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Abstract

A fractional-order food chain model is proposed in this article. The model is built by prey, intermediate
predator, and omnivore. It is assumed that intermediate predator only eat prey and omnivore can consume
prey and intermediate predator. But, prey has the ability called as anti-predator behavior to escape from both
predators. For the first discussion, it is found that all solutions are existential, uniqueness, boundedness, and
non-negative. Further, we analyze the existence condition and local stability of all points, that is point for
the extinction of all populations, both predators, intermediate predator, omnivore, and point for the existence
of all populations. We also investigate the global stability of all points, except point for the extinction of
all populations and both predators. Finally, we preform several numerical solutions by using the nonstandard
Grunwald-Letnikov approximation to demonstrate the our analytical results.
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1. INTRODUCTION

In this decades, the mathematical biology with its various models have been well studied by many
researchers to understand the dynamics of population interactions [22],[23]. The tropic interactions among
the various species that form complex networks are called as food webs. This interactions shape the pattern
of food webs. In consequent, the design of food webs and the strength of interactions affect the pattern of
tropic dynamics in food webs [4]. There are at least three species involved, namely species x, species y, and
species z. According to [10], all food webs predator-prey system with three species are separated into four
types in 34 cases, that is food chain (see Figure 1(a)), two predators competing for one prey (see Figure
1(b)), one predator acting on two preys (see Figure 1(c)), and loops. In the case loop, it is divided into two
cases, that is food chain with omnivore (see Figure 1(d)) and cycle (see Figure 1(e)). Here, Species z can be
called as specialist predators that have a limited diet and generalist predator that use a variety of resources
other than two tropic levels [9].

Since 1970’s, authors have provides interesting and impressive results in studying the dynamics of three
species predator-prey systems. Many natural phenomena are described by authors to obtain a formula that
represent real events such as protection of prey [28], harvesting [32],[29] , alternative food on predator [30],
and the existence of omnivore [16],[7],[4],[8],[9],[31] In this paper, we focus on three species food web
predator-prey systems with omnivore. There are three species involved, namely species y are intermediate
predator, species z are omnivore, and species x are resource or prey consumed by both of them [5]. The
existence of omnivore is an important topology that gives the natural characteristics of tropic networks [6].
In ecosystem, omnivore is defined as predator that eat more than one tropic level. Furthermore, omnivore
can complicate the structure of tropic webs and exert indirect effect of predator on basal resource through
intermediate predators [4],[7].

Many authors study the food chain model with omnivore and its modified version. Generally, a mathematical
model describing the food chain with omnivore has been proposed by Holt and Polis [16]. In his observation,
the model is constructed into Lotka-Volterra model with linear functional response without intraspecific
competition and showed that instability of equilibrium point occurs due to omnivorous predation. Tanabe and
Namba [7] have used the similar model as Holt and Polis [16] and have proven that the omnivorous predation
can destabilize the equilibrium point and create chaos in the system. Then, Namba et al. [4] have considered
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Figure 1: All possible schematics of predator-prey systems for the interaction between three species, where the arrows
show interactions between species: (a) general food chain process, (b) one prey-two predators, (c) two preys-one predator,
(d) food chain process involving omnivore, (e) cycle.

the similar model as Tanabe and Namba [7] by adding the intraspecific competition for both predators and
find the bifurcation diagrams with all parameters as bifurcation parameter. Kang and Wedekin [8] consider
the Holling type III between intermediate predator and omnivore in their food chain model and separate it
into two models, one with a generalist omnivore and another with a specialist omnivore. In this model, the
intraspecific competition for both predators is negligible. Sen et al. [31] develop Holt and Polis model by
adding the intraspecific competition and Holling type II function response between intermediate predator and
omnivore. Since their model considers Holling type II function response for predators, omnivore predation
may play the role in stabilizing the system [11].

Biologically, prey populations have the ability to run away from predators such as hiding from predator,
running fast ability, or showing fearful behavior so predator will think that eating it can get them bitten. The
ability in prey is called as anti-predator behavior that helps prey in fighting predators [23]. In fact, it is a
common part of marine or terrestrial food web ecological systems. Some interesting examples of our case
are given by the interaction between Tetranychus as species x, Phytoseiulus as species y, and Stethorus as
species z. Rosenheim and Corbett [12] report that many arthropods including Tetranychus relatively settle on
host plants to meet their nutritional needs. They involve a high degree of concealment within the host plant
with minimal opportunities for locomotion. In addition, Phytoseiulus and Stethorus are the natural predators
of Tetranychus.

Based on the previous success works, authors use the first-order derivative predator-prey systems which
is limited by its ability to involve the previous conditions on the growth of species. In fact, it must take
into account all conditions both past and current states which is called as memory effects [25]. This effect
is formed into the fractional-order model. Currently, the model has grown rapidly and becomes the popular
study in investigating the dynamic behavior of interactions between species as in [33], [38], [27], [36], [35],
[34], [25], [26], [24], [39]. It is known that the order of fractional derivative has a significant effect in the
dynamic behavior of models. This is different from the first-order predator-prey model which only depends
on the parameter values. Here, we formulate the model of Holt and Polis [16] by assuming the intraspesific
competition, Holling type II for intermediate predator and omnivore, and the anti-predator behavior on prey.
Then, we replace the first-order model to the fractional-order model. There are various operators of fractional-
order differential equations. However, we choose the Caputo operator because it can be applied on the classic
initial conditions as in the integer order differential equation. This operator has rich analytical tools in
identifying the dynamic behavior of predator-prey models.

In this research, we aim to observe the dynamics behavior of a food chain model with omnivore assuming
that these prey have the ability to escape from predatory attacks. To archive our purpose, we present several
discussion which are arranged as follows. First, the mathematical model is separated into two sections: Model
formulation on section 2.1 and Model with the Caputo operator on section 2.2. In section 3 and 4, we show
that the solutions of system exist and unique as well as they are uniformly bounded and non-negative. In
section 5 and 6, we investigate the existence and stability of equilibrium point, both locally and globally. In
section 7, we conduct several numerical simulations to support our analytical results. Finally, the conclusion
is given in section 8.
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2. MATHEMATICAL MODEL

2.1. Model Formulation
The three species food chain models consisting one prey, one intermediate predator, and one omnivore

as apex predator is modeled by adopting a Lotka-Volterra food chain model proposed by Holt and Polis
[16]. We symbolize x (t) , y (t) , and z (t) as the population density for prey (e.g. Tetranychus), intermediate
predator (e.g. Phytoseiulus), and omnivore (e.g. Stethorus), respectively at time t. Their model is shown as
follows.

dx

dt
= (r − a1x− ξ1y − ξ2z)x,

dy

dt
= (−δ1 + β1x− η1z) y, (1)

dz

dt
= (−δ2 + β2x+ η2y) z,

where r is the natural growth rate of prey. a1 are the competition rate for prey. ξ1, ξ2 are the capture rate
of intermediate predator and omnivore respectively. δ1, δ2 are the natural death rate of intermediate predator
and omnivore respectively. β1, β2 are the conversion rate of prey into intermediate predator and omnivore
respectively. η1, η2 represent the capture rate of omnivore in preying intermediate predator and the conversion
rate of intermediate predator into omnivore.

Based on the model proposed by Holt and Polis [16], intermediate predator can only consume prey while
omnivore can eat prey and intermediate predator. Both predators have to compete with each other to survive
in the community. Moreover, all populations satisfy the following ecological assumptions.
• We include the intraspecific competition for intermediate predators and omnivores denoted with ai, i =

2, 3 respectively.
• Species y and z consume x by following Holling type I function because they depend on search time

in preying species x where handling time and other more dynamics don’t apply [14].
• Species z consume y by following Holling type II function because species z spends some time for

searching and capturing species y [17].
• Species x has anti-predator behavior such as hiding, foraging, and escaping [23].
Based on the above assumption, the model (1) can be rewritten as a continuous time food chain model as

follows.

dx

dt
= (r − a1x− ξ1y − ξ2z)x,

dy

dt
=

(
−δ1 + (β1 − φ1)x− a2y −

η1z

1 + σy

)
y, (2)

dz

dt
=

(
−δ2 + (β2 − φ2)x− a3z +

η2y

1 + σy

)
z,

where φ1, φ2 denote the anti-predator behavior of prey towards intermediate predator and omnivore. σ is the
half saturation constant. We also confirm that all parameters are positive values and the solution of system
lies in R3

+, where R3
+ =

{
(x, y, z) ∈ R3|x, y, z ≥ 0

}
.

2.2. Model with Caputo Operator
First, We define the Caputo fractional operator (CFO) as follows.

Definition 2.1. (See [3]). The CFO derivative with order-α is defined as follows.

Dα
t f (t) =

1

Γ (1− α)

∫ t

0

f ′ (τ)

(t− τ)
α dτ,

with Γ (.) is Gamma function and α ∈ (0, 1].
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By using the similar manner as done in [24], [25], [26], the first order derivative of Model (2) is replaced
with CFO order derivative as given in Definition 2.1. Therefore, the model can be written as follows.

Dα
t x = (r − a1x− ξ1y − ξ2z)x,

Dα
t y =

(
−δ1 + (β1 − φ1)x− a2y −

η1z

1 + σy

)
y, (3)

Dα
t z =

(
−δ2 + (β2 − φ2)x− a3z +

η2y

1 + σy

)
z.

When the operator is replaced with the CFO order derivative, the time’s dimension of the first order
derivative is formed from t to tα. As a result, the model becomes inconsistent because some parameters
such as r, a1, a2, a3, ξ1, ξ2, δ1, δ2, β1, β2, φ1, φ2, η1, η2 have the dimension of time t1. We can adjust it by
changing the scale of all favorable parameters. Thus, the model (3) transforms into the following model.

Dα
t x =

(
r̄ − ā1x− ξ̄1y − ξ̄2z

)
x,

Dα
t y =

(
−δ̄1 +

(
β̄1 − φ̄1

)
x− ā2y −

η̄1z

1 + σy

)
y, (4)

Dα
t z =

(
−δ̄2 +

(
β̄2 − φ̄2

)
x− ā3z +

η̄2y

1 + σy

)
z,

where r̄ = rα, ā1 = aα1 , ā2 = aα2 , ā3 = aα3 , ξ̄1 = ξα1 , ξ̄2 = ξα2 , δ̄1 = δα1 , δ̄2 = δα2 , β̄1 = βα
1 , β̄2 = βα

2 , φ̄1 =
φα
1 , φ̄2 = φα

2 , η̄1 = ηα1 , η̄2 = ηα2 . For simplicity, we re-symbolize by eliminating bar .̄ on each parameter.
From the model (4), we obtain the final model as follows.

Dα
t x = (r − a1x− ξ1y − ξ2z)x,

Dα
t y =

(
−δ1 + (β1 − φ1)x− a2y −

η1z

1 + σy

)
y, (5)

Dα
t z =

(
−δ2 + (β2 − φ2)x− a3z +

η2y

1 + σy

)
z.

3. EXISTENCE AND UNIQUENESS

In this section, it is seen that all solutions of model exist and unique. We start by introducing the following
lemma.

Lemma 3.1. (See [1]). Consider the CFO system

Dα
t x (t) = f (t, x) , t > 0, x (0) ≥ 0, α ∈ (0, 1] (6)

with f : [0,∞)×Ω → Rn,Ω ∈ Rn. The equation (6) has a unique and existing solution on [0,∞)×Ω when
f (t, x) fits the locally Lipschitz condition to x.

By applying Lemma 3.1, we obtain the following theorem, where this ensures that the solutions of System
(5) exist and unique.

Theorem 3.2. Assume that System (5) has X(0) = (x(0), y(0), z(0)) and t ∈ [0,∞] in the region ΩM ×
[0,∞] , where ΩM =

{
(x, y, z) ∈ R3

+ : max {|x| , |y| , |z|} ≤M,M > 0
}

for sufficiently large M . Thus, the
solution of System (5) is exists and unique.

Proof: To prove the existence and uniqueness of solution in the region ΩM × [0,∞] for sufficiently large
M , we consider the existence of M which is ensured by the boundedness of solution as shown below. First,
let X = (x, y, z)

T and X̄ = (x̄, ȳ, z̄)
T . The system (5) can be written as Equation (7) .



A FRACTIONAL-ORDER FOOD CHAIN MODEL WITH OMNIVORE AND ANTI-PREDATOR 125

Dα
t X = H (X) , (7)

where

H (X) =

 rx− a1x
2 − ξ1xy − ξ2xz

−δ1y + (β1 − φ1)xy − a2y
2 − η1yz

1+σy

−δ2z + (β2 − φ2)xz − a3z
2 + η2yz

1+σy

 =

(
H1 (X)
H2 (X)
H3 (X)

)
.

By applying Equation (7) for any X, X̄ ∈ ΩM , we have

∥∥H (X)−H
(
X̄
)∥∥ =

3∑
i=1

∣∣Hi (X)−Hi

(
X̄
)∣∣ ,

=
∣∣r (x− x̄)− a1

(
x2 − x̄2

)
− ξ1 (xy − x̄ȳ)− ξ2 (xz − x̄z̄)

∣∣+∣∣∣∣−δ1 (y − ȳ) + (β1 − φ1) (xy − x̄ȳ)− a2
(
y2 − ȳ2

)
− η1

(
yz

1 + σy
− ȳz̄

a+ σȳ

)∣∣∣∣+∣∣∣∣−δ2 (z − z̄) + (β2 − φ2) (xz − x̄z̄)− a3
(
z2 − z̄2

)
+ η2

(
yz

1 + σy
− ȳz̄

1 + σȳ

)∣∣∣∣ .
By using the triangle inequality |v1 ± v2| ≤ |v1| ± |v2| and considering that max {|x| , |y| , |z|} ≤M , we get

∥∥H (X)−H
(
X̄
)∥∥ ≤ r |x− x̄|+ a1

∣∣x2 − x̄2
∣∣+ (ξ1 + β1 − φ1) |xy − x̄ȳ|+

(ξ2 + β2 − φ2) |xz − x̄z̄|+ δ1 |y − ȳ|+ a2
∣∣y2 − ȳ2

∣∣+
(η1 + η2) |z̄ (y − ȳ)|+ (η1 + η2) |(ȳ + σyȳ) (z − z̄)|+
δ2 |z − z̄|+ a3

∣∣z2 − z̄2
∣∣ ,

≤ L1 |x− x̄|+ L2 |y − ȳ|+ L3 |z − z̄| ,
≤ L

∥∥X − X̄
∥∥ ,

where

L1 = r + (2a1 + ξ1 + β1 − φ1 + ξ2 + β2 − φ2)M,

L2 = δ1 + (2a2 + ξ1 + β1 − φ1 + η1 + η2)M,

L3 = δ2 + (2a3 + ξ2 + β2 − φ2 + η1 + η2)M + (η1 + η2)σM
2,

L = max {L1, L2, L3} .

Therefore, H (X) satisfies the Lipschitz condition with respect to X . According to Lemma 3.1, the solution
X (t) ∈ ΩM of System (5) with initial conditions X(0) = (x(0), y(0), z(0)) is exist and unique.

4. BOUNDEDNESS AND NON-NEGATIVE

To describe that the boundedness and non-negative of solution as well as ensure the biological significance
of System (5), the following lemma are needed.

Lemma 4.1. (See [33]). Suppose x (t) is a continuous function on [0,+∞). If x (t) satisfies Dα
t x (t) +

µx (t) ≤ ϑ, x (0) ≥ 0, where α ∈ (0, 1] , (µ, ϑ) ∈ R2, and µ ̸= 0, then x (t) ≤
(
x (0)− ϑ

µ

)
Eα [−µtα] + ϑ

µ .

By using the above lemma, the boundedness and non-negative of solution is ensured by the following
theorem.

Theorem 4.2. Suppose that β1 < φ1+η1ξ1 and β2 < φ2+η2ξ2. Consider System (5) with initial conditions
x (0) , y (0) , z (0) ≥ 0, then all solutions are uniformly bounded and non-negative.
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Proof: First, we want to show that all solutions with non-negative initial condition of System (5) are
uniformly bounded. By defining a function V (t) = x+ y

η1
+ z

η2
, we get

Dα
t V (t) + µV (t) = (r + µ)x− a1x

2 +
(µ− δ1)

η1
y − a2

η1
y2 +

(µ− δ2)

η2
z − a3

η2
z2 +

(β1 − φ1 − η1ξ1)

η1
xy +

(β2 − φ2 − η2ξ2)

η2
xz,

By taking β1 < φ1 + η1ξ1 and β2 < φ2 + η2ξ2, we have

Dα
t V (t) + µV (t) ≤ (r + µ)

2

4a1
+

(µ− δ1)
2

4a2η1
+

(µ− δ2)
2

4a3η2
≡ H.

By using Lemma 4.1, we obtain

V (t) ≤ V (0)Eα [−µtα] + H

µ
(1− Eα [−µtα]) ,

Notice that Eα (S) =
∑∞

k=0
Sk

Γ(αk+1) is Mittag-Leffler function [2], Γ (S) =
∫∞
0
xS−1e−Sdx is Euler’s

Gamma function, and 0 < Eα [−µtα] ≤ 1. For t → ∞, we have 0 ≤ V (t) ≤ V (0) + H
µ . Thus, by using

non-negative initial condition, all solutions of System (5) are limited to Ω, that is

Ω =

{
(x, y, z) ∈ R3

+ : x+
y

η1
+

z

η2
≤ H

µ

}
. (8)

Now, we will prove that by employing the initial condition, all solutions are also non-negative. If we use
the inequality (8), then

x+
y

η1
+

z

η2
≤ H

µ
. (9)

Based on Equation (5) and Inequality (9), we get

Dα
t x ≥

(
r − a1H

µ
− ξ1η1H

µ
− ξ2η2H

µ

)
x,

=

(
r − (a1 + ξ1η1 + ξ2η2)

H

µ

)
x,

= h1x,

where h1 = r − (a1 + ξ1η1 + ξ2η2)
H
µ . By using Eα,1 (t) > 0 as shown in [20], [21], we obtain x (t) ≥

x (0)Eα,1 (h1t
α). Thus, we have

x (t) ≥ 0,∀t ≥ 0. (10)

From Equation (5), Inequality (9) and (10), we get

Dα
t y ≥ −

(
δ1 +

a2η1H

µ
+

η21H

µ+ ση1H

)
y,

= −h2y,

where h2 = δ1 +
a2η1H

µ +
η2
1H

µ+ση1H
. Therefore, we obtain y (t) ≥ y (0)Eα,1 (−h2tα). Thus, we have
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y (t) ≥ 0,∀t ≥ 0. (11)

By considering Equation (5), Inequality (10) and (11), we obtain

Dα
t z ≥ −

(
δ2 +

a3η2H

µ

)
z,

= −h3z,

with h3 = δ2 +
a3η2H

µ . Therefore, z (t) ≥ z (0)Eα,1 (−h3tα). Thus, we have z (t) ≥ 0,∀t ≥ 0. Hence, all
non-negative real numbers in R3 lie in the region Ω+, that is

Ω+ = {(x, y, z) |x ≥ 0, y ≥ 0, z ≥ 0} .

5. EQUILIBRIUM POINT AND LOCAL STABILITY

In this section, we determine the equilibrium points and their existence conditions using the following
definition.

Definition 5.1. (See [25]). Consider the CFO system

Dα
t x⃗ = f⃗ (x⃗) , x⃗ (0) ≥ 0, α ∈ (0, 1] . (12)

A equilibrium point x⃗∗ in System (12) is obtained when f⃗ (x⃗∗) = 0. Biologically, a point x⃗∗ is the
biological point when it fits the condition x⃗∗ ≥ 0.

The equilibrium point of System (5) is obtained by solving Dα
t x = Dα

t y = Dα
t z = 0. Therefore, we have

1) E0 (0, 0, 0) is all populations extinction point that always exist.
2) E1

(
r
a1
, 0, 0

)
is the both predator extinction point that always exist.

3) E2 (x̃, 0, z̃) is the intermediate predator extinction point, where

x̃ =
δ2ξ2 + ra3

β2ξ2 + a1a3 − φ2ξ2
,

z̃ =
r − a1x̃

ξ2
.

This point exist when β2ξ2 + a1a3 > φ2ξ2 and r > a1x̃.
4) E3 (x̂, ŷ, 0) is the omnivore extinction point, where

x̂ =
δ1ξ1

β1ξ1 + a1a2 − φ1ξ1
,

ŷ =
r − a1x̂

ξ1
.

It can be confirmed that the point E3 exist when β1ξ1 + a1a2 > φ1ξ1 and r > a1x̂.
5) E4 (x

∗, y∗, z∗) is the all populations survive point, where

x∗ =
σa2ξ2 (y

∗)
2
+ (σδ1ξ2 + a2ξ2 − η1ξ1) y

∗ + δ1ξ2 + rη1
σξ2y∗ (β1 − φ1) + a1η1 + ξ2 (β1 − φ1)

,

z∗ =
− (1 + σy∗) [y∗ (a1a2 + ξ1 (β1 − φ1)) + a1δ1 − r (β1 − φ1)]

σξ2y∗ (β1 − φ1) + a1η1 + ξ2 (β1 − φ1)
.

Meanwhile, y∗ is obtained by solving the cubic equation A (y∗)
3
+B (y∗)

2
+ Cy +D = 0 with



128 Firdiansyah, A. L.

A = σ2 [a1a2a3 + a2ξ2 (β2 − φ2) + a3ξ1 (β1 − φ1)] ,

B = σ [a1a3 (σδ1 + 2a2) + (β1 − φ1) (2a3ξ1 + η2ξ2 − δ2σξ2 − a3σr)] +

σ [(β2 − φ2) (σδ1ξ2 + 2a2ξ2 − η1ξ1)] ,

C = a1a3 (a2 + 2σδ1) + a1η1 (η2 − σδ2)− (β1 − φ1) (2a3σr + 2δ2σξ2 − a3ξ1 − η2ξ2) +

(β2 − φ2) (2σδ1ξ2 + ση1r + a2ξ2 − η1ξ1) ,

D = a1 (a3δ1 − δ2η1)− (β1 − φ1) (a3r + δ2ξ2) + (β2 − φ2) (δ1ξ2 + η1r) .

To obtain explicit form and existence condition, we solve the cubic equation by applying the Cardan’s
method as in [13].

Furthermore, we will analyze the local stability of each point by employing the following theorem.

Theorem 5.1. (See [3], [37]). A point x⃗∗ of System (12) is the equilibrium point which is locally asymptot-
ically stable when all eigenvalues λi of Jacobian matrix J = ∂f⃗

∂x⃗ at x⃗∗ fit |arg (λi)| > απ
2 for all i ∈ n.

From System (5), we have the Jacobian matrix J evaluated at any points as follows.

J (E) =

[
b11 b12 b13
b21 b22 b23
b31 b32 b33

]
, (13)

where

b11 = −2a1x− ξ1y − ξ2z + r, b12 = −ξ1x,
b13 = −ξ2x, b21 = (β1 − φ1) y,

b22 = −2a2y + (β1 − φ1)x− η1z

(1 + σy)
2 − δ1, b23 = − η1y

1 + σy
,

b31 = (β2 − φ2) z, b32 =
η2z

(1 + σy)
2 ,

b33 = −2a3z + (β2 − φ2)x+
η2y

1 + σy
− δ2.

In this article, the Jacobian matrix (13) is denoted as J (En) =
(
b
[n]
ij

)
at En, for n = 0, 1, . . . , 4. By

substituting the equilibrium points, we can investigate their local stability condition, which is presented as
follows.

Theorem 5.2. E0 is a saddle point and E1 is locally asymptotically stable when β1 < a1δ1
r + φ1 and

β2 <
a2δ2
r + φ2.

Proof: First, the Jacobian matrix J (E0) and J (E1) is obtained as follows.

J (E0) =

[
r 0 0
0 −δ1 0
0 0 −δ2

]
, (14)

J (E1) =

−r −ξ1r
a1

−ξ2r
a1

0 r
a1

(β1 − φ1)− δ1 0
0 0 r

a2
(β2 − φ2)− δ2

 . (15)

From Equation (14), we obtain the eigenvalues λ1 = r, λ2 = −δ1, λ3 = −δ2. Thus, |arg (λ1)| = 0 < απ
2

and |arg (λ2,3)| = π > απ
2 . Therefore, the point E0 is a saddle point. Based on Equation (15), we get the

eigenvalues λ1 = −r, λ2 = r
a1

(β1 − φ1) − δ1, λ3 = r
a2

(β2 − φ2) − δ2. It is clear that λ1 < 0, λ2 < 0 if
β1 <

a1δ1
r + φ1, λ3 < 0 if β2 < a2δ2

r + φ2. Thus, we have |arg (λ1,2,3)| = π > απ
2 . Base on the result, E1

is locally asymptotically stable.
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Theorem 5.3. Suppose that β1 > φ1 as well as the following case.

γ1 = b
[2]
11 + b

[2]
33 ,

γ2 = b
[2]
11b

[2]
33 − b

[2]
13b

[2]
31 ,

α∗ =
2

π

∣∣∣∣∣tan−1

√
4γ2 − γ21
γ1

∣∣∣∣∣ .
The point E2 is locally asymptotically stable if it follows x̃ < δ1+η1z̃

β1−φ1
and one of the following conditions.

1) γ21 ≥ 4γ2, γ1 < 0, and γ2 > 0,
2) γ21 < 4γ2, and if γ1 < 0, or γ1 > 0 and α < α∗.

Proof: At the point E2, the Jacobian matrix J (E2) =
(
b
[2]
ij

)
is presented as follows.

J (E2) =

b
[2]
11 b

[2]
12 b

[2]
13

0 b
[2]
22 0

b
[2]
31 b

[2]
32 b

[2]
33

 , (16)

where

b
[2]
11 = −2a1x̃− ξ2z̃ + r, b

[2]
12 = −ξ1x̃,

b
[2]
13 = −ξ2x̃, b

[2]
22 = (β1 − φ1) x̃− η1z̃ − δ1,

b
[2]
31 = (β2 − φ2) z̃, b

[2]
32 = η2z̃,

b
[2]
33 = −2a3z̃ + (β2 − φ2) x̃− δ2.

From Equation (16), one of the eigenvalues is λ1 = b
[2]
22 and the other eigenvalues is the roots of quadratic

equation λ2 − γ1λ+ γ2 = 0, where γ1 = b
[2]
11 + b

[2]
33 and γ2 = b

[2]
11b

[2]
33 − b

[2]
13b

[2]
31 . It is clear that λ1 < 0 when

x̃ < δ1+η1z̃
β1−φ1

with β1 > φ1. Thus, we have |arg (λ1)| = π > απ
2 . From the quadratic equation, we obtain

the eigenvalues λ2,3 = γ1±
√
Λ

2 with Λ = γ21 − 4γ2. We notice that if γ2 > 0 and γ1 < 0, then Λ ≥ 0.
Obviously, γ21 ≥ 4γ2 and λ2,3 < 0. Thus, |arg (λ2,3)| > απ

2 . In the other word, E2 is locally asymptotically
stable. Next, suppose Λ < 0. Obviously, γ1 < 4γ2. Thus, λ2,3 are a pair of complex conjugate eigenvalues.
By using Theorem 5.1, |arg (λ2,3)| > απ

2 is attained when α < α∗ for both γ1 > 0 or γ1 < 0. Thus, E2 is
locally asymptotically stable. The stability condition for E2 is proven.

Theorem 5.4. Suppose that σδ2 > η2 and β2 > φ2. By considering the following case.

θ1 = b
[3]
11 + b

[3]
22 ,

θ2 = b
[3]
11b

[3]
22 − b

[3]
12b

[3]
21 ,

α∗ =
2

π

∣∣∣∣∣tan−1

√
4θ2 − θ21
θ1

∣∣∣∣∣ .
The point E3 is locally asymptotically stable when it follows x̂ < δ2(1+σŷ)−η2ŷ

(β2−φ2)(1+σŷ) and one of the following
conditions.

1) θ21 ≥ 4θ2, θ1 < 0, and θ2 > 0,
2) θ21 < 4θ2, and if θ1 < 0, or θ1 > 0 and α < α∗.

Proof: First, we identify the Jacobian matrix J (E3) =
(
b
[3]
ij

)
as follows.

J (E3) =

b
[3]
11 b

[3]
12 b

[3]
13

b
[3]
21 b

[3]
22 b

[3]
23

0 0 b
[3]
33

 , (17)
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where

b
[3]
11 = −2a1x̂− ξ1ŷ + r, b

[3]
12 = −ξ1x̂,

b
[3]
13 = −ξ2x̂, b

[3]
21 = (β1 − φ1) ŷ,

b
[3]
22 = −2a2ŷ + (β1 − φ1) x̂− δ1, b

[3]
23 = − η1ŷ

1 + σŷ
,

b
[3]
33 = (β2 − φ2) x̂+

η2ŷ

1 + σŷ
− δ2. (18)

Based on Equation (17), we obtain that one of the eigenvalue is λ1 = b
[3]
33 and the other is quadratic

equations λ2 − θ1λ + θ2 = 0, where θ1 = b
[3]
11 + b

[3]
22 and θ2 = b

[3]
11b

[3]
22 − b

[3]
12b

[3]
21 . It is known λ1 < 0 when

x̂ < δ2(1+σŷ)−η2ŷ
(β2−φ2)(1+σŷ) with σδ2 > η2 and β2 > φ2. Thus, it confirms that |arg (λ1)| = π > απ

2 . The other

eigenvalues is solved by investigating the negative roots of quadratic equations. We have λ2,3 = θ1±
√
△

2
with △ = θ21 − 4θ2. If θ1 < 0 and θ2 > 0, then △ ≥ 0. Obviously, θ21 ≥ 4θ2. Therefore, λ2,3 < 0 and
|arg (λ2,3)| > απ

2 . Thus, E3 is locally asymptotically stable. However, suppose △ < 0. We have θ21 < 4θ2.
Therefore, λ2,3 and its complex conjugate are eigenvalues. By applying Theorem 5.1, |arg (λ2,3)| > απ

2 if
α < α∗ for both θ1 > 0 or θ1 < 0. Hence, E3 is locally asymptotically stable. Therefore, the stability
condition for E3 is proven.

Theorem 5.5. Suppose that

χ1 = −
(
b
[4]
11 + b

[4]
22 + b

[4]
33

)
.

χ2 = b
[4]
11b

[4]
22 − b

[4]
12b

[4]
21 + b

[4]
11b

[4]
33 − b

[4]
13b

[4]
31 + b

[4]
22b

[4]
33 − b

[4]
23b

[4]
32 .

χ3 = −
(
b
[4]
11b

[4]
22b

[4]
33 + b

[4]
12b

[4]
23b

[4]
31 + b

[4]
13b

[4]
21b

[4]
32 − b

[4]
12b

[4]
21b

[4]
33 − b

[4]
11b

[4]
23b

[4]
32 − b

[4]
13b

[4]
22b

[4]
31

)
.

D (P ) = 18χ1χ2χ3 + (χ1χ2)
2 − 4χ3χ

3
1 − 4χ3

2 − 27χ2
3.

The point E4 is called locally asymptotically stable if it satisfies one of the following conditions.
1) D (P ) > 0, χ1, χ3 > 0, χ1χ2 > χ3,
2) D (P ) < 0, χ1, χ1 ≥ 0, χ3 > 0, α < 2

3 ,
3) D (P ) < 0, χ1, χ2, χ3 > 0, χ1χ2 = χ3, α ∈ [0, 1).

Proof: At the point E4, we get the Jacobian matrix J (E4) =
(
b
[4]
ij

)
as follows.

J (E4) =

b
[4]
11 b

[4]
12 b

[4]
13

b
[4]
21 b

[4]
22 b

[4]
23

b
[4]
31 b

[4]
32 b

[4]
33

 , (19)

where

b
[4]
11 = −a1x∗, b

[4]
12 = −ξ1x∗,

b
[4]
13 = −ξ2x∗, b

[4]
21 = (β1 − φ1) y

∗,

b
[4]
22 = −a2y∗ +

ση1y
∗z∗

(1 + σy∗)
2 , b

[4]
23 = − η1y

∗

1 + σy∗
,

b
[4]
31 = (β2 − φ2) z

∗, b
[4]
32 =

η2z
∗

(1 + σy∗)
2 ,

b
[4]
33 = −a3z∗.

Based on Equation (19), all eigenvalues of J (E4) is the negative roots of cubic equations P (λ) =
λ3 + χ1λ

2 + χ2λ+ χ3 = 0 with χ1 = −tr (J (E4)) , χ2 = M11 +M22 +M33 with Mii, i = 1, 2, 3 are the
minor matrix of J (E4) after removing the row i and column i, and χ3 = −det (J (E4)). By using the same
criterion as in [15], the stability condition for E4 is proven.



A FRACTIONAL-ORDER FOOD CHAIN MODEL WITH OMNIVORE AND ANTI-PREDATOR 131

6. GLOBAL STABILITY

By employing the lemma below, we analyze the global stability of each point.

Lemma 6.1. (See [18]). For any t > 0, Dα
t

[
x (t)− x∗ − x∗ ln x(t)

x∗

]
≤
(
1− x∗

x(t)

)
Dα

t x(t), where x (t) ∈ R+

is a continuous and derivable function, x∗ ∈ R+, and ∀α ∈ (0, 1].

Lemma 6.2. (See [19]). If a continuous and derivable function V (x) : Ψ → R satisfies Dα
t V (x) ≤ 0, then

the solution of Dα
t x (t) = f (x (t)) goes from Ψ and remains in Ψ for all time, where Ψ is a bounded closed

set. It is known that E := {x|Dα
t V (x) = 0} and M is the biggest number set of E. Thus, the solution of

x (t) departing from Ψ tends to M when t→ ∞.

Suppose Vi, i = 1, 2, 3 are the Lyapunov functions. The global stability condition of equilibrium point is
guaranteed by the following theorems.

Theorem 6.3. Suppose that β1 > φ1 and β2 > φ2. The point E2 is globally asymptotically stable when(
z̃ + δ1

η1

)
>
(

ξ1(β2−φ2)x̃
η2ξ2

)
and

(
ξ1(β2−φ2)

η2ξ2

)
>
(

β1−φ1

η1

)
.

Proof: By considering V1 as follows.

V1 (x, y, z) =

(
β2 − φ2

η2ξ2

)(
x− x̃− x̃ ln

x

x̃

)
+

1

η1
y +

1

η2

(
z − z̃ − z̃ ln

z

z̃

)
.

We investigate that V1 (E2) = 0. Then, the first condition is satisfied. Furthermore, by using Lemma 6.1, we
obtain

Dα
t V1 =

(
β2 − φ2

η2ξ2

)(
1− x̃

x

)
Dα

t x+
1

η1
Dα

t y +
1

η2

(
1− z̃

z

)
Dα

t z,

= −a1 (β2 − φ2)

η2ξ2
(x− x̃)

2 − a3
η2

(z − z̃)
2
+
ξ1 (β2 − φ2) x̃

η2ξ2
y − z̃y

1 + σy
− δ1
η1
y

−a2
η1
y2 +

β1 − φ1

η1
xy − ξ1 (β2 − φ2)

η2ξ2
xy,

≤ −a1 (β2 − φ2)

η2ξ2
(x− x̃)

2 − a3
η2

(z − z̃)
2 −

(
z̃ +

δ1
η1

− ξ1 (β2 − φ2) x̃

η2ξ2

)
y

−
(
ξ1 (β2 − φ2)

η2ξ2
− β1 − φ1

η1

)
xy.

It is easy to confirm that Dα
t V1 ≤ 0 when

(
z̃ + δ1

η1

)
>
(

ξ1(β2−φ2)x̃
η2ξ2

)
and

(
ξ1(β2−φ2)

η2ξ2

)
>
(

β1−φ1

η1

)
with

β1 > φ1 and β2 > φ2. Based on Lemma 6.2, the non-negative solutions tend to E2. Thus, the point E2 is
globally asymptotically stable.

Theorem 6.4. Let β1 > φ1 and β2 > φ2. The point E3 is globally asymptotically stable if δ2
η2
>
(
ŷ + ξ2(β1−φ1)x̂

η1ξ1

)
and

(
ξ2(β1−φ1)

η1ξ1

)
>
(

β2−φ2

η2

)
.

Proof: First, we define V2 as follows.

V2 (x, y, z) =

(
β1 − φ1

η1ξ1

)(
x− x̂− x̂ ln

x

x̂

)
+

1

η1

(
y − ŷ − ŷ ln

y

ŷ

)
+

1

η2
z.

We can confirm that V2 (E3) = 0 so that the first condition is proven. By considering Lemma 6.1,
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Dα
t V2 =

(
β1 − φ1

η1ξ1

)(
1− x̂

x

)
Dα

t x+
1

η1

(
1− ŷ

y

)
Dα

t y +
1

η2
Dα

t z,

= −a1 (β1 − φ1)

η1ξ1
(x− x̂)

2 − a2
η1

(y − ŷ)
2
+
ξ2 (β1 − φ1) x̂

η1ξ1
z +

ŷz

1 + σy
− δ2
η2
z

−a3
η2
z2 +

β2 − φ2

η2
xz − ξ2 (β1 − φ1)

η1ξ1
xz,

≤ −a1 (β1 − φ1)

η1ξ1
(x− x̂)

2 − a2
η1

(y − ŷ)
2 −

(
δ2
η2

− ŷ − ξ2 (β1 − φ1) x̂

η1ξ1

)
z

−
(
ξ2 (β1 − φ1)

η1ξ1
− β2 − φ2

η2

)
xz.

If δ2
η2

>
(
ŷ + ξ2(β1−φ1)x̂

η1ξ1

)
and

(
ξ2(β1−φ1)

η1ξ1

)
>
(

β2−φ2

η2

)
, then Dα

t V2 ≤ 0. According to Lemma 6.2, the
non-negative solutions tend to E3. Thus, the point E3 is globally asymptotically stable.

Theorem 6.5. Suppose that β1 > φ1 and β2 > φ2. By noticing some conditions as follows.

ψ1 =
1

r

(
δ1y

∗

η1
+
δ2z

∗

η2

)
,

ψ2 = min

{
η1z

∗ + δ1 − a2y
∗

η1ξ1
,
δ2 − η2y

∗ − a3
η2ξ2

,
η2 (β1 − φ1) + η1 (β2 − φ2)− η1η2r

a1η1η2

}
.

The point E4 is globally asymptotically stable when it satisfies the following conditions, that is ξ1 >(
β1−φ1

η1

)
, ξ2 >

(
β2−φ2

η2

)
, and ψ1 < x∗ < ψ2.

Proof: By defining V3 as follows.

V3 (x, y, z) =
(
x− x∗ − x∗ ln

x

x∗

)
+

1

η1

(
y − y∗ − y∗ ln

y

y∗

)
+

1

η2

(
z − z∗ − z∗ ln

z

z∗

)
.

It is clear that V3 (x∗, y∗, z∗) = 0. Thus, the first requirement is satisfies. By following Lemma 6.1, we have

Dα
t V3 =

(
1− x∗

x

)
Dα

t x+
1

η1

(
1− y∗

y

)
Dα

t y +
1

η2

(
1− z∗

z

)
Dα

t z,

= −
(
β1 − φ1

η1
+
β2 − φ2

η2
− r − a1x

∗
)
−
(

z∗

1 + σy
+
δ1
η1

− ξ1x
∗ − a2

η1
y∗
)
y

−
(
δ2
η2

− ξ2x
∗ − y∗

1 + σy
− a3
η2

)
z −

(
ξ1 −

β1 − φ1

η1

)
xy −

(
ξ2 −

β2 − φ2

η2

)
xz

−a1x2 −
a2
η1
y2 − a3

η2
z2 −

(
rx∗ − δ1

η1
y∗ − δ2

η2
z∗
)
,

≤ −
(
β1 − φ1

η1
+
β2 − φ2

η2
− r − a1x

∗
)
−
(
z∗ +

δ1
η1

− ξ1x
∗ − a2

η1
y∗
)
y

−
(
δ2
η2

− ξ2x
∗ − y∗ − a3

η2

)
z −

(
ξ1 −

β1 − φ1

η1

)
xy −

(
ξ2 −

β2 − φ2

η2

)
xz

−
(
rx∗ − δ1

η1
y∗ − δ2

η2
z∗
)
.

Therefore, if ξ1 >
(

β1−φ1

η1

)
, ξ2 >

(
β2−φ2

η2

)
, and ψ1 < x∗ < ψ2, then Dα

t V3 ≤ 0. In consequence of Lemma
6.2, the non-negative solutions tend to E4. Thus, the point E4 is globally asymptotically stable.
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7. NUMERICAL SIMULATIONS

To support our analytical results and show the behavior of model, we perform the numerical solution for
System (5). In our work, we use the nonstandard Grunwald-Letnikov approximation method for nonlinear
fractional-order differential equations which is combination from Grunwald-Letnikov approximation method
developed by [40] and the nonstandard finite difference presented in [42], [43], [44]. This method has been
applied by several researcher as in [41], [27], [36]. To construct the numerical schemes for System (5), we
apply the same way in [41], [36]. Thus, we have the nonstandard Grunwald-Letnikov schemes as follows.

xn+1 =

∑n+1
j=1 c

α
j xn+1−j + wα

n+1x0 +∆tαrxn

1 + ∆tα (a1xn + ξ1yn + ξ2zn)
,

yn+1 =

∑n+1
j=1 c

α
j yn+1−j + wα

n+1y0 −∆tαδ1yn

1 + ∆tα
(
− (β1 − φ1)xn + a2yn + η1zn

1+σyn

) , (20)

zn+1 =

∑n+1
j=1 c

α
j zn+1−j + wα

n+1z0 −∆tαδ2zn

1 + ∆tα
(
− (β2 − φ2)xn + a3zn − η2yn

1+σyn

) ,
where cαj =

(
1− (α+1)

j

)
cαj−1; c

α
1 = α; and wα

n+1 = (n+1)−α

Γ(1−α) . It is known that ∆t means the time step of
numerical integration and cαj is the positive values and follows a condition, that is 0 < cαn+1 < cαn < · · · <
cα1 = α with n ≤ 1 [40]. The form of our scheme (20) is explicit so that it is easy to be applied.

(a) r = 0.15 and δ1 = 0.2 (b) r = 2 and δ1 = 2.2

Figure 2: 3-D Phase portraits for E1 and E2 with α = 0.8 and ∆t = 0.1.

To verify the stability analysis and numerical scheme obtained in the previous discuss, we do several
numerical solutions. It is known that we don’t have the actual data so that we use the hypothetical values
as our parameters where it corresponds to the stability conditions. First, we select the following parameters,
that is r = 0.15; ξ1 = 1; ξ2 = 0.5; a1 = 0.5; δ1 = 0.2;β1 = 1.2; a2 = 0.3; η1 = 1.3;φ1 = 0.7; δ2 = 0.3;β2 =
0.1; a3 = 0.3; η2 = 1;φ2 = 0.02;σ = 0.3. We have two equilibrium points, that is E0 (0, 0, 0) as a saddle
point and E1 (0.3, 0, 0) is locally asymptotically stable. This condition fits to Theorem 5.2, where it is proven
by the solutions that converges to E1 (see Figure 2(a)). Here, species x exist and both predators become
extinct. Since the natural growth of prey is small, the species y and z undergo extinction due to decreased
predation on prey and increased intraspecific competition caused by limited food. However, the species x
can survive even though its population density is small. When the natural growth rate of prey and death of
intermediate predator are raised to r = 2 and δ1 = 2.2, Theorem 5.3 and 6.3 are satisfied. Therefore, we
have three equilibrium points, that is E0 (0, 0, 0) ;E1 (4, 0, 0) ; and E2 (3.947, 0, 0.053). Here, the point E2

is stable (both locally and globally) but E1 becomes a saddle point. This can be proven by all solutions that
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converge to E2 (see Figure 2(b)). This indicates that species x and z survive but species y become extinct.
The species y became extinct due to a high natural mortality. However, the species z can survive together
with species x due to abundant food and no competition within the community.

(a) r = 2 and σ = 5.3 (b) r = 2 and σ = 0.3

Figure 3: 3-D Phase portraits for E3 and E4 with α = 0.8 and ∆t = 0.1.

Figure 4: Solution curves for System (5) by taking various of α values and ∆t = 0.1.

By considering the previous parameters except r = 2 and σ = 5.3, we have four existing equilibrium points
which fit to Theorem 5.4 and 6.4. Therefore, the point E3 is asymptotically stable (both locally and globally)
but the other points are a saddle point. This is shown from all solutions which converge to E3 (1.231, 1.385, 0)
(see Figure 3(a)). Thus, we can conclude that species x and y exist but species z is stopped. Since the natural
growth of prey is huge, the species y and z have abundant food. However, the species z undergo extinct due
to high environment protection from intermediate predator. Therefore, the intermediate predator can consume
prey easily but omnivores are not. They need great effort to survive. When we take r = 2 and σ = 0.3, all
equilibrium points exist and Theorem 5.5 and 6.5 are satisfied. Thus, the point E3 becomes a saddle point
and E4 is asymptotically stable, both locally and globally. This is proven from all solutions which converge
to E4 (2.461, 0.377, 0.785) (see Figure 3(b)). In this case, all populations can survive in the community. Here,
both predators have abundant food and can eat prey but they can still survive the attack of predator. To show
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the effect of memory denoted by α as in System (5), we perform numerical simulation using all parameters as
in the first experiment with various orders of α. When order α is close to α = 1, the Caputo fractional-order
system solution is also close to the first order system solutions (see Figure 4). From the graphical analysis, we
observe that the population in species x decrease significantly by decreasing the fractional order. Meanwhile,
The population in species y and z increase significantly by decreasing the fractional order. Therefore, since
the memory effect of all populations is small, the prey density decreases but the predator density for both
intermediate predators and omnivores increases.

8. CONCLUSION

A fractional-order food chain model has presented in the previous discussion. This model explains the food
chain process of three species built by prey, intermediate predator, and omnivore. It is known that our model
has five equilibrium points, where their stability analysis (both locally and globally) is obtained conditionally.
These dynamic conditions are confirmed by our nonstandard Grunwald-Letnikov schemes. Our scheme can
fit on the obtained analytical results. In addition, when the order of derivative is reduced, then the solution
convergence of each point will decrease. In this case, we can interpret that the density of species x is directly
proportional to the fractional order. Meanwhile, the density of species y and z is inversely proportional to
the fractional order.
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