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Abstract

A mathematical model has become a useful tool to predict and control dengue fever dynamics. In reality,
the dynamic of dengue fever transmission can be disturbed by uncertainty measurements, so it is needed to
consider the disturbance in the model. Then, dengue fever model with disturbance is constructed by using a gain
matrix consisting a covariance matrix and random vector. As dengue vaccine has been challenging to reduce
the pandemic, a dengue model with vaccination as control is constructed. The aim is to propose a feedback
controller that can reduces the infected human (H2 control problem) and the uncertainty measurements (H∞
control problem). The control u denotes the proportion of susceptible humans that one decides to vaccinate at
time t. A random mass vaccination with wanning immunity is chosen because vaccine still on development
process. A Design of mixed H2 − H∞ control with State-dependent Riccati Equation (SDRE) approach is
applied. The SDRE has been an effective method to solve for synthesizing nonlinear feedback controller by
transforming the system to an State-dependent coefficient (SDC) form. By comparing the mixed scheme with
basic H∞, numerical simulation shows that the control application effectively decreases the number of infected
humans and reduces the disturbance.
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1. INTRODUCTION

Dengue fever is a mosquito-borne disease that spread over the world in both tropical and sub-tropical
country. In recent decades, dengue case has increase rapidly around the world. It is estimated 390 million
dengue infection per year. Based on WHO data from 2010 untill 2016, the number of cases increased over
1.16 million [17]. Dengue is caused by a virus of Flaviviridae family that has four distinct serotypes, that
is DEN 1-4. Dengue virus is transmitted by female mosquitoes mainly of the species Aedes aegypti and to
lesser extent, Aedes albopictus.

To deal with dengue, several strategy of vector control through larval eradication program, repellent and
insecticides has been applied [9]. However, the prevention of dengue epidemic using vector control through
environmental management (by eliminating larval resting places or other objects susceptible to keep water)
or chemical methods (through insecticides) remains inadequate since it only permits to delay the outbreak of
the epidemic [5]. On a national scale, not many example of successful vector control through active disease
monitoring and insecticides, although the prevention is integrated by community [2]. In practice, vector
control through environmental management and chemical methods have frequently failed to reduce vector
transmission of the dengue outbreak. So far, Ae. aegypti control program and environment management had
limited impact on dengue transmission in urban areas and even less in rural areas. Besides, insecticides have
high cost and increasing level of resistance of Ae. aegypti [8]. Due to limitation of vector control and there
are no specific treatment of dengue, nowadays dengue vaccine development has become a major advance in
the control of disease [19].

Dengue vaccines have been under development since 1920s and until now its development has been
challenging. In the last decade, the scope and intensity of dengue vaccine has increased, although the licensed
vaccine is not yet available. The uniqueness of the dengue viruses has made dengue vaccine development
against each serotypes difficult. Several vaccine candidates are currently being evaluated in clinical studies
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[15]. A safe, effective and affordable dengue vaccine against the four strains would represents an important
tool of reducing dengue morbidity and mortality. Mathematical modeling has been a useful and powerful
tool to analise disease dynamic and for the proposition of strategies. So in this work will study about
mathematical model of dengue fever involving vaccination campaign. Previous work of epidemic model with
vaccination has been studied in [5] with control constant. The models is a system of nonlinear differential
equations in susceptible-infected-recovery (SIR) for human population compartment and susceptible-infected
(SI) compartment for mosquito population. Control is simply evaluated to a given constant value. Rodrigues
in [14] solved dengue epidemic model with control optimization problem by using optimal control theory.
Rodrigues model is SIR form for human population and ASI (aquatic-susceptible-infected) form for mosquito
population. In this paper we will study an SIR+SI model considering the aim is to control the disease through
vaccination, not vector control.

In a large population of epidemic outbreak consist many different individuals in various scope. A few
key characteristics which are relevant to the infection under consideration must be defined to reduce the
diversity in modeling [12]. However, there are uncertainty factors that can be considered for more realistic
model. In reality, dengue dynamic in population is disturbed by uncertainty measurement, that is quantity
of measurements in each compartment of the system is uncertain. The main concern is to integrate this
uncertainty into a mathematical model with disturbances. The disturbances measurement usually unknown,
so disturbances will be defined as a noise or statistical error random vector multiplied with a gain matrix that
consist a covariance matrix of transitions probabilities between compartments. This disturbance represents
how the transfer between compartment effect to the system.

Next, we aim to solve control problem for this dengue epidemic model with disturbances in order to
minimize the infected humans (H2 control problem) and reduce the disturbances (H∞ control problem)
with vaccination consisting input. To achieve the control law that have the combination of those two control
problems, so we propose a novel mixed H2 −H∞ control. Then, we use state-dependent Riccati equation
(SDRE) to provides design framework for nonlinear system. SDRE method is a powerful general design
method which provides a systematic and effective design [16]. SDRE have many benefits in its computational
advantage, stability, usefulness in control and have wide range of application [4]. First, we transform nonlinear
system to a state-dependent coefficient (SDC) system. Furthermore, based on SDC system, we construct
SDRE that satisfy the desired design criteria. By solving the SDRE, the optimal and robust control solution
is found to satisfy mixed performance criteria guaranteeing the optimality of nonlinear quadratic with inherit
stability property in combination with H∞ type disturbance reduction. In this paper, we will adapt a mixed
H2 −H∞ performance criteria with SDRE approach proposed by Wang et. al. in [16]. Then, the proposed
mixed H2 −H∞ control law of dengue epidemic model is demonstrated by simulations. The effectiveness
of the performance of the control is compared to non-control and H∞ control scheme. The purpose of this
work is to contribute a useful control framework and a flexible design method for nonlinear systems with
disturbance control to achieve a mixed NLQR and H∞ performance by SDRE method.

The paper is organized as follows: In the second section, the dengue fever model with vaccination control is
introduced. In the third section, the system model of dengue fever with control and disturbance is formulated
in SDC form and of the mixed H2 − H∞ with SDRE controller for this control problem is derived. The
fourth section contains the simulation result and the analysis. Finally, the conclusion is summarized in the
fifth section.

2. DENGUE FEVER MODEL WITH VACCINATION CONTROL

In this section, a dengue fever model with vaccination will be formulated. The human population is divided
into three compartments: susceptible (Sh), infected (Ih) and resistant (Rh). Then, the mosquito population is
divided into susceptible (Sm) and infected (Im). This study will focused on disease eradication with vaccine,
not a vector control. The vaccine is assumed to give temporary immunity, that is the resistant human can
turn back to be susceptible. It is based on how dengvaxia vaccine that makes antibodies and protect against
all four types but how long it last still on research [3].

It is assumed that total human population (Nh) is constant, so Nh = Sh + Ih +Rh and so total mosquito
population Nm is constant, that is Nm = Sm + Im. Then, newborn of human and adult mosquito is a
susceptible. There is no disease-related death for humans and mosquitoes. The control u(0 ≤ u ≤ 1) denotes
the proportion of susceptible humans that one decides to vaccinate at time t. A random mass vaccination with
waning immunity is chosen because the vaccine still on development process. Then, a parameter θ associated
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with control u represents the waning immunity process. It is assumed that for every times t, a θ proportion of
vaccinated human came back to susceptible. The values of this is chosen. Then, we assume that individuals
are recruited into population from birth rate of the total population as a susceptible, that is µhNh. Then, the
susceptible human has contact with infected mosquitoes bites at rate b that can transfer the disease at chance
βmh and became infected at rate bβmh

ImSh

Nh
. Infected humans will be resistant after vaccination at rate uSh.

In this scheme, waning immunity process caused resistant human back to be susceptible at θuRh. Infected
human have natural recovery rate from dengue disease, so this will lead to infected human decreasing at
rate ηhI . It is assumed that all human compartments has natural mortality for each µhSh, µhIh, µhRh. On
the other side, mosquitoes population are requited to the population from natural birth rate µmNm as a
susceptible. Then if susceptible mosquito bites infected human at rate b and probability βhm, so mosquitoes
become infected at rate bβhm

IhSm

Nh
. Each mosquitoes compartments decreased from natural death at rate

µmSm, µmIm. Figure 1 shows the epidemiological scheme between human and mosquito population.

Figure 1: Dengue transmissions between compartments.

Then, the parameters used in this paper are described as in Tabel 1

Table 1: Parameters of dengue model.

Parameter Description Unit Value references
1
µh

Average lifespan of humans in days 71x365 [14]
1

µm
Average lifespan of adult mosquitoes in days 90 [10]

b Average number of bites on humans by mosquitoes bites per days 1 [13]
βhm Transmission probability from infected mosquitoes per bites 0.375 [14]
βmh Transmission probability from infected humans per bites 0.375 [14]
ηh Human recovery rate in days 1

3
[14]
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A simple model of dengue is described by a system of five differential equations:

dSh

dt
= µhNh −

(
bβmh

Im
Nh

+ µh + u

)
Sh + θuRh,

dIh
dt

= bβmh
Im
Nh

Sh − (ηh + µh)Ih,

dRh

dt
= ηhIh + uSh − (θu+ µh)Rh, (1)

dSm

dt
= µmNm −

(
bβhm

Ih
Nh

+ µm

)
Sm,

dIm
dt

= bβhm
Ih
Nh

Sm − µmIm.

To simplify the analysis, we normalize the system above by define

sh =
Sh

Nh
, ih =

Ih
Nh

, rh =
Rh

Nh
, sm =

Sm

Nm
, im =

Im
Nm

. (2)

Considering total population of human satisfy

Nh = Sh + Ih +Rh,
dNh

dt
=

dSh

dt
+

dIh
dt

+
dRh

dt
. (3)

By substituting equations in Model (1) corresponded with (3), we obtain

dNh

dt
= µhNh −

(
bβmh

Im
Nh

+ µh + u

)
Sh + θuRh + bβmh

Im
Nh

Sh −

(ηh + µh)Ih + ηhIh + uSh − (θu+ µh)Rh

= µh(Nh − (Sh + Ih +Rh))

= µh(Nh −Nh) = 0.

so that Nh constant. Write

Nh = shNh + ihNh + rhNh,

1 = sh + ih + rh,

rh = 1− sh − ih.

Next, mosquitoes population satisfy

Nm = Sm + Im (4)
dNm

dt
=

dSm

dt
+

dIm
dt

. (5)

Substitute Equations (1) that correspond to (5), so we have

dNm

dt
= µmNm −

(
bβhm

Ih
Nh

+ µm

)
Sm + bβhm

Ih
Nh

Sm − µmIm

= µm(Nm − (Sm + Im))

= µm(Nm −Nm) = 0,

and we have Nm is constant, write

Nm = smNm + imNm,

1 = sm + im,

im = 1− sm.
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By derivating (2), we have

ṡh = µh −
(
bβmh

imNm

Nh
+ µh + u

)
sh + θurh,

i̇h = bβmh
imNm

Nh
sh − (ηh + µh)ih,

ṙh = ηhih + ush − (θu+ µh)rh,

ṡm = µm − (bβhmih + µm)sm,

i̇m = bβhmihsm − µmim.

(6)

The basic reproduction number R0 of the system (6) is when the control u = 0. R0 is the key measure
in estimating the ability of a new pathogen to spread. It is defined as the average number of secondary
transmissions from one infected person; when R0 is greater than 1, the epidemic is growing. The R0 values
have important implications for disease control. Basic reproduction number of the system given as

R0 =

√
b2βhmβmhNm

Nhµm(µh + ηh)
.

the endemic condition accur when b2βhmβmhNm > Nhµm(µh + ηh).
The Nm and Nh in equation are a number that represents the total population of mosquito (Nm) and total

populations of human (Nh) that is a constant, but the term Nm/Nh on the normalized systems model is a
proportion. Especially for the simulation, the value of Nm/Nh chosen so that 0 < Nm/Nh ≤ 1 holds. The
The system (6) above is our basic dengue model that will be used to design a control system that disturbed
in the next section.

3. STATE-DEPENDENT RICCATI EQUATION APPROACH ON DENGUE MODEL WITH DISTURBANCE

In the previous section, the dengue fever model has been constructed. In this section, we will construct
dengue fever model taking into account the presence of the disturbance. This is based on the fact that the
dynamics of the spread of the disease in the population is influenced by various factors from outside and
inside so that the dynamics of the population is disturbed. This disturbance can be caused by measurements
uncertainty of the model that can affect system’s compartments. So, the transfer between each compartment
is selected as the disturbances that represented by a covariance matrix and a random vector as a gain matrix.
Then, the model with disturbances will be solved with State-dependent Riccati Equation (SDRE) approach.

The State-Dependent Riccati Equation (SDRE) strategy has become very popular within the control
community, it has a powerful point that providing a very effective algorithm for synthesizing nonlinear
feedback controls by allowing nonlinearities in the system states while additionally offering great design
flexibility through state-dependent weighting matrices. SDRE is an approximation method with non-linear
system parameterization to linear form. SDRE makes it easy to complete the system without linear because it
is simpler in terms of computation and effectiveness [4]. Then, a feedback controller is designed to optimize
the objective function regarding the disturbances of the system with SDRE approach. In control theory, there
are two control problems that are often used, namely H2 control problem and H∞ control problem. H2

control aims to looking for a controller that stabilizes the system and optimizes the performance of the H2

[18] which is a Linear Quadratic Regulator problem (LQR) [16]. While the control H∞ aims to determine the
controller that minimizes disturbance to the system [6]. In this study, we want a controller that can minimize
the objective function related to reducing the number of infections through vaccination and at the same time
reduce the effects of system disturbances. Therefore, using control problem H2 − H∞ that accommodates
the combination of performance control H2 and H∞. The steps for working on this control design in the
following subsections.

3.1. State-dependent Coefficient (SDC) System
Assume a nonlinear system

ẋ = f(x, u),

z = g(x).
(7)
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Each f(x, u) and g(x) are nonlinear functions. Let x ∈ Rn is state system dynamics, an input u ∈ Rm,
an output z ∈ Rp, the normal random disturbance w ∈ Rq . based on [11], the SDRE transform (7) into an
state-dependent coefficient (SDC) system in the following.

ẋ = Au(x)x+Bu(x)u+ Fu(x)w,

z = Cu(x)x.
(8)

The parametization of SDC System (8) must satisfies the pair of {Au(x), Bu(x)} controllable and {Cu(x), Au(x)}
observable for x ∈ Ω so that the closed-loop solution is a local asymtotically stable as explained in [11].

3.2. Dengue Model with SDC Form
Based on the previous subsection, the control design using SDC form. The nonlinear system is transformed

into state-dependent parameterization. Let

x = [sh ih rh sm im]
T
. (9)

Firstly, disturbance will be added into the deterministic nonlinear system. We define the disturbances as noise
or statistics error. The disturbance defined as a gain matrix, denoted as F (x) that consist covariance matrix
of probability transfer multiplied by a standard normal random vector w. Adopted from [1] and [12], the
covariance matrix of transition probability obtained from possibilities in changes in the state x for a small
time interval ∆t , assuming at most one change can occur. As mentioned before, the birth rate µh increase the
human population, but doesn’t effect other compartments. Assume that in interval time ∆t, sh → sh+1, and
the probability of p1 = µh∆t. Vector transition corresponding to µh is ∆X = [X1 X2 X3 X4 X5]

T
=

[∆sh ∆ih ∆rh ∆sm ∆im]
T
= [1 0 0 0 0]

T . The vector transition and transition probabilities
for each compartment are presented in Table 2.

Define the covariance matrix as

E[(∆x)(∆x)] =

10∑
i=1

pi(∆X)i(∆X)Ti .

The gain matrix F as follow

F =
E[(∆x)(∆x)]

∆t
,

with E[(∆x)(∆x)] is covariance matrix that obtained from the normalized system when u = 0 as derived
in 6 and ∆t is time interval. Then, write

F =


F1,1 −F1,2 0 0 0
−F1,2 F2,2 −F2,3 0 0

0 −F2,3 F3,3 0 0
0 0 0 F4,4 −F4,5

0 0 0 −F4,5 F5,5

 , (10)

with

F1,1 = µh + bβmhimshNm/Nh + µhsh,

F1,2 = bβmhimshNm/Nh,

F2,2 = bβmhimshNm/Nh + (ηh + µh)ih,

F2,3 = ηhih,

F3,3 = ηhih + µhrh,

F4,4 = µm + bβhmihsm + µmsm,

F4,5 = bβhmihsm,

F5,5 = bβhmihsm + µmim.
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Let w is standard normal distributed random variable denoted as follow

w = [w1 w2 w3 w4 w5]
T
. (11)

In this paper the dengue model with disturbance constructed by adding disturbance matrix F (x)w to the
model (6), written by

ṡh = µh −
(
bβmh

imNm

Nh
+ µh + u

)
sh + θurh + F1,1w1 − F1,2w2,

i̇h = bβmh
imNm

Nh
sh − (ηh + µh)ih − F1,2w1 + F2,2w2 − F2,3w3,

ṙh = ηhih + ush − (θu+ µh)rh − F2,3w2 + F3,3w3,

ṡm = µm − (bβhmih + µm)sm + F4,4w4 − F4,5w5,

i̇m = bβhmihsm − µmim − F4,5w5 + F5,5w5.

(12)

From this system, a feedback control scheme using State-Dependent Riccati Equation (SDRE) will be de-
signed. First, we transform Model (12) to state dependent coefficient (SDC) form. By algebraic manipulation,
the SDC system with disturbance from (12) written as follow

ẋ = A(x)x+B(x)u+ F (x)w, (13)

with

A(x) =


−bβmhimNm/Nh µh µh 0 0

0 −ηh − µh 0 0 bβmhshNm/Nh

0 ηh −µh 0 0
0 0 0 −bβhmih µm

−bβhmsm 0 −bβhmsm bβhm −µm

 , (14)

B(x) =


−sh + θrh

0
sh − θrh

0
0

 , (15)

F (x) = F.

In the next section, we will construct a control problem of model with disturbance then the problem will be
solved by a mixed H2 − H∞ with SDRE approach adapting a proposed performance criteria from Wang,
et.al. [16].

Figure 2: Control design scheme.
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Table 2: Transition vector and probability.

Transition Vector Transition Probabilities

∆X1 =
[
1 0 0 0 0

]T
p1 = µh∆t

∆X2 =
[
−1 1 0 0 0

]T
p2 = bβmh

imNm
Nh

∆t

∆X3 =
[
0 −1 1 0 0

]T
p3 = ηhih∆t

∆X4 =
[
0 0 0 −1 1

]T
p4 = bβhmihsm∆t

∆X5 =
[
−1 0 0 0 0

]T
p5 = µhsh∆t

∆X6 =
[
0 −1 0 0 0

]T
p6 = µhih∆t

∆X7 =
[
0 0 −1 0 0

]T
p7 = µhrh∆t

∆X8 =
[
0 0 0 −1 0

]T
p8 = µmsm∆t

∆X9 =
[
0 0 0 0 −1

]T
p9 = µmim∆t

∆X10 =
[
0 0 0 1 0

]T
p10 = µm∆t

3.3. H2 −H∞ Control Design with SDRE

In this section, we will apply the methods to form a controller that minimizes the infected human and
reducing the disturbance. In general, step we use to design the control is shown at Figure 2. The objective
of H2 control problem is to find the controller that stabilizes the system and optimizes H2 performance [18]
that has linear quadratic regulator (LQR) problem [16]. Besides, the objective of H∞ control problem is
to find the controller that minimizes disturbance of the system [6]. The disturbance reduction implying the
H∞ control that is ensure the stability of the system and and guarantees the gain bounded by θ [16]. To
get a mixed H2 −H∞ with SDRE approach, Wang et. al in [16] define a mix performance criteria for the
controller.

Desired objective for this control problem is the decreasing of infected human ih, so the output y of this
design is given by

y = ih = C(x)x, (16)

with

C(x) = [0 1 0 0 0] .

It is shown in Appendix that A(x) , B(x) , and C(x) satisfies the pair {A(x), B(x)} controllable and
{C(x), A(x)} observable in D = {x ∈ R5|x ̸= 0}. We aim to minimizes the infected human through
vaccination and a proportion of susceptible human vaccinated so that the susceptible become resistant, that
is H2 performance that denoted by LQR problem

∫ T

0
(u2 + s2h + i2h)dt. in SDC form, can be written by∫ T

0

xTQ(x)x+ uTRudt, (17)
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with

R = 1, (18)

Q(x) =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 . (19)

Next, the feedback controller should reduce the disturbance in the system. Therefore, in this study, the
control must satisfies H∞ performance criteria problem. To find a feedback controller that accommodates
H2 in (17) and H∞ and (26) performance by SDRE. Assume that the controller is a state feedback, that is

u = K(x)x. (20)

The state feedback gain K(x) will be designed so the close-loop system

Ac(x) = Au(x) +Bu(x)K(x), (21)

is asymtotically stable. Given a Lyapunov function

V = xTP (x)x ≤ 0, (22)

P (x) ≤ 0 is a function that satisfies the following performance criteria

V̇ = xTQ(x)x+ uTRu+ zT z − γ2wTw ≤ 0, (23)

V (T ) +

∫ T

0

[xTQ(x)x+ uTRu+ zT z − γ2wTw]dt ≤ V (0). (24)

Q(x) is a positive semi-definite matrix and R is positive definite matrix. Note that
∫ T

0
xTQ(x)x+ uTRudt

in the (24) represents H2 performance in (17), an LQR control problem that always a semi-definite positive.
For V (0) = 0 and V (T ) > 0, ∫ T

0

zT zdt ≤
∫ T

0

γ2wTwdt, (25)

or
sup

||w||2 ̸=0

||z||22
||w||22

≤ γ2. (26)

Inequality (26) is a H∞ control objective that presented by Wang, etc (2017). From Lyapunov function (22),
System (13) and Control (20), and by simplifying the notation by drop the argument x, performance criteria
(23) become

xTP (Ax+BKx+ Fw) + (Ax+BKx+ Fw)TPx+ xT Ṗ x+ xTQx

+xTKTRKx+ xTCTCx− γ2wTw ≤ 0.
(27)

By schur complement and ensure the stability of the system by setting the quadratic function (22), the
state-feedback gain K(x) = K in (20) derived as follow

K = −R−1BTP,

and P is positive definite solution of SDRE

0 = PA+ATP +Q+ CTC + γ−2PFFTP − PBTR−1BTP.

The control is a proportion of susceptible human that decides to vaccinate at time t, so u value lies between
(0 ≤ u ≤ 1). To ensure the controller u satisfies this limitation, therefore the optimal feedback controller is

u∗ = min(1,maks(u, 0)) = min(1,maks(Kx, 0)). (28)

Note that if Q(x) = 0 and R = 1, this feedback gain controller above satisfies th H∞ controller proposed
by Hammet in [7].
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4. SIMULATION

In this section, we present the numerical results of mixed H2−H∞ control with SDRE for dengue model
with disturbance. The simulations were carried out using a chosen θ = 0.05 that represents proportion of
resistant who come back to susceptible at time t and initial value of state is (sh,0, ih,0, rh,0, sm,0, im,0) =
(0, 9; 0, 1; 0; 0, 8; 0, 2) for 200 days observation. In this numerical simulation three cases are chosen to see

Figure 3: Infected Human.

how the mixed control behave on decreasing the infected human, that is H2 − H∞ control, H∞ control
and without control. The comparison of infected human compartment with H2 −H∞ control, H∞ control
and without control for showed in Figure 3. Then control is given in Figure 4. It shows from Figure 3 that
the mixed H2 − H∞ control can reduce the infected human more effective than H∞ control because it is
associated by H2 performance to optimizes the objective from ancient time. The difference of H2−H∞ and
H∞ control effectiveness is caused by its value that is showed by Figure 4. H2−H∞ control has more effort
that have to use full control at the beginning to decrease the infected human as in Figure 3. Besides, H∞
control has a lower initial value, that is 0.2067. Along the period, H2 −H∞ and H∞ control have similar
dynamic that is from initial value it decrease to zero, then become full at 15th-17th days associated with the
peak of infected mosquitoes peak and then dramatically decreasing to zero. The increasing of the control can
be seen as second preventive step against infected mosquito because in this work we assume that vaccinated
individuals go back to susceptible.

Next, the disturbance reduction effectiveness of control can be evaluated by comparing value difference
each two iteration. We wish that the population dynamic doesn’t have big difference or noise at each time in
order to have less randomness and the system be more precise. The less jumping value means less disturbance.
The difference of each two value per iteration for infected human compartment given in Figure 5. It can be
seen from Figure 5 that each of H2 −H∞ and H∞ control con reduce the disturbance in general. Then, the
maximum difference value can be reduced by 53.42%using H2−H∞ control and 16.46% using H∞ control.
So, the mixed H2−H∞ control effectively decrease both of infected human and maximum disturbance effect
than H∞. SDRE and H2 −H∞ are quite common method in engineering, but it performance can be used
in epidemiological case and interpret the dynamics well.
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Figure 4: Infected Human.

Figure 5: Infected Human.
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5. CONCLUSION

Dengue fever has become world health problem in recent decades. Due to the limitation of vector control,
dengue vaccine plays an important role in disease eradication and its development has become a major advance
to control the disease. Vaccination program aims to reduce the prevalence of dengue disease. Vaccine assumed
to be imperfect, that is give temporary protection. Furthermore, the vaccine control is defined as a new control
variable that represents the proportion of susceptible human that decides to vaccinate at each time. In the
third part of the paper, considering that the disease transmission can be disturbed by measurement uncertainty
of the model that can affect system’s compartments. the disturbance is defined by a gain matrix that consist
covariance matrix transition probabilities between compartments multiplied by a random vector. Then, in
order to decrease the infected and disturbance, a mixed H2 − H∞ control with SDRE method for dengue
model is derived. Based on simulation result, this control effectively decrease both of objective, and its
performance is better than H∞ control. With this control scheme, control is given two times in infection
period. The first is to reduce the infected human and the second is to prevent second infection from infected
mosquito because the vaccine is short-time protection.
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APPENDIX

A.1.Controllability
Simplify A(x) and B(x) in (14) and (15) as

A(x) =


a1 µh µh 0 0
0 a2 0 0 a3
0 ηh −µh 0 0
0 0 0 a4 µm

a5 0 a5 a6 −µm

 , B(x) =


b1
0

−b1
0
0


with

a1 = −bβmhImNm

Nh
a2 = −ηh − µh

a3 =
bβmhshNm

Nh

a4 = −bβhmih
a5 = −bβhmsm
a6 = bβhm

b1 = −sh + θrh

Controllability matrix for system in (13) is

Ctrb =
[
B(x) A(x)B(x) A2(x)B(x) A3(x)B(x) A4(x)B(x)

]
=


b1 ω1 ω2 ω3 ω5

0 0 0 a1a3a5b1 ω6

−b1 µhb1 −µ2
hb1 µ3

hb1 ω7

0 0 0 µma1a5b1 ω8

0 0 a1a5b1 ω4 ω9


with

ω1 = a1b1 − µhb1
ω2 = a21b1 − (a1µh − µ2

h)b1
ω3 = a31b1 − (a21µh − a1µ

2
h − µ3

h)b1
ω4 = (a1a5 − µma5)(a1 − µm)b1 + µhµma5b1
ω5 = (a31 + µha3a5)(a1 − µh)b1 + (a21µh − a1µ

2
h − µ3

h + µha3a5)b1
ω6 = (a1a3a5 + (a2a3 − a3µm)a5)(a1 − µh)b1 − a1a3a5b1
ω7 = (a1a3a5ηh)a1b1 − µ4

hb1
ω8 = (a1a5µm + (a4µm − µ2

m)a5)a1b1 − µmµha1a5b1
ω9 = ((a1a5 − a5µm)(a1 − µh) + (a6µm + µ2

m)a5)(a1 − µh)b1
− (((a1 − µh)b1)µh + µhµma5 + (a6µm + µ2

m)a5)µhb1

By Gauss Elimination, we get

ctrb′ =


b1 ω1 ω2 ω3 ω5

0 µhb1 + ω1 −µ2
hb1 + ω2 µ3

hb1 + ω3 ω5 + ω7

0 0 a1a5b1 ω4 ω9

0 0 0 µma1a5b1 ω8

0 0 00 µmω6−a3ω8

µm


Note that the ctrb′ matrix has a full rank in domain D = {x ∈ R5|x ̸= 0}. Therefore, {A(x), B(x)}
controllable in D.
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A.2.Observability
The observability matrix for system in (13) is given as

Obsrv =


C(x)

C(x)A(x)
C(x)A2(x)
C(x)A3(x)
C(x)A4(x)

 =


0 1 0 0 0
0 a2 0 0 0

a3a5 a22 a3a5 a3a6 a2a3 − µma3
v1 v2 v3 v4 v5
v6 v7 v8 v9 v10


with

v1 = (a1a3 + a2a3 − a3µm)a5
v2 = µha3a5 + a32 + a3a− 5ηh
v3 = (a2a3 − a3µm)a5
v4 = (a3a4 + a2a3 − a3µm)a6
v5 = a22a3 + a3a6µm − (a2a3 − a3µm)µm

v6 = (a1a3 + a2a3 − a3µm)a1a5 + (a22a3 + a3a6µm − (a2a3 − a3µm)µm)a5
v7 = (a1a3 + a2a3 − a3µm)a5µh + (µha3a5 + a32 + a3a5ηh)a2 + (a2a3 − a3µm)a5ηh
v8 = (a1a3 + a2a3 − a3µm)a− 5µh − (a2a3 − a3µm)a5µh + (a22a3 + a3a6µm − (a2a3 − a3µm)µm)a5
v9 = (a3a4 + a2a3 − a3µm)a4a6 + (a22a3 + a3a6µm − (a2a3 − a3µm)µm)a6
v10 = (µha3a5 + a32 + a3a5ηh)a3 + (a3a4 + a2a3 − a3µm)a6µm − (a22a3 + a3a6µm − (a2a3 − a3µm)µm)µm

Using Gauss Elimination, we get

Obsv =


a3a5 a22 a3a5 a3a6 a2a3 − µma3
0 a2 0 0 a3
0 0 v1 + v3

v4a5−v1a6

a5
α1

0 0 0 α2 α3

0 0 0 0 −a3

a2


where

α1 =
a2a5v5 + a2v1µm − a3a5v2

a2a5

α2 =
a5(v1v9 + v3v9 − v4v6 − v4v8) + a6(v1v8 − v3v9)

a5(v1 + v3)

α3 =
1

a2a5(v1 + v3)
(a2a5v1v10 + a2a5v3v10 + µma5v3v6 − a3a5v3v7 − a3a5v5v7 − a2a5v5v7 − a2a5v5v8

− µma2v1v8 + a3a5v2v8 − a2a5v2v6 + a3a5v2v6)

The matrix Obsv above has full rank in domain D = {x ∈ R5|x ̸= 0}. Therefore, {C(x), A(x)} observable
in D.
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