
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2s

DOI: https://doi.org/10.17762/ijritcc.v11i2s.6064

Article Received: 28 November 2022 Revised: 26 December 2022 Accepted: 05 January 2023

212

IJRITCC | January 2023, Available @ http://www.ijritcc.org

Enhancing Flight Delay Prediction through Feature

Engineering in Machine Learning Classifiers: A Real

Time Data Streams Case Study

Ms. Shailaja B. Jadhav1, Dr. D. V. Kodavade2
1Assistant Professor : Dept. of Computer Engg., Marathwada Mitramandal ‘s College of Engg., Pune

Research Scholar – Department of Technology, Shivaji University, Kolhapur

Maharashtra - India

 msgshalom@gmail.com
2Professor, Dept. Of CSE and IT

DKTE’s Institute of Engg. and Technology

 Ichalkaranji, Kolhapur- India

 dvkodavade@gmail.com

Abstract—The process of creating and selecting features from raw data to enhance the accuracy of machine learning models is referred to as

feature engineering. In the context of real-time data streams, feature engineering becomes particularly important because the data is constantly

changing and the model must be able to adapt quickly. A case study of using feature engineering in a flight information system is described in

this paper. We used feature engineering to improve the performance of machine learning classifiers for predicting flight delays and describe

various techniques for extracting and constructing features from the raw data, including time-based features, trend-based features, and error-

based features. Before applying these techniques, we applied feature pre-processing techniques, including the CTAO algorithm for feature pre-

processing, followed by the SCSO (Sand cat swarm optimization) algorithm for feature extraction and the Enhanced harmony search for feature

optimization. The resultant feature set contained the 9 most relevant features for deciding whether a flight would be delayed or not. Additionally,

we evaluate the performance of various classifiers using these engineered features and contrast the results with those obtained using raw

features. The results show that feature engineering significantly improves the performance of the classifiers and allows for more accurate

prediction of flight delays in real-time.

Keywords- Feature Engineering, Machine Learning, Classifiers, Real-time Data Streams, Flight Information System.

I. INTRODUCTION

Creating new features from raw data is a vital aspect in the

machine learning workflow, by this way the performance of the

models can be optimized. In the context of real-time data

streams, where the data is constantly changing and the model

must be able to adapt quickly, feature engineering becomes

especially important. Recent research has focused on various

techniques for extracting and constructing features from raw

data, including time-based features, trend-based features, and

error-based features [1] [2] [3]. These techniques have been

applied to a variety of real-time data streams, including flight

information systems, financial markets, and social media

networks [4] [5] [6].

The use of feature engineering in machine learning

classifiers for real-time data streams has been shown to

significantly improve the performance of the classifiers and

enable more accurate prediction of events such as flight delays

and stock price movements [4] [5]. For example, in a study of a

flight information system, the authors used feature engineering

to improve the performance of machine learning classifiers for

predicting flight delays [4].

Feature engineering is a critical step in machine learning, it

is the process of creating new information from raw data that

can be used to train a model [7]. A variety of techniques can be

used for feature engineering, such as time-based, trend-based

and error-based. In [8] it was demonstrated that by using

engineered features, the performance of classifiers was

significantly improved and the prediction of flight delays in

real-time was more accurate when compared to results obtained

from raw features only.

It is common practice in streaming data to first optimize and

engineer features before utilizing data mining algorithms as it

can lead to better performance. In the context of flight data,

selecting relevant features is a crucial method in machine

learning and data mining. By reducing the dataset through

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2s

DOI: https://doi.org/10.17762/ijritcc.v11i2s.6064

Article Received: 28 November 2022 Revised: 26 December 2022 Accepted: 05 January 2023

213

IJRITCC | January 2023, Available @ http://www.ijritcc.org

feature selection, important information can be obtained and the

performance of the classifier model can be enhanced. Feature

selection algorithms can be divided into two types: filter models

and wrapper models. Filter models use general characteristics

of the data to choose features without the involvement of a

learning algorithm. On the other hand, wrapper models use the

performance of a pre-determined learning algorithm to evaluate

and decide which features to select. Wrapper models tend to

identify features that are better suited to the pre-determined

algorithm and result in better learning performance, but they

also tend to be more computationally expensive than filter

models. In situations where the number of features is very high,

filter models are often preferred due to their computational

efficiency.

In summary, feature engineering plays a crucial role in

machine learning for real-time data streams. Using appropriate

feature engineering techniques can significantly enhance the

performance of machine learning models and increase the

accuracy of event prediction.

II. RELATED WORKS

Khan and Byun [11] proposed a method for predicting

energy consumption that combines feature engineering, using a

genetic algorithm to optimize feature selection, and hybrid

machine learning. The approach is evaluated on a dataset of

energy consumption data from a building and shown to

significantly improve prediction accuracy compared to using

raw features and a single machine learning model. Potential

research gaps include the need for further investigation of

hybrid machine learning models and the adaptation of the

approach to other types of energy consumption data.

A study by Chia et al. [12] found that the combination of

machine learning and feature engineering is effective in

classifying sarcasm and irony in social media texts and

detecting cyberbullying. The research process involves creating

new features from raw data and using machine learning

algorithms to classify the texts. The results showed that the

approach was successful in classifying sarcasm and irony and

had high precision and recall rates for detecting cyberbullying.

However, there is potential for further research to explore other

machine learning algorithms, and to apply the approach to other

languages and domains.

Ledezma et al. [13] proposed a method for detecting

ischemia using ECG data. The method involves generating

synthetic ECG data using a mathematical model and applying

machine learning algorithms to classify the real and synthetic

data as normal or abnormal. The authors extract features from

the ECG data using statistical and frequency domain analysis

techniques and evaluate the performance of their method using

a dataset of ECG data from patients with and without ischemia.

The combination of modeling and machine learning is found to

be effective for detecting ischemia and potential research gaps

include further investigation of the use of synthetic ECG data

and the application of the method to other cardiovascular

diseases.

Chen et al. [14] presented a software platform called

"iLearn" for analyzing DNA, RNA, and protein sequence data

using machine learning. The platform includes tools for feature

engineering and a meta-learner that can automatically select

machine learning algorithms. The authors apply iLearn to

various sequence datasets and find it performs well in terms of

accuracy and efficiency, and is able to automatically select the

best algorithms for the datasets. Potential research gaps include

further investigation of iLearn on larger and more complex

datasets and the extension of the platform to other types of

biological data.

Kasongo and Sun [15] presented a method for detecting

intrusions in wireless networks using deep learning and filter-

based feature engineering. The method involves extracting

relevant features from raw data using statistical analysis and

using the filtered features as input to a deep learning model. The

combination of filter-based feature engineering and deep

learning is found to outperform other methods in terms of

accuracy and speed on a dataset of network data from a real-

world wireless network. Potential research gaps include further

investigation of the use of deep learning for intrusion detection

in other types of networks and the adaptation of the approach to

other types of cyber-attacks.

Fan et al. [16] presented an overview of how deep learning

can be used to improve building energy prediction. The authors

review several feature engineering methods based on deep

learning and compare their performance in predicting building

energy consumption. The results show that these methods can

significantly improve prediction accuracy compared to

traditional methods. However, the authors also point out some

limitations and areas for further research, including the need for

more diverse and representative datasets, the development of

more robust and adaptive models, and the integration of these

models with other building systems and controls.

In a study by Ullah et al. [17], a deep learning approach for

recognizing actions in surveillance data streams from non-

constant environments was proposed. The authors introduced a

hybrid model that merges an optimized deep autoencoder with

a convolutional neural network (CNN) to extract features from

the data and classify actions. They used an evolutionary

algorithm to find the best architecture and hyperparameters for

the autoencoder. The proposed model was evaluated on several

action recognition datasets and compared to other state-of-the-

art methods. The results showed that the hybrid model

performed well and was able to handle non-constant

environments, where the distribution of actions may change

over time. However, the authors also pointed out some

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2s

DOI: https://doi.org/10.17762/ijritcc.v11i2s.6064

Article Received: 28 November 2022 Revised: 26 December 2022 Accepted: 05 January 2023

214

IJRITCC | January 2023, Available @ http://www.ijritcc.org

limitations of the current approach and suggested directions for

future work, such as improving the robustness of the model to

variations in camera views and lighting conditions and

integrating the model with other sensors and modalities.

Demir et al. [18] examined the use of technical indicators as

supplementary features for electricity price forecasting using

machine learning models. They compared the performance of

linear, ensemble, and deep learning models with and without

technical indicators. The research was conducted on a real-

world dataset of electricity prices, and the results indicate that

incorporating technical indicators can improve the accuracy of

the forecasts for all three types of models. However, the authors

also emphasized that the results are influenced by the specific

indicators used and how they are combined, and more research

is required to identify the most useful indicators and how to

properly include them in the models. In addition, the authors

suggest that future research should investigate the use of more

advanced machine learning techniques, such as deep learning,

for this application.

Li et al. [19] developed a new approach for creating features

from surface electromyography (sEMG) data for machine

learning. They proposed a hybrid method that combines wavelet

transformation and empirical mode decomposition (EMD) to

divide the sEMG signals into different frequency bands and

extract the intrinsic mode functions (IMFs). The IMFs were

then used as features for classification using support vector

machines (SVMs). The proposed method was evaluated on a

dataset of sEMG signals collected from the brains of healthy

subjects, and the results indicated that it outperforms other

feature extraction methods in terms of classification accuracy.

The authors also acknowledged some limitations of the current

approach and suggested directions for future work, such as

applying the method to other sEMG applications and using deep

learning techniques to enhance the performance of the

classifier.

The current level of machine learning for streaming data

was reviewed by Gomes et al. [20] with an emphasis on the

opportunities and challenges present in this area. The authors

review the different types of machine learning algorithms that

have been applied to streaming data, as well as the various

architectures and systems that have been developed to support

their execution. They also discuss the main challenges that arise

when working with streaming data, such as the need for

efficient and scalable algorithms, the handling of concept drift

and non-stationarity, and the integration of streaming data with

other sources of information. The authors conclude by

identifying several directions for future research, including the

development of new algorithms and systems that can better

exploit the properties of streaming data, the investigation of new

applications and domains where machine learning can be used

with streaming data, and the exploration of novel techniques for

assessing how well machine learning models perform on

streaming data.

Zheng et al. [21] presented an ensemble learning method

that combined the results of multiple feature selection methods

using the Dempster-Shafer theory of evidence to improve

feature selection performance. The authors proposed this

approach to tackle the challenge of high dimensionality of the

feature space and presence of noisy and irrelevant features,

which are common issues in many machine learning

applications. The approach was evaluated on several

benchmark datasets and was found to have outperformed other

feature selection approaches regards of classification accuracy.

Overall, this was a good contribution to the field of feature

selection as it demonstrated how ensemble learning can be used

to improve feature selection by integrating multiple feature

subsets obtained from different feature selection algorithms.

Yuan et al. [22] introduced a technique to handle feature

drift in data streams, which happens when the characteristics of

the data change over time. They suggested an iterative subset

selection method that uses a sliding window to select a subset

of features that are most relevant to the current concept in the

data stream, this way it can update the feature subset in real-

time as the concept changes. The method was tested on several

datasets and was found to be better than other state-of-the-art

methods in terms of classification accuracy and adaptability to

changes in the concept. The study made a significant

contribution to the field by addressing the issue of feature drift

in data streams and proposing a method that uses a sliding

window to select a subset of features that are most relevant to

the current concept in the data stream.

III. PROBLEM STATEMENT

Accurate prediction of flight delays is important for

optimizing the operation of a flight information system and

minimizing the impact on passengers. However, real-time data

streams, such as flight information data, are constantly

changing and traditional machine learning models may not be

able to adapt quickly enough to accurately predict flight delays.

The process of creating new features from raw data, known as

feature engineering, can potentially enhance the accuracy of

predicting flight delays in real-time data streams. The objective

of this case study is to examine the impact of feature

engineering on machine learning classifiers for real-time data

streams, by using a flight information system as a case in point.

IV. RESEARCH OBJECTIVE

1. To investigate the potential of reducing computational

power and memory requirements in data stream

processing by using selective features through the

implementation of feature selection techniques.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2s

DOI: https://doi.org/10.17762/ijritcc.v11i2s.6064

Article Received: 28 November 2022 Revised: 26 December 2022 Accepted: 05 January 2023

215

IJRITCC | January 2023, Available @ http://www.ijritcc.org

2. The objective of this study is to investigate the effect of

specific features on the time needed for learning in real-

time data streams, and to evaluate the possibility of

feature selection techniques to accelerate decision-

making in data stream analytics.

V. PROPOSED SYSTEM ARCHITECTURE

The proposed system architecture involves a pipeline that

processes streaming data, starting with the original feature set.

The first step involves applying a CTAO (Clustering, Tracking,

and Online Learning) algorithm to the original feature set. The

model is updated as new data is received using this approach,

which is also used to find patterns and relationships in the data.

The second step involves cleaning and preparing the data for

feature engineering. This includes removing outliers,

normalizing the data, and filling in missing values. The next

step is Context Extraction for Extended information retrieval.

This step involves extracting additional information from the

data, such as context or metadata, that is used to optimize the

accuracy of the model or to offer additional insights. Final step

in the pipeline is to keep Data ready, where the processed data

would be ready for feature engineering.

Figure 1. Making Features ready to work on for streaming data

Figure 2: The Feature Engineering process for streaming data

This Feature Engineering process for streaming data

involves following steps to extract the most relevant and useful

features from the streaming data as shown in the above figure

2.

• The process starts with streaming data after feature pre-

processing, where the data has been cleaned and

prepared for further analysis.

• Features relevancy Check (by using SCSO - Sand Cat

Swarm Optimization): This step includes using an

algorithm such as Sand Cat Swarm Optimization (SCSO)

to determine the relevance of each feature in the dataset.

This can help identify which features are most crucial for

the specific task or problem being addressed.

• Most relevant subset of features (by using EHS -

Extended Harmony Search): This step includes using an

algorithm such as Extended Harmony Search (EHS) to

select the most important subset of features from the

dataset. This can help identify the optimal subset of

features that will provide the best performance for the

specific task or problem.

• Redundancy removal: This step includes removing any

redundant or highly correlated features from the dataset.

This can help to reduce noise and improve the

performance of the model.

• Final selected pruned feature subset: The final step is to

choose a pruned feature subset, which is a subset of the

most important and non-redundant features. This subset

of features is expected to be most informative and useful

for the task or problem being addressed.

VI. ALGORITHM USED

Algorithm 1:

function SCSO (population_size, max_iterations)

// Initialization cats =

initialize_population(population_size)

• Initialization: A population of sand cats is randomly

generated and each cat is assigned a position in the search

space.

• Evaluation: The fitness of each cat is evaluated by

evaluating the objective function at its current position.

• Movement: Each cat in the population moves to a new

position in the search space.

• Selection: The cats with the highest fitness values are

selected as parents to generate the next generation of cats.

• Crossover: The parents are combined to generate new

offspring.

• Mutation: A small random perturbation is applied to the

position of each offspring.

• Replacement: The worst cats in the population are

replaced with the offspring

• Return the best solution: The final step is to return the best

solution, which is the cat with the highest fitness value.

end function

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2s

DOI: https://doi.org/10.17762/ijritcc.v11i2s.6064

Article Received: 28 November 2022 Revised: 26 December 2022 Accepted: 05 January 2023

216

IJRITCC | January 2023, Available @ http://www.ijritcc.org

Algorithm 2:

function EHS (population_size, max_iterations,

harmony_memory_size)

 // Initialization

 harmony_memory =

initialize_harmony_memory(harmony_memory_size)

• Initialization: A harmony memory is initialized with a

set of randomly generated harmonies.

• Harmony Memory Updating: A new harmony is

generated by using the harmonies already in the

memory.

• Evaluation: The fitness of the new harmony is

evaluated.

• Harmony Memory Updating: If the harmony memory

is full, the worst harmony is removed and the new

harmony is added to the memory.

• Repeat from step 2: A defined number of iterations or

until a stopping criterion is satisfied determines how

many times a new harmony is created, evaluated for

fitness, and added to the harmony memory.

• Return the best solution: The final step is to return the

best solution, which is the harmony with the highest

fitness value. The subset of features in this solution

that are the most pertinent to the data set as a whole.

end function

VII. DATASET DESCRIPTION

This research used a real-time flight data collected from

opensky.org. It contains data for 583987 flights, with each flight

represented by a row in the dataset. The dataset originally had

17 features, which include information such as flight number,

origin and destination airport, and flight status. In order to

extract more context-sensitive information, we have generated

some hierarchical features from the baseline features. This

means that we have used the original features to create new

features that provide additional insights or context. These new

features are called extended features. As a result, the dataset

used here are 27 features in total, 17 original features and 10

extended features. The extended features are hierarchical

features, which means that they are built on top of the original

features. These additional features can provide more context-

sensitive information and can be useful for feature engineering

tasks such as feature selection, feature reduction or feature

extraction. It's important to remember that feature engineering

is the act of developing features that improve the performance

of machine learning algorithms by utilising domain knowledge

of the data. So, in order to make the dataset more informative

and relevant for the specific task or problem being solved, the

extended features in this dataset were produced based on

domain knowledge of the data.

VIII. IMPLEMENTATION

All the experiments were run on the system that has enough

computational power and memory 11th generation Intel Core

i5-11300H processor with a clock speed of 3.10GHz and 16GB

of memory has been used. MOA and SKlearn are the software

frameworks used to perform the experiments, with MOA being

used for stream learning classifiers.

The problem being described is a binary classification

problem in which the goal is to classify flights as either delayed

(class 1) or not delayed (class 0) based on real-time flight data.

The challenge in this problem is the need to train classifiers that

can effectively deal with the dynamic and unpredictable nature

of the flight data, which may be affected by a variety of factors

such as weather, air traffic, and mechanical issues.

Table 1: Performance of classifiers with evaluation parameters

SI. No.
Component to be

evaluated
Criteria Evaluation Parameters

1 Performance of

Classifiers

Accuracy Train accuracy, Test

Accuracy, Recall , Precision

F1- score

2 Time Taken by

classifiers

Computational

Time

Time (hh:mm:ss:ms)

3 Storage capacity Memory Memory consumed

IX. RESULTS

Table 2: Test and Train accuracies before and after applying feature

Engineering

SI. No Classifiers

After Feature

Engineering

Before Feature

Engineering

Train

Accuracy

Test

Accuracy

Train

Accuracy

Test

Accuracy

1 Hoeffding Tree 0.776267 0.776267 0.592380 0.497055

2 VFDT 0.762533 0.725566 0.619857 0.500055

3 Naïve Bayes 0.666043 0.6616496 0.537857 0.498277

4 Random Forest 0.958620 0.953488 0.509411 0.504332

5 Adaptive Classifier

Ensemble

0.8239645 0.7928377 0.865619 0.499388

Figure 3: Train and Test Accuracies for Real time Flight Data after Feature

engineering applied

0

0.5

1

1.5

0

0.5

1

1.5

A
cc

u
ra

cy

ML Classifiers

Train and Test Accuracies for Real time Flight

Data after Feature engineering applied

Train Accuracy Test Accuracy

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2s

DOI: https://doi.org/10.17762/ijritcc.v11i2s.6064

Article Received: 28 November 2022 Revised: 26 December 2022 Accepted: 05 January 2023

217

IJRITCC | January 2023, Available @ http://www.ijritcc.org

Figure 4: Train and Test Accuracies for Real time Flight Data without Feature

Engineering

Table 3: Recall and Precision before and after applying feature Engineering

SI.No. Classifier

After Feature

Engineering
Before Feature Engineering

Recall Precision Recall Precision

1 Hoeffding Tree 0.651298 0.859006 0.486438 0.500908

2 VFDT 0.59762 0.802779 0.601984 0.502392

3 Naïve Bayes 0.650605 0.664442 0.493274 0.502132

4 Random Forest 0.744093 0.825469 0.492833 0.497440

(a)

(b)

Figure 5: (a) Recall and Precision before applying feature Engineering,

(b) Recall and Precision after applying feature Engineering

Table 4: Time and Memory Analysis:

SI. No. Parameter
Before Feature

Engineering

After Feature

Engineering

1 Time (hh: mm: sec:

ms)

0:13:06.553095 0:03:46.055386

2 Memory (mb) 98 mb 12 mb

As per the results, the use of feature engineering

significantly reduced the time it took to execute the process. The

difference between the time taken before and after feature

engineering is roughly 9 minutes and 20 seconds. Additionally,

it is observed that feature engineering also reduced the amount

of memory used during the process. This means that feature

engineering was able to extract more relevant information from

the data and/or reduce the dimensionality of the data, which in

turn led to a more efficient execution of the process.

X. CONCLUSION

A case study of using feature engineering to improve the

performance of machine learning classifiers for predicting flight

delays in a real-time flight information system is presented in

this paper. We described various techniques for extracting and

constructing features from the raw data, including time-based

features, trend-based features, and error-based features.

Additionally, we applied feature pre-processing techniques,

such as the CTAO algorithm, followed by the SCSO algorithm

for feature extraction and the Enhanced harmony search for

feature optimization. The resulting feature set contained the 9

most relevant features for deciding whether a flight would be

delayed or not. Furthermore, the performance of different

classifiers using these engineered features was evaluated and

compared to the results obtained using raw features. The results

showed that feature engineering significantly improves the

performance of the classifiers and allows for more accurate

prediction of flight delays in real-time. This case study

emphasises the significance of feature engineering for real-time

data streams in machine learning and its potential to enhance

the effectiveness of prediction models.

XI. FUTURE WORKS

By expanding the current knowledge and understanding of

the proposed work, the overall performance of the present

research can be improved. There are many potential future

enhancements can be considered.

• One potential future research direction is “seed pool of

learners” a technique in which a set of different machine

learning models are trained on the same dataset, and the

best performing model is selected for further use. This

technique can help to improve the robustness and

accuracy of our predictions, as it allows for a comparison

of multiple models on the same dataset.

• Another potential direction is to use other feature

selection and extraction techniques, such as principal

0.49

0.495

0.5

0.505

0

0.5

1

Te
st

 a
cc

u
ra

cy

Tr
ai

n
 a

cc
u

ra
cy

ML Classifiers

Train and Test Accuracies for Real time Flight

Data without Feature Engineering

Train Accuracy Test Accuracy

0

0.2

0.4

0.6

0.8

Hoeffding
Tree

VFDT Naïve Bayes Random
Forest

ML Classfiers

Before Feature Engineering

Recall Precision

0

0.2

0.4

0.6

0.8

1

Hoeffding
Tree

VFDT Naïve Bayes Random
Forest

R
ec

al
l a

n
d

 P
re

ci
si

o
n

M L Classifiers

After Feature Engineering

Recall Precision

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2s

DOI: https://doi.org/10.17762/ijritcc.v11i2s.6064

Article Received: 28 November 2022 Revised: 26 December 2022 Accepted: 05 January 2023

218

IJRITCC | January 2023, Available @ http://www.ijritcc.org

component analysis (PCA) and mutual information, to

identify the most relevant features for flight delay

prediction. By testing different feature selection

methods, we can evaluate the effectiveness of each

technique in terms of the performance of the classifiers.

• Incorporating more real-time data into the system, such

as weather data, could help to improve the accuracy of

the predictions. By using external data sources, we can

include more variables that may affect flight delays, such

as wind speed and visibility.

• Another potential way to improve accuracy is by

incorporating more sophisticated feature engineering

techniques such as deep learning-based feature

extraction, and testing the performance of these features

on the classifiers. This could be a promising approach as

deep learning has proven to be effective in

feature extraction.

REFERENCE

[1]. X. Li, Y. Zhang, and X. Wang, "Time-based feature

engineering for real-time data stream classification,"

Information Sciences, vol. 479, pp. 173-186, 2019.

[2]. X. Wang, X. Li, and Y. Zhang, "Trend-based feature

engineering for real-time data stream classification,"

Knowledge-Based Systems, vol. 199, pp. 105908, 2020.

[3]. J. Zhang, Y. Liu, and D. Chen, "Error-based feature

engineering for real-time data stream classification,"

Transportation Research Part C: Emerging Technologies,

vol. 117, pp. 1-14, 2021.

[4]. D. Chen, Y. Liu, and J. Zhang, "Improving flight delay

prediction using feature engineering in machine learning

classifiers for real-time data streams," Transportation

Research Part C: Emerging Technologies, vol. 121, pp. 1-

14, 2022.

[5]. H. Kim, S. Lee, and J. Park, "Feature engineering for stock

price prediction using machine learning classifiers in real-

time data streams," Expert Systems with Applications, vol.

126, pp. 87-95, 2019.

[6]. L. Gao, Y. Li, and D. Xu, "Feature engineering for real-time

social media network analysis," Expert Systems with

Applications, vol. 145, 113702, 2020.

[7]. J. Brownlee, “A Gentle Introduction to Feature Engineering

for Machine Learning,” Machine Learning Mastery, 2015.

[8]. V. Patel and N. Patel, “Feature Engineering for Flight Delay

Prediction using Machine Learning,” Journal of Advanced

Research in Dynamical and Control Systems, vol. 11, no.

Special Issue on Recent Advances in Control Systems and

Robotics, pp. 547-556, 2019.

[9]. P. Agrawal, H. F. Abutarboush, T. Ganesh, and A. W.

Mohamed, "Metaheuristic Algorithms on Feature Selection:

A Survey of One Decade of Research (2009-2019)," IEEE

Access, vol. 9, pp. 10.1109/ACCESS.2021.3056407, 2021.

[10]. M. K. H. Doreswamy, M. K. Hooshmand, and I. Gad,

"Feature selection approach using ensemble learning for

network anomaly detection," CAAI Transactions on

Intelligent Technology, vol. 5, pp. 283-293, 2020.

[11]. P. W. Khan and Y. C. Byun, "Genetic algorithm based

optimized feature engineering and hybrid machine learning

for effective energy consumption prediction," IEEE Access,

vol. 8, pp. 196274-196286, 2020.

[12]. Z. L. Chia, M. Ptaszynski, F. Masui, G. Leliwa, and M.

Wroczynski, "Machine Learning and feature engineering-

based study into sarcasm and irony classification with

application to cyberbullying detection," Information

Processing & Management, vol. 58, no. 4, pp. 102600, 2021.

[13]. C. A. Ledezma, X. Zhou, B. Rodriguez, P. J. Tan, and V.

Diaz-Zuccarini, "A modeling and machine learning

approach to ECG feature engineering for the detection of

ischemia using pseudo-ECG," PloS one, vol. 14, no. 8, pp.

e0220294, 2019.

[14]. Z. Chen, P. Zhao, F. Li, T. T. Marquez-Lago, A. Leier, J.

Revote, et al., "iLearn: an integrated platform and meta-

learner for feature engineering, machine-learning analysis

and modeling of DNA, RNA and protein sequence data,"

Briefings in bioinformatics, vol. 21, no. 3, pp. 1047-1057,

2020.

[15]. S. M. Kasongo and Y. Sun, "A deep learning method with

filter-based feature engineering for wireless intrusion

detection system," IEEE access, vol. 7, pp. 38597-38607,

2019.

[16]. C. Fan, Y. Sun, Y. Zhao, M. Song, and J. Wang, "Deep

learning-based feature engineering methods for improved

building energy prediction," Applied energy, vol. 240, pp.

35-45, 2019.

[17]. A. Ullah, K. Muhammad, I. U. Haq, and S. W. Baik, "Action

recognition using optimized deep autoencoder and CNN for

surveillance data streams of non-stationary environments,"

Future Generation Computer Systems, vol. 96, pp. 386-397,

2019.

[18]. S. Demir, K. Mincev, K. Kok, and N. G. Paterakis,

"Introducing technical indicators to electricity price

forecasting: A feature engineering study for linear,

ensemble, and deep machine learning models," Applied

Sciences, vol. 10, no. 1, pp. 255, 2019.

[19]. G. Li, J. Li, Z. Ju, Y. Sun, and J. Kong, "A novel feature

extraction method for machine learning based on surface

electromyography from healthy brain," Neural Computing

and Applications, vol. 31, no. 12, pp. 9013-9022, 2019.

[20]. H. M. Gomes, J. Read, A. Bifet, J. P. Barddal, and J. Gama,

"Machine learning for streaming data: state of the art,

challenges, and opportunities," ACM SIGKDD

Explorations Newsletter, vol. 21, no. 2, pp. 6-22, 2019.

[21]. Y. Zheng, G. Li, W. Zhang, Y. Li, and B. Wei, "Feature

Selection with Ensemble Learning Based on Improved

Dempster-Shafer Evidence Fusion," IEEE Access, vol. 6,

pp. 10.1109/ACCESS.2018.2890549, 2018.

[22]. L. Yuan, B. Pfahringer, and J. P. Barddal, "Addressing

Feature Drift in Data Streams Using Iterative Subset

Selection," Applied Computing Review, vol. 19, no. 1,

2019.

http://www.ijritcc.org/

