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Miroslav Ćirić, Faculty of Sciences and Mathematics, University of Nǐs, Serbia
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Summary
Wavelet (in French ondolette) is a term originating from
Roger Balian, that was finally adopted by Jean Mor-
let [1, 2]. It implies a function generating base for de-
composition of the finite energy signals both in spatial
and in frequency domain concurrently. Given a wavelet
ψ, the base of L2(R) is generated through translations
and dilatations ψj,k(x) = ψ(2jx − k) whereby the inte-
gers j and k indicate spatial position and dyadic scale
of a basic element. Their emergence corresponds to the
base proposed by Alfréd Haar in the doctorial thesis un-
der Hibert‘s supervision (1909) and his paper published
in the Mathematische Annalen [3]. The Haar wavelet

ψ(x) =

{
1 0 < x < 1/2

−1 1/2 < x < 1
generates a complete or-

thonormal system of compact support which is not regu-
lar in terms of continuous differentiability [4]. Succeeding
precursors to wavelets include the Franklin orthonormal
system (1927), the Littlewood-Paley theory (1930), the
Calderon identity (1960), a modification of the Franklin
base given by Strömberg (1981), the Gabor atoms in sig-
nal processing (1946), subband coding (1975), pyramidal
algorithms (1982), zero-crossings (1982), spline approx-
imations, the Rokhlin multipole algorithms (1985), re-
finement schemes in computer graphics, coherent states
in quantum mechanics, and renormalization in quantum
field theory [2]. Construction of wavelets that have com-
pact support and arbitrary high regularity (1988) is ulti-
mately done by Ingrid Daubechies [5].
Independent of the other theories, Karl Gustafson et al.
developed a view in which wavelets are regarded to be
stochastic processes [6]. The context arose naturally
from the time operator formalism of statistical mechan-
ics. Gustafson and Misra looked at models for the decay

of quantum particles, having realised that regular station-
ary stochastic processes imply multiresolution property
which was an indication of the time operator [7].
The wavelet theory received a key impetus from interest
by mathematicians and physicists cooperating with geol-
ogists from the oil companies. In particular, the wavelet
transform was developed by Grossmann and Morlet who
was the geologist having suggested that seismic traces
should be analyzed by translations and dilatations of a
suitable function [8]. Grossmann was a theoretical physi-
cist and mentor of investigating coherent states by In-
grid Daubechies wherein wavelets have also emerged,
although in her study there was no relation to multireso-
lution and stochastic processes [9]. In that respect, the
quantum theory indubitably played a significant role con-
cerning wavelets [6].
Due to Meyer and Mallat, multiresolution analyses has
become an essential tool in exploring wavelets [10, 11].
It corresponds to nested subspaces Aj of L2(R) satis-
fying axioms among which a central one is the prop-
erty f(·) ∈ Aj ⇔ f(2·) ∈ Aj+1. Aj is termed the
approximate subspace, whilst its orthocomplement Dj

such that Aj+1 = Aj ⊕ Dj is the detail subspace of
a multiresolution. The structure is intimately related to
that of the Kolmogorov automorphisms, which belong to
the framework of regular stationary stochastic processes
[12]. A prime example is induced by the Baker map

B(x, y) =

{
(2x, y/2) x < 1/2

(2x− 1, y + 1/2) x > 1/2
which is a mea-

sure preserving transformation of the unit square. The
time operator of the Kolmogorov system governed by the
evolution V f(x) = f(Bx) has been explicitly constructed
[13].
Given the evolutionary operator V of a system, the time
is defined to be the operator T satisfying [T, V ] = V ,
i.e., [T, V t] = tV t. If the evolution V tf(x) = f(Btx) is
induced by a measure preserving group Bt, it is equiv-
alent to the uncertainty relation [T, L] = iI whereat
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V t = e−iLt, i.e., the Liouvillian L is an infinitesimal gener-
ator of V t† = eiLt in regard to the Stone theorem. Since
wavelets on the real line are not related to preservation
of any finite measure, one requires reducing their domain
onto the interval I = [0, 1] which is done through peri-
odization ˜ψj,k(x) =

∑
l ψj,k(x+ l) [14]. A multiresolution

on the interval I = [0, 1] corresponds to the Renyi map
R inducing the exact system governed by the evolution-
ary operator Uf(x) = f(Rx). It is extended naturally to
the Kolmogorov system V f(x) = f(Bx) induced by the
Baker map that is measure preserving. The time opera-
tor of the system U is determined by the Haar wavelets
due to the eigenequation Tψj,k = jψj,k having natural
extension to that of V [12].
In that manner, detail subspaces of the multiresolution
analyses are regarded to be the age eignestates wan-
dering in terms of the evolution. However, only the
Haar wavelet constitutes a multiresolution on the inter-
val since it is undisturbed by periodization. Other ones
satisfy the multiresolution property just approximately
considering that they are partially localized in the pe-
riod. Nevertheless, the wavelet domain hidden Markov
model concerning statistics of the detail coefficients fits
as well to all of them [15]. The Markovian structure S =
(Sj,k), composed by hidden variables of the model, rep-
resents causal states whose informational content H(S)
is termed to be the global complexity of a system. It indi-
cates an increase of local complexity H(Sj,k) in the tem-
poral domain corresponding to eigenvalues j of the time
operator T , which is the definition of self-organization by
Shalizi [16]. The complexity is proven to be a measure of
the decomposition optimality, which is also evident by a
superior denoising related to the optimal wavelet [17].
The statistical model regards a signal and its coefficients
to be random realizations, which is achieved through nat-
ural extension of the unilateral shift U to the bilateral one
V . It actually maps a unilateral sequence of binary dig-
its .i0i1... from I, which is the domain of R, to the bilat-
eral string ...i1i0.i−1... that represents an element of I× I
whereon B acts shifting the representation right. Such
a shift corresponds to division by 2 in terms of dyadic
numbers whose only multiresolution analysis is the Haar
one, although there are many other wavelets generat-
ing it [18]. In that manner, dyadic analyses should dis-
solve the problem concerning a lack of the multiresolu-
tion property due to periodizing wavelets on the interval.
A usage of p-adic probabilities on the other hand makes
irrelevant the problem of positivity preservation which is
the main discordance between multiresolution analyses
and stochastic processes [6]. The negative probabilities
– that correspond to their stabilization in a p-adic norm –
is crucial contradistinction of quantum and classical view-
points [19]. Considering that, the quantum theory plays
once again a major role in conjunction to the p-adic num-
bers whose interrelationship should be elucidated by the
wavelet theory which is regarded to be a p-adic spectral
analysis [20].
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