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ABSTRACT 

 

This project aims to show its readers an effort for the solution of the prediction 

problem of the protein secondary structure using deep residual neural networks 

and other methods. Proteins are one of the most vital components of every living 

being. They play a quite important role as they define the functions of an organism. 

Therefore, knowing the protein structure is of great importance. 

 

Specifically, protein structure consists of four levels; primary, secondary, tertiary 

and quaternary protein structure. The most significant is the structure in the three-

dimensional space, the tertiary structure because this one defines the biological 

role of the protein. As a result, knowing the protein functions may help the 

treatment of many diseases. Unfortunately, the export methodologies that are 

developed so far, are very complicated and time-wasting procedures. The 

definition of the secondary structure is needed to export the tertiary structure and 

that is the reason it is studied. The secondary structure is exported by the primary 

structure, which includes an amino acid sequence. 

 

In this project the deep residual networks and the way they can help for the 

prediction of the protein secondary structure will mainly be analyzed. Such 

networks belong to the category of deep residual neural ones, which essentially 

consist of convergent levels with additive connections among them. 
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ΠΕΡΙΛΗΨΗ  

 

Αυτό το έργο στοχεύει να δείξει στους αναγνώστες του μια προσπάθεια για την 

επίλυση του προβλήματος πρόβλεψης της δευτερογενούς δομής πρωτεΐνης 

χρησιμοποιώντας βαθιά υπολειμματικά νευρωνικά δίκτυα και άλλες μεθόδους. Οι 

πρωτεΐνες είναι ένα από τα πιο ζωτικά συστατικά κάθε ζωντανού όντος. Παίζουν 

πολύ σημαντικό ρόλο καθώς καθορίζουν τις λειτουργίες ενός οργανισμού. 

Επομένως, η γνώση της δομής της πρωτεΐνης είναι μεγάλης σημασίας. 

 

Συγκεκριμένα, η δομή της πρωτεΐνης αποτελείται από τέσσερα επίπεδα. 

πρωτοταγής, δευτεροταγής, τριτοταγής και τεταρτοταγής πρωτεϊνική δομή. Η πιο 

σημαντική είναι η δομή στον τρισδιάστατο χώρο, η τριτοταγής δομή , γιατί αυτή 

καθορίζει τον βιολογικό ρόλο της πρωτεΐνης. Ως αποτέλεσμα, η γνώση των 

πρωτεϊνικών λειτουργιών μπορεί να βοηθήσει στη θεραπεία πολλών ασθενειών. 

Δυστυχώς, οι μεθοδολογίες εξαγωγών που έχουν αναπτυχθεί μέχρι τώρα, είναι 

πολύ περίπλοκες και χρονοβόρες διαδικασίες. Ο ορισμός της δευτεροταγής δομής 

είναι απαραίτητος για την εξαγωγή της τριτοταγής δομής και αυτός είναι ο λόγος 

που μελετάται. Η δευτεροταγής δομή εξάγεται από την πρωτοταγή δομή, η οποία 

περιλαμβάνει μια αλληλουχία αμινοξέων. 

 

Σε αυτό το έργο θα αναλυθούν κυρίως τα βαθιά υπολειμματικά δίκτυα και ο τρόπος 

που μπορούν να βοηθήσουν στην πρόβλεψη της δευτεροταγούς δομής της 

πρωτεΐνης. Τέτοια δίκτυα ανήκουν στην κατηγορία των βαθιών νευρωνικών 

δικτύων, τα οποία ουσιαστικά αποτελούνται από συγκλίνοντα επίπεδα με 

προσθετικές συνδέσεις μεταξύ τους. 

 

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Πρόβλεψη Δευτεροταγούς Δομής Πρωτεΐνης 

 

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Πρωτεΐνες, Αμινοξέα, Πρωτοταγής Δομή, Δευτεροταγής Δομή, 

Τριτοταγής Δομή, Τεταρτοταγής Δομή, Πρόβλεψη, Υπολογιστικές Τεχνικές, Αλγόριθμοι, 

Βάσεις Δεδομένων Πρωτεϊνών, Δείκτες Αξιολόγησης, SAH, PISCES, Ακρίβεια Q3, 

Ακρίβεια Q8 , PSSP. 
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1. INTRODUCTION 

 

Nowadays, genome sequencing studies have revealed a tremendous amount of 

human genetic differentiation, in both coding and non-coding regions of the human 

genome. Therefore, the development of computational methods that accurately 

predict whether mutations have phenotypic or pathogenic effects is a major goal 

of bioinformatics and various tools have been developed to address this problem. 

The object of this dissertation is to predict the secondary structure of proteins, 

using deep neural networks. In particular, the methods by which the secondary 

structure of proteins can be predicted and the contribution of this process to the 

science of Medicine are examined because even small changes in the structure of 

the protein in its primary structure can lead to a variety of diseases upon its 

completion structure. 

 

1.1 The importance and purpose of this kind of research 

 

Proteins are made up of multidimensional elements and basic elements. They play 

an important role in any organism, as they are responsible for the proper 

development and maintenance of any living organism (humans included). 

Specifically, proteins consist of organic compounds called amino acids which are 

linked together by what is called long chains. The interaction of amino acids with 

each other results in the folding of a protein into a specific three-dimensional 

structure. Generally, the structure of the protein consists of 4 levels: the primary, 

the secondary, the tertiary and the quaternary structure. 
 

The primary structure is a sequence of amino acids which, depending on the 

order they are found in the protein, determine the final structure. 

The secondary structure of a protein refers to the representation of the amino 

acid sequence in locally folding structures (α-helix, β-strands). 

The tertiary structure of a protein is created by combining these folding structures, 

resulting in the final and functional shape of the protein in space. 
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Finally, the quaternary structure is the union of two or more chains of the tertiary 

structure. 

 

 

So, the most important structure of the protein is the tertiary structure. Its folds 

have a different shape in each protein, because of which its function is determined. 

Knowing the primary structure of the protein we can extract the secondary structure 

and consequently the tertiary. Therefore, the study of existing proteins is greatly 

important, as it is involved not only in the science of biology and bioinformatics, but 

also in medicine. This importance has resulted in the emergence of many computer 

techniques and algorithms that try to predict the secondary structure based on the 

primary, so that from the secondary structure they can export the tertiary structure 

faster and cheaper. These algorithms are related to computational statistics and 

mathematical optimization techniques that are applied to systems that can learn 

and be trained by the input data that will be presented to them, in order to be able 

to predict new data on their own. All these studies are done because even small 

changes in the structure of the protein can lead to a variety of diseases. The 

secondary structure of a protein can be altered, either by a mutation in the primary 

amino-acid sequence that makes up the protein, or by extreme conditions that 

cause the proteins to lose their shape. Both of these cases involve incorrect protein 

folding that can lead to tissue damage. If even one amino acid changes in the 

major sequence of a protein, the secondary structure of a protein can be drastically 

affected. Most genetic diseases can be linked back to a protein that does not have 

the structure it should. 

 

1.2 This structure of this thesis 

 

This thesis has been divided into four (4) chapters. In the chapter 1, it is reported 

the structure of this thesis and the importance and purpose of the protein 

secondary structure research. Afterwards, in chapter 2, the biological background 

of this work is presented and explained to avoid confusion. There will be a briefly
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explanation of the main algorithms assisting in the analysis of any structure of 

proteins, the algorithms specifically for finding the secondary protein structure, as 

well as the various protein databases and evaluation indicators that exist, and other 

relevant tools. In chapter 3 , there will be an explanation of secondary structure 

prediction methods. Also, four (4) papers on the prediction of the protein secondary 

structure were selected to be analyzed, each using a different method to extract 

results. Then, in chapter 4 the practical application of Q accuracy was presented 

by creating 2 codes to analyze and return Q8 and Q1-8 accuracy, respectively. 
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2. BIOLOGICAL BACKGROUND 

 

In this first chapter of this thesis, a quick explanation of what a protein is and what 

it consists of is going to be given. It is important for the biological background of 

this work to be adequately explained, to avoid confusion. The main topics is 

proteins and amino acids, and more specifically the structure of proteins. 

 

2.1 Proteins and amino acids 

 

Generally, in the science of biology a cell consists of a systematically organized 

group of particles. One of these small particles, one that is considered an important 

building block of the cell, is the ribosome which is made up of proteins and RNA 

and is free in the cytoplasm or in the coarse endoplasmic reticulum. Its main role 

is to synthesize proteins using genetic information found in messenger RNA. 

These proteins are the most widespread macromolecule1 as well as the most 

multidimensional in form and function. Even in a simple cell, such as that of 

bacteria, there are hundreds of different proteins, each of which has a special role 

in the life of the cell (either as a structural component or serving a specific function). 

More specifically, proteins are composed of one or more peptide chains and 

contain carbon, oxygen, nitrogen and, in most of them, there is also sulfur. These 

digestive chains, called polypeptides, are made up of amino acid sequences to 

form the first form of the protein, the so-called primary structure. More than 170 

different amino acids have been detected, of which only 20 are constituents of proteins 

(Table 1).  

 
1Macromolecules: high molecular weight organic compounds such as proteins, nucleic acids, 

polysaccharides and lipids. 
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They are the basic building blocks of proteins that determine the characteristics of 

proteins and are abbreviated to three letters (the first three letters of their name) as 

shown in the table below. 

 

 

Table 1: The 20 amino acids that make up the proteins of living organisms2 

 

 

 

Amino acids and more specifically protein amino acids are chemical compounds 

containing at least one carbon group and at least one amino group (Figure 1). Protein 

amino acids focus mainly on α-amino acids which consist of 3 stable parts and one 

variable part (side group). 

 

 
2The names with an asterisk (*) are the 8 basic amino acids. 
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Figure 1: Amino acid structure 

Specifically, the structure of α-amino acids consists of: a carbon atom which is 

covalently linked to an amino group on its left (NH2), a carboxyl group on its right 

(CΟΟΗ), a chemical structure containing many different atoms called a lateral structure 

(R) and a hydrogen atom - since C at the center is a carbon atom, H a hydrogen atom, 

O an oxygen atom and N a nitrogen atom. The R side group is different in each amino 

acid and as such it is responsible for differentiating the amino acids in terms of their 

characteristics and consequently grouping them into four categories. The first category 

is the acidic amino acids whose side chain is negatively charged, the second is the 

basic amino acids whose side chain is positively charged, the third category is the 

uncharged amino acids whose side chain has two oppositely charged regions and 

finally the fourth category are the amino acids that have no charge. 

It is important to note that depending on the properties and characteristics of each 

protein, a different structure is formed in each of them in its three-dimensional space 

resulting in the existence of many proteins with different shapes and different functions. 

If we place the amino acids in a row, an amino acid sequence is created by forming 

peptides (primary structure). More specifically, to create this sequence of polypeptides, 

the amino acid compound must be formed. This process is called condensation (Figure 

2).  
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Figure 2: Condensation process / Digestive bond 

 

In order to bind two amino acids, the carboxyl group (negatively charged) of one 

reacts with the amino group (positively charged) of the next by detaching one 

molecule of water (H2O). The bond formed is called a peptide bond which 

produces a dipeptide whose amino acids are called amino acid residues. When 

more than 50 amino acids are linked, a polypeptide or polypeptide chain is formed 

to create the first structure of the protein. Unfortunately, after the synthesis of the 

polypeptide, it is not able to manifest its biological role. This ability is acquired when 

the polypeptide chain takes on its final configuration in what is called the tertiary 

structure of the protein. 

Polypeptide chains have the property of folding in space. The folding of each 

polypeptide chain has an important role since it is also one of the key factors in 

determining the unique three-dimensional form of the protein and in the final shape 

it will have. There are several factors based on which a specific protein is created, 

for example the order of amino acids to be placed or the number of amino acids in 

a protein. 
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Protein structure 

 

 

Perhaps the most striking feature of life is the fact that it is organized to levels of 

increasing complexity. Atoms consist of molecules, then molecules are made of 

cellular organelles, the latter forming cells and so on. Internal organization is found 

at every sub-level and even at the most elementary of them, namely the molecular 

level. The chemical compounds that make up organisms can, depending on their 

molecular weight, be placed on a hierarchical scale, in which each step results 

from the previous one through metabolic reactions. Thus, the structure of the 

protein is separated at organizational levels, resulting in a better monitoring of the 

structure of the protein in the various phases of its formation. Specifically, it 

consists of four hierarchical levels which correspond to the primary, secondary, 

tertiary, and quaternary structure (Figure 3). 

 

 
 

Figure 3: Levels of protein organization 
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➢ Primary structure 
 

 

The primary structure is the first level of the protein. It consists of the amino acid 

sequence in the polypeptide chain with nucleic acids as the determining factors, 

which are said to control all the functions as well as the hereditary traits of 

organisms (Figure 4). More specifically, the primary structure of proteins results 

from the association of amino acids with peptide covalent bonds that are 

determined by a gene and are encoded in the genetic code of DNA. A change in 

the DNA sequence of the gene can lead to a change in the amino acid sequence 

of the protein. Even the change of a single amino acid in a protein sequence can 

affect the overall structure and function of the protein. 

 

 

 

Figure 4: Primary Protein structure 
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➢ Secondary structure 

 

The amino acid chain that defines the primary structure of a protein is not rigid, 

but it is flexible due to the nature of the bonds that hold the amino acids together. 

When the chain is long enough, a hydrogen bond can be formed between amine 

and carbonyl moieties within the peptide backbone (excluding the R side group), 

resulting in the local folding of the polypeptide chain into helices and leaves. 

These shapes are the secondary structure of the protein. 

The secondary structure restricts the freedom of movement of the compound's 

hydrogens and thus the peptide chain assumes a stable arrangement in space. 

The most common type of this form of polypeptide is the so-called "α-helix" 

clockwise, where the coils are held in place by hydrogen bonds between the 

carboxyl groups and the amino groups of the amino acids. Another secondary 

structure is the so-called "β-sheet surface" where in this case parallel chains of 

polypeptides are crossed that join at the hydrogen bond junctions thus forming an 

extremely tight structure, as in silk (Figure 5). 

 

Figure 5: Secondary protein structure 

Left: Example of folding a β-sheet surface 

Right: Example of α-helix folding 
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Examples of some proteins of an organism with α-helix are the proteins of the 
hair of the head: myosin, fibrin, and hemoglobin. Some amino acids that serve as 
nuclei to form the β-sheet surface (sawtooth structure) are valine, methionine, 
and isoleucine. 
 

 

 

➢ Tertiary structure 

 
The next level of protein organization is the tertiary structure, which is the large-
scale three-dimensional shape of a simple polypeptide chain. It is determined by 
interactions between amino acid residues that are very far in the chain. A variety 
of interactions create the tertiary structure of the protein, such as disulfide 
bridges, which are bonds between sulfhydryl (-SH) functional groups in amino 
acid side groups, hydrogen bonds, ionic bonds, and hydrophobic interactions 
between non-polar side chains. All these interactions, weak and strong, are 
combined to determine the final three-dimensional shape of the protein and 
therefore its function (Figure 6). 
 
In general, by the term tertiary structure, we refer to the final and functional 
shape that the polypeptide acquires, henceforth it is called a protein. Therefore, 
this structure is quite important because it determines the function of the protein. 
If the protein consists of a single polypeptide chain, such as ribonuclease, the 
final stage of its formation is the tertiary structure. But if it consists of more than 
one polypeptide chains, its final stage is the quaternary structure. 
 

Figure 6: Tertiary Protein structure 
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➢  Quaternary structure 

 
While all proteins contain primary, secondary, and tertiary structures, quaternary 
structures are intended for proteins consisting of two or more polypeptide chains. 
Certain proteins are assemblies of various separate polypeptides, also known as 
protein subunits. These proteins function adequately only when all the subunits 
are present and properly formed. The interactions that hold these subunits 
together constitute the quaternary structure of the protein. The overall quaternary 
structure is stabilized by relatively weak interactions. Hemoglobin is a typical 
example of a quaternary structure consisting of two alpha subunits and two beta 
subunits (Figure 7). 
 

 
 

 

Figure 7: Quaternary protein structure of the hemoglobin molecule 

(It has two α and two β polypeptides along with four heme groups) 
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2.2 Experimental methods 

 

    ➢  Evaluation indicators 

 

Certain algorithms aim to determine how accurate the results of other algorithms 

are, as far as predicting the structure of a protein goes. One such evaluation 

indicator is Q3 accuracy. In the secondary protein structure, there are two regular 

types, the α-helix (H) and the β-strand (E), and an irregular state the coil region 

(C). Predicting these three states of the secondary protein structure is called what's 

called Q3 accuracy. Similarly, due to the hydrogen-bonding patterns the DSSP 

algorithm was created to classify the secondary protein structure into 8-states. The 

performance measure of these eight modes is Q8 accuracy and it is very 

successful and accomplished3, as well as currently the most preferred. For 3-state 

SS prediction, we also calculate the Segment overlap measure (Sov). Sov is a 

measure for the evaluation of secondary structure prediction methods based on 

secondary structure parts and not on individual residues. It can distinguish 

between similar and dissimilar distributions, by using cross validation. Sov has 

been selected as one of the prediction evaluation criteria for the second critical 

evaluation of techniques for predicting protein structure. The measure does not 

have a strictly defined upper limit and, so, is not directly comparable to other 

forecasting measures. One downside of SOV is that «a wrong prediction in the 

middle region of a SS segment results in a lower SOV score than a wrong 

prediction at the terminal regions»4. 

 

Last, there is the Exome Variation Analyzer, or EVA. EVA is a reference project 

for evaluating the quality and value of protein structure prediction methods, and 

one of its advantages is the fact that it has a user-friendly interface, so that anyone 

 
3 Alongside the SC-GSN network, BLSTM, DCNF, DCRNN, many developments have 

been made. 
4 Taken from : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4707437/ 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4707437/
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can use it. EVA is often used in medical projects5 to analyze strategies by exome 

sequencing6. The methods for predicting both secondary and tertiary structures 

(including modeling homology, protein threads, and contact order prediction) are 

compared with the results from protein solutions filed from the Protein Data Bank. 

This is similar to the related LiveBench project and contrasts with CASP, which 

aims to determine the maximum accuracy that can be achieved.  

According to researchers7: «EVA: 

(i) integrates and stores annotated exome variation data as strictly confidential 

to the project owner, 

(ii) allows to combine the main filters dealing with common variations, molecular 

types, inheritance mode and multiple samples, 

(iii) offers the browsing of annotated data and filtered results in various 

interactive tables, graphical visualizations, and statistical charts, 

(iv) and finally offers export files and cross-links to external useful databases 

and softwares for further prioritization of the small subset of sorted candidate 

variations and genes. »8 

 

They also claim that one of the strengths of EVA is «the implementation of 

inheritance filters considering intersection or conversely differential exome 

strategies: 

(i) recurrence strategy for dominant or recessive independent familial cases 

(filters select the genes the most affected by remaining variations among a 

specified number of non-related individuals.); 

(ii) filters for homozygous, heterozygous or composite cases in intra-familial 

studies (filters extract genes with remaining common variants among selected 

related individuals); 

 
5 Such as fundamental research, clinical diagnostics, and personalized medicine 
6 Whole exome sequencing (WES) is currently the strategy of choice in identifying rare 

human monogenic disorder (by proteins). 
7  Taken from : https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-
13-S14-S9 
8  Taken from : https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-
13-S14-S9 

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-13-S14-S9
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-13-S14-S9
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-13-S14-S9
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-13-S14-S9
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and de novo strategy for sporadic cases (filters select genes with remaining 

variations found in a diseased child but not in the two healthy parents (sporadic 

case, trio-family) ».9 

 

Figure 8 - Visual representation of EVA web interface 

 

 
9  Taken from : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3439720/ 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3439720/
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➢ Circular dichroism 

 

Circular dichroism (CD) is an experimental method for rapid identification of the 

secondary structure and folding properties of proteins obtained using recombinant 

or tissue-purifying techniques. The most widely used applications of the protein CD 

are to determine if an expressed, purified protein is folded or if a mutation affects 

its configuration or stability. In addition, it can be used to study protein interactions. 

The CD has the advantage that measurements can be made in multiple samples 

containing r20 lg of protein in physiological buffers within a few hours. However, it 

does not provide specific residue information that can be obtained by X-ray or NMR 

crystallography. 

Because the spectra of proteins are so highly dependent on their modulation, the 

CD can be used to calculate the structure of unknown proteins and to monitor 

modulatory changes due to temperature, mutations, heat, denaturing or binding 

interactions. CD spectra are collected in highly transparent quartz cells. They are 

available with a path length ranging from 0.01-1cm. Water-jacketed cylindrical cells 

are available for CD machines that do not have temperature regulated cell 

compartments. Buffers for CD spectroscopy should not contain optically active 

materials and should be as transparent as possible. The total absorbance of the 

sample, including the buffer and the cell, should be less than 1 for high quality data. 

The most difficult part of obtaining high quality CD data is the correct determination 

of protein concentration. The most accurate method of determining the protein 

concentration is the quantitative analysis of amino acids, using the concentrations 

of stable amino acids (e.g., alanine and lysine) to calculate the concentration of 

intact protein. 

All methods of analyzing CD spectra assume that the spectrum of a protein can be 

represented by a linear combination of the spectra of its secondary 
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components, plus a noise term, which includes the contribution of aromatic 

chromophores and prosthetic groups. There are two general categories of 

methods for evaluating protein modulation. The first uses polypeptide patterns, 

with defined compositions in known formulations, which have been determined by 

x-ray scattering films. The second uses the protein spectra, that have been 

characterized as X-ray crystallography, as models. These are then compared to 

the spectra of unknown proteins. The linear regression matches the spectrum of 

an unknown protein compared to the spectra of a set of constant patterns. It is 

useful for evaluating the effects of mutations, ligands, and solvents on protein 

modulation. 

 

➢ X-ray Crystallography 

 

X-ray Crystallography is the study of the crystal lattice, using X-rays. It reveals the 

arrangement of the structural parts that make up the crystal. The rays hit the 

different atoms and come out of the crystal at different angles. By studying the 

diffraction of outgoing light, scientists draw conclusions about the position of atoms 

and the structure of the molecule. An X-ray beam falls on the tiny particles of a 

crystal and the diffraction pattern created is imprinted on a film like a neat series 

of dots, which is not random, but gives rich information about the structure of the 

crystal. 

 

➢ Cryogenic Electron Microscopy 
 

 

Cryogenic Electron Microscopy (Cryo-EM) is an electron microscopy (EM) 

technique applied to samples that are cooled to cryogenic temperatures and 

incorporated into a glassy water environment. An aqueous sample solution is 

applied to a grid and frozen in liquid ethane or a mixture of liquid ethane and 

propane, thus «specimens remain in their native state without the need for dyes or 

fixatives, allowing the study of fine cellular structures, viruses and protein 
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complexes at molecular resolution»10. Recent developments in detector 

technology and software algorithms have made it possible to identify biomolecular 

structures in near-individual analysis. This has attracted much attention in the 

approach as an alternative to X-ray crystallography or NMR spectroscopy, to 

determine macromolecular structure without the need for crystallization. In 

addition, secondary protein structure can be detected on cryo-EM intermediate 

analysis maps using deep learning. This is done with the Emap2sec computational 

method, which identifies secondary structures of routines (α-helices, β-sheets, and 

other structures) on EM maps. 

 

 

In comparison: 

• Cryo-EM needs fewer number of materials than X-ray 

crystallography. 

• X-ray crystallography is faster and provides results with 

higher level of analysis than Cryo-EM. 

• NMR is slower and provides data of lower quality than the 

others. 

 

2.3  Computational background 

 

2.3.1  Singular Value Decomposition  

 

Singular Value Decomposition (SVD) extracts basis curves with unique nodes from 

a set of protein spectra with known structures. The basis curves are characterized 

by a mixture of secondary structures and are then used to analyze the modulation 

of unknown proteins11. There is the Hydrogen Bond Surrogates (HBS). Replacin

 
10   Taken from : https://www.nature.com/subjects/cryoelectron-microscopy 
11 «What is SVD in PCA? Singular value decomposition (SVD) and principal component 

analysis (PCA) are two eigenvalue methods used to reduce a high-dimensional data 
set into fewer dimensions while retaining important information. Online articles say 
that these methods are 'related' but never specify the exact relation». 

https://www.nature.com/subjects/cryoelectron-microscopy
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an i → i + 4 main chain hydrogen bond with a covalent bond can nucleate and 

stabilize the α-helical configuration of the peptides. The HBS model enables 

different alkene isosterols to mimic intramolecular hydrogen bonds and stabilize α-

strands in different peptide sequences. It can also be placed in unstructured 

tetrapeptides without cutting off any of its residues and causing them mainly at 

extremely stable single α-helical turns in various solvents, pH values and 

temperatures. 

Then, we have the Needleman-Wunsch Alignment, an algorithm used in 

bioinformatics to align proteins and nucleotide sequences. It was one of the first 

applications of dynamic programming to compare biological sequences. The 

algorithm was developed by Saul B. Needleman and Christian D. Wunsch. It 

essentially divides a large problem (e.g., the complete sequence) into a series of 

smaller ones and uses solutions to smaller problems to find the optimal solution to 

the larger problem. It is sometimes also referred to as the optimal technical 

alignment matching algorithm. The Needleman - Wunsch algorithm is still widely 

used for optimal alignment worldwide, especially when the quality of total 

alignment is paramount. The algorithm assigns a score to each possible alignment 

and its is to find all possible alignments that have the highest score. 

 

 

2.3.2 Hidden Markov Model 

 

There are two modeling methods. To start with, there is the Hidden Markov Model 

(HMM), a statistical Markov model (where a system is being modeled to be a 

Markov process). Markov chains are probabilistic (stochastic) models, with which 

we describe and analyze the sequences of biological polymers such as DNA and 

proteins. The Markov model is considered by many researchers to be the most 

natural way to describe sequences of large molecules such as DNA and proteins, 

and this seems intuitively natural as this dependence approaches the meaning of 

the information contained in a sequence. HMMs have been proposed not only for 
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secondary structure recognition but also as a method of building profiles. They 

have been shown to be particularly powerful, due to their complex architecture, in 

locating transmembrane segments in proteins. 

 

2.3.3 Conditional Random Fields 
 

 

Conditional Random Fields (CRF) are a class of statistical modeling method often 

used in pattern recognition and machine learning. It is used for structured 

forecasting: while a classifier provides a label for a single sample without 

considering "neighboring" samples, a CRF can take the box into account. 

Furthermore, we have the Conditional Neural Fields (CNF). The CNF model 

extends on CRF by adding an intermediate level between input and output, acting 

as a local neural network node to capture the nonlinear relationship between input 

and output characteristics. Therefore, conceptually the CNF model is much more 

expressive than the linear CRF model. 

 

2.3.4 Neural Networks 

 

Shallow Neural Networks consist of only 1 or 2 levels. The neuron is the atomic 

unit of a neural network. Given the input, it provides the output and passes the 

output as input to the next level. Understanding a shallow neural network gives us 

an idea of what exactly is going on inside a deep neural network. Similarly, there 

is the Hidden Neural Networks (HNNs), in which, the usual HMM probability 

parameters are replaced by the output of specific neural network states. Unlike 

many other tools, HNN does a total normalization and therefore has a valid 

possible interpretation. All parameters in the HNN are calculated simultaneously 

according to the criterion of maximum probability in terms of discrimination. The 

HNN can be thought of as a non-directed network of probability of independence 

(a graphical model), where neural networks provide a solid representation of 

functions. 

A Deep Neural Network (DNN) is a neural network with a certain level of  
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complexity, a neural network with more than two levels. Deep neural networks us 

sophisticated mathematical models to process data in complex ways. Then, there 

is a Convolutional Neural Network (CNN). In deep learning, a convergent neural 

network (or ConvNet) is a class of deep neural networks commonly used to 

analyze visual images12. It works by using a convolution that slides a filter over the 

input and it's made of neurons with learnable weights and biases. More specifically, 

«each specific neuron receives numerous inputs and then takes a weighted sum 

over them, where it passes it through an activation function and responds back 

with an output»13. CNN uses fewer parameters for training, but remains as 

accurate as others, though it is slightly slower than when used for DNN14. 

As an evolution of the above, comes the Deep Convolutional Neural Network 

(DCNN). It is a class of deep neural networks. It is multilayered, meaning that each 

neuron on one level is connected to all the neurons on the next level. They take 

advantage of the hierarchical pattern in the data and assemble more complex 

patterns using smaller and simpler patterns. Next, the Anatomically Constrained 

Neural Networks (ACNNs) follows. Most classification and regression models use 

a pixel-level loss function15 that does not fully consider the underlying semantic 

information and dependencies in the output space. Asymmetric convergent neural 

networks (ACNNs) are mainly based on the early work on earlier shapes and 

image segmentation, specifically PCA-based statistics, and active shape models. 

It represents a non-linear solid representation of the underlying anatomy through 

a stacked cohesive auto-encoder and enforces network predictions to track the 

 
12 Image processing, classification, segmentation. 
13  Taken from : https://www.mvorganizing.org/what-is-the-difference-between-ann-and-

cnn/ 
14 «What is the difference between deep neural network and convolutional neural network? 

Deep Learning is the branch of Machine Learning based on Deep Neural Networks 
(DNNs), meaning neural networks with at the very least 3 or 4 layers (including the 
input and output layers). Convolutional Neural Networks (CNNs) are one of the most 
popular neural network architectures.CNNs are trained to identify and extract the best 
features from the images for the problem at hand. That is their main strength. The latter 
layers of a CNN are fully connected because of their strength as a classifier. » 

15 E.g., transverse entropy or mean squared error. 

https://www.mvorganizing.org/what-is-the-difference-between-ann-and-cnn/
https://www.mvorganizing.org/what-is-the-difference-between-ann-and-cnn/
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distributed shape / label statistical distributions. In other words, it favors the 

predictions found in the exported low-dimensional data. Most importantly, it can be 

combined with any of the state-of-the-art segmentation or hyper-analysis models 

and possibly improve the accuracy and robustness of its prediction without 

introducing any memory or computational complexity into conclusions. Finally, 

ACNN models remove the need for post-processing steps. At ACNN, normalization 

is part of end-to-end learning which can be a huge asset. 

Bidirectional Recurrent Neural Networks (BRNN) evolved from the algorithms 

above. With this form of general deep learning, the output level can receive 

information from past (backward) and future (forward) situations simultaneously. 

They connect two hidden layers of opposite directions to the same output.  

 

 

 

2.4 Technical Notes 

 

TensorFlow 

 

TensorFlow is a free open-source software library for streaming data over a wide 

range of tasks, with an easy-to-use interface. It is a symbolic math library16, that is 

also used for machine learning applications such as neural networks. TensorFlow 

was developed by the Google Brain team, and it operates on Python17. Its 

calculations are expressed as stateful data flow charts. The name TensorFlow 

comes from the functions performed by neural networks in multidimensional arrays 

of data, which are referred to as tensors. The first version (1.0.0) was released on 

February 11, 2017, and TensorFlow 2.0 came out in September 2019. There is also 

version for machine learning in JavaScript and, an announced version for deep 

learning in computer graphics.

 
16Based on dataflow and differentiable programming. 
17This programming language is compatable with most systems, while still being high-

end, thus why it is used. C++ is also an available option for users. 
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2.5 Relevant Data 

 

2.5.1 Databases 

 

There are 2 main protein databases. First, there is CASP, the Critical Assessment 

of Structure Prediction. CASP refers to an experiment for the determination and 

advancement of technology in modeling the protein structure from the amino acid 

sequence. It operates by using independent assessors to then compare the 

models that arise via blind experimentation. This occurs every 2 years, since 1994. 

These datasets are also widely used for PSSP. The most recent, CASP13, 

provides an independent mechanism for the assessment of methods of protein 

structure modeling. CASP is the organization that conducts these experiments and 

was founded partially by John Moult, who claims that CASP scored very highly on 

the AlphaFold algorithm18. 

 

Lastly, there is PISCES. PISCES is a public server for the elimination of protein 

sequences sets from the Protein Data Bank (PDB) with sequence identity and 

structural quality criteria. It can provide lists that are deleted from the entire PDB 

or from lists of PDB entries or chains provided by the user. Sequence identities are 

obtained from PSI-BLAST alignments with specific position substitution tables 

derived from the non-redundant protein sequence database. Therefore, PISCES 

provides better lists than servers that use BLAST, which are unable to recognize 

multiple relationships with less than 40% sequence identity. PISCES also provides 

fully annotated sequences that include the gene name and its species. The server 

allows a user to delete a list of inputs or chains so that other criteria, such as 

function, can be used. 

 
18It scored around 90 on a 100-point scale of prediction accuracy for moderately difficult 

protein targets. On a sample of 43 protein targets, 25 of them achieved a median score 
of 58.9% on CASP's global distance test (GDT) score. This puts it over the competition, 
as they scored 52.5% and 52.4%. 
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PISCES uses the combinatorial extension (CE) alignment program to improve 

determining the relationship between proteins and recalculate the identities 

sequences found using PSI-BLAST. It also uses CE-type sequence identity, ie 

identical pairs divisible by all aligned pairs except gaps. PSI-BLAST, on the other 

hand, calculates the identity sequence by the ratio of the number of the same pairs 

to the full length of the alignment, including the gaps. This change means that if 

two closely related proteins are aligned, but one has a large insertion, the 

sequence identity will remain high. This can happen for example if a long-disturbed 

loop is made of a protein to facilitate crystallization. PISCES can delete the entry 

and not the whole chain. In addition, it provides more annotation for each chain on 

the PDB than the PDB itself. This annotation includes names from specific gene 

chains and functional and species information retrieved from the complete mmCIF 

files of the PDB and the Swiss-Prot and GenBank databases. All hits or a selected 

subset of a search results can be transferred to the PISCES website for culling 

using single user input criteria for structural quality and sequence identity cuts. 

 

PISCES uses mmCIF files from the RCSB to identify sequences, type of 

experiment, analysis, R -factors and other attributes of PDB entries and chains. It 

also operates from a FASTA database of all sequences on the PDB called pdbaa. 

It is used to provide the sequences and annotations returned by PISCES for PDB 

subsets. Pdbaa provides basic information about chain length, type of 

experiment19, analysis, R-factor and free R-factor. These pieces of information are 

useful if a user wants to use a structure as a template for configuration modeling 

and wants to select the best template by searching the entire PDB. 

PISCES uses the Hobohm and Sander method to eliminate sequences that pass 

the chain entry and input criteria. Culling can be done at chain or entry level. Culling 

by-chain means treating each chain in each PDB entry as a separate entity. In 

culling by-entry the sequence identity is defined between any two entries as the

 
19 Such as x-rays, NMR, etc. 
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highest sequence identity of any chain in one entry with any chain in the other 

entry. This way, no two entries in the same list will be displayed if sequence identity 

chains are shared during the cut-off. PISCES also allows the user to choose 

whether to cull each entry and allows him to use another sequence identity cut for 

this culling process. 

 

The two graphs above in Figure 9 show that sequence identities are lower in PSI-

BLAST than in BLAST and lower in CE than in PSI-BLAST. The two graphs below 

in Figure 9 show that the PSI-BLAST alignments are generally larger than the  

 

Figure 9 – PSIBLAST 
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BLAST alignments and the CE alignments are larger than the PSI-BLAST 

alignments.  This is since incomplete alignments lead to artificially higher sequence 

identities, because alignment occurs in the more conserved regions of the two 

sequences. 

 

 

2.5.2 Datasets 

 

There is CB6133, a set of homologous protein structure and sequence data. It is 

produced with the PISCES system. This dataset has 6128 proteins, of which 5,600 

are for training, 256 for validation and 272 for testing. Last, we have CB513, which 

contains 513 proteins and is widely used as a secondary structure data set for 

performance comparison. 

The CB6133 dataset has 6128 proteins, of which 5600 are for training, 256 for 

validation and 272 for testing. CB513 contains 513 proteins and is widely used as 

a secondary structure data set for performance comparison. CASP10 and CASP11 

contain 123 and 105 sequences, respectively. It uses the CB6133 dataset to train 

and test deep neural models. The CB513 dataset is a public reference dataset 

used for testing purposes only. A filtered version of the CB6133 dataset is created 

by removing sequences that have more than 25% similarity between CB6133 and 

CB513. The filtered data set CB6133 contains 5534 proteins. In addition, the 

average length of the helix, stand and coil is 8, 5 and 5 respectively in CB513. The 

corresponding section for the data set is: 

[0.5430) training 

[5435,5690) test 

[5690,5926) validation 

 

Two data sets are used where both are based on protein structures from cullpdb 

servers. The difference is that the former is divided into a training/test/validation 

set, while the latter is filtered to remove duplicates in the CB513 dataset (for  
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performance testing purposes). One of the sequences in CB513 is larger than 700 

amino acids and is divided into two overlapping sequences and these are the last 

two samples (i.e., there are 514 sequences instead of 513). Initially the data is 

being reconfigured (N proteins x 700 amino acids x 57 characteristics). The 57 

features are: 
 

• [0,22): Amino acid residues, in order of «A», «C», «E», «D», «G», «F», «I», 

«H», "K", "M", "L", "N", "Q", "P", "S", "R", "T", "W", "V", "Y", "X", 'NoSeq ' 

• [22,31): Labels of secondary structure, with the sequence 'L', 'B', 'E', 'G', 'I', 'H', 

'S', 'T', 'NoSeq' 

• [31,33): N- and C- terminals 

• [33,35): relative and absolute solvent accessibility, used only for education. 

Absolute accessibility has a threshold of 15 while relative accessibility is 

normalized by the largest accessibility value of a protein and has a threshold of 

0.15. The accessibility of the original solvent is calculated by DSSP. 

• [35,57): sequence profile. The order of the amino acid residues is 

ACDEFGHIKLMNPQRSTVWXY. 

The last feature of both amino acid residues and secondary structure labels 

marks the end of the protein sequence. 

• [22,31] and [33,35) are hidden during the test. 
 

The dataset division for the first dataset is: 

• [0.5600) training 

• [5605,5877) test 

• [5877,6133) validation 

 

For the filtered data set, all proteins can be used for training and testing in the 

CB513 dataset.
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3 METHODS 

 

3.1  Related Techniques 

 

There are several algorithms that try to analyze the secondary structure in proteins. 

Firstly, there is the DSSP algorithm is a standard method for determining the 

secondary structure in the amino acids of a protein, given the coordinated atomic 

analysis of the protein. It classifies the secondary structure into 8 states. It was 

developed by Maarten Hekkelman and originally released in 1983, with the latest 

version of it released on April 6, 2018. More specifically, DSSP assigns: 3 types for 

helix (G for 310 helix, H for α-helix and I for π-helix), 2 types for arm (E for β-sheet 

and B for β-bridge) and 3 types for coil (T for hydrogen bonded turn (3, 4 or 5 turn), 

S for high curvature loop (the only non-hydrogen-bond based assignment) and C 

for coil (residues which are not in any of the above conformations). There is also 

the Protein Splice Site Prediction (PSSP), which is used to predict secondary 

categories of 8 categories that provide more detailed local information. 

 

Some algorithms, utilize neural networks, while some tools make use of the 

alignment method to produce results. To begin with, the Basic Local Alignment 

Search Tool (BLAST) is an algorithm for comparing primary biological sequences, 

such as amino acid and protein sequences or nucleotide sequences of DNA and/or 

RNA. The BLAST search allows a researcher to compare the nucleotide sequence 

of a protein or a nucleotide, with a library or sequence database and identify 

sequences that resemble its sequence above a certain threshold. Continuing, the 

Position-Specific Iterative BLAST (PSI-BLAST) program is used to find distant 

relatives of a protein. First, a list of all closely related proteins is created. These  

 

proteins are combined into a general "profile" sequence, which summarizes 

important features present in these sequences. Then with the help of the protein 

database, using this profile, a larger group of proteins is identified, using among  
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others, the PSSMs scoring matrices. This larger group is used to build another 

profile and the process is repeated. By including relevant proteins in the search, 

PSI-BLAST is much more sensitive to receiving long evolutionary relationships 

than a standard protein-protein BLAST.  

 

Then, there is the Position-Specific Scoring Matrix (PSSM), which is a commonly 

used representation of patterns in biological sequences. For example, in PSI-

BLAST it leads to better results by identifying newly detected sequences. Finally, 

we have Clustal W, a general-purpose multi-sequence alignment program for DNA 

or proteins. It produces biologically important alignments of multiple sequences of 

different sequences. It calculates the best match for the selected sequences, and 

it aligns them so that the identities, similarities, and differences are visible. 

 

Long Short-Term Memory (LSTM) is an artificial repetitive neural network 

architecture used in the field of deep learning. It has feedback links, meaning it can 

process not only individual data points (such as images), but also entire data 

sequences. An LSTM is a type of Recurrent Neural Network (RNN), which is an 

alternative neural network, where the same network is trained through sequence 

of inputs across “time”. I say “time” in quotes because this is just a way of splitting 

the input vector into time sequences, and then looping through the sequences to 

train the network.  

 

Bidirectional Long Short-Term Memory Networks (BLSTM) is an extension of 

LSTMs. This supervised learning method trains a special recurrent neural network 

to use a long-range symmetric sequence context. It achieves this by using a 

combination of non-linear processing elements and linear feedback loops to store 

wide range environments, which does not happen in LSTMs, thus making it better. 

Similarly, there is the Gated Recurrent Unit (GRU). GRU is a gateway mechanism 

to repetitive neural networks. GRU looks like a long-term memory (LSTM) with a 
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forget gate, but has fewer parameters than LSTM, as it has no output gateway, 

and is therefore faster. 

 

If we were to compare these neural networks, we would see that: 

• LSTM receives complete sequences to make predictions, while CNN is 

designed to « exploit “spatial correlation” in data and works well on images 

and speech»20. 

• In training, CNN needs fewer parameters than DNN, but works slower. 

LSTM also have fewer parameters than DNN, though more than CNN. 

• CNN is considered to be better than RNN, because the size of the input 

and output of CNN is identical, unlike that in RNN. 

• CNN is faster than RNN, since RNN reevaluates the previous results of 

each sequences each time. 

 

Nuclear Magnetic Resonance (NMR) Spectroscopy is a natural phenomenon in 

which nuclei in a magnetic field absorb and re-emit electromagnetic radiation. 

Spectroscopy determines how carbon is linked to hydrogen. How does NMR work; 

«when molecules are placed in a strong magnetic field, the nuclei of some atoms 

will begin to behave like small magnets... The resonant frequencies of the nuclei 

are then measured and converted into an NMR spectrum that displays all of the 

right frequencies as peaks on a graph».21 

 

3.2  Secondary Structure Prediction 

 

Some algorithms utilize neural networks to find the secondary protein. Deep 

Convolutional Neural Fields (DeepCNF) is a deep learning extension of conditional 

neural fields22 and deep synergistic neural networks (DCNNs). It can model the 

interdependence between adjacent 3 and 8 state secondary structure labels and,  

 
20  https://medium.com/ai-ml-at-symantec/should-we-abandon-lstm-for-cnn-83accaeb93d6 
21  Taken from : https://www.nanalysis.com/nmready-blog/2019/6/26/what-is-nmr-
spectrography-and-how-does-it-work 
22  CNF is an integration of random conditional fields (CRF) and shallow neural networks. 

https://www.nanalysis.com/nmready-blog/2019/6/26/what-is-nmr-spectrography-and-how-does-it-work
https://www.nanalysis.com/nmready-blog/2019/6/26/what-is-nmr-spectrography-and-how-does-it-work
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so, it is much more powerful than the CNF. It uses DCNN to replace the shallow 

neural networks used in the CNF so that it can capture the very complex 

relationship between input features and output tags. Another way of finding the 

secondary protein structure is the Protein Secondary Structure Prediction Based 

on Data Partition and Semi-Random Subspace Method (PSRSM), based on a data 

distribution and semi-random subdivision method. It uses the CB513, CASP10, 

CASP11, CASP12 datasets and the PSI-BLAST, DSSP and DeepCNF algorithms. 

Then, there is RaptorX, a web server that predicts the structural property of a 

protein sequence without the use of standards. It surpasses other servers, 

especially for proteins without narrow bonds in PDB or with a very sparse 

sequence profile23. This server uses a powerful internal deep learning DeepCNF 

model to predict secondary structure, solvent accessibility (ACC) and disruption 

areas (DISO). In addition, there are Neural networks integrated with two-

dimensional convergent Neural Networks. They are a hybrid deep learning 

framework, 2-dimensional convergent two-way repetitive neural networks (2C-

BRNNs), that improves the accuracy of 8 categories PSSP. This framework 

incorporates 2D cooperative or 2D aggregation tasks with bidirectional GRUs and 

LSTMs, including four models: 2DConv-BGRUs, 2DConv-BLSTM, 2DCNN-

BGRUs, and 2DCNN-BLSTM. The previous two models contain only 2D assembly 

functions, while the last two models consist of 2D assemblies and 2D aggregation 

functions. The 2C-BRNNs Deep Learning Framework is recommended because it 

uses 2D CNNs to extract local interactions between amino acid residues and 

accumulated BGRUs or BLSTMs to extract long-term amino acid residue 

interactions. It applies GRUs and LSTMs to extract long-range interactions 

between amino acid residues in protein sequences. The dimension of the vector 

of protein arrays helps to predict secondary structures. Finally, the proposed 

framework is verified in the filtered CB6133, CB513, CASP10 and CASP11 

datasets. 

 
23  Profile that carries little evolutionary information. 



Prediction of Secondary Protein Structure 

 

 
Ι. Θύμιου  39 

 

 

The Deep asymmetric convolutional long short-term memory (DeepACLSTM) is 

next. DeepACLS is proposed for the prediction of 8-categories of secondary 

protein structure by protein sequence characteristics and profile characteristics. 

The method applies effective asymmetric convergent neural networks (ACNNs) in 

combination with two-way short-term memory neural networks (BLSTM) to predict 

the secondary protein structure, utilizing the dimension carrier of the matrix of 

protein characteristics. In DeepACLS, ACNNs export complex local amino acid 

environments. BLS neural networks capture long-distance interdependencies 

between amino acids. In addition, the prediction section predicts the class of each 

amino acid residue based on both local environments and long-distance 

interdependencies. In DeepACLS they conducted experiments on three available 

data: CB513, CASP10 and CASP12. 

 

There is also the use of End-Capped α-Helices as Modulators of Protein Function. 

The examination of protein complexes with other biomolecules reveals that 

proteins tend to interact with partners through folded sub-domains, where the 

backbone has a secondary structure. Α-Helices, the largest class of protein 

secondary structures, play fundamental roles in a variety of protein-protein and 

protein-nucleic acid interactions. The Hydrogen Bond Surrogates (HBS) approach 

provides an N-terminal cap for helix nucleation to produce stable α-helical 

peptides. The potential of HBS helices has been demonstrated with inhibitors 

designed to regulate HIV fusion, hypoxia-induced gene transcription, and 

p53/hDM2 interactions. Due to rational design principles, the ease of synthesis, 

and the reliable replication of α-helix proteins, HBS peptides are expected to be 

useful probes for answering important biological questions involving protein-

biomolecule interactions. The interaction of helical elements is useful for regulating 

protein-protein interactions.  
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But in order to be studied, they must first be stabilized. This is done by the following 

methods: 
 

1) Hydrogen Bond     

 Surrogate 

2) Hydrocarbon stapling 

3) Lactam bridges 

4) Triazole bridge 

 

The N-Terminal End-Cap strategy highlights the core principle of a helix but has a 

limited scope. It requires multi-step formulations and a large hydrophobic 

attachment to the N-terminus that can affect binding interactions. Hydrogen Bond 

Surrogate (HBS) is based on this strategy. Extensive NMR spectroscopy and 

circular dichroism were used to examine the structure and stability of HBS α-

helices. The configuration of these compounds is also supported by a crystalline 

X-ray structure. These studies have shown that the HBS approach provides stable 

small α-helices from biologically relevant sequences. The results using NMR 

spectroscopy showed that the Hydrogen Bond Surrogates helices consisting of 

seven to fourteen residues contain very stable hydrogen capture networks. 

Biophysical studies show that the HBS approach is a valid means for the 

stabilization of fixed-helical peptides. However, perhaps a more important aspect 

of HBS technology is its application to the regulation of protein-protein interactions. 

HBS helices are used in cell culture studies due to their increased metabolic 

stability and cell uptake properties. 
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Context convolutional neural network (Contextnet) is the next algorithm. 

Convolutional and recurrent neural networks are two basic types of deep leaning 

architectures with comparable prediction accuracy but different training processes 

for optimal performance. Both convolution and LSTM architecture have the ability 

to capture non-local interactions through either maxpooling or recurrent 

operations. However, maxpooling, while expanding the field of convolutional 

networks, it reduces image size and leads to information loss. The recurrent 

operation makes the training process computationally intensive compared to 

convolutional networks. Therefore, dilated convolutions were used to 

systematically accumulate multiscale information without losing analysis. 

 

The dilated convolution can effectively increase the receptive field without 

increasing the model parameters or the calculation number. With dilated 

convolution, non-local interactions can be captured by fewer convolution layers. 

So, to better record non-local interactions without costly training calculation, a 

convolutional neural network was built, Contextnet. The loss function was cross 

entropy, and the network was built with Tensorflow. All networks were trained with 

GPU (GTX 1080Ti). Five data sets were used in this. 
 

1) The Jpred data set containing a training set of 1348 sequences and a test 

set of 149 sequences. These sequences were selected as representatives 

from the SCOP superfamilies. All test and training protein sequences belong 

to different superfamilies. 

2) The CB513 dataset containing 513 non-redundant sequences. All 

sequences were compared in pairs and were non-redundant with a 5SD cut-

off. 

3) The CASP12 

4) The CASP13 were downloaded from the Protein Structure Prediction 

Center and the target structures were used. 

5) The Cullpdb dataset was obtained from the dunbrack lab. The 9311 chains 

in the Cullpdb list were obtained from the PDB (protein data bank). All 
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sequences in Cullpdb, CB513, CASP12, and CASP13 datasets were deleted 

with a CD-HIT server and the sequence having more than 25% identity with 

any sequences in the datasets was removed. Thus, the sequence identity in 

all datasets is less than 25%. Sequences that failed in the described PSSM 

fabrication process were also rejected. Finally, there were 8601 sequences 

in the Cullpdb dataset, 261 sequences in the CB513 dataset, 35 sequences 

in the CASP12 dataset, and 15 sequences in the CASP13 dataset. The 

Cullpdb dataset was arbitrarily split into a Cullpdb sequence 8401 training 

dataset and a 200-sequence test dataset. 

 

Contextnet's Q3 accuracy was 84.87%, which indicates that it is an equally good 

predictor of secondary structure. Consistent with many neural network studies, the 

importance of training processes in determining the generalizability of Contextnet 

has been demonstrated. The varied architectures with competitive ability to predict 

secondary protein structure were potentially of great importance providing different 

intermediate representations that could be useful in later 3D studies. 

 

Similarly, The Jpred, Protein Secondary Structure Prediction Server provides 

predictions from the JNet algorithm, one of the most accurate methods for 

predicting secondary structure. In addition to the secondary protein structure, 

JPred also predicts solvent accessibility and coil regions. Sequence residues are 

categorized or assigned to one of the secondary structural elements, such as α-

helix, β-sheet, and coil. Jnet uses two neural networks for its prediction. The first 

grid is fed with a window of 17 residues in each amino acid in the alignment plus a 

maintenance number. It uses a hidden level of nine nodes and has three output 

nodes, one for each secondary structure element. The second network is fed with 

a 19-residue window (the result of the first network) plus the retention number. It 

has a hidden level with nine nodes and has three output nodes. 
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The MPI (Max-Planck Institute) Bioinformatics Toolkit is an interactive web service 

that provides access to a wide variety of public and internal bioinformatics tools. 

They are grouped into different sections that support sequence searches, multiple 

alignment, prediction and classification of secondary and tertiary structures. 

Quick2D integrates the results of various secondary structure programs, 

transmembrane programs, and disturbance prediction programs into one view. It 

provides a friendly and intuitive user interface with an online facility. One could 

perform PSI-BLAST, analyze a multiple alignment of selected successes, and send 

the results to a cluster analysis tool. Part of the Quick2D tool offered by the MPI 

Bioinformatics is PiPred. It is a deep learning method for predicting π-helixes in 

protein sequences. PiPred uses the CB6133, CB513, CASP10, CASP11 datasets 

and the PSI-BLAST, DSSP and PSSM algorithms. 

 

A Recurrent Neural Networks (RNN) is a class of artificial neural networks where 

connections between nodes form a directed graph along a time sequence. This 

allows it to display time dynamic behavior. Derived from feedforward neural 

networks, RNNs can use their internal state (memory) to process variable-length 

input sequences. According to a paper titled “Protein secondary structure 

prediction improved by recurrent neural networks integrated with two-dimensional 

convolutional neural networks”24, RNN uses datasets CB6133, CB513, CASP10 

and CASP11. 

  

In addition, the models were compared with other existing methods (DeepCNF, 

CNF, SSpro and GSN). In this comparison, all models except CNF were trained 

using standard sequence feature and profile feature. In the CNF model three 

additional features were used and the feature vector of an amino acid is 78 

dimensions. However, the article models achieve even greater Q8 accuracy. All 

these models have been trained and tested in the filtered CB6133 dataset and 

tested in the public databases CB513, CASP10 and CASP11. The models achieve 

 
24 From: https://www.worldscientific.com/doi/abs/10.1142/S021972001850021X 

https://www.worldscientific.com/doi/abs/10.1142/S021972001850021X
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even greater Q8 accuracy. The best performance is due to the power of the hybrid 

integrated 2D convolution, 2D pooling with stacked bidirectional LSTM, and is also 

due to the local and long-range interactions. The result shows that the proposed 

model is more expressive in protein sequences. 

 

Scoring Protein Interaction Decoys using Exposed Residues (SPIDER) is 

developed as a scoring function based on the knowledge of protein-protein 

interaction. It is a new multi-body pose-scoring function that has no theoretical limit 

on the number of residues that contribute to individual interaction conditions. 

 

The SPIDER rating is based on the geometric similarity of the interconnect 

residues between the binding sites and the natural sites. A coarse-grained 

representation of a protein-protein complex is used, where each residue is 

represented by its centripetal side chain. A computational geometry approach 

called Almost-Delaunay tessellation is applied that converts protein-protein 

complexes into a network of residue contacts or a non-directional graph where the 

top residues are nodes connected at the ends. This processing forms a family of 

graphs representing a set of protein-protein complexes. Next, the signature mining 

approach to identify common interfacial residue patterns that occur in at least one 

subset of natural protein-protein interfaces is used. The geometric parameters and 

the frequency of appearance of each "natural" pattern in the training set are used 

to develop the new SPIDER rating function.  

 

SPIDER2 is then created which is a package for the provision of secondary 

structure, accessible surface, and torsion angles of the main chain. SPIDER2 uses 

three repetitions of deep learning neural networks to improve the accuracy of 

predicting multiple building properties simultaneously. Finally, SPIDER3 is used to 

capture non-local interactions with long-term repetitive bidirectional memory neural 

networks to improve the prediction of secondary protein structure, spine angles, 

contact numbers, and solvent accessibility. Spider3 uses the PSI-BLAST, DSSP, 

PSSM and LSTM algorithms, as well as repetitive BRNN neural networks.
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DeepPrime2sec investigates the in-depth learning prediction of secondary protein 

structure from the primary protein sequence. It studies the function of different 

possibilities including a hot vector, biophysical characteristics, protein sequence 

integration (ProtVec), deep context integration (known as ELMo) and PSSM. 

Porter is a new system for predicting secondary protein structure in three 

categories. Porter relies on bidirectional repetitive neural networks with shortcut 

links, precise input profile encoding obtained from multiple sequence alignments, 

second stage filtering from repetitive neural networks, long-range information 

integration, and large-scale forecast sets. Porter accuracy is tested with rigorous 

cross-validation 5 times in a large protein. 

 

The HMMSTR/Rosetta server predicts the structure of proteins from the sequence: 

secondary structure in the form of 3-members (H, E, L), local structure in the form 

of torsion angles (φ, psi) and super-secondary structure in the form of symbols (for 

clones and beta turns). HMMSTR is a hidden Markov model for local sequence-

structure correlations in proteins based on the I-sites library with sequence-

structure patterns. Scratch Protein Predictor (Sspro-8) is a server for predicting 

secondary protein structure based on evolutionary protein information and 

secondary homologous protein structure. SSpro8 is an extension of Sspro. Instead 

of using three classes (helix, clone, and others) to match the secondary structure 

of a protein, SSpro8 adopts the complete 8-class DSSP output classification: 

• H: α-helix 

• G: 310-propeller 

• I: π-helix (extremely rare) 

• E: extended leg 

• B: β-bridge 

• T: turn 

• S: bending 

• C: coil 
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Sequence Alignment and Modeling system (SAM) is a collection of flexible 

software tools for creating and using Hidden Markov models for biological 

sequence analysis. The model states can be considered to represent the sequence 

of columns in multiple sequence alignment, with predictions of arbitrary ones 

depending on the insertion and deletion position in each sequence. The models 

are trained in a family of proteins or nucleic acid sequences using an expectation 

maximization algorithm and a variety of algorithmic heuristics. A trained model can 

then be used to create multiple alignments and search databases for new family 

members. SAM is an iterative HMM search method for generating an HMM from a 

protein sequence or alignment using an iterative search of a protein database. 

 

Deep inception-inside-inception (Deep3I) is recommended for predicting 

secondary protein structure and is used as a MUFOLD-SS software tool. The 

MUFOLD-SS matrix corresponds to either eight states or three states of the 

primary amino acid sequence of a protein (Q3, Q8). It uses CASP10, CASP11,  

 

CASP12 datasets and PSI-BLAST, DSSP and LSTM algorithms. Generative 

Stochastic Networks (GSN) is based on learning the transition operator of a 

Markov chain whose static distribution estimates the data distribution. The 

transition distribution is a conditional distribution that generally involves a small 

movement, so it has fewer dominant modes and is monotonous at the limit of small 

movements. This simplifies the learning problem by making it less like a density 

estimate and more like a supervised operation approach, with gradients that can 

be obtained from the backprop. 

 

Then, there is the Self-consistent method (SELCON). In the self-consistent 

method, the spectrum of the protein analyzed is included in the set of bases. An 

initial estimate is made for the unknown structure as a first approach. The initial 

program, SELCON, evaluates an α-helix, opposite and in parallel b-sheets, turns 

and balances. SELCON2 is modified to use a dataset that evaluates poly-L-proline  
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II modulation, in addition to α-helix, b-sheet and turns. In the SELCON3 version, 

α-helix and b-sheet configurations in spherical protein structures are divided into 

regular and distorted fractions considering several terminal residues. The number 

of α-helical and β-strand segments and their average length in a given protein are 

calculated from the fraction of distorted helical and strands, relative to the total 

helix and strand content. The main advantage of this method is that it provides very 

good estimates for the structure of spherical proteins. 

 

3.2.1 Characterization of long and stable de novo single alpha-helix. The 

domain provides a new image for stability. 
 

 

Single naturally occurring α-helices (SAHs) are rich in Arg (R), Glu (E) and Lys (K) 

residues and are stabilized by multiple salt bridges. Understanding how salt 

bridges promote their stability is difficult, as SAHs are large, and their sequences 

vary. Thus, de novo 98-residue polypeptides containing 7-residue repeats 

(AEEEXXX, where X is K or R) are designed and tested to promote salt bridge 

formation between Glu and Lys / Arg. 

 

The Lys-rich sequences (EK3 (AEEEKKK) and EK2R1 (AEEEKRK)) form both 

SAHs, of which EK2R1 is more helical and heat-stable, suggesting that Arg 

increases stability. Glu and Arg form salt bridges more often, use a wider range of 

rotamer conformations and are more dynamic than Glu-Lys. The specific K: R ratio 

is likely to be important in determining helical stability in de novo and naturally 

occurring polypeptides, giving a new insight into how single α-helixes stabilize. 

 

It has been shown that, in some cases, a region of the SAH may mediate binding 

to other proteins. SAHs are likely to form when a sequence is rich in acidic and 

basic residues (Glu (E), Arg (R) and Lys (K)). It has no hydrophobic seam and 

contains many possible intrahelical interactions (salt bridges) between (E - K) or 

(E – R). These pairs are three or four residues apart (e.g., "E → K (+3)" or "K → E 



 
Prediction of Secondary Protein Structure 

 
 

Ι. Θύμιου  48 

(+3)" where the residue K is 3 residues downstream or upstream from E 

respectively). However, understanding how these salt bridges promote highly 

helical natural sequence states is difficult, as SAHs have several different possible 

salt bridges in terms of sequence separation and residue type. 

To determine how Lys and Arg contribute to the stability of long SAHs, de novo 

SAHs were originally designed. Side chain interactions in α-helixes were analyzed 

by the Protein Data Bank (PDB) for E - R (ER3) pairs and compared with E - K 

(EK3) pairs. Additional molecular dynamics (MD) simulations were performed to 

investigate the formation of salt bridges and the dynamic behavior of salt bridges 

formed by E-K and E-R parings in SAHs. The SAHs were redesigned from myosin-

6 (Myosin VI plays a key role in cell motility), where all Lys residues were replaced 

with Arg and vice versa. The results showed the same behaviors as those of de 

novo polypeptides. Lys and Arg are not completely interchangeable, but both 

contribute to SAH stability. 

 

The redesign of natural SAHs predictably changes their properties. All Lys residues 

in SAH were replaced by myosin-6 with Arg (M6R), which increases the Arg 

content from 19% to 30%. And in a second construction, all Arg residues were 

replaced with Lys (M6K), which increases the K content from 11% to 30%. The 

results showed that the M6R was significantly more helical than the M6K. 

Formulation of the K / R content in a natural SAH has similar effects on helical and 

thermal behavior as discovered for de novo SAH, EK3 and EK2R1. Interestingly, 

increasing the Arg content in this case did not promote aggregation. This may be 

due to the non-repetitive nature of the sequence compared to de novo 

polypeptides and the more varied amino acid content other than E, K and R. The 

pairs E - R and E - K have different properties in the crystalline structures of protein 

X-rays. The data presented show that the AEEEXXX iteration design is suitable for 

designing SAHs models, with X = R increasing stability, and X = K being important 

for solubility. The analysis also showed that E-R pairs form salt bridges more often 

than E-K pairs. Rotamer combinations used by E-R pairs to form salt bridges were 

dominated by less than a single combination, in contrast to E-K pairs. 
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PDB analysis shows that E - R pairs are more common and show a wider range of 

rotamer configurations than E-K pairs to make salt bridges. Molecular dynamics 

simulations show different dynamics for the E-K and E-R salt bridges. MD 

simulations were performed to investigate the dynamic behavior of the E-K and E-

R salt bridges. MD simulations showed that E-K salt bridges were less highly 

occupied than E-R. The only difference observed between the PDB results and the 

MD simulations is that the fullness of the salt bridges R → E (+3) and K → E (+3) 

is higher than expected. Completeness can be used as a proxy for the power of 

the charge–charge interaction. MD simulations show that E-R salt bridges are 

formed more often than E-K salt bridges but have a significantly 

shorter lifespan. E - R salt bridges are more versatile in terms of freedom of 

formation than salt bridges E-K. In addition, simultaneous salt bridges involving 

Arg (≪E-R-E≫ networks) tend to form more frequently than those involving Lys. A 

series of polypeptides were tested to determine the relative contribution of Lys and 

Arg to SAH stability. More specifically, it was determined that: 
 

• The only de novo polypeptides that exhibited typical SAH behavior were EK3 

and EK2R1, with the inclusion of a unique Arg residue in EK2R1 increasing 

helicity and stability. 

• Any further increase in Arg content in de novo polypeptides (EK1R2 and ER3) 

promoted aggregation. 

• The replacement of all Lys residues with Arg in naturally occurring myosin-6 

SAH, increased helicity and stability in relation to thermal folding, while the 

replacement of Arg with Lys, had the opposite effect. So, Lys and Arg do not are 

completely interchangeable but contribute to the stability of SAHs. 

 

The Lys option or a mixture of Lys and Arg subtly modifies stability to provide 

design flexibility. EK3 and EK2R1 have the potential to modulate protein-protein 

interactions in both in vitro and in vivo applications. 
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3.2.2 PISCES: culling protein sequence server. 

 

 

PISCES is a public server for the elimination of chains of protein sequences from 

the Protein Data Bank (PDB) with sequence identity and structural quality criteria. 

It can provide lists that are deleted from the entire PDB or from lists of PDB entries 

or chains provided by the user. Sequence identities are obtained from PSI-BLAST 

alignments with specific position substitution tables derived from the non-

redundant protein sequence database. Therefore, PISCES provides better listings 

than servers that use BLAST, which are unable to recognize multiple relationships 

with less than 40% sequence identity. It can also delete non-PDB sequences 

provided by the user as a list of GenBank IDs, FASTA format file, or BLAST / PSI-

BLAST output. 

 

The PDB-REPRDB server allows the user to configure custom lists. PDB-REPRDB 

uses a Needleman-Wunsch global alignment algorithm and, as such, it does not 

provide sequences. The ASTRAL site provides lists of protein sequences in fixed 

sequence identities or E values derived from BLAST alignment pairs. The PISCES 

server provides the following functions: 

 

• delete the entire PDB according to the user input criteria. 

• delete a list of user supplied PDB chains according to user input 

criteria25. 

• delete any set of sequences provided by the user in FASTA format, 

as a set of GenBank IDs or as a BLAST/PSIBLAST output. 

 

Sequences are obtained from the Uniformity Project mmCIF files provided by the 

RCSB. The analysis data and the R value are also obtained from the Uniformity 

Project files. Some missing values come from the PDBFINDER database. For  

 
25For example, a user could use the PDB search feature to select all human proteins and then 

submit this list to the server to obtain a subset according to the sequence identity and structural 
quality criteria. 
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better estimates of the identity sequence over longer evolutionary distances, PSI-

BLAST was used to calculate these identities. It is used locally to create a similarity 

table (PSSM) or a profile of homologous sequences in the NCBI non-backup 

protein sequence database with each unique PDB sequence. 

 

Three repetitions are performed for each query, with E-value = 0.0001 for inclusion 

in the profile. The drift is checked in PSSM to see if previous round laps with E-

value values better than 0.0001 appear with E-value values worse than 0.0001 in 

subsequent laps. If so, they receive the latest non-offset profile. The resulting 

matrix is used to search the PDB for sequences associated with each query with 

an E-value greater than 1 and an alignment length greater than 20, and the 

resulting sequence identities and alignment lengths from the PSI-BLAST output 

are stored. 

 

The Hobohm and Sander method is used to eliminate sequences that pass the 

analysis and R values that are structure quality criteria. The list is ranked, first, 

according to the analysis from best to worst.Sequences with the same resolution 

are sorted according to the value of R. The first sequence is marked as included 

in the exported list. Each sequence after the list is marked as excluded if it has 

(compared to the first sequence) a sequence identity higher than the desired limit. 

The program then moves to each subsequent sequence in the list and repeats this 

process. 

 

As described above, the server also provides a feature for neutralizing non-PDB 

sequences. In this case, the sequence identities are computed with PSI-BLAST, 

but the PSSMs are generated from the set of input sequences, rather than from 

the entire sequence database. The PISCES website provides four options for users 

according to the most common requests. 



 
Prediction of Secondary Protein Structure 

 
 

Ι. Θύμιου  52 

• The first option is culling the PDB sequence. Users can specify their own 

parameters, such as sequence identity, resolution, and R value, to obtain a 

sequence list of current PDB files. 

• The second option provides an entry form for a list of PDB entries or chains. 

• The third option provides an entry form for a list of GenBank access numbers. 

These numbers may include other information on each line, as long as the first 

item on the line is the passcode. For example, a user can cut and paste the list 

of successes from the BLAST or PSI-BLAST output that includes protein names 

and E-value values. The PISCES server uses GenBank access numbers to 

retrieve sequences from the protein sequence database with the NCBI fastacmd 

program. 

• The fourth option allows the user to enter protein sequences in FASTA format, 

as BLAST output, or PSI-BLAST. In the case of BLAST / PSI-BLAST output, 

PISCES will take the sequences from the "Sbjct" lines to the whole culled. 

 

 

Once the user is logged in, the server performs all the calculations and sends the 

user an e-mail containing links to the following files which the user can then 

download: 
 

• The list of importer IDs if provided by the user. PDB chain structure quality data 

included. 

• The output directory of the chain IDs. The user criteria are given in the title of 

the file. 

• The output sequences in FASTA format. 

 

 

When choosing a sequence alignment program, a local alignment program such 

as BLAST or PSI-BLAST is a better choice than a global alignment program such 

as ClustalW. The reason is that a pair of proteins can share one homologous 

domain, but can each contain other unrelated domains. A global alignment  
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program will try to align complete sequences and therefore provide very low 

sequence identities, although the shared domain may be very homologous. 

 

In such a paper they want to have alignments of all homologous pairs in the PDB 

over 20% sequence ID. PSI-BLAST, which is much faster than structural 

alignment, is able to detect most such relationships with reasonable accuracy and 

completeness. In contrast, BLAST often cannot detect multiple relationships below 

40% of the sequence identity. When this happens, a deduction list will contain 

sequences that should have been deleted if sequence relationships had been 

identified. Even when BLAST provides alignment for a sequence pair, it can only 

align a short, well-preserved fragment. The resulting sequence identity, however, 

depends on the normalization process used. 

 

The ASTRAL site uses BLAST but is normalized by averaging the full lengths of 

the aligned sequences (not just the aligned segments). When BLAST aligns only 

one fragment, this results in significantly underestimated sequence identities. 

Since BLAST may also fail to align many pairs with sequence identity below 40%, 

it is likely that ASTRAL lists contain many sequences that will be deleted under 

other protocols. To see if many sequences were indeed deleted, they used PISCES 

to recall the 20% list with a 20% sequence ID according to the PSI-BLAST 

alignments. A list of 1914 valid input sequences (only complete chains used) from 

ASTRAL resulted in 1617 output sequences from PISCES. Many of the sequence 

rejections came from E-value limit values and sequence identities. 

 

3.2.3  An improved accuracy index for evaluating secondary protein 

structure prediction algorithms. 

 

 

Q8 is a refined accuracy index which is used to evaluate secondary structure 

prediction algorithms. It has been shown to be better than Q3, because Q8 carries 

more predictive accuracy matrix information than Q3. Therefore, the algorithms are 
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evaluated more objectively than Q8. In the case of predicting two states (helix vs. 

non-helix or strand vs. non-strand), there are four possibilities in predicting a given 

residue position. These are: 
 

• positive correct prediction (helix residue is predicted as the helix) 

• negative correct prediction (non-helix is predicted as non-helix) 

• underprediction (helix is predicted as non-helix) 

• οverprediction (non-helix is predicted as helix) 

 

 

In the case of a three-state prediction, there are nine possibilities in predicting a 

given residual position – helix (or strand and coil) which can be predicted as helix, 

strand, or coil respectively. Information is always lost in the process of going from 

four or nine numbers to three or eight. The bottom line is that the less information 

is lost, the better the accuracy. Based on this reasoning, Q3 accuracy is not good 

at all. According to a research conducted on this topic26, the above information is 

proved to be true. Based on 396 non-homologous proteins, five available 

secondary structure algorithms were evaluated and compared using the new Q8 

index. All the algorithms had better accuracy, and more specifically the PHD 

algorithm showed Q8 accuracy better than 70%. Q3 accuracy is replaced now with 

Q8 for the most accurate secondary protein structure prediction assessment. 

 

For a three-state prediction, the prognostic result can be described by a 3x3 

accuracy matrix, in which the element aij is the fraction of residues observed to be 

in state i and is predicted to be in structure j, where i, j ϵ S≡ (α, β, γ).27 

 

 

 
26https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.1063 
27The accuracy table A is shown below. 

https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.1063
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Based on the accuracy table, the accuracy for a two-state prediction can also be 

calculated. The positive correct prediction, negative correct prediction, 

underprediction and overprediction for the two states of helix and non-helix are 

denoted by wa, xa, ya and za, wb, xb, yb, zb, wc, xc, yc and zc respectively. For 

example, wb is the fraction of residues correctly predicted as β-strand in a strand 

prediction versus non-strand. 

 

Table 2 – A list of all the variables and what each one symbolizes.  
 

 

αij The fraction of residues observed to be in state i and 
predicted to be in structure j 

Α Accuracy table 
wi Positive correct prediction for both helix and non-helix 

states 
xi Negative correct predicted for both helix and non-helix 

states 
yi Underprediction for both helix and non-helix states 
zi Overprediction for both helix and non-helix states 
Xi , Yi and Zi The 3D mapping coordinates of wi , xi , yi  and zi 

di0 The Euclidean distance between the mapping point and the 
point with the ideal prediction 

Q8i The accuracy index for a two-state forecast 
V Nine-dimensional space 
Va, Vb and Vc Subspaces covered respectively by (Xa,Ya,Za) , (Xb,Yb,Zb) 

and (Xc,Yc,Zc) 
 

 

 

Typically, the forecast accuracy is represented by Q3a, Q3b and Q3c, respectively, 

for two-state forecasts. 

 
 

The information transferred from yi and zi to Q3i is obviously lost. 
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Table 3 - Percentage 

 

 

To overcome the disadvantage, the four real numbers wi, xi, yi and zi are 

mapped in three-dimensional (3D) space, whose coordinates are denoted by Xi, 

Yi and Zi, where: 

 

 

Above: 

• α are the residues correctly predicted as helix in a propeller versus 

non-helix prediction. 

• β is the residues correctly predicted as a b-clone in a prediction of 

the clone versus a non-clone. 

• c are the residues correctly predicted as coil in a coil versus non-coil 

prediction. 

 

An ideal prediction is wi + xi = 1, yi = zi = 0. The coordinates of the mapping point 

for the ideal prediction are Xi0 = 1, Yi0 = Zi0 = 2wi - 1. For any two-state prediction 

described by the four real numbers wi, xi, yi, and zi, the Euclidean distance 

between the mapping point and the point with the ideal prediction is denoted by 

di0. We set a new Q8i accuracy index for a two-state forecast. The two states of 

the prediction are either helix vs. non-helix or strand vs. non-strand. Residues 

predicted as coils are classified together with residues identified as clones. 
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For a three-state forecast, Q3 accuracy is defined as: Q3 = ααα + αββ + αcc 

 

One of the key weaknesses of Q3 is that the information transferred by the non-

diagonal elements of the accuracy matrix are lost. In the case of a three-state 

forecast, there are nine possibilities of a forecast at a given residual position. That 

is, either a propeller or a strand or a coil. To overcome this drawback, you define a 

nine-dimensional space V, where the subsections Va, Vb and Vc are covered by 

(Xa, Ya, Za), (Xb, Yb, Zb) and (Xc, Yc, Zc) respectively. 

 

 

The symbol Q indicates the direct sum of three states. You use exactly the same 

strategy for the Q8i, and the result is: 

 

 

The accuracy of Q8 is calculated by comparing the number of correct states with 

the total number of amino acids, yielding a crude percentage. In other words, Q8 

accuracy is defined as the percentage of residues for which the predicted 

secondary structures are correct. Q8 conveys more useful information than Q3. For 

example, information transferred from non-diagonal elements in the accuracy table 

are completely ignored by Q3 and not by Q8. A prediction should be related to the 
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observed secondary contents of structures for a protein to be predicted both 

theoretically and realistically. Q3 accuracy does not reflect this point, unlike Q8. 

 

The mathematical formula above is very symmetric with respect to: 

• the three types of secondary structure (helix, strand and coil) 

• the contents of a secondary structure observed and predicted by wi + yi and 

wi + zi 

• the false-negative and false-positive fractions yi and zi 

 

All these features of Q8 show that it is generally better than Q3. 

 

Q8 accuracy is the measure of performance of 8 secondary protein classification 

modes. These 8 situations are: 

H: α-helix 

G: 310-propeller 

I: π-helix (extremely rare) 

E: extended leg 

B: β-bridge 

T: turn 

S: bending 

C: coil 

Therefore, in the above formulas, Table 4 will be 8x8, and i will get 8 values. The 

markers were created to improve the predictive quality of known proteins, but 

they could not predict an unknown protein structure. 

Various experiments were performed, where some proteins were removed from a 

database of known proteins, so that when they were placed in the database as 

unknowns, they could see whether the given markers could recognize them. After 

many modifications, the index parameters were used to find a secondary protein 

structure. Historically, seven accuracy indicators have been proposed, denoted 

by Q1 - Q7. 
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Table 4 – Q1 – Q7 

 

 
 

 

 

The secondary protein structures are traditionally characterized as 3 general 

states: helix (H), strand (E) and coil (C). Of these three general states, DSSP 

proposed a better characterization of secondary structures by extending the three 

states to eight states: 310 helix (G), α-helix (H), π-helix (I), β-strand (E), bridge (B), 

turn (T), bend (S) and others (C). The prediction of the three states from the protein 

sequences has been extensively investigated for decades using many machine-

learning methods, including graphical probability models, support vector machines, 

hidden Markov models, artificial neural network, and two-way repetitive neural 

network (BRNN). 

 

Now the Q8 index is used with the same methods. For example, in a data set, the 

Q8 accuracy will read each sequence separately and classify it into one of 8 states. 

But there is a downside. In sequences that are over 700 in length, Q8 will break it 

down and read it as 2 sequences. 
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In general, the Q8 index helps us to classify a protein based on its condition, i.e., if 

it has, for example, α-helix or π-helix, etc. More specifically below is a table (Table 

5) with datasets processed with Q8 accuracy. It states how many sequences were 

found from each data set to display any of the 8 states. 

 

Table 5 – Training test 
 

 
 

 

So, using some methods for a specific data set, we see in the table below (Table 

6) the performance of the methods based on the Q8 index. These percentages 

show us how well the methods were able to classify the proteins, and therefore 

how accurately they could identify any protein. 
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Table 6 – Q8 predictive 

 

 

 

3.2.4   Protein secondary structure prediction improved by recurrent neural 

networks integrated with 2-dimensional convolutional neural 

networks. 

 

 

This paper states that predicting secondary protein structure (PSSP) is an 

important area of research in bioinformatics. Representation of protein sequence 

features could be contemplated as a template, which includes the dimension of the 

amino acid residue (time step) and the dimension of the feature vector. Common 

approaches to predicting secondary structures focus only on the dimension of 

amino acid residues. However, the feature carrier dimension may also contain 

useful information about the PSSP. To be able to integrate the information into both 

dimensions of the table, a hybrid deep learning framework, 2-dimensional 

convergent two-way iterative neural networks (2C-BRNNs), was proposed to 

improve the accuracy of the 8-category secondary structure prediction. 
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The proposed hybrid framework is the extraction of discrete local interactions 

between amino acid residues with two-dimensional convergent neural networks 

(2DCNN) and then further capturing of long-range interactions between amino acid 

residues with two-way repeating units (BGRUs) or two-way long-term memory 

(BLSTM). Specifically, the proposed 2C-BRNNs framework consists of four 

models: 2DConv-BGRUs, 2DCNN-BGRUs, 2DConv-BLSTM and 2DCNN-BLSTM. 

Of these four models, 2DConv models contain only two-dimensional (2D) 

assembly functions. In addition, 2DCNN models contain 2D cooperative and 

centralized functions. 

 

The experiments are performed on four public datasets. Experimental results show 

that the proposed 2DConv-BLS model performs better than the reference models. 

In addition, the experiments show that the proposed models can extract more 

important features from the protein matrix. Also, the feature carrier dimension is 

useful for PSSP. PSSP has been extensively studied for a long time and many 

computational methods have been proposed to predict secondary protein 

structures. However, only a few methods have been used to predict 8-state 

secondary structures, even though 8-state secondary structures may provide more 

detailed local information. In addition, common approaches for predicting 

secondary structures always use a non-sequential model, usually SVM and power 

supply neural networks. These models are not ideal for identifying secondary 

structures because protein sequences cannot be represented as a constant 

dimension vector. 

 

Repetitive neural networks (RNNs) and convergent neural networks (CNNs) are 

known to perform well in a variety of tasks, such as text sorting and image sorting. 

In natural language processing (NLP) tasks, CNN typically uses the one-

dimensional convergence function and the concentration of the maximum one-

dimensional function in the time step dimension to obtain a fixed-length vector. 

However, in image processing operations, CNN implements two-dimensional 

assembly and grouping functions to obtain an image representation of both the  
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time step dimension and the feature vector dimension. Since the amino acid could 

be represented as a dense vector in a protein sequence, then the protein 

sequences could be represented as a matrix, which includes the dimension of the 

amino acid residue (time step) and the dimension of the feature vector. In the 

PSSP, however, CNN-related methods use only convergence and grouping along 

the dimension of the amino acid residues in the tables. 

 

Traditional convergence and grouping functions ignore the vector carrier 

dimension of protein panels, which could contain some useful information about 

the PSSP. In the meantime, this may limit the performance of the PSSP. Therefore, 

it is desirable to derive more distinctive features from the amino acid residue 

dimension and the vector dimension of the protein arrays using 2D CNN. The 

PSSP based on deep learning methods has been closely monitored by proteomics 

researchers. Thus, the researchers of this paper, inspired by the recent success of 

DNNs, proposed a hybrid framework for deep learning, 2-dimensional convergent 

two-way repetitive neural networks (2C-BRNNs) to improve the accuracy of 8-state 

PSSPs. This framework incorporates two-dimensional convergent or centralized 

functions with two-way GRU and LSTM, including four models: 2DConv-BGRUs, 

2DConv-BLSTM, 2DCNN-BGRUs, and 2DCNN-BLSTM. The first two models 

contain only 2D assembly functions, while the last two models consist of 2D 

assemblies and 2D assembly functions. 

 

The PSSP is a bridge between the primary and the tertiary protein structure. 

Secondary protein structures are the early stage of folding the protein molecule as 

the foundation of the protein structure. Structural understanding of proteins is the 

foundation of protein analysis, because secondary structures can help to 

understand the relationship between the function and the primary structure. 

 

The local characteristics of amino acid sequences are the critical and effective 

characteristics for assigning the secondary structure of an amino acid, because 
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the adjacent amino acids may belong to the same category of secondary 

structures. In PSSP, these local interactions can be extracted from CNN, which 

uses 1D convergent functions. In addition, CNN with 2D convergent and 

aggregation functions also have the ability to capture temporal and spatial features 

in image sorting tasks. Inspired by all of this, they represent the characteristics of 

a protein as a matrix and use 2-dimensional CNNs to extract local interactions 

between amino acid residues. 

 

Furthermore, long-range amino acid interactions have distinctive features for 

PSSP. RNNs are useful for sequence data modeling and can capture long-range 

sequence data interactions. However, RNNs could not perform well on the PSSP 

due to the difficulty in training such models. Fortunately, RNNs with gateway 

structures, especially GRUs and LSTMs, can be more efficient for protein 

sequences because these models can remember and artificially forget information 

from gateway structures. Thus, this paper applies GRUs and LSTMs to extract 

long-range interactions between amino acid residues in protein sequences. 

 

In summary, the main contributions of this paper are: 
 

• It proposes a new 2C-BRNNs deep learning framework that uses 2D CNNs to 

extract local interactions between residues amino acids and stacked BGRUs or 

BLSTMs for long-term extraction - interactions between amino acid residues. As 

far as we know, this work first combines 2D CNN with RNNs with GRUs and 

LSTM up to 8-state PSSPs. 

• The proposed framework is verified in CB6133 datasets, filtered CB6133, 

CB513, CASP10 and CASP11. 
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The experimental results show that the framework surpasses the existing methods 

and achieves state-of-the-art performance. Also, it suggests that the dimension of 

protein arrays helps to predict secondary structures. It demonstrates the 

performance of the proposed models in different RNNs and convergent filters. 

Figure 10 – Framework 

 

 

As shown in the figure above (Figure 10), the proposed framework consists of 

four parts: 
 

1) the dense layer of features 

2) the local interaction extractor (2D cohesive layer) 

3) the long-range interaction extractor (bidirectional GRUs or LSTM repetitive 

neural networks) 

4) the 8-state PSSP output level. 

 

 

To derive the total characteristics of the proteins, the local amino acid interactions 

and the long-range amino acid interactions are fed to the feature fusion layer. 
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Finally, the output from the characteristic fusion layer is fed to the forecast table by 

softmax activation, which achieves 8-state secondary structure prediction. As 

shown in the figure above, the initial representation of the protein features consists 

of the sequence feature and the feature profile. The dense feature layer is used to 

transform the sparse sequence feature vector into a dense feature vector. 

 

In this paper, the characteristics of the protein sequence as a dense 42-

dimensional vector, which decomposes into two parts, are represented. The one 

part is 21-dimensional sequence features, which encode the amino acid types. The 

other part is 21-dimensional feature profiles, which are taken from the PSI-BLAST 

log file and reconnected to an accounting function. Each sequence attribute vector 

is a monochrome vector, in which all bits are "0" except one "1" in the vector. In 

addition, each vector of feature profiles has a dense representation. At the same 

time, to avoid inconsistencies in protein feature representations, they also convert 

sparse sequence features into a dense vector with an integration function. In fact, 

the integration function can match the 21-dimensional sparse carrier to the 21-

dimensional dense carrier. Finally, both the dense sequence characteristic and the 

profile characteristic are combined as the original protein characteristic. The 

secondary structure tag of an amino acid can be represented as: 

 

 

 

To take full advantage of the local interactions of amino acid residues in the PSSP, 

they apply 2D convergence processes and 2D concentration functions to record 

local interactions in two-dimensional protein panels. Supposedly, the table p = {p1, 

p2, p3, …, pn} is obtained from the dense layer of features, where pϵRnxk, and pi is 

the pretreated feature carrier of the ith amino acid residue in sequences. 

 

In this layer, the two-dimensional assembly filter F∈Rf1×f2 is applied for the first time  
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to window f1 of amino acid residues and f2 vectors with the ReLu activation function 

(corrected linear unit). B is the term of bias. 

 

This filter F is applied to each possible window of the matrix p to produce a feature 

map c. 

 

This equation describes the filter process. The convergent level can have many 

filters of different sizes to create more complementary interactions. 

 

Then the 2D max-pooling function m∈Rq1×q2 is further applied to extract the 

maximum value above the window in table c. 

 

F (⋅) represents the 2D max-pooling function. Then the concentration results are 

displayed. 

 

 

On the other hand, there are also long-range interactions in addition to local 

interactions in protein sequences. Large-scale interactions also affect the class of 

secondary structures of amino acid residues. Because two-dimensional 

convergence processes and 2D concentration operations have limited nucleus 

sizes, some interactions between amino acid residues may not be extracted from 

them. Thus, they further use two-way repetitive neural networks with GRU or LSTM 

to capture long-range interactions. 

 

Although RNNs have a great ability to manipulate sequence data, they are difficult 

to train due to the grading problem. RNNs with LSTM and GRU can avoid this  
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problem while learning long-range interactions in sequence data. So, this paper 

utilizes BRNNs with GRUs and LSTMs to capture long-range interactions between 

amino acid residues. The LSTM unit has a memory cell, an output state, and three 

gateways. Specifically, the entrance gate, the forget gate and the exit gate. 

Compared to LSTM, GRUs merge the gateway and the forget-me-not gateway to 

form the update gateway and the recovery gateway. This way they can control 

what is artificially memorized or forgotten. 

 

In addition, the secondary structure of an amino acid at any position not only 

depends on the previous amino acids, but also on the subsequent amino acids in 

protein sequences. Thus, bidirectional RNNs (BRNNs) are used to predict the 

secondary structure of a protein. The first model consists of forward and backward 

GRUs, and the second model consists of forward and backward LSTM. They take 

the BRNNs model as an example to show how these models capture long-range 

interactions between amino acid residues. At time t, the output characteristic of 

two-dimensional cohesive layers is fed to the BRNNs to extract the forward and 

backward information of the amino acid residues. 

 

Our proposed models extract the protein feature. The protein feature is first fed to 

a fully bonded layer and the softmax layer is used to predict the probability of 

classing an amino acid residue. In experiments, they train the proposed models 

with the stochastic admission slope algorithm Adm and error backward 

propagation. The goal of training is to minimize the function of transverse entropy 

loss. To evaluate the proposed models, they compare the results with other 

published results in four public datasets: CB6133, CB513, CASP10 and CASP11. 
 

1) CB61336 is produced by PISCES system CullPDB33. This dataset contains 

6,128 proteins, of which 5,600 are for training, 256 for validation and 272 for 

testing. 

2) CB5136 contains 513 proteins and is widely used as a secondary structure 

data set for performance comparison. 



 
Prediction of Secondary Protein Structure 

 
 

Ι. Θύμιου  69 

3) CASP10 and CASP11 contain 123 and 105 domain sequences, respectively. 

These datasets are also widely used for PSSP. 

 

Each protein sequence in the aforementioned datasets has 57 channels. 
 

• Channel "[0,22]" is the amino acid residue. 

• Channel "[22,31]" is the secondary structure tag. 

• Channel "[31,33]" is N and C terminals. 

• Channel "[33,35]" is the relative and absolute accessibility of solvents. 

• Channel "[35,37]" is the sequence profile, which is created by reconnecting the 

PSSM via an accounting function28. 

• The secondary structure tags are 8 channels. 

• Solvent accessibility labels are 2 channels. 

 

 

The sequence attribute and sequence profile are both encoded as n×b matrices, 

where n is the protein length and b is the number of amino acid types. To compare 

existing methods easily, the channel length is set to 700. Since most protein 

sequences are less than 700 amino acids, the 700 amino acid length cut is chosen 

to provide a good balance between efficiency and coverage. In other words, the 

length of the sequences greater than 700 is truncated and the length of the 

sequences less than 700 is filled with zeros. 

 

PSSP is usually evaluated by accuracy Q3 and accuracy Q8, which give the 

percentage of residues correctly predicted for secondary structure 3 and 8 protein 

states, respectively. Due to the focus on the 8-state PSSP, this paper adopts Q8 

accuracy as the main performance measures. In addition, this document also 

adopts the loss value as a secondary rate of return. The loss value is the value of 

the transverse entropy between the predicted value and the truth label. 

 
28PSSM comes from PSI-BLAST versus the UniRef90 database with an E-value limit of 0.001 and 

3 iterations. 



Prediction of Secondary Protein Structure 

 

 
Ι. Θύμιου  70 
 

 

The following is an analysis of the experimental results of the proposed 8-state 

PSSP models in four publicly available datasets: CB6133, CB513, CASP10 and 

CASP11. The results show that the proposed models can achieve excellent 

performance. The codes are implemented in the Keras library, which is a 

Tensorflow based high-level neural networking API.The weights of the proposed 

models are initialized with the default setting in Keras. They trained all levels at the 

same time with the Adam optimization program. They performed two sets of 

experiments on four public datasets. In the first experiment, they performed 

training and testing on the original CB6133 dataset. In the second experiment, they 

performed training on the filtered CB6133 dataset and tested the CB513, CASP10 

and CASP11 datasets. 

 

The table below (Table 7) presents the performance of our proposed models in 

four public datasets. The 2DConv-BLS model achieves a very good performance 

in datasets. Specifically, this model achieves 75.7% Q8 accuracy and 74.5% Q8 

accuracy in CB6133 and CASP10 respectively. 

 

Table 7 – The total performance of the proposed models for predicting a secondary 

structure of 8 states in four public data sets. 

  

 

Furthermore, they compared the models with other existing methods (DeepCNF-

SS8, CNF-SS8, SSpro8-SS8 and GSN-SS8) in four public datasets. In this 
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comparison, all models except CNF-SS8 were trained using the basic sequence 

function and profile feature. In addition to the standard sequence feature and the 

profile feature, three additional features were used in the CNF-SS8 model. The 

carrier of characteristics of an amino acid is 78 dimensions. However, paper 

models achieve even greater Q8 accuracy, as shown in the tables below (Table 8). 

 

Table 8 – Overall Q8 accuracy of paper models and reference models in the CB6133 dataset. 

 

 

❖ Training and testing at CB6133 
 

 

They compared the existing models with the four reference models in the CB6133 

with Q8 accuracy. All these models have been trained and tested in the CB6133 

dataset. According to the table above (Table 8), the performance of the models 

exceeds the reference models. Specifically, the 2DConv-BLS model achieves the 

highest Q8 accuracy of 75.7%, an increase of 0.5% compared to the DeepCNF-

SS8 model. In addition, the Q8 accuracy of the other three paper models is lower 

than that of the DeepCNF-SS8, but higher than that of the SSpro-SS8 (non-

standard) RaptorX-SS8 and GSN. The better performance is due to the power of 

the hybrid model of built-in 2D convergence, the 2D concentration with stacked  
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bidirectional LSTM, and is also due to the local and long-term interactions recorded 

by this model. The result shows that the proposed 2DConv-BLS model is more 

expressive in protein sequences. 

 

 

Table 9 – The overall Q8 accuracy of the models compared to the reference models for the 

common CB513, CASP10 and CASP11 datasets.  

 

 

 

❖ Training in filtered CB6133 and testing in CB513, CASP10 and CASP11 
 

 

The models were compared with the four reference models with Q8 accuracy. All 

models are trained in the filtered CB6133 and tested in the public databases 

CB513, CASP10 and CASP11. from 70% in four public datasets. 

 

According to the table above (Table 9), in the proposed models, the 2DConv-

BLSTM and 2DCNN-BLS perform better than the state-of-the-art models and 

achieve Q8 accuracy of more than 70% in four public datasets. Specifically, the 

2DConv-BLS achieves 70.2% Q8 accuracy, 0.9 higher than the DeepCNF-SS8 on 
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the CB6133. The 2DConv-BLS and 2DCNN-BLS achieve an accuracy of 74.5% 

and 2.7 higher than the DeepCNF-SS8 in CASP10. The 2DCNN-BLS achieves 

72.6% accuracy and is 0.3 higher than the DeepCNF-SS8 in CASP11. In addition, 

the 2DCNN-BGRUs and 2DConv-BGRUs achieve Q8 accuracy of less than 70% 

in the CB6133 dataset, but higher than the reference models in the CASP10 and 

CB513 datasets. The Q8 accuracy of 2DConv-BGRUs is 1.3 times lower than that 

of DeepCNF-SS8 in the CASP11 dataset. The Q8 accuracy of 2DCNN-BGRUs is 

0.5 times lower than that of DeepCNF-SS8 in the CASP11 dataset. 

 

In short, the paper models achieve excellent performance in CB513, the CASP10 

and CASP11 datasets. This fully demonstrates that the deep learning framework 

is effective and practical in the 8-class PSSP. 

 

Τaking the 2DConv-BLS model as an example in the three public datasets, this 

paper reveals that the two-dimensional convergence filter has some effect on the 

performance of the 2DConv-BLSTM model. Details of the experiments are shown 

in the table below (Table 10). Experiments with different convergence sizes from 

2 to 15 are performed on the CB513, CASP10 and CASP11 datasets. The table 

below (Table 10) shows the performance of 2DConv-BLS with different two-

dimensional convergent filters. 
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Table 10 – The overall Q8 performance of the 2DConv-BLS model with different convergent 

sizes in the CB513, CASP10 and CASP11 datasets. 

 

 

Taking the 2DConv-BLS model as an example illustrates the effect of BRNN unit 

size on CB513, CASP10 and CASP11 datasets. They performed experiments with 

different sizes from 50 to 250 in three public datasets. The details of the 

experiments are shown in the table below (Table 11). It shows the performance of 

2DConv-BLS with different LSTM unit sizes. 

 

Table 11 – The overall Q8 performance of the 2DConv-BLS model with different LSTM unit 

sizes in the CB513, CASP10 and CASP11 datasets. 
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CNN and RNN with enclosed units (LSTMs and GRUs) have become effective in 

various fields. To extract more distinctive features from PSSP 8-state protein 

tables, the hybrid deep learning framework, two-way repetitive neural networks 

integrated with two-dimensional convergent neural networks are proposed. By 

incorporating information about both dimensions of the matrix, and in the meantime 

incorporating local and long-term interactions between amino acid residues, the 

performance of previous methods for PSSP is greatly improved. 

Additional experiments show that greater Q8 accuracy can be achieved by 

increasing the hidden units. In addition, the experiments suggest that the 

dimensionality of the vector of protein arrays helps to predict secondary protein 

structures. Based on the success of the proposed deep neural networks in 

predicting secondary structure, we conclude that such models can also be applied 

to other demanding proteomics tasks. Existing BGRUs or BLSs cannot deal with 

low-frequency short-range interactions and the PSSP imbalance problem. 

Excellent neural architectures with the attention mechanism may be appropriate to 

solve this problem. 
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4 APPLICATION AND RESULTS OF Q ACCURACY 

 

In this chapter, two codes were created to put the Q8 accuracy theory into practice. 

The first one is specified on Q8 accuracy, while the second one works on Q 

accuracy 1 through 8. The Python programming language was used to create both 

codes and the PyCharm platform was used to program on. 

 

Q8 code 

 

The Q8 code operated thusly; First, the αij data are inserted into the code, to create 

an accuracy table A.Then, we insert the wi, xi, yi and zi coordinates and based on 

these data, the code creates the coordinate tables Xi, Yi and Zi. Thus, the Q8 

accuracy is derived. 

The code is as follows. 
 

import random 

Α=[] #accuracy table Α #Α[i,j] 

for i in range(8): # i=h=b=e=g=i=t=s=l 

Α.append([]) 

for j in range(8): # j=h=b=e=g=i=t=s=l 

x=random.uniform(0,1) # 0<=aij<=1 

Α[i].append(x) 

print(Α) 

return A[] 

wi=A[1,1] #wi=aii 

def sum_list(a): # xi=Σ a[p,q] 

sum_xi = 0 

for p in a: 

for q in a 

sum_xi += q 

return sum_xi 

def sum_list(a): # yi=Σ a[i,j] 
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sum_yi = 0 

for i in a: 

for y in a 

sum_yi += q 

return sum_yi 

def sum_list(a): # zi=Σ a[j,i] 

sum_zi = 0 

for j in a: 

for i in a 

sum_xi += q 

return sum_zi 

xi=sum_xi 

yi=sum_yi 

zi=sum_zi 

Q_8i=[] 

for i in range (8): #i=h=b=e=g=i=t=s=l 

Q_8i=a.append([]) 

for j in range (8): #i=h=b=e=g=i=t=s=l=j 

Xi=2*(wi+xi)-1 

Yi=2*(wi+xi)-1 

Zi=2*(wi+zi)-1 

Q8i=1-di/(di)max 

Q8i=1-sqrt((yi^2+zi^2)/((wi+yi)^2+(xi+zi)^2)) 

Q_8i[].append(Q8i) #Q8i A-refined pdf 

return Q_8i 

Q_8=[] 

for i in range(8): #i=h=b=e=g=i=t=s=l 

Q8=1-

sqrt((yh^2+zh^2+yb^2+zb^2+ye^2+ze^2+yg^2+zg^2+yi^2+zi^2+yt^2+zt^2+ys^

2+zs^2+yl^2+zl^2)/ 
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((wh+yh)^2+(wh+zh)^2+(wb+yb)^2+(wb+zb)^2+(we+ye)^2+(we+ze)^2+(wg+yg

)^2+(wg+zg)^2+ 

(wi+yi)^2+(wi+zi)^2+(wt+yt)^2+(wt+zt)^2+(ws+ys)^2+(ws+zs)^2+(wl+yl)^2+(wl

+zl)^2)) 

Q_8=[].append(Q8) 

return Q_8 

 

Q1-8 code 

 

The second code created finds the specific Q accuracy that the user searches for, 

between 1-8. It operates thusly; First, the user chooses the accuracy he wants (1-

8) and, then the same process as above (in the Q8 code) is repeated, for the 

specific Q accuracy to be derived. 

The code is as follows. 

Ν=input("input value N between 1-8") #i=h=b=e=g=i=t=s=l 

if N<1 and N>8 
N=input("input value N between 1-8!!!") 
else 
import random 
Α=[] #accuracy table Α , We create a table Α[i,j] 
for i in range(N): 
Α.append([]) 
for j in range(N): 
x=random.uniform(0,1) s # We insert random numbers between 0<=aij<=1 
Α[i].append(x) 
print(Α) 
return A[] 
wi=A[1,1] # According to the algorithm wi=aii 
def sum_list_xi(a): # xi=Σ a[p,q] so it is calculated 
sum_xi = 0 
for p in a: 
for q in a 
sum_xi += q 
return sum_xi 
def sum_list_yi(a): # yi=Σ a[i,j] so it is calculated 
sum_yi = 0 
for i in a: 
for j in a 
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ssum_yi += y 
return sum_yi 
def sum_list_zi(a): # zi=Σ a[j,i] so it is calculated 
sum_zi = 0 
for j in a: 
for i in a 
sum_xi += i 
return sum_zi 
xi=sum_xi # We insert the 3 sums found above in the variables 
yi=sum_yi 
zi=sum_zi 
if N=1 
Q1=wi-zi/wi+yi 
return Q1 
elif N=2 
Q2=wi/wi+yi 
return Q2 
elif N=3 

i=a=b=c 
Q_3i=[] 
Q3=a[1,1]+a[2,2]+a[3,3] # According to Q3=a[a,a]+a[b,b]+a[c,c] algorithm 
for i in range(N): 
Q_3i=a.append([]) 
for j in range (N): 
Xi=2*(wi+xi)-1 
Yi=2*(wi+xi)-1 
Zi=2*(wi+zi)-1 
Q3i=wi+xi 
Q_3i[].append(Q3i) 
return Q3 
return Q3i 
return Q_3i 
elif N=4 
Q4=1/2*(wi/wi+yi+wi/xi+zi) 
return Q4 
elif N=5 
Q5=wi/1-xi 
return Q5 
elif N=6 
Q6=wi+xi/yi+zi 
return Q6 
elif N=7 
Q7=(wi*yi-yi*zi)/sqrt((xi+yi)*(xi+zi)*(wi+yi)*(wi+zi)) 
return Q7 
elif N=8 
i=h=b=e=g=i=t=s=l 
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Q_8i=[] 
Q_8=[] # We calculate and save the Q8 list 
for i in range(N): # According to the i=h=b=e=g=i=t=s=l algorithm 
Q8=1-sqrt((yi^2+zi^2+yi^2+zi^2+yi^2+zi^2)/(wi+yi)^2+(wi+zi)^2+(wi+yi)^2+ 
(wi+zi)^2+(wi+yi)^2+(wi+zi)^2)) # Q8 algorithm 
Q_8=[].append(Q8) 
Q_8i=[]a.append([]) 
for j in range (N): 
Q8i=1-di/(di)max 
Q8i=1- 
sqrt((yh^2+zh^2+yb^2+zb^2+ye^2+ze^2+yg^2+zg^2+yi^2+zi^2+yt^2+zt^2+ys^
2+zs^2+yl^2+zl^2)/ 
((wh+yh)^2+(wh+zh)^2+(wb+yb)^2+(wb+zb)^2+(we+ye)^2+(we+ze)^2+(wg+yg
)^2+(wg+zg)^2+ 
(wi+yi)^2+(wi+zi)^2+(wt+yt)^2+(wt+zt)^2+(ws+ys)^2+(ws+zs)^2+(wl+yl)^2+(wl
+zl)^2)) 
Q_8i[].append(Q8i) 
return Q_8[] 
return Q_8i[] 
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