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Abstract. In this work, three sub-processes are serially integrated into just one 
process in order to construct a robust new image encryption scheme for all types 
of images, especially color images. This integration architecture aims to create a 
robust avalanche effect property while respecting the constraints of confusion and 
diffusion that have been identified by Claude Shannon as properties required of a 
secure encryption scheme. The performance of the proposed encryption scheme is 
measured and discussed with several analyses, including computational cost 
analysis, key space analysis, randomness metrics analysis , histogram analysis, 
adjacent pixel correlation and entropy analysis. The experimental results 
demonstrated and validated the performance and robustness of the proposed 
scheme. 

Keywords: avalanche effect; chaos enhancement; cipher block chaining enhancement; 
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1 Introduction 

Data security is an important aspect in various communication fields, for instance 
multimedia frameworks, medical imaging, and military communications. 
However, the data exchange process in a physical channel or in a software 
implementation; remains vulnerable if this data or this exchange is not properly 
protected [1]. Various forms of data, such as text, images, sound, or video, can 
be exchanged. However, the exchange of image data has special requirements 
given the intrinsic characteristics of images, such as the intra-correlations of their 
structures and the large memory space they require [2]. 
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In cryptography, a standard-compliant encryption scheme must introduce two 
properties: confusion and diffusion. These properties have been identified by 
Shannon in his work Theory of Communication in Secrecy Systems [3]. 

According to Shannon’s original definition, in image encryption, the confusion 
property corresponds to a desire to make the relationship between the encryption 
key and the cipher-image as complex as possible. And the diffusion property 
indicates that the statistical redundancy between the pixels of a plain-image must 
be dissipated in the statistics of the cipher-image. In practice, the correlation 
between the pixels of the plain-image must not be found in the cipher-image [4]. 

Besides these two properties, Feistel [5] recommends an additional and important 
notion: the avalanche effect property. In image encryption, this property 
quantifies the fact that even small differences between two plain-images lead to 
very big difference between their cipher-images. Thus, each bit of the plain-
image must contribute to the calculation of each bit of the cipher-image. In 
practice, avalanche effect measurement quantifies the effect of a small change in 
the plain-image, or key, on the cipher-image.  

In this context, all these notions must be considered as design constraints to be 
satisfied. 

The proposed color image encryption scheme is based on three sub-processes: 
the first process introduces diffusion; the second process introduces confusion; 
and the third process defines the avalanche effect property. 

The rest of this work is organized as follows: The proposed color image 
encryption scheme’s general architecture is presented in the section 2. Before 
explaining the proposed encryption scheme’s overall process in section 4, the 
third section is reserved for a deep development of the three sub-processes 
composing this overall process. The implementation of the proposed color image 
encryption scheme and its performance analysis will be discussed in section 5. 
Finally, the sixth and last section concludes the work. 

2 The Architecture of the Proposed Encryption Echeme 

The architecture of the proposed color image encryption scheme, as shown in 
Figure 1, is based on a harmonized integration of three sub-processes: 
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Figure 1 The proposed encryption scheme architecture. 

The first sub-process, relating to confusion, is based on the piece-wise linear 
chaotic map (PWLCM) [6]. The second sub-process, relating to diffusion, based 
on a three bijective functions in the ring ℤ/nℤ [7]. Finally, the third sub-process 
relating to avalanche effect is based on an improvement of the Cipher Block 
Chaining (CBC) operation mode to ensure optimal cryptographic properties in 
the block cipher-image [8]. This architecture based on the combination of the 
three sub-processes, aims to add and increase confusion, diffusion and the effect 
avalanche property. 

3 The Three Sub-processes of the Architecture 

3.1 The First Sub-process: the Confusion Generator 

The first sub-process, the confusion generator, based on the piece-wise linear 
chaotic map [6] is defined in Eq. (1) as follows: 

x(n) = F൫x(n − 1)൯ =

⎩
⎪
⎨

⎪
⎧x(n − 1) ×

ଵ

୮
                     if 0 ≤ x(n − 1) < p    

[x(n − 1) − p] ×
ଵ

଴.ହି୮
    if p ≤ x(n − 1) < 0.5

Fൣ൫1 − x(n − 1)൯൧            if 0.5 ≤ x(n − 1) < 1

) (1) 
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where x(n) ∈ [0, 1] ; 𝑛 ≥ 0; with 𝑥(0) is the initial condition and p the control 
parameter. For p ∈ ]0, 0.5[ the map x(n) has chaotic behavior without any 
window in its bifurcation diagram. 

The PWLCM chaotic map was chosen because of the perturbation technique it 
uses, on the one hand to enhance the chaotic dynamics and on the other hand to 
increase and control the period of the generated chaotic sequences. 

The bifurcation 
diagram 

The Lyapunov 
exponent 

The auto 
intercorrelation 

The secret key 
sensitivity 

Figure 2 The performance of PWLCM. 

The cryptographic performances including that of PWLCM as shown in Figure 2 
have been proven by Li et al. [9-10]. PWLCM presents random behavior (uniform 
invariant density function), more positive Lyapunov exponents, an exponential 
autocorrelation on attenuation [9], and high sensitivity to initial conditions. 

3.2 The Second Sub-Process: The Diffusion Generator  

The second sub-process, the diffusion generator, based on a chaotic permutation 
to shuffle pixels. A permutation of some objects is a particular linear ordering of 
the objects. The permutation function must be bijective, which guarantees a 
reversible algorithm. 

The adopted bijective function [7] for the proposed scheme is defined in Eq. (2), 
as follows: 

 f(x) = (m ∗ x + w)mod(n) (2) 

According to Euler’s theorem [11], an application 𝑓 is bijective if and only if the 
multiplier coefficient 𝑚 is prime with n . 

The value of each pixel is changed by the bijection modulo 16, witch defines a 
permutation in the ring ℤ/16ℤ. Recall that the ring ℤ/nℤ is the set formed by the 
expression Eq. (3): 

 ℤ/nℤ = { k ∈ ℤ , 1 ≤ k ≤ n − 1 and gcd(k, n) = 1} (3) 
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Therefore, any bijection 𝑚𝑜𝑑𝑢𝑙𝑜(𝑛) where 𝑛 is the size of the image , well-
defines a linear congruence generator in ℤ/16ℤ. 

3.3 The Third Sub-Process: The Avalanche Effect Generator 

The third sub-process, the avalanche effect generator, is based on a robust 
improvement of the Cipher Block Chaining (CBC) mode [8]. CBC, as explained 
in Figure 3, applies an exclusive-OR (XOR) operator to each block with the 
encryption of the previous block before it is itself ciphered in the same process, 
applying the bitwise XOR operator to the first plain-image block and the random 
initialization vector (commonly referred to as IV). The vector has the same size 
as a plain-image block. 

 

Figure 3 Cipher Block Chaining (CBC) mode encryption. 

In CBC encryption mode, block decryption is closely linked to the previous 
blocks for encryption, witch makes the avalanche effect a default property of this 
mode. However, the CBC mode has several drawbacks. Let MC(i) be the i-th 
clear pixel and DC(i) its associated ciphered pixel, then: 

1. any error on DC(i) will affect only MC(i) and MC(i+1); 
2. for an error that affects the last block, all previous blocks are not affected;  
3. the initialization vector IV is random but unique (leads to brutal attacks);  
4. the initialization vector is not linked to the ciphered data. 

To overcome these drawbacks, a corrective improvement is proposed. Pseudo 
random values for IV are generated from the chaotic map and data obtained from 
the second process. Thus, the initialization value for IV depends on the encryption 
key and the plain-image context respectively.  

The new initialization vector IV is proposed in Eq. (4) as follows: 
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⎩
⎪
⎨

⎪
⎧

k = (∑ Vc(i))୬
୧ୀଵ mod(n)

ρ = Vc(k)                           

VI = ρ
n

⊕
i = 1

MC(i)             

 (4) 

where ⊕ is the bitwise operator and MC is the clear data of n blocks and Vc the 
chaotic vector obtained by the Eq. (1). 

By using the enhanced CBC encryption mode, the ciphered DC data are obtained 
according to Eq. (5): 

 ൜
DC(1) = VI                                           for i = 1 
DC(i) = DC(i − 1) ⊕ MC(i − 1)     for i > 1

 (5) 

Further, changing the block to position q, Eq. (4) becomes Eq. (6): 

 VI = ρ ⊕ MC(1) ⊕ MC(2) ⊕ … ⊕ MC(qᇱ) … ⊕ MC(n) (6) 

Furthermore, performing the XOR operation between Eqs. (4) and (6) gives (7): 

 MC(q) ⊕ MC(qᇱ) = 0  (7) 

which is false, as MC(q) ≠ MC(q'). 

Hence, a change of MC= (1) results in all changes in DC(i), and since Eq. (4) is 
non-linear, less disturbance in the input image or in the key will cause a great 
disturbance in the output image. Indeed, the former confusion is implemented in 
ECBC mode; this allows adding a retroaction mechanism, creating the avalanche 
effect as a result. 

4 The Overall Process: The Encryption Generator 

The overall process of the proposed encryption scheme is a series of integration 
of the three previously developed sub-processes: the confusion, the diffusion and 
the avalanche effect generator sub-processes. 

4.1 The Overall Encryption Process 

The overall encryption process is as follows: 

1. Read the 24 bits color image. 
2. Extract the three matrix color channels, MR, MG and MB. 
3. Construct the chaotic vector PW under constraint size(PW) = 3 × L × M(1) 

by using Eq. (1). 
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4. Put the three matrices MR, MG and MB in the form of three vectors V୰, V୥ 
and Vୠ of size L × M . 

5. Construct the chaotic vectors PW୰, PW୥ and PWୠof size L × M , from vector 
PW generated in Step 3 . 

6. Realize the confusion vectors V୰, V୥ and Vୠwith vectors, PW୰, PW୥ and 
PWୠaccording to Eq. (8) below: 

 ൜
V஑x(i) = V஑(i) ⊕ PW஑(i)
α = R, G or B                       

 (8) 

7. Construct a linear bijection in Z/nZ (n = LxM) according to Eq. (2) gives rise 
to the formula (9): 

 f஑(V஑x) = (m஑. V஑x + w஑)mod(n) (9) 

with m஑ first with size 𝑛 (the number of integers m஑ is equal to φ(n) with φ is 
the indicator function of Euler) . 
 
with m஑ is prime with n (the number of integers m is equal to φ(n) with is the 
indicator function of Eule 
 

8. Permutate the position of the pixels in vector V஑x by three f஑ functions that 
are generated by using Eq. (9). 

9. Construct the chaotic initialization vector IV஑ with the following steps  
10. Calculate the chaotic vector sum in ℤ/𝐧ℤ by Eq. (10) defined by: 

 S஑ = (∑ PW஑(i))mod(n)୬
୧ୀଵ  (10) 

a. Assign the value of chaotic vector to position S஑ to X஑ by using Eq. (11) 
: 

 X஑ = PW஑(S஑) (11) 

b. Applying a bitwise operator on all values of V஑p with X஑ using Eq. (12): 

 IV஑ = X஑

n
⊕

i = 1
V஑p(i) (12) 

11. Apply the CBC encryption mode by applying Eq. (13): 

 ൜
V஑a(1) = IV஑                                            for i = 1

V஑a(i) = V஑p(i − 1) ⊕ V஑a(i − 1)     for i > 1
 (13) 

12.  Transform the vec. obtained in three matrices RC, VC and BV (size L × M). 

13. View the ciphered color image. 
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4.2 The Overall Decryption Process 

To reconstruct the plain-image, the overall verall decryption process is simply the 
reverse order of the encryption process. 

5 Results And Performance Analysis 

In the performance analysis experiments, three test images were chosen from the 
USC-SIPI image database [12], as shown in Figure 4. 
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Figure 4 The three plain test images and their associated histograms. 
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The three ciphered test images with their associated histograms are grouped 
together in Figure 5. 
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Figure 5 The three ciphered test images and their associated histograms. 

The performance of the proposed encryption scheme was measured using several 
analyses: computational cost, key space, randomness test (differential), histogram 
analysis, adjacent pixel correlation and entropy analysis. 

5.1 Computational Cost Analysis  

The complexity of an algorithm is an expression of how much time, space, or 
other resources the algorithm will use. The complexity calculation of the 
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proposed encryption scheme gives a value of θ(n2). In the programming phase, a 
computer was used with the following technical characteristics: intel i5 CPU, 
2.53 GHz with 4 GB of RAM running on Windows 10 Professional and Java 
(Eclipse compiler). 

To evaluate the running speed of the proposed scheme, tests were executed a 
considerable number of times and then the average was obtained. The average 
encryption/decryption times for the three test images are shown in Table 1. 

Table 1 The running time of the proposed encryption scheme. 

Images  

House256Color (4.1.05) Baboon512Color (4.2.03) Lena512Color (4.2.04) 

Encryption 
time(s) 

Decryption 
time(s) 

Encryption 
time(s) 

Decryption 
time(s) 

Encryption 
time(s) 

Decryption 
time(s) 

0.096 0.093 0.147 0.267 0.141 0.176 

According to the results of Table 1, the average running time for the 3 test images 
was very fast. These robust performances are justified by the computational cost 
reduction strategy used in the integration of the three sub-processes. 

5.2 Key space Analysis 

The proposed encryption scheme is very secure since a 128-bit size key is used, 
witch negates any exhaustive attack since it requires 2128≈3,.4 x 1,038 attempts. 

5.3 Differential Analysis 

The avalanche effect means that a small change in the plain-image or key should 
create a significant change in the cipher-image. The number of pixels change rate 
(NPCR) and the unified averaged changed intensity UACI are the two most used 
metrics to evaluate avalanche effect and differential attacks [13-14]. 

NPCR and UACI are computed using Eqs. (14) and (15) respectively: 

 %100

),(
, 





WL

jiD

NPCR ji  (14) 

 %100)
255

),(2),(1
(

1

,





 

ji

jiCjiC

WL
UACI  (15) 

where W and H are the width and height of the image, respectively. C1(i, j) and 
C2(i, j) are the ciphered images before/after one pixel of the plain-image is 
changed. For position (i, j), if C1(i, j) ≠ C2(i, j), then D(i, j) = 1; else D(i, j) = 0.  
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The higher the value of NPCR and UACI, the better the designed algorithm is. 
Acceptable values are 96% for NPCR and 33.45 for UACI [13-14].  

Table 2 Values of NPCR and UACI for testing images. 

Image Image size UACI(%) NPCR(%) 
House 256 x 256 Color 33.6727 99.3461 

Baboon 512 x 512 Color 33.4412 99.5528 
Lena 512 x 512 Color 33.4579  99.2149 

According to the results in Table 2, the NPCR and UACI for the three test images 
were within the norms with robust values (NPCRexpected==99.61%, 
UACIexpected=33.46%) [13-14]. As a result, the encryption scheme has robust 
resistance to exhaustive attacks. 

5.4 Histogram Analysis 

The histogram is a statistical analysis [15-16] that shows the distribution of an 
image’s pixels. Ideal image encryption schemes generate a cipher-image with a 
histogram that has a uniform distribution. As can be seen in Figure 5, the 
histograms were very uniformly distributed and significantly different from the 
plain-image histograms, which makes statistical attacks more difficult to apply. 

5.5 Adjacent Pixel Correlation Analysis 

The analysis of the correlation coefficient [15-16] evaluates the correlation 
between adjacent pixels and hence assesses the robustness of the algorithm. The 
correlation coefficient of adjacent pixels is calculated with Eq. (16): 

 r୶୷ =
ୡ୭୴(୶,୷)

ඥୈ(୶)ඥୈ(୷)
 (16) 

Where x, y are two vectors formed respectively by the values of the image’s 
selected sequence pixels and the values of their adjacent pixels. The cov(x, y), 
E(x) and D(x)are calculated with Eqs. (17), (18) and (19), which are defined as 
follows: 

 E(x) =
ଵ

୒
∑ x୧

୒
୧ୀଵ  (17) 

 D(x) =
ଵ

୒
∑ [x୧

୒
୧ୀଵ − E(x)]ଶ (18) 

 cov(x, y) =
ଵ

୒
∑ [x୧

୒
୧ୀଵ − E(x)][y୧-E(y)]  (19) 

where 𝑁 is the number of adjacent pixels selected in the image to calculate the 
correlation coefficient; x୧ and y୧ are, respectively, the elements of x and 𝑦.  
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The graphic verification and evaluation of the correlation between adjacent pixels 
for the Lena test image yielded the results shown in Figures 6 and 7. To situate 
the proposed method, it was compared with two methods [17-18]. For the Lena, 
the results of average correlations are grouped in Table 3. 
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Figure 6 Lena plain-image: the horizontal, vertical and diagonal adjacent pixel 
correlations for each RGB channel. 

According to the graphical and analytical results grouped in Figure 7 and Table 
3, the proposed encryption scheme satisfies the zero co-correlation property, and 
thus its robustness against statistical attacks is fulfilled. According to this 
comparison, our method is well situated and better than the two methods chosen. 

Table 3 Average RGB channel correlations and comparison. 

 Image Plain-image correlations Cipher-image correlations 
  horizontal  Vertical diagonal horizontal Vertical Diagonal 
Method 
[15] 

House 0.8669 0.7321 0.7321 -0.0030 -0.0095 -0.0259 
Baboon 0.9324 0.9653 0.9161 -0.0243 -0.03016 -0.0246 
Lena 0.9341 0.9726 0.9191 -0.0048 -0.0112 -0.0045 

Method 
[16] 

House 0.879324 0.932969 0.816038 0.003149 -0.006062 0.009519 
Baboon 0.985813 0.977835 0.986258 -0.006508 -0.003598 -0.043443 
Lena 0.970850 0.954886 0.950905 -0.001587 -0.014706 0.002381 

Our 
method 

House 0.967086 0.935256 0.912852 -0.008841 0.000493 0.001834 
Baboon 0.987341 0.973537 0.967769 0.005903 -0.000597 -0.000137 
Lena 0.974186 0.981908 0.958263 -0.011147 0.003422 -0.004887 
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Figure 7 Lena cipher-image: the horizontal, vertical, and diagonal pixel 
correlations for each RGB channel. 

5.6 Entropy Analysis 

Information entropy 𝐻 [19] measure the uncertainty related to random variables. 

The information entropy H(S) of a message source S is defined by Eq. (20): 

 H(S) = ∑ p (s୧)logଶ
ଵ

୮ (ୗ౟)
୩ିଵ
୧ୀ଴  (20) 

where p (s୧) denotes the probability of symbol s୧ and k is the total states of the 
information source. In the case of a uniform distribution, the entropy H (S) is 
maximum and is given by Eq. (21): 

 H୫ୟ୶ = logଶ(2଼) = 8 (21) 
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The more uniform the distribution of pixel values, the greater the information 
entropy. A perfect encryption scheme has entropy close to 𝐻௠௔௫ = 8 . 

For the three test images, the entropies were calculated as presented in Table 4. 

Table 4 Entropy measurement results. 

Image Sizes Plain-image entropy Cipher-image entropy 
House 256 x 256 7.068625 7.999146 

Baboon 512 x 512 7.412625 7.999878 
Lena 512 x 512 7.750197 7.999763 

Based on the measurements in Table 4, the three test cipher-image entropies have 
values close to the optimal value 𝐻௠௔௫ = 8 which avoids any entropic attack. 

6 Conclusion 

In this work, while satisfying confusion/diffusion as one of Shannon’s constraints 
and also satisfying the avalanches effect as one of Feistel’s constraints. A novel 
color image encryption scheme that uses three sub-processes was proposed and 
implemented. The evaluation proved the robustness of the proposed encryption 
scheme through high confusion, high diffusion, an enhanced avalanche effect, 
low computational cost, and a large key space. As a result, the proposed 
encryption scheme for color images can ensure data storage and transmission 
confidentiality and integrity while maintaining safety and running speed.  
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