitivity of the model for q = 0.001, q = 0.002, and
q = 0.003 and plot the results as in Figure 10. It is noted that the growth of A decrease for higher values of
q, as shown in the Figure 10(b). It is also observed that V increase as the value of q increases, as shown in
Figure 10(a). The change in S and I due to the increase in the value of q is negligible.
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Figure 9: Impact of k on (1).

9. CONCLUSIONS

In this article, we study and analyze a delayed SIVA with-in host model of dengue virus transmission. R0

is computed using the NGM method. There are three different equilibrium states of (1), namely, VFE state
E0, endemic equilibrium state without immune response E1 and EE state E2. We presented the stability
dynamics of these states.

The VFE state E0 is l.a.s if R0 < 1 and unstable if R0 ≥ 1. For both the cases, τ = 0 and τ > 0, the
stability criterion for E1 is also presented. For the given data in Table 2, we observe that E1 is l.a.s when
τ = 0 and unstable when τ > 0. The EE state E2 is stable if it satisfies the condition (47) provided that
M1 > 0,M2 > 0, and M4 > 0 for τ = 0. It is shown that E2 is stable for the given data in Table 2 when
τ = 0. The critical value τ0 of the bifurcation parameter τ is derived for the endemic equilibrium E2. It
may be noted that the System shows a stable nature when τ < τ0. But it exhibits a complex behavior and
becomes unstable when τ > τ0. Thus it is concluded that a Hopf bifurcation occurs whenever τ > τ0.

The numerical simulation and sensitivity analysis of the System (1) is also presented and explained by
graphs. The main contribution of this work are as follows:
• The R0 is evaluated using NGM method.
• The local stability of (1) is discussed and the stability condition is presented using the stability criterion

of Liénard and Chipart for τ = 0 and τ > 0.
• The endemic equilibrium E2 is stable when τ < τ0 and it exhibits Hopf bifurcation when τ > τ0.
• The sensitivity of the System (1) is also examined for various values of certain parameters.
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