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ΠΕΡΙΛΗΨΗ 

 

Χιλιάδες Αναδυόμενοι Ρύποι (ΑΡ) απελευθερώνονται από, σημειακές και μη, πηγές 

ρύπανσης στα επιφανειακά ύδατα. Οι σημειακές πηγές αποτελούν μέσο εναπόθεσης 

υψηλών φορτίων ΑΡ στο περιβάλλον, διότι οι διεργασίες που εφαρμόζονται στα Κέντρα 

Επεξεργασίας Λυμάτων (ΚΕΛ) δεν επιτρέπουν την πλήρη απομάκρυνσή τους. Συνεπώς, 

οι πιο ανθεκτικοί καταλήγουν σε δεξαμενές γλυκού νερού, υπόγεια ύδατα, στο πόσιμο 

νερό και εισέρχονται στην τροφική αλυσίδα. Η παρουσία τους στην πανίδα απειλεί τη 

σταθερότητα των οικοσυστημάτων λόγω της τοξικότητας και της βιοσυσσώρευσης σε 

ζωικούς οργανισμούς που βρίσκονται σε υψηλότερα τροφικά επίπεδα. Παρ’ όλο που ο 

αριθμός των ερευνών για τους ΑΡ συνεχώς αυξάνεται, η μελέτη της συμπεριφοράς τους 

στα οικοσυστήματα και το πλήθος των φυσικών και μη διεργασιών που 

πραγματοποιούνται παραμένει πρόκληση. Ως γνωστόν, οι ΑΡ δημιουργούν σύνθετες 

μήτρες άγνωστης σύστασης, γεγονός που καθιστά την παρακολούθησή τους πρόκληση, 

εκτός αν χρησιμοποιούνται προηγμένες μέθοδοι σάρωσης και όργανα τελευταίας 

τεχνολογίας.  

Η παρούσα διατριβή διακρίνεται σε τρεις εργασίες που στοχεύουν (i) στον χαρακτηρισμό 

ΑΡ σε οικοσυστήματα υψηλής περιβαλλοντικής σημασίας (ποταμός Δούναβης) 

χρησιμοποιώντας προηγμένες αναλυτικές μεθόδους και εργαλεία επεξεργασίας 

δεδομένων, (ii) στην εκτίμηση κινδύνου και τοξικότητας όσων ταυτοποιηθούν στα 

δείγματα και (iii) στην εκτίμηση των επιπέδων συγκέντρωσης των ΑΡ σε δείγματα 

εισροών λυμάτων με τη χρήση Επιδημιολογίας Λυμάτων, ένα χημικό εργαλείο που 

αντικατοπτρίζει τις συνήθειες και τη δημόσια υγεία του πληθυσμού που εξυπηρετείται από 

το ΚΕΛ. Λόγω της εν εξελίξει πανδημίας που οφείλεται στη νόσο Corona Virus Disease 

2019 (COVID-19) και των μεταλλάξεων του αρχικού στελέχους, θα αναπτυχθεί και 

επικυρωθεί αναλυτικό πρωτόκολλο που περιλαμβάνει τρία στάδια (προσυγκέντρωση, 

απομόνωση και ανίχνευση) με σκοπό την εκτίμηση του ιικού φορτίου σε δείγματα εισροών 

αστικών λυμάτων από την Αθήνα και την ανάπτυξη ενός συστήματος έγκαιρης 

προειδοποίησης για την εξέλιξη της πανδημίας.  

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Αναλυτική Χημεία  

ΛΕΞΕΙΣ ΚΛΕΙ∆ΙΑ: αναδυόμενοι ρύποι, στοχευμένη σάρωση, εκτίμηση κινδύνου, 

περιβάλλον, επιδημιολογία λυμάτων, δημόσια υγεία, συνήθειες, 

COVID-19, σύστημα έγκαιρης προειδοποίησης 
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ABSTRACT 

 

Thousands of contaminants of emerging concern (CECs) are released from diffuse and 

point sources in surface waters. Point sources represent a major input of high loads of 

CECs in the environment because the technology applied in Wastewater Treatment 

plants (WWTPs) is insufficient to eliminate them. Consequently, the most persistent CECs 

end up in freshwater reservoirs, groundwater and even drinking water. Additionally, CECs 

may also enter the trophic chain depending on their properties. The occurrence of CECs 

in biota can threaten the stability of the ecosystems due to their toxicity and potential 

bioaccumulation to animals of higher trophic levels. Even though there is an increasing 

number of studies dealing with CECs in the literature, the investigation of their behavior 

in the ecosystem and the various natural and non-natural processes remains a challenge. 

CECs are known to create complex mixtures of unknown composition, which makes 

monitoring these substances challenging unless wide-scope screening methods and 

state-of-the-art analytical instrumentation is utilized.  

The proposed thesis is divided into three working packages (WP) that aim at (i) 

characterizing CECs in ecosystems of decisive environmental importance (Danube river 

basin) using advanced analytical methods and data processing tools, (ii) performing risk 

assessment to prioritize the compounds based on their hazard and (iii) evaluating the 

concentration levels of CECs in the influent wastewater and application of Wastewater-

based Epidemiology (WBE), which is a chemical tool used to reflect the lifestyle and 

public health of the WWTP serving population. Due to the Corona Virus Disease 2019 

(COVID-19) ongoing pandemic and SARS-CoV-2 variants, an analytical protocol 

including three steps (concentration, extraction and detection) will be developed and 

validated, in order to estimate the virus load in influent wastewater from Athens. 

Wastewater surveillance could be used as an early warning system for epidemics. 

 

 

SUBJECT AREA: Analytical Chemistry  

KEYWORDS: CECs, target screening, risk-assessment, environment, WBE, public 

health, habits and lifestyle, COVID-19, early warning system 
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1. Chapter 1 Contaminants of Emerging Concern and the role 

of Wastewater based Epidemiology 

 

1.1 Introduction 

In recent years, environmental pollution is a global transboundary problem that 

concern researchers and affects communities and human health. Thousands 

of Contaminants of Emerging Concern (CECs) are released from diffuse and 

point sources in surface waters [1, 2]. Point sources represent a major input of 

high loads of CECs in the environment, because the technology applied in 

Wastewater Treatment Plants (WWTPs) is insufficient to eliminate them. 

Consequently, the most persistent CECs end up in freshwater reservoirs, 

groundwater and even drinking water [2, 3]. Additionally, CECs may also enter 

the trophic chain depending on their properties. The occurrence of CECs in 

biota can threaten the stability of the ecosystems due to their toxicity and 

potential bioaccumulation to animals of higher trophic levels [1, 2, 4, 5]. Even 

though there is an increasing number of studies dealing with CECs in the 

literature, the investigation of their behavior in the ecosystem and the various 

natural and non-natural processes remains a challenge. CECs are known to 

create complex mixtures of unknown composition, which makes monitoring of 

these substances challenging unless wide-scope screening methods and state-

of-the-art analytical instrumentation is utilized [6, 7]. 
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WWTPs are considered the main contamination source of the aquatic 

environment. Wastewater is water which includes contaminants from domestic, 

industrial and commercial activity [1]. Due to the vital issue of water scarcity, 

the treatment process applied in WWTPs must be efficient and capable to 

remove contaminants from water and recover the polluted water as part of 

water recycling [1, 8, 9]. On the other hand, WWTPs offer the chance to 

evaluate, not only environmental pollution but also Human Health issues [10]. 

The analysis of influent wastewater (before the application of treatment 

processes), seems to be an important chemical tool which provides 

epidemiological information, in real-time at a community level [10, 11]. 

Wastewater Based Epidemiology (WBE), has gained popularity in recent 

decades due to its wide application in different scientific fields and the 

importance of the provided information. The chemical analysis of urban 

wastewater can provide relevant epidemiological information about lifestyle 

habits, public health and wellbeing [11]. WBE is based on the analysis of 

specific human metabolic excretion products (biomarkers) in wastewater as 

indicators of consumption or exposure of the population served by the sewer 

network under investigation to different substances [10, 12].   

Since December 2019, humanity faced another threat, called Coronavirus 

Disease 2019 (COVID-19). The Severe Acute Respiratory Syndrome, caused 

by a member of the coronavirus group, spread rapidly worldwide with 

considerable morbidity and mortality rates which led to the COVID-19 pandemic 

[13-16]. Even with the existence of vaccines and efficient clinical testing, WBE 

fulfils the gap between infection and diagnosis and the last two years seems to 

be the most appropriate complementary chemical tool for the prediction and 

prevention of disease prevalence. European Commission (EC) and World 

Health Organization (WHO) proposed recommendations for wastewater 

surveillance and suggest the way and the key parts of the analysis to ensure 

the validity of the application [17, 18].  

As a result, WBE became a necessary tool to monitor Public Health through the 

investigation of new CECs in influent wastewater, as well as environmental 

protection through the identification and classification of new CECs presented 
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in environmental samples to standardize guidelines for the protection of fauna 

and flora.          

 

1.2 Contaminants of Emerging Concern 

Emerging contaminants (ECs) or Contaminants of Emerging Concern are 

considered a globally environmental issue. The Industrial Revolution has 

increased anthropogenic activities, urbanization and industrialization resulting 

in globalization, environmental pollution, biodiversity loss, climate change and 

many other global issues [19]. The organization dealing with emerging 

substances is NORMAN Association, which is a unique network of reference 

laboratories, research centers and related organizations [20, 21]  

Unfortunately, there are no standardized guidelines or routine monitoring 

programs for emerging pollutants but there are some attempts in Europe and 

North America to make a priority list and reduction of their release into the 

environment [1, 9]. In addition, ECs may be candidates for future regulation in 

cases where studies on their toxicity and health effects prove their inherent 

danger [19]. There are many bioindicators of environmental pollution, such as 

raptors, in which are bioaccumulated high concentrations of persistent 

pollutants and could enter the trophic chain and end up in human and marine 

organisms [22]. 

ECs are present in concentration levels of 1 to 100 ng/L and they mostly arise 

from pharmaceuticals, Personal Care Products (PCPs), hormones and fertilizer 

industries [1, 8]. The Emerging Contaminants can be classified into five 

categories: Pharmaceutical and Personal Care Products (PPCPs), Endocrine 

Disruptors Chemicals (EDCs), Flame Retardants (FRs), pesticides and Artificial 

Sweeteners (ASWs) and each one of them can be divided into subcategories 

according to characteristics of the compounds and the classification of the 

chemical compounds [23].  

The term “emerging pollutants” also includes the Transformation Products 

(TPs) which are formed under biotic and abiotic transformation processes and 

may differ in their environmental behavior and ecotoxicological profile, 

depending on the modification. Due to the lack of sufficient treatment processes 



 

31 
 

that took place in WWTPs, REACH regulation requires the identification of 

major TPs and degradation products for the registration of the substances [24].  

1.3 Wastewater-based Epidemiology 

Wastewater is a complex matrix containing a wide range of chemical and 

biological markers of human activity, dissolved, mixed or suspended in water 

[25]. The analysis of wastewater, provides qualitative and quantitative data on 

the activity of inhabitants of a specific catchment, by evaluating substance use, 

exposure to environmental chemicals, antibiotic resistance and microbiomes 

and nowadays infectious diseases [12, 25, 26]. This methodology was firstly 

applied in 2001 as a potential tool to evaluate the use of illicit drugs and misused 

therapeutic drugs within a community [27]. Strengths of this chemical approach 

include respecting the privacy of individuals as it is a non-invasive tool, near-

real-time estimations, a better, more efficient and more reliable identification of 

drug use avoiding the problems associated with questionnaire-based research 

[12]. 

On the other hand, infectious diseases are one of the most critical threats to 

global public health [13, 14]. Environmental pollution introduces novel 

pathogenic organisms and the re-emergence of infections that were once 

controlled. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 

creates a new reality over the last two years. WBE gradually became the most 

recognized complementary tool for prevention, intervention and control of the 

Coronavirus disease 2019 (COVID-19) pandemic and has the potential to be 

used as a bridge between clinical testing and the real infection dynamic for 

every future epidemic [12, 13, 25]. 

However, one of the most important disadvantages of WBE is uncertainty [12, 

28]. The most important uncertainty factors include sampling, estimation of the 

population, sorting of biomarkers and correction for their loss in the sewer 

system and during transportation and storage, flow measurements and 

pharmacokinetic data [12, 25]. In addition, for the detection of SARS-CoV-2 in  

wastewater samples is crucial to estimate matrix effect and viral degradation to 

achieve higher recoveries and more reliable results [29]. 
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Even with the disadvantages, WBE has proved its importance and usefulness 

in many different scientific fields and this fact is strengthened via collaborative 

comparisons, interlaboratory quality control systems and advanced 

computational tools accompanied by analytical instrumentation [7].      

1.4 Instrumental analysis 

Environmental samples are complex matrixes with a huge number of inhibitors. 

For that reason, it is of high importance to select appropriate analytical 

protocols based on sample concentration and clean-up, as well as advanced 

analytical instrumentation and chemometric tools. The most common analytical 

technique used in wastewater analysis is Liquid Chromatography coupled with 

tandem mass spectrometry (LC-MS/MS) [30, 31]. However, to achieve the 

identification of new ECs in environmental samples figurative instruments are 

required. Advances in the high resolving power mass analyzers (High 

Resolution Mass Spectrometry, HRMS) have contributed to the development 

of real wide-scope multi-residue screening methods that also offer the potential 

of retrieving information about new analytes in post-acquisition approaches 

(retrospective analysis) [32]. Due to the COVID-19 pandemic and wastewater 

surveillance for the identification of viral RNA, Quantitative reverse transcription 

polymerase chain reaction (RT-qPCR) gained popularity over the past three 

years. 

1.4.1 Gas chromatography coupled to mass spectrometry (GC-MS) 

Volatile and thermostable emerging substances are present in different and 

complex environmental samples. Their identification is of high importance and 

could be assessed via Gas chromatography coupled to mass spectrometry 

(GC-MS). The developed mass spectral libraries and the high sensitivity of the 

GC-MS methods, especially when combined with the derivatisation of the 

analytes and multiple reaction monitoring methods (MRM) led to a high number 

of applications and the revealed of the whole composition of an examined 

sample [33, 34]. The two most important GC-MS libraries (NIST and Wiley) 

contain more than one million mass spectra [35]. In Full-scan GC-MS the 

obtained electron impact (EI) mass spectrum of a substance is mainly 

compared to mass spectra in the libraries.  Hydrocarbons (PAHs), pesticides, 
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polychlorinated biphenyls (PCBs), and numerous endocrine-disrupting 

chemicals are the most commonly identified CECs via GC-MS [34].  

 

1.4.2 Liquid Chromatography coupled to mass spectrometry (LC-MS) 

The identification of most ECs and their TPs has been conducted using LC with 

unspecific detectors. MS is the key element which fulfils the lack of specificity 

and selectivity. LC-MS/MS techniques, utilize, in most cases, a triple 

quadrupole mass spectrometer in which the first and third quadrupoles act as 

a mass filter and the second as a fragmentation cell. The method can be used 

either in scan mode or Selected Ion Monitoring (SIM). Selected Reaction 

Monitoring (SRM) or Multiple Reaction Monitoring (MRM) could be utilized 

based on specific requirements. Conventional LC-MS interfaces involve soft 

ionization techniques that produce little fragmentation but provide information 

on the molecule. As a result, LC-MS/MS techniques, provide high sensitivity but 

poor resolution which makes the identification of new ECs and their TPs 

difficult. As a consequence, LC-MS/MS provides high-quality data for target 

analytes but a technique which provides the whole amount of information about 

the composition of the examined sample and high-quality information about 

new TPs and unknown CECs is required [31, 36]. 

1.4.3 Liquid Chromatography coupled to high-resolution mass 

spectrometry (LC-HRMS) 

The aforementioned limitation is overcome by using high-resolution MS 

(HRMS) instruments which provide sensitive full-spectrum data with high mass 

resolution and mass accuracy and they are suitable for both target and 

untargeted analysis. Nowadays, among the most common HRMS instruments 

have hybrid mass analysers such as quadrupole time-of-flight (Q-TOF), 

quadrupole-Orbitrap (Q-FT) and linear ion trap-Orbitrap (IT-FT) [36]. 

In these hybrid instruments, the first mass analyser is low resolution and the 

second is high resolution. TOF when combined with a reflector becomes a high-

resolution mass analyser with resolution directly related to the length of the 

flight path. Contemporary instruments have a flight path of several meters, 
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which is multiplied due to the reflector. Since the resolution is related to the 

duration of flight time, TOF provides the highest resolution for relatively high 

m/z ion masses. This instrument has an adequate mass resolution (R>30,000) 

and precise mass measurements (<5 ppm) at a speed compatible with typical 

LC conditions [36, 37]. 

The hybrid instrumental setup allows the low-resolution mass analyser to pre-

filter and isolates a mass of interest, which provides the opportunity for two main 

data acquisition methods: data-independent acquisition (DIA) and data-

dependent acquisition method (DDA). Usually, the first scan is defined as the 

survey scan, in which data are processed “on-the-fly” to determine the 

candidates of interest based on predefined selection criteria. If the selection 

criteria are met, a second scan (data-dependent) is then performed. The major 

advantage of this approach is the collection of structural information in just one 

injection.   

There are three different identification approaches: target screening, suspect 

screening and non-target screening. Target screening is the most common 

approach in which analytical standards are available and the ECs are known. 

In suspect screening approaches where no reference standards are available, 

there are possible ECs and their TPs and in addition, their identification is based 

mainly on prediction models from the literature. Because the structures of 

suspected chemicals are known, a series of molecular properties can be 

directly derived: e.g. common adduct ions ([M+H]+, [M+Na]+, [M+NH4]+ in 

positive and [M-H]- in negative ionization), in-silico predicted fragmentation 

pattern [38, 39] predicted retention time using Quantitative Structure 

(Chromatographic) Retention Relationship (QSRR) models and predicted 

toxicity threshold using Quantitative Structure Toxicity Relationship (QSTR) 

model. Non-target screening is a promising screening approach. There are no 

prior information nor reference standards and the composition of the sample is 

unknown. The level of confidence for the identification of the detected 

compounds should be clearly expressed based on the identification evidence 

and the information obtained from the analysis. Figure 1 provides the 

identification scheme which is used in environmental sciences. 
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Figure  1: The five identification levels of the detected compounds in high-resolution mass 

spectrometric analysis based on the data requirements [40].  

1.4.4 Quantitative Reverse Transcription Polymerase Chain Reaction 

(RT-qPCR) 

Real-time quantitative PCR (qPCR) has become a revolutionized and definitive 

technique in gene expression and every aspect of molecular biology [41]. Due 

to the interest in proteomics, metabolomics and microbial gene expression real-

time reverse transcription quantitative polymerase chain reaction gains 

popularity over the past 10 years, in many different scientific fields including 

agricultural, environmental, industrial and medical research [41, 42].  

Cycling Programs include 3 steps. Reverse transcription (RT) where the 

enzymes called reverse transcriptases synthesize Deoxyribonucleic Acid 

(DNA) from Ribonucleic Acid (RNA), denaturation, a process involving the 

breaking of many weak linkages or bonds within a protein molecule and 

amplification which refers to an increase in the number of copies of a gene in a 

genome. In cases where the matrix is complex (e.g environmental samples) 

inhibitor removal solutions are required [43]. 

Fluorescence detection allows increased sensitivity and ease of data 

processing [42-44]. PCR products are fluorescently tagged using a dye-labelled 

oligonucleotide primer during the PCR reaction. Primers and probes of the 

target genes could be designed and synthesized interlaboratory or could be 

obtained by a commercially available kit [45]. Reporter dye is used to monitor 

the real-time PCR reaction whereas the quencher molecule quenches the 
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fluorescence emitted by the fluorophore when excited by the cycler's light 

source via Förster resonance energy transfer [43]. As long as the fluorophore 

and the quencher are in proximity, quenching inhibits any fluorescence signals. 

Passive reference dyes are commonly used in qPCR reactions to normalize for 

non-PCR-related fluorescence signal variation. Because the passive reference 

does not take part in the PCR reaction, the passive reference dye signal is 

stable throughout the PCR reaction [43, 46].  

 

Figure 2: RT-qPCR amplification in wastewater analysis for the determination of N1, and N2 

target genes of SARS-CoV-2 (FAM, blue colour), passive reference (ROX, orange colour), 

Pepper Mild Mottle Virus (PMMoV, purple colour), internal standard (HEX, green colour).  
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2. Chapter 2 

Thesis scope and Description 

 

2.1 Introduction to the analytical problem 

CECs have attracted increasing attention and public health concern as most of 

them are not under effective globally regulation [47, 48]. They are released into 

the environment as a result of anthropogenic activities, with a trend of 

increasing loads and types of pollutants due to population growth and the 

escalating introduction of new chemicals to the market. Not all CECs are 

persistent, but due to their continuous use and discharge into the environment, 

many of them are regularly found in the environment and can accumulate in 

food webs and drinking water [2]. Moreover, although many chemicals are only 

used in small quantities which may be considered harmless, there is increasing 

concern about mixture – or cocktail – effects arising from the multitude of 

chemicals present in our environment. Improved pollution prevention measures 

should be promoted as a priority. Discharges from WWTPs are major points of 

release of CECs into the environment and their mitigation has an important role 

in pollution prevention [4].  

On December 2019, a new member of the coronaviruses group reported in the 

Chinese city of Wuhan and alert the Public Health authorities globally. The 

outbreak, which led to the COVID-19 pandemic, has spread rapidly in over 114 
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countries worldwide with considerable morbidity and mortality continuously until 

today. Numerous research groups monitor the ongoing pandemic aiming firstly 

to find effective treatments and tools to reduce the expansion [49, 50], secondly 

to address the analytical challenges related to the existence of inhibitors and 

sampling and/or analysis uncertainty [29, 51], thirdly to investigate the 

existence of SARS-CoV-2 variants [52-54], and fourthly to establish a valid 

Public Health warning system. 

Advanced analytical methods employing mainly high-resolution mass 

spectrometry and computational data treatment tools have a key role in the 

identification and quantification of new CECs and their transformation products 

in different environmental samples such as biota, river water, influent and 

effluent wastewater, groundwater, river and marine sediments. In addition, it 

gave scientists the chance to broaden their horizons and provide the whole 

picture of the environmental problem. The high specificity and selectivity of 

hybrid mass spectrometers such as QTOF, QFT and ITFT instruments enabled 

them to deal with very complex matrices effectively. 

On the other hand, the COVID-19 pandemic increases the acceptance and 

importance of WBE and the complementary information to clinical testing that 

can provide. It is worth noting, that wastewater analysis is a powerful tool to 

investigate not only the outbreaks but also the effects and implications of the 

global pandemic and restrictions on a community, by estimating the 

concentration levels of various compounds that are associated with population 

physical and mental health, habits and lifestyle. Although a growing number of 

research groups have already identified the SARS-CoV-2 RNA in untreated 

wastewater, there are very limited studies estimating the implications of the 

global pandemic on population disposition, habits and health.  

In the context of the presented thesis, CECs in environmental samples of 

decisive environmental importance will be identified and prioritized based on 

their hazard. An analytical protocol for the detection of SARS-CoV-2 genetic 

material will be developed and the SARS-CoV-2 infection dynamic and variants 

in Attica will be monitored to provide a non-invasive alternative surveillance tool 

as well as the effects of the health crisis on the population’s mental and physical 

health and habits. A suggestion will be provided about the way how the 
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aforementioned obstacles can be overcome. An emphasis will be given on how 

to organise holistic environmental monitoring programmes, for health and life 

improvement. 

2.2 Objectives and scope 

The objective of the thesis was to investigate and identify CECs in different 

environmental samples and prioritized them based on their hazard. In the 

context of Joint Danube Survey 4 (JDS4, http://www.danubesurvey.org/jds4), 

reliable and comparable information on carefully selected elements of water 

quality for the length of the Danube River, including its major tributaries, was 

produced. River monitoring aims to investigate new CECs, characterize water 

quality and organisms and harmonize water monitoring practices and 

procedures with the European Union (EU) Water Framework Directive (WFD). 

In addition, WBE was utilized aiming to develop a stable and reliable 

complementary and early-warning monitoring system for infectious disease 

(COVID-19) and to quantify the effects of pandemic and socioeconomic 

changes on Attica’s population. For this case study, digitally archived data for 

the WWTP of Attica were enriched using target and retrospective suspect 

screening. The thesis is organized into six case studies, each one described in 

the following six chapters. 

Chapter 3 describes a state-of the art wide scope target screening application 

of more than 2,400 chemicals and their metabolites in samples collected within 

JDS4. The analyzed and consequently the detected contaminants of emerging 

concern (CECs) were divided into five main categories based on their use: plant 

protection products (PPPs), industrial chemicals, pharmaceuticals (including 

antibiotics), drugs of abuse (including tobacco ingredients) and miscellaneous 

chemicals. The aforementioned target screening method was applied in 11 

influent and 11 effluent wastewater, 7 groundwater, 51 river water, 4 sediments 

and 11 biota samples (10 bleak muscle and one asp muscle), aggregating 

results obtained by three reference laboratories of the NORMAN network 

University of Athens, Environmental Institute, Bavarian Environment Agency 

http://www.danubesurvey.org/jds4/about
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(UoA, EI, LfU respectively) and the European Commission Joint Research 

Centre (EC JRC) laboratory in Ispra, Italy. 

Chapter 4 describes the identification of illicit drugs, pharmaceuticals, 

antibiotics and personal care products (PCPs) and their TPs in environmental 

matrices from Danube river basin within JDS4 campaign. . In total, residues of 

287 of the examined substances were detected in wastewater, 140 were 

detected in surface water samples, 41 were found in biota and 31 in river 

sediments. The studied chemical categories, are recognized as emerging 

contaminants as they introduced in the environment at a global scale. Their 

regular monitoring is not requested by the current EU water legislation and as 

a result there is an urgent need to gather information for their occurrence in the 

environment with advanced chromatographic and chemometric tools. 

Chapter 5 describes the effects of COVID-19's first wave on the population's 

physical health. The COVID-19 pandemic has changed the entire life of the 

global population as well as the prescription patterns of a wide range of 

pharmaceutical compounds associated with COVID-19 symptomatology and 

infection. LC-MS/MS and LC-HRMS methodologies accompanied by advanced 

computational tools were utilized aiming to quantify the effects of the pandemic 

on the physical health of the Athenian population. 

Chapter 6 is strongly associated with Chapter 5. More specifically, it describes 

the way the COVID-19 pandemic affects lifestyle, routine, mental health, 

industries and generally the whole life of the Athenian population. It is 

noteworthy that, WBE provides the whole framework of “COVID-19 reality’ via 

advanced analytical instrumentation and screening tools. 

Chapter 7 describes the SARS-CoV-2 infection dynamic in the Attica 

peninsula. A 3-step protocol was developed and validated for the detection of 

SARS-CoV-2 RNA in influent wastewater. In addition, the data were used to 

predict hospitalizations and intensive care units (ICU) admissions based on 

distributed/fixed lag modeling, linear regression and artificial neural networks. 

The aim was to create a robust model and provide an early warning system for 

increased hospital admissions.  



 

41 
 

Chapter 8 examines the COVID-19 pandemic after the development and 

application of vaccination scheme and the on-set of SARS-CoV-2 Variants of 

Concern (VOCs). Both Nested-Seq and RT-PCR assays were used to report 

the substitution of the delta variant (B.1.617.2) by the omicron variant 

(B.1.1.529) as well as the advantages and drawbacks of each methodology are 

reported. This is the first attempt to monitor two of the most severe variants with 

two different methodologies in Greece. The infection dynamic of SARS-CoV-2 

wildtype was monitored for an extended time period in the Attica peninsula.      
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3. Chapter 3 

Wide-scope target screening of industrial chemicals and 

plant protection products in wastewater, groundwater, river 

water, sediments and biota by liquid and gas 

chromatography coupled with high-resolution mass 

spectrometry 

 

 

This case study has been published in International Commission for the Protection 

of the Danube River (ICPDR), 2021, pages 299-312 (ISBN: 978-3-200-07450-7).  

 

 

 

 

 

http://www.danubesurvey.org/jds4/jds4-files/nodes/documents/jds4_scientific_report_20mb.pdf
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3.1 Introduction 

3.1.1 Sampling, extraction, and instrumental analysis 

The analytical program covered samples of 51 river water, 11 influent 

wastewater, 11 effluent wastewater, 7 groundwater, 11 biota (bleak muscle and 

one asp muscle) and 4 sediment samples, all obtained within the JDS4 in June 

and July 2019. The list of the collected samples as well as the explanation of 

abbreviations are including in Annex S1 and Annex S2 in Supporting 

Information file. 

A group of 67 polar and hydrophobic compounds including Water framework 

directive (WFD) priority substances, Watch List compounds and Danube River 

basin specific pollutants (RBSPs) identified as an outcome of JDS3 [55] was 

analyzed by the Joint Research Centre (JRC). River water, effluent wastewater 

and groundwater samples were obtained using a large volume solid phase 

extraction (LVSPE) device termed “MARIANI-Box” [56]. The device is designed 

to perform sampling and sample extraction in the field. The procedure involves 

filtering of a 7 L, 5 L and 0.5 L respectively for groundwater, river water and 

wastewater samples, spiked with a mix of labelled internal standards, and 

extracted on an OASIS HLB disk mounted in the MARIANI-Box. The OASIS 

HLB disks were stored refrigerated until they were extracted in the laboratory 

by means of Solid Phase Extraction (SPE) (J2 Scientific). The extracts were 

evaporated under a gentle nitrogen stream before the analysis. LC-MS/MS 

(QTrap 5500, Sciex) and GC-HRMS (DFS, Thermo) were used for the 

determination of polar and non-polar compounds, respectively. 

A group of 139 pesticides and their TPs were analyzed in 51 river water and 7 

groundwater samples by the Bavarian Environmental Agency (LfU). An on-line 

solid-phase extraction (SPE) using C18 material combined with LC-HRMS 

(QExactive, Thermo) methodology was applied. 

A group of 2,316 CECs and their TPs frequently found in the environment was 

analyzed by the UoA. All river water, WWTP influent and effluent water, and 

groundwater samples were extracted in the laboratory of Environmental 

Institute (EI) using HORIZON SPE-DEX 4790 device (USA). The samples were 

concentrated on Atlantic HLB-M Disk with 47 mm disk holder according to an 
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automated extraction program [57]. The extracts were evaporated using a 

gentle stream of nitrogen and reconstituted in 50:50 methanol:water (500 uL 

total volume extract). The extracts were then shipped to the University of 

Athens (UoA) and subjected to analysis of illicit drugs and pharmaceuticals 

(including many antibiotics) by UHPLC-ESI-QqQ [31]. Especially for illicit drugs, 

the method was tested in annual collaborative trials organized by SCORE 

COST action ES1307 for more than 9 years [58] . In addition, the extracts were 

analyzed for 2,316 compounds by an in-house UHPLC-ESI-QTOF method 

(Dionex UltiMate 3000 RSLC from Thermo Fisher Scientific coupled to a Maxis 

Impact QTOF from Bruker) [32]. 

Sediment samples were extracted at UoA using a validated protocol [59]. 

Briefly, 0.2 g of freeze-dried sediment sample were placed into a 15 mL 

centrifuge tube and the analytes were extracted with 2 mL methanol–Milli-Q 

water (pH 2.5, formic acid 0.5% and 0.1% EDTA), 50:50 (v/v) by vortex (1 min), 

followed by ultrasonic extraction at 50°C for 15 min. After the extraction, the 

extract was centrifuged, and the supernatant was collected in a glass test tube. 

The extraction was repeated two more times and the total extract of 6 mL was 

collected and evaporated to dryness under a gentle steam of nitrogen at 40°C. 

The dried extract was reconstituted with 0.2 mL methanol/Milli-Q water, 50:50 

(v/v). 

In addition, the extraction of biota (fish muscle) was performed at the UoA using 

an optimized multiresidue method for fish tissues [60]. Briefly, 0.2 g freeze-dried 

biota sample was placed into a 15 mL centrifuge tube and extracted with 2 mL 

of Milli-Q water containing 0.1% formic acid (v/v) and 0.1% EDTA (w/v), 2 mL 

of methanol, and 2 mL of acetonitrile sequentially, using a vortex mixer (30 sec) 

and ultrasonic bath at 60°C for 20 min. The samples were centrifuged and the 

supernatants transferred to new plastic centrifuge tubes to precipitate lipids and 

remaining proteins at -20 °C for 12 h. After an additional defatting step by liquid-

liquid extraction with hexane (5 mL), the extract was collected in a glass tube, 

evaporated to dryness under a gentle steam of nitrogen at 40 °C and 

reconstituted in 0.2 mL methanol/Milli-Q water, 50:50 (v/v). The extract was 

filtered through a 0.22 μm RC syringe filter of 4 mm diameter (Phenomenex, 

USA) and transferred into a glass vial for liquid chromatography tandem mass 
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spectrometry (LC-MS/MS using a Thermo UHPLC Accela system connected to 

a TSQ Quantum Access triple-200 quadrupole mass spectrometer) and LC-

HRMS analysis. 

A thorough quality assurance and quality control (QA/QC) was applied in all 

sample preparation and instrumental methods. A mix of internal standards was 

added into each sample prior to extraction to assure satisfactory recovery of 

the target compounds. Moreover, procedural blank and field blank samples 

were prepared to assess any external contamination which might have been 

brought in during the sampling campaign, sample preparation of the extracts 

and analysis. More details about QA/QC protocols can be found in Section 1 of 

Supplementary Information (Chapter S3.2). 

3.1.2 Risk assessment 

To assess the risk of the detected substances, the concentrations of the 

contaminants were evaluated in relation to the respective Predicted no-effect 

Concentration (PNEC) values. The occurrence of CECs with detected 

concentrations above PNEC were considered to represent a potential risk for 

the impacted ecosystem. PNEC values for all detected substances were 

extracted from the NORMAN Ecotoxicology Database (https://www.norman-

network.com/nds/ecotox/; a part of the NORMAN Database System [61]) for 

river water, sediments and biota samples. For compounds where no 

experimental toxicity data was available, predicted PNECs (P-PNECs) were 

derived by Quantitative Structure-activity Relationship (QSAR) models [62]. For 

risk assessment purposes, the lowest PNEC was selected in the order of (a) 

Environmental Quality Standard (EQS) values; (b) experimental PNEC values 

from reference laboratories; (c) in-silico predicted P-PNEC. Steroids in biota 

were considered as natural occurring compounds and were not considered for 

the risk assessment. 

3.2 Results and Discussion 

All results were collected in the pre-programmed spreadsheets termed Data 

Collection Templates (DCTs) gathering all necessary metadata (e.g. sampling 

site name, date, coordinates, sample matrix etc.) and information to judge the 

quality of the results (e.g. Limit of Detection/Quantification, level of the 

https://www.norman-network.com/nds/ecotox/
https://www.norman-network.com/nds/ecotox/
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validation of the used methods and accreditation of the laboratory etc.). The 

DCTs were so far uploaded into the NORMAN Database System (NDS; 

https://www.norman-network.com/nds/) and its EMPODAT module 

(https://www.norman-network.com/nds/empodat/). All results can be 

interactively visualized in an on-line map (https://norman-data.eu/JDS4/). The 

results for groundwater samples were included and were discussed in detail in 

Supplementary Information file (Section 1, Chapter S3.3) and all the information 

about their composition are included in Chapter 25 of the JDS4 Scientific report 

978-3-200-07450-7. 

Most frequently detected compounds and compounds with the highest 

concentration levels for river water samples, sediments, biota and wastewater 

(influent and effluent) are discussed in sections 3.2.1, 3.2.2, 3.2.3 and 3.2.4 

respectively. Co-occurring contaminants in various environmental matrices are 

discussed in section 3.2.5. Finally, top-ranked contaminants based on risk 

assessment are discussed in section 3.2.6. 

3.2.1 Danube River water samples 

Industrial chemicals and PPPs were the dominant use categories of emerging 

contaminants in the JDS4 river water samples as regards the concentration 

levels (Figure 3). The data of the surfactant benzododecinium was not included 

in Figure 3, since this substance was determined at extremely high 

concentration levels with an average concentration of 2.1 μg L-1 and a peak 

concentration of 11.3 μg L-1 at the station of Budapest JDS4-24. 

Benzododecinium is a widely used cationic surfactant that is used as biocide, 

fabric softening, wetting agent by the textile industry, road construction and 

cosmetics industry [63]. The concentration levels found in river water and 

wastewater samples indicate multiple input sources in the Danube. 

https://www.norman-network.com/nds/
https://www.norman-network.com/nds/empodat/
https://norman-data.eu/JDS4/
http://www.danubesurvey.org/jds4/jds4-files/nodes/documents/jds4_scientific_report_20mb.pdf
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Figure 3: Cumulative concentrations of industrial chemicals, plant protection products (PPPs) 

and miscellaneous chemicals at the 51 JDS4 river water stations. Numbers in the pie charts 

represent sum of concentrations of individual substances expressed in ng L-1. Contribution of 

the surfactant benzododecinium was excluded. 

In general, cumulative concentrations of industrial chemicals seemed to 

dominate in the samples of the Upper and Middle Danube whereas their 

concentration decreased in the Lower Danube and, instead, the contribution by 

PPPs increased. Despite the lower number of detected industrial chemicals (40 

compounds) in comparison to PPPs (120 compounds), the concentration of 

industrial chemicals was remarkably higher than PPPs. Concentration of 

industrial chemicals covered on average 42.5 % of the total concentration of all 

detected compounds. The sampling site with the highest concentration of 

industrial chemicals was JDS4-20 (3.3 μg L-1, 81% of the total concentration of 

pollutants in the sampling station) followed by JDS4-3 (2.0 μg L-1, 74% of the 

total concentration of pollutants in the sampling station). 

 

The most frequently detected industrial chemicals were benzotriazole (BTR) 

and 4/5-methyl-benzotriazole (4/5-Me-BTR), whereas low frequency of 

appearance (FoA) was found for 4,5-di-Me-BTR. BTR was detected in all river 

water samples (FoA 100%) with an average concentration in river water of 350 

ng L-1, whereas 4/5-Me-BTR was detected with FoA 96.1% and an average 
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concentration of 145 ng L-1. From the class of benzothiazoles, 2-amino-

benzothiazole was detected with remarkably high FoA (98 %) but in much lower 

concentration levels (average concentration 3.7 ng L-1). Similarly, low 

concentration but high FoA were observed for six perfluorinated substances 

according to results provided by UoA, i.e. perfluorooctanoic acid (PFOA, FoA 

100%, average concentration 2.1 ng L-1), perfluorooctanesulfonic acid (PFOS, 

FoA 96.1%, average concentration 2.1 ng L-1), perfluorohexanoic acid (PFHxA, 

FoA 94.1%, average concentration 3.2 ng L-1), perfluorohexanesulfonic acid 

(PFHxS, FoA 90.2%, average concentration 1.5 ng L-1), 

perfluorobutanesulfonic acid (PFBS, FoA 86.3%, average concentration 0.6 ng 

L-1) and perfluoroheptanoic acid (PFHpA, FoA 56.9%, average concentration 

1.1 ng L-1). Despite the low concentration levels, the frequent (almost 

ubiquitous) occurrence of perfluorinated substances is of concern as they 

possess a high bioaccumulation potential. 

Another important class of detected industrial chemicals was phenols, 

specifically 2,4-dinitrophenol (FoA 100%, average concentration 3.6 ng L-1), the 

Water Framework Directive (WFD) priority substance (PS) 4-tert-octylphenol 

(FoA 88.2%, average concentration 55.2 ng L-1) as well as four novel bisphenol 

A related compounds: bisphenol A diglycidyl ether, bisphenol A (3-chloro-2-

hydroxypropyl) glycidyl ether, bisphenol A (2,3-dihydroxypropyl) glycidyl ether, 

and bisphenol A bis(3-chloro-2-hydroxypropyl) ether. A distinct spatial 

distribution was observed for these four Bisphenol A-related chemicals, which 

were detected in the Upper Danube (Germany, Austria, Slovakia) but not in the 

rest JDS4 river samples. Their concentrations were remarkably high in the 

Upper Danube ranging from 55 up to 271 ng L-1. Out of the group of 

organophosphates, nine organophosphates were detected in almost all river 

water samples (FoA>96%). The highest concentration was observed for 

phosphate-tris (2-chloro-1-methylethyl) (TCPP), which was present with an 

average concentration of 107 ng L-1 in the river water samples. The rest of 

organophosphates were detected at lower concentrations (most of them below 

10 ng L-1). However, their widespread occurrence might be of concern. Similarly 

ubiquitously, the plasticizer diethyl phthalate was detected in 98% of the river 

water samples and at average concentration 81 ng L-1. The high FoA of 
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organophosphates and phthalates is known from the previous JDS sampling 

campaigns and their widespread occurrence was not of surprise since these 

substances are commonly used as plasticizers. PPPs were detected in river 

water samples at much lower concentration levels than industrial chemicals. 

However, many PPPs were detected with high FoA. 28 compounds were 

detected in many river water samples with FoA>80%. The average 

concentration of PPPs in the Danube River was below 10 ng L-1 for most of the 

substances with a very few exceptions. One of those exceptions was 

diethyltoluamide (DEET) detected in all river water samples with the average 

concentration of 218 ng L-1. DEET showed a clear spatial distribution pattern 

with the highest concentration levels being revealed at the JDS4 sampling sites 

located in Hungary (up to 1065 ng L-1). Another exception was metolachlor and 

its TP metolachlor-ESA. Both compounds were detected in all samples (FoA 

100%) at average concentration levels of 24 and 42 ng L-1, respectively. Other 

TPs of metolachlor such as metolachlor-OXA and metolachlor-morpholinon 

were also detected but with much lower FoA (47 and 12%, respectively). 

Another PPP that stood out because of its relatively high concentration levels 

was carbendazim. Carbendazim which is also used as biocide was detected in 

92.2% of the investigated samples at concentration levels of 151 ng L-1 on 

average. It is worth noting carbendazim has been banned as PPPs in the EU 

in the beginning of 2019. Therefore, its concentration levels in the aquatic 

environment of Danube are expected to decrease in the near future. High FoA 

(>70%) and concentration above 10 ng L-1 was also proved for terbuthylazine 

(FoA 100%, average concentration 22 ng L-1) and its two major TPs desethyl-

terbuthylazine (FoA 100%, average concentration 19 ng L-1) and 2-hydroxy-

terbuthylazine (FoA 72.5%, average concentration 18 ng L-1). Pesticides which 

were detected in all analysed river water samples (FoA 100%) but very low 

concentration levels (average concentration below 5 ng L-1) were tebuconazole, 

imidacloprid, terbutryn, o-hydroxybiphenyl and simazine. 

3.2.2 Sediments 

River sediments were less contaminated in comparison with other investigated 

matrices. Nineteen industrial chemicals and seven PPPs were detected. Most 

of the substances that were detected were semipolar and non-polar (logKow ≥ 
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3), leading to accumulation in river sediments. Surfactants was the dominant 

use category of chemicals in river sediments with diglyme, benzododecinium, 

didecyldimethylammonium and triglyme being detected in all samples and 

lauryldiethanolamide, tetraethyleneglycol-monododecyl ether, N,N-

dimethyltetradecylamine, N,N-dimethyltetradecylamine-N-oxide, N,N-

dimethyldodecylamine being detected with FoA≥ 50%. Three phthalates, bis-

(2-ethylhexyl) phthalate (DEHP; WFD PS), diethyl phthalate and di-n-butyl 

phthalate were also detected in all sediment samples. DEHP was the 

compound with the highest concentration up to 1342 ng g-1 dry weight.  

From the use category of PPPs, the pesticide barban was detected in 75% of 

the samples with average concentration 67 ng g-1 dry weight, while the rest of 

PPPs were detected with lower FoA and/ or at concentration levels below the 

limits of quantification (LOQ). Such compounds were oxfendazole, aramite and 

desisopropyl-atrazine. Methiocarb and chlordimeform were detected just above 

their LOQs at concentrations 5 and 6 ng g-1 dry weight respectively. 

3.2.3 Biota 

In the analyzed 11 biota fish samples (muscle), 8 industrial chemicals, 17 PPPs 

and 2 unclassified emerging contaminants were determined. This indicates a 

potential for their persistence and bioaccumulation (P and B criteria) according 

to the REAC4H legislation. N-Methyl-2-pyrrolidone and PFOS were detected in 

all samples at average concentration of 22 and 13 ng g-1 wet weight, 

respectively, followed by 4-tert-octylphenol, which was detected with lower FoA 

(91%) but at similar average concentration levels. Regarding the sub-group of 

perfluorinated substances, two additional compounds were detected in biota 

that were not detected in river water: perfluorodecanoic acid and 

perfluoroundecanoic acid, which have a very high bioaccumulation potential. 

Both perfluorinated substances were detected with much lower FoA of 27.3% 

and at low concentrations of 1.1 ng g-1 wet weight. The PPPs barban, 

methoprene and 3-hydroxy-carbofuran were detected in all biota samples. The 

highest average concentration was observed for barban (25 ng g-1 wet weight), 

whereas lower concentration levels were found for methoprene (5.3 ng g-1 wet 

weight) and 3-hydroxy-carbofuran (3.6 ng g-1 wet weight). The fourth most 
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frequently detected agricultural chemical was alachlor-OXA, which was 

detected with relatively high FoA (72.7%) and at average concentration 11 ng 

g-1 wet weight, while all the other PPPs were detected in the samples with 

FoA≤28%. 

3.2.4 Influent and effluent wastewater 

Influent and effluent wastewater (24h-composite reflecting the hydraulic 

retention time of each WWTP) are discussed together since the purpose of the 

sampling was also to indicate the removal rates for CECs in the various 

WWTPs in the catchment. Therefore, the analysis was narrowed down to 

substances (PPPs and industrial chemicals) detected before and after 

treatment and thus reliable removal rates could be obtained. It must be noted 

that PPPs originate mainly from agricultural activities. However, the introduction 

of PPPs from WWTPs into the aquatic environment is not always insignificant. 

In order to draw as robust results as possible given the generated dataset, the 

analysis was restricted to substances that were detected in at least six out of 

the 22 (11 influent and 11 effluent) wastewater samples. The result of the 

analysis is summarized in Table 1. 
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Table 1: Concentrations of industrial chemicals, PPPs and miscellaneous chemicals that were 

measured in both influent and effluent wastewater. The table presents only substances that 

were detected in at least six out of the 22 wastewater samples (11 influent and 11 effluent). 

 

Compound 

Influent wastewater Effluent wastewater  

Removal No. of 

sample

s 

Concentratio

n range (ng L-

1) 

No. of 

sample

s 

Concentratio

n range (ng L-

1) 

1,2,3,6-cis-Tetrahydrophthalimide 11 5.6-56 0 <LOD Efficient 

2-Benzothiazolesulfonic acid 10 38-111 11 40-147 Poor 

4-tert-Octylphenol (4-t-OP) 11 74-284 11 41-236 Poor 

Azoxystrobin 1 1.5-1.5 8 1.7-3.3 Poor 

Benzododecinium 

(Benzyl-dimethyl-dodecylammonium) 

 

11 
 

28-186 
 

8 
 

0.61-21 
 

Efficient 

Benzoic acid 10 16-2292 8 11-106 Efficient 

Benzothiazole-2-OH 9 11-267 3 7.7-21 Efficient 

Benzotriazole (BTR) 11 240-9240 11 329-25923 Poor 

Benzotriazole-5-methyl 8 34-4930 11 18-3123 Poor 

Bisphenol A 8 5.9-81 4 6.5-118 Poor 

Bisphenol S 6 5.8-13 0 <LOD Efficient 

Climbazole 11 9.3-28 10 9.6-21 Poor 

Cyclamic acid 11 15-110 0 <LOD Efficient 

Daidzein 11 11-103 0 <LOD Efficient 

DEET (Diethyltoluamide) 10 17-104 11 1.7-29.3 Efficient 

Didecyldimethylammonium 

(DADMAC (C10:C10)) 10 0.57-22 9 0.55-1.2 Efficient 

Diglyme 11 29-136 11 3.0-14 Efficient 

Diuron 3 7.2-8.4 7 1.2-10 Poor 

Dodecyl-benzenesulfonate 11 90.8-1325 11 5.67-110 Efficient 

Endothal 10 17-192 0 <LOD Efficient 

Fipronil 4 7.7-30 9 1.62-59.7 Poor 

Fludioxonil 4 0.16-1.5 7 0.19-0.64 Poor 

Indole-3-acetic acid 7 30-284 0 <LOD Efficient 

Lauryl diethanolamide 11 1.5-803 11 0.61-6 Efficient 

Methoprene 0 <LOD 6 1-5.5 Poor 

Methoxyphenamine 0 <LOD 6 2.7-36 Poor 

N,N-Dimethyldodecylamine 11 0.18-7.8 0 <LOD Efficient 

N,N-Dimethyldodecylamine-N-oxide 11 60-275 11 0.66-12 Efficient 

N,N-Dimethyltetradecylamine-N-oxide 11 6-141 11 0.76-18 Efficient 

N-Methyl-2-pyrrolidone 11 14-444 8 1.1-4.5 Efficient 

N-Methyldodecylamine 10 40-763 0 <LOD Efficient 
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Oxfendazole 1 8.2-8.2 7 0.63-18 Poor 

PFHxA 6 1.9-1.9 5 1.7-10 Poor 

Phthalate-diethyl 10 0.68-36 1 <0.6-<0.6 Efficient 

Phthalate-di-n-butyl 10 0.9-21 9 3.1-11 Poor 

Picaridin (Icaridin) 10 1.4-129 4 0.35-1.2 Efficient 

Propazine-2-hydroxy (Prometon-hydroxy) 1 3.3-3.3 7 0.87-3.8 Poor 

Sethoxydim 11 15-52 1 19-19 Efficient 

Tetraethylene glycol monododecyl ether 10 11-280 10 1.2-9.4 Efficient 

Thiabendazole 0 <LOD 7 0.69-2.6 Poor 

Thiamethoxam 3 2.4-4.7 4 2.3-13 Poor 

Toluenesulfonamide 8 10-464 5 121-171 Poor 

 

WWTPs removed efficiently 23 out of the 42 PPPs and industrial chemicals 

(55%). Efficient removal was considered if the WWTP reduced the 

concentration of the contaminant by 80%. Therefore, efficient removal did not 

indicate complete removal of the substance. Many substances that were 

detected in the river water originated at least partially from wastewater effluents 

(e.g. benzotriazole, 4-tert-octylphenol, benzododecinium, 

didecyldimethylammonium etc.) caused by the low efficiency of the WWTPs to 

eliminate them. In some cases, the concentration in the effluent wastewater 

was higher than in the influent wastewater, which can be attributed to the 

cleavage of conjugated substances happening during the various processes of 

the WWTPs [64]. Despite the low average removal efficiency (55%) for the 

studied chemicals, WWTPs proved to significantly reduce the loads of 

contaminants that are discharged into the Danube River and thus help to 

protect the river and its ecosystems, but more efficient treatment techniques 

should be established. 

3.2.5 Commonly detected compounds in different environmental 

matrices 

Substances that are not eliminated by the WWTPs are being continuously 

introduced in the Danube River ecosystem. Depending on their physico-

chemical properties, substances may barely undergo transformation or 

adsorption to particulate matter and therefore persist in the water phase. 

Examples of such compounds were PFOS, 4-tert-octylphenol, 
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benzododecinium, didecyldimethylammonium, phosphate-triphenyl (TPhP), 

phosphate-triethyl (TEP) and phthalate-diethyl. There are also compounds that 

are at least partially transformed to new TPs (e.g. cases of benzotriazole, 

atrazine, metolachlor etc.) which may be more toxic than their parent 

compounds. Persistent substances may enter the groundwater used for the 

production of drinking water (e.g. DEET, benzotriazole etc.) or accumulate in 

the biota (e.g. 4-tert-octylphenol, PFOS etc.) thus putting human health at risk. 

Table 2 summarizes the observed occurrence of selected PPPs and industrial 

chemicals in the catchment. 

Table 2: Commonly detected PPPs and industrial chemicals in JDS4 samples. 

 
Compound 

Detected 

in JDS4 

matrices* 

 
Compound 

Commonly 

detected 

matrices* 

4-tert-Octylphenol (4-t-OP) R, WW, G, S, 
B 

Metalaxyl R, WW, B 

Benzododecinium 

(Benzyl-dimethyl-
dodecylammonium) 

 
R, WW, G, S, 
B 

 
Atrazine-desisopropyl 

 
R, G, S 

Didecyldimethylammonium 

(DADMAC (C10:C10)) 

 
R, WW, S, B 

 
Clothiandin 

 
R, G, B 

Phosphate-Triphenyl (TPhP) R, WW, G, S Bis-(2-ethylhexyl)-phthalate 
(DEHP) 

G, S, B 

Phosphate-triethyl (TEP) R, WW, G, S 3,3-pentamethylene-4-
butyrolactam 

WW, G 

Phthalate-diethyl R, WW, G, S Bisphenol A WW, G 

PFOS R, WW, G, B N,N-Dimethyldodecylamine N-
oxide 

WW, G 

Benzotriazole (BTR) R, WW, G Atrazine-2-hydroxy WW, G 

N-Methyl-2-pyrrolidone WW, S, B PFDA WW, B 

Phthalate-di-n-butyl WW, G, S Propoxur WW, B 

Diglyme WW, G, S Barban S, B 

Lauryl diethanolamide WW, G, S Chlordimeform S, B 

Tetraethylene glycol 

monododecyl ether 

 
WW, G, S 

 
Benzothiazole -2-OH 

 
R, WW 

N,N-Dimethyltetradecylamine-N-
oxide 

WW, G, S Toluenesulfonamide R, WW 

Oxfendazole WW, G, S Benzothiazole-2-Amino R, WW 

Benzotriazole-5-methyl R, WW, G Melamine R, WW 

Benzoic acid R, WW, G PFHxS R, WW 

PFHxA R, WW, G PFHpA R, WW 

PFBS R, WW, G 2-4-Dinitrophenol (DNP) R, WW 
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PFOA R, WW, G Phosphate-tris(2-ethylhexyl) 
(TEHP) 

R, WW 

 
Phosphate-tri-n-butyl (TNBP) 

 
R, WW, G 

Phosphate-tris(3,5-

dimethylphenyl) (T35DMPP) 

 
R, WW 

Phopshate-triisobutyl (TIBP) R, WW, G Phosphate-tris(2-chloroethyl) 
(TCEP) 

R, WW 

Phosphate-2-ethylhexyl-

diphenyl (EHDP) 

 
R, WW, G 

 
Phosphate-tris(2-butoxyethyl) 
(TBOEP) 

 
R, WW 

Phosphate-tris(1,3-dichloro-2-

propyl) (TDCPP) 

 
R, WW, G 

 
Phosphate-tris(methylphenyl) 
(TMPP) 

 
R, WW 

Phopshate-tris(2-chloro-1-

methylethyl) (TCPP) 

 
R, WW, G 

 
Phosphite-(nonylphenyl) (TNPP) 

 
R, WW 

DEET (Diethyltoluamide) R, WW, G Phosphate-triisopropyl (TIPPP) R, WW 

Pyrethrin I R, WW, G Climbazole R, WW 

Chloridazone R, WW, G Fludioxonil R, WW 

Atrazine R, WW, G Azoxystrobin R, WW 

Propazine-2-

hydroxy 

(Prometon-

Hydroxy) 

 
R, WW, G 

 
Diuron 

 
R, WW 

Metolachlor R, WW, G Thiamethoxam R, WW 

 
Picaridin (Icaridin) 

 
R, WW, G 

MCPA (4-chloro-2-

methylphenoxyacetic acid) 

 
R, WW 

Chlorotoluron R, WW, G Boscalid R, WW 

Atrazine-desethyl R, WW, G Imidacloprid-urea R, WW 

Bentazone R, WW, G Diazinon R, WW 

Carbendazim R, WW, G Azoxystrobin acid R, WW 

Metazachlor R, WW, G Chloridazone-methyl-desphenyl R, WW 

Dinoseb R, WW, G Pethoxamide R, WW 

Imidacloprid R, WW, G Acetamiprid R, WW 

Terbutryn R, WW, G op-DDE R, WW 

Tebuconazole R, WW, G op-DDD R, WW 

Terbuthylazine-desethyl R, WW, G op-DDT R, WW 

Terbuthylazine R, WW, G O-Hydroxybiphenyl R, WW 

Dimethenamide R, WW, G Cypermethrin R, WW 

Chlorpyriphos R, WW, G Benzotriazole-5 6-di-methyl R, G 

Triallate R, WW, G Phthalate-Dimethyl R, G 

pp-DDE R, WW, G Metolachlor-ESA R, G 

pp-DDD R, WW, G Dazomet R, G 

pp-DDT R, WW, G Simazine R, G 

Total DDTs R, WW, G Propiconazole Metabolite SYN 
547889 

R, G 
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Chlorothalonil R, WW, G Terbuthylazin-2-hydroxy R, G 

 
a-HCH 

 
R, WW, G 

Metazachlor metabolite 

(Metazachlor ESA, 479M008; 

291634) 

 
R, G 

 
b-HCH 

 
R, WW, G 

Metalaxyl metabolite 

(Metalaxyl acid, CGA 62826, 

NOA 409045) 

 
R, G 

 
d-HCH 

 
R, WW, G 

Terbuthylazin metabolite 
(SYN545666 

/LM6) 

 
R, G 

e-HCH R, WW, G Metolachlor, S- R, G 

g-HCH R, WW, G 4-Piperidinecarboxamide R, B 

 
Sum-HCHs 

 
R, WW, G 

Metolachlor metabolite 

(Metolachlor OA, CGA 

351916/CGA 51202) 

 
R, B 

Methoprene R, WW, B Imazamox R, B 

* R: river water, WW: wastewater, G: groundwater, S: sediments, B: biota 

3.2.6 Risk assessment 

In an effort to prioritize the substances based on their potential to pose a threat 

for the aquatic ecosystem, concentration levels of the detected contaminants 

were compared to their PNEC values. In Table 3, a list of potentially toxic PPPs 

and industrial chemicals is presented. In total, nineteen PPPs and eight 

industrial chemicals exceeded their respective ecotoxicological threshold in at 

least one site during JDS4. 

Table 3 also summarizes the number of samples that exceeded the PNEC. This 

information indicates whether the exceedance was local or of a basin-wide 

importance. All these substances need further attention of the regulators and 

the researchers. The prioritisation of the substances using the above results as 

well as the NORMAN methodology [65] is presented in Chapter 36 of the JDS4 

scientific report (http://www.danubesurvey.org/jds4/jds4-

files/nodes/documents/jds4_scientific_report_20mb.pdf). 

 

 

http://www.danubesurvey.org/jds4/jds4-files/nodes/documents/jds4_scientific_report_20mb.pdf
http://www.danubesurvey.org/jds4/jds4-files/nodes/documents/jds4_scientific_report_20mb.pdf
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Table 3: PPPs and industrial chemicals that exceeded their PNECs in JDS4 surface river water, 

sediment and biota samples. 

Surface waters 

 
Compound 

 
PNEC 

fw 

(ng/L) 

 
Samples 

>PNEC 

Range of 

concentr

ations 

>PNEC (ng/L) 

Sample with 

highest 

exceedance 

Benzododecinium 62 49 364-11279 JDS4-24 

PFOS 0.65* 46 0.71-11.5 JDS4-12 

Pethoxamide 0.49 35 1-16.5 JDS4-12 

Terbuthylazin-2-hydroxy 7.3 23 7.9-122 JDS4-46 

Carbendazim 150 10 168-1523 JDS4-36 

Methoprene 1.4 8 10.5-40.4 JDS4-37 

Imidacloprid 8.3* 7 8.8-39.9 JDS4-46 

Phosphate-2-ethylhexyl-diphenyl (EHDP) 18 6 18.6-53.6 JDS4-51 

4-tert-Octylphenol (4-t-OP) 100* 5 101-124 JDS4-27 

Terbuthylazine 60 4 61.9-87.1 JDS4-11 

pp-DDE 0.4 4 0.58-2.7 JDS4-46 

Nicosulfuron 9 4 9.6-47.1 JDS4-49 

Metazachlor 20 3 27.9-29.3 JDS4-12 

2,4-D 20 2 56.5-943 JDS4-36 

Imazamox 11 1 26.0 JDS4-46 

Pyrethrin I 1.4 1 3.0 JDS4-34 

Dazomet 38 1 38.2 JDS4-48 

Bisphenol A-bis(3-chloro-2-

hydroxypropyl) ether 

 
340 

 
1 

 
536 

 
JDS4-04 

pp-DDD 0.5 1 0.82 JDS4-13 

Sediments 

 
Compound 

 
PNEC 

sed (μg/kg 

d.w.) 

 
Samples 

>PNEC 

Range of 

concentra

tions 

>PNEC (μg/kg 
d.w.) 

Sample with 

highest 

exceedance 

Bis-(2-ethylhexyl)-phthalate (DEHP) 0.0077 4 469-1342 JDS4-24 

Benzododecinium 0.1 4 3.5-18.9 JDS4-24 

N-Methyldodecylamine 9.04 2 297-540 JDS4-24 

Methiocarb (Mercaptodimethur) 0.12 2 3.1-6.1 JDS4-51 

4-tert-Octylphenol (4-t-OP) 12.3 1 25.7 JDS4-51 

N,N-Dimethyltetradecylamine 6.11 1 17.5 JDS4-24 
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Cadusafos 0.031 1 0.61 JDS4-24 

Biota 

 
Compound 

 
PNEC  

bio (μg/kg 

w.w.) 

 
Samples 

>PNEC 

Range of 

concentra

tions 

>PNEC (μg/kg 
w.w.) 

Sample with 

highest 

exceedance 

PFOS 9.1* 6 9.7-22.1 JDS4-6.2-Y-FC 

Methoprene 0.1 11 2.0-6.9 JDS4-29-R-FC 

4-tert-Octylphenol (4-t-OP) 19.9 7 23.5-78.9 JDS4-23-Y-FC 

Bis-(2-ethylhexyl)-phthalate (DEHP) 1.33 4 6.6-134 JDS4-6.2-Y-FC 

Imazamox 0.064 4 0.72-1.8 JDS4-6.2-Y-FC 

Imazapyr 0.061 3 5.6-31.4 JDS4-6.2-Y-FC 

Propoxur 0.046 1 1.0 JDS4-49-R-FC 

Indole-3-acetic acid 42.1 1 115 JDS4-6.2-Y-FC 

* Environmental quality standard (EQS) 

 

3.3 Conclusions 

This chapter summarizes the occurrence of industrial chemicals and PPPs in 

river, wastewater, groundwater, sediment and biota (fish muscle) samples 

collected within JDS4. The removal of industrial chemical and PPPs by the 

WWTPs was investigated, their fate in the catchment was reported, and 

attention was drawn to nineteen PPPs and eight industrial chemicals that 

exceeded their respective ecotoxicological thresholds in various matrices and 

thus qualifiers as possible Danube RBSPs. WWTPs proved partially unable to 

effectively remove industrial chemicals and PPPs. However, they nonetheless 

managed to significantly reduce concentration levels of the vast majority of 

studied contaminants. Overall, the concentration levels of PPPs were at 

significantly lower concentration levels than those of industrial chemicals. 
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4. Chapter 4 

Wide-scope target screening of illicit drugs, 

pharmaceuticals, antibiotics and personal care products in 

wastewater, groundwater, river water, sediments and biota 

by liquid chromatography coupled with high resolution 

mass spectrometry 

 

 

This case study has been published in International Commission for the Protection 

of the Danube River (ICPDR), 2021, pages 313-316 (ISBN: 978-3-200-07450-7).  

 

 

 

 

 

 

http://www.danubesurvey.org/jds4/jds4-files/nodes/documents/jds4_scientific_report_20mb.pdf
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4.1 Introduction 

Pharmaceuticals and their TPs are nowadays well recognized as emerging 

contaminants, since they are being continuously introduced into the 

environment and detected, sometimes at alarming concentration levels, in all 

environmental compartments at the global scale. It has already been 

demonstrated that they may have an adverse impact on the river fauna and 

flora [66, 67]. The terms “illicit drugs” and “drugs of abuse” are often 

interchangeable in the literature. Illicit drugs, including opioids, cocaine, 

cannabis, amphetamine-type and ecstasy-group compounds, are highly 

addictive substances for which nonmedical use is prohibited by national or 

international laws and they are illegal to make, sell and/or use. Drugs’ abuse 

refers to the inappropriate or excessive use of any drug, or the use of 

prescription or over- the-counter drugs for recreational or pleasure purposes, 

or to affect one’s mode, consciousness or a body function unnecessarily. 

Personal care products (PCPs), pharmaceuticals, illicit drugs and their 

metabolites, may enter the environment primarily through wastewater treatment 

plants (WWTPs) effluent discharges, since they are not fully removed during 

the treatment processes. Despite the ubiquitous presence of pharmaceuticals 

and PCPs, their regular monitoring is not requested by the current EU water 

legislation. Obviously, there is a need to gather critical mass of monitoring data 

in support of future regulations at the EU and basin scale. A presence of 

numerous pharmaceuticals and PCPs has already been reported in the Danube 

River Basin (DRB) [68], and some of them have been proposed as Danube 

River Basin Specific Pollutants (RBSPs). The JDS3 results indicated also an 

occurrence of several illicit drugs and their metabolites in surface water. This 

became an issue of high public concern and JDS4 followed up on this to provide 

a thorough overview on their distribution and potential effects at the basin scale. 

The aim of this chapter is to report on the occurrence and fate of 

pharmaceuticals, illicit drugs, PCPs and their metabolites and transformation 

products (TPs) in river water, wastewater, groundwater, sediments and biota 

(fish) matrices in the DRB. The presence of illicit drugs at the DRB scale is 

reported for the first time. 
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Wide-scope target screening methodologies were complemented with the 

‘suspect screening’ by LC-HRMS providing an insight on presence/absence 

and semi-quantification of more than 65,000 chemicals and their TPs in each 

single sample. All samples analysed by HRMS are stored in the NORMAN 

Database System (https://www.norman-network.com/nds/) [61] and its Digital 

Sample Freezing Platform (DSFP; https://norman-data.net/) [7] and thus 

available for retrospective screening of any detected compound, even those 

labelled as ‘unknown’ today, using their unique ‘fingerprints’ (mass spectra). 

4.2 Methods 

4.2.1 Sample preparation methods 

The analytical programme covered samples of 51 river water, 11 influent 

wastewater, 11 effluent wastewater, 7 groundwater, 11 biota samples (mainly 

bleak muscle, one asp muscle) and 4 sediment samples (<63 µm) sampled 

within the JDS4 in June and July 2019 (Annex S1 and S2, Supplementary 

Information). 

River water, groundwater and wastewater samples were extracted by 

HORIZON SPE-DEX device. The samples were also processed using 

MARIANI box [56] for the follow-up determination of 13 pre-selected 

pharmaceuticals of increasing concern in the DRB (carbamazepine, 

sulfamethoxazole, 10,11-dihydro-10,11-dihydroxy-carbamazepine, 

azithromycin, clarithromycin, amoxicillin, diclofenac, naproxen, bezafibrate, 

ibuprofen, ciprofloxacin, 17beta-estradiol and estrone (E1)). Extraction of 

sediments was carried out based on a validated protocol for the determination 

of pharmaceuticals and illicit drugs in sewage sludge [59], whereas biota 

extraction was performed following a multi-residue optimized method for the 

determination of veterinary drugs and pharmaceuticals [60].  

4.2.2 Instrumental methods 

Two complementary instrumental methods were used for the screening of 

1,301 pharmaceuticals, PCPs, illicit drugs and their TPs in the JDS4 samples’ 

extracts. A highly sensitive LC-MS/MS method using multiple reaction 

monitoring (MRM) scan mode was used for the determination of 158 illicit drugs, 

https://www.norman-network.com/nds/
https://norman-data.net/
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drugs of abuse, commonly consumed pharmaceuticals, antibiotics, and their 

TPs at trace-level concentrations [30]. Furthermore, high-resolution mass 

spectrometric analysis by LC-electrospray (ESI)-QTOFMS, through full-scan 

MS and MS/MS acquisition, enabled the screening of additional >65,000 

substances including thousands of pharmaceuticals, PCPs and their TPs. The 

analytical description of the chromatographic separation, mass spectrometric 

detection and data treatment workflows of these methodologies are available 

in previously published studies [60, 69]. 

4.3 Results 

The results of determination of all studied contaminants were collected in the 

pre-programmed spreadsheets termed ‘Data Collection Templates’ (DCTs) 

gathering all necessary metadata (e.g. sampling site name, date, coordinates, 

sample matrix etc.) and information to judge the quality of the results (e.g. Limit 

of Detection/ Quantification, level of the validation of the used methods and 

accreditation of the laboratory etc.). The DCTs were uploaded into the 

NORMAN Database System (NDS) and its EMPODAT module (https:// 

www.norman-network.com/nds/empodat/). All results can be interactively 

visualized in an on-line map (https://norman-data.eu/JDS4/). The results for 

groundwater samples were discussed in Supplementary Information file, 

Chapter S3.3. Although most of the pharmaceuticals have broad uses and 

pharmacological actions, for the statistical treatment and presentation of the 

results, a classification was attributed to the detected compounds, based on 

their main use, application or therapeutic action. When the contaminants were 

detected above their Limit of Detection (LOD) but below their respective LOQ, 

LOQ/2 values were used for the calculation of cumulative concentrations per 

class for reporting purposes in this chapter, as indicated by the Directive 

2009/90/EC. The results describing the occurrence of pharmaceuticals, PCPs 

and illicit drugs per environmental matrix are presented below. 

4.3.1 Danube surface river water samples 

140 pharmaceuticals, PCPs, illicit drugs and their TPs were detected in JDS4 

river water samples and categorized into 10 main sub-classes. The most 

frequently detected sub-classes were antibiotics (32 compounds), antipsychotic 

file:///C:/Users/EleanaK1/AppData/Roaming/Microsoft/Word/(https:/%20www.norman-network.com/nds/empodat/
file:///C:/Users/EleanaK1/AppData/Roaming/Microsoft/Word/(https:/%20www.norman-network.com/nds/empodat/
https://norman-data.eu/JDS4/
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drugs (17), illicit drugs and stimulants (14) and analgesics (13), whereas “other 

pharmaceuticals” consisted of 29 pharmaceuticals with various clinical uses. 

 

Figure 4: %Contribution of the different classes of pharmaceuticals and illicit drugs to the 

overall cumulative contamination of the JDS4 surface water samples (expressed as 

concentration). 

As illustrated in Figure 4, mostly steroids and their metabolites contributed to 

the overall pollution of surface water (32%), expressed as a total concentration 

in all tested samples. Antiepileptics and analgesics followed with a contribution 

of 19 and 18%, respectively. Among the detected compounds, caffeine, 

clarithromycin, sulfamethoxazole, carbamazepine and its metabolite 10,11-

dihydro-10,11-dihydroxy-carbamazepine, metformin and 19-norandrosterone 

were present in all tested samples. 58 compounds were detected in less than 

10% of the analysed samples. In total, 24 TPs of pharmaceuticals and illicit 

drugs were detected in the analysed samples. In most cases, both parent 

compound and characteristic TPs were detected (including e.g. mirtazapine 

and its TPs: 8-OH-mirtazapine and normirtazapine, amisulpride and 

amisulpride-N-oxide, tramadol and nortramadol and lidocaine and lidocaine-N-

oxide). For nine compounds (cotinine, cetirizine- N-oxide, galaxolidone, 

nortilidine, 4-acetamidoantiyrine-benzoylecgonine, norclozapine, nordiazepam 

and 7-amino-flunitrazepam), only the TPs were detected. JDS4-13, JDS4-15 
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and JDS4-44 were the samples that presented the highest total levels of TPs 

(ranging from 191 to 200 ng L-1). Several compounds, including amoxicillin, 

ciprofloxacin, sulfamethoxazole, trimethoprim, venlafaxine and fluconazole that 

are listed in the most recent EU Watch List (EU 2020/1161), were detected in 

JDS4 river water samples. All compounds were detected typically at 

concentration levels up to tens of ng L-1, only the maximum detected 

concentrations for 4-acetamido-antipyrine, 10,11-dihydro-10,11-dihydroxy 

carbamazepine, tenofovir, corticosterone and 19-norandrosterone, ranged from 

114 ng L-1 (tenofovir) to 1,171 ng L-1 (19-norandrosterone). JDS4-12 was the 

most polluted sample, with the total cumulative concentration of detected 

pharmaceuticals at 1,330 ng L-1, mainly due to the detection of high 

concentration of 19-norandrosterone. The highest number of the studied 

compounds (65) was detected in JDS4-1. Since the detection of the steroid 19-

norandrosterone (concentration range: 4.69-1,171 ng L-1), significantly affected 

the overall concentration profile of the river water samples, it was not 

considered in Figure S10 (S4.1.1, SI) illustrating the total cumulative 

concentrations per class and the total number of detected compounds. 

Samples JDS4-44 (BG), JDS4-13 (SK) and JDS4-46 (BG) from the Danube 

tributaries revealed the maximum cumulative concentrations of 

pharmaceuticals and illicit drugs at 790, 760 and 758 ng L-1, respectively. The 

highest cumulative concentration of antibiotics was detected in JDS4-24 (65.7 

ng L-1), while JDS4-46 was the most polluted surface water sample in terms of 

analgesics (342 ng L-1), illicit drugs and stimulants (24.3 ng L-1). The maximum 

cumulative concentrations for antiepileptics, other pharmaceuticals and PCPs 

(278 and 246 ng L-1) were determined in JDS4-13 and JDS4-30, respectively. 

Anaesthetics were detected at significantly lower levels compared to the rest of 

the analysed target compounds, reaching a maximum of 14.3 ng L-1 at JDS4-

37 in Serbia. The maximum cumulative concentrations for antihypertensives 

(116 ng L-1), antidepressants (53.5 ng L-1) and antipsychotics (69.9 ng L-1) were 

detected in samples from JDS4-34, JDS4-19 and JDS4-51, respectively. 

When comparing the concentration ranges from all discussed substance 

categories in the Danube surface water (29 samples) and its tributaries (22 

samples), as shown in Figure 5, a clear trend of increasing median cumulative 



 

65 
 

concentration and higher deviation can be seen in the samples collected from 

the tributaries. This profile was not similar in the case of anaesthetics. An 

almost equal distribution between the pollution of the main stream and the 

tributaries was recorded. In contrast, antipsychotic drugs were observed with a 

2-fold higher median concentration levels in the Danube River samples 

compared to its tributaries. The surface waters collected from the tributaries, 

especially JDS4-11, JDS-12 and JDS4-13 from the Morava river, and JDS4-44 

and JDS4-46 from the Iskar and Russenski Lom, were among the most polluted 

samples, considering the total concentration and number of detected 

compounds. Moreover, JDS4-17 (Mosoni, Hungary) and JDS4-21(Ipel river, 

Slovakia), presented high cumulative concentrations compared to all JDS4 

surface samples (Figure S10). 
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Figure 5: Box plots of different classes of pharmaceuticals and illicit drugs in the Danube River (No. of 

sites, 29) and its tributaries (No. of sites, 22). 
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4.3.2 Sediments 

Overall, 31 pharmaceuticals were detected in the four analysed samples, with 

antibiotics being the most frequently detected class of compounds (n=10). 

Seven antidepressants, antipsychotic drugs, and their metabolites, four 

antiepileptics and antihypertensive drugs, three analgesics, two PCPs and their 

metabolites, four other pharmaceuticals and the metabolite of nicotine, 

nornicotine, were determined. Most of the detected compounds were found at 

concentration levels up to tens of μg Kg-1 dry weight, while clarithromycin, 

sulfadoxine, mirtazapine, sulpride, chlordiazepoxide, chlorpromazine, 

propafenone and oxfendazole, were present only below their respective LOQs. 

The antibiotic sulfadiazine, the antiepileptic carbamazepine and the Ultraviolet 

(UV)-filter octocrylene were the most abundant compounds found at maximum 

concentrations of 120, 213 and 162 μg Kg-1, in JDS4-47, JDS4-6 and JDS4-47, 

respectively. Amisulpride, citalopram, bisoprolol, apophedrin, methocarbamol 

and galaxolidone, were the most ubiquitous compounds, as they were detected 

in all tested samples. Nine out of 31 compounds were detected only in one 

sediment sample. 

Figure S11 (S4.1.2, SI) illustrates the total cumulative concentration of 

pharmaceutical and PCPs, detected in the analyzed samples. Nornicotine was 

not included in the graph, as it was the only representative from the stimulants 

class, and it was detected only in JDS4-24 (1.71 μg Kg-1). JDS4-47 (BG/RO) 

was the most contaminated sample, reaching a total concentration of 600 μg 

Kg-1, while JDS4-24 (HU) and JDS4-51 (RO/UA) presented the lowest total 

concentration levels of 212 and 209 μg Kg-1, respectively. The maximum total 

cumulative concentrations of antidepressants, antipsychotics and their 

metabolites (50.3 μg Kg-1), as well as other pharmaceuticals (243 μg Kg-1), were 

detected in JDS4-6, while JDS4-47 was the most contaminated sample for 

antibiotics (171 μg Kg-1), antiepileptics and antihypertensive drugs (24.7 μg Kg-

1), PCPs and their metabolites (184 μg Kg-1). The highest levels of analgesics 

were observed in JDS4-51 (10.5 μg Kg-1). Concerning the total number of 

detected compounds, at JDS4-6 site 23 compounds were detected compared 

to ≤16 for the other three sediment samples. Only three TPs were among the 
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detected compounds, norvenlafaxine (metabolite of venlafaxine), nornicotine 

(metabolite of nicotine) and galaxolidone (metabolite of galaxolide). 

4.3.3 Biota 

The analysis of 11 biota samples (fish muscle) revealed the presence of 41 

pharmaceuticals, illicit drugs and PCPs. Among them were six antidepressants, 

antipsychotic drugs and illicit drugs, five analgesics, four antibiotics and Non-

Steroidal Anti-inflammatory Drugs (NSAIDs), four antiepileptics, four 

antihypertensive drugs, three anesthetics, two PCPs and twenty-three ‘other’ 

pharmaceuticals with a broad range of clinical uses, along with their 

metabolites. Steroids were not reported for biota samples, as they are naturally 

occurring compounds in such matrices and therefore their detection cannot be 

linked to potential contamination. The most frequently detected compounds 

were 4-acetamido-antipyrine, salicylic acid, epinephrine cytarabin and 

galaxolidone, being present in 10 out of 11 analyzed samples, whereas 4-

formyl-antipyrine, simvastatin, ephedrine, allopurinol and acamprosate were 

detected in all samples. On the other hand, 12 compounds were detected in 

only one biota sample. 88% of the detected compounds were found at 

concentration levels below 40 μg Kg-1 wet weight, whereas apophedrine, 

ibuprofen and sulpiride were the most abundant compounds, reaching 

maximum detected concentrations of 113, 57.2 and 52.4 μg Kg-1, respectively. 

Nine of the detected compounds were metabolites of pharmaceuticals, 

including 4-formyl-antipyrine, 4-acetamido-antipyrine, nortramadol, 

normirtazapine, norbuprenophine, gabapentin-lactam, N-acetyl-mesalazine 

and galaxolidone. 

As shown in Figure S12 (S4.1.3, SI), no significant variation in the cumulative 

concentrations and number of detected pharmaceuticals and PCPs could be 

seen among the tested biota samples. JDS4-43 (RO/BG), was the least 

contaminated sample (157 μg Kg-1), whereas the highest total cumulative 

concentration (335 μg Kg-1) was detected in JDS4-29 (HU/HR/RS). When 

comparing the cumulative concentrations among JDS4-6 and JDS4-6.2 

(DE/AT), and JDS4-23 and JDS4-24 (HU), quite similar contamination profile 

(distribution per class and total cumulative concentration) was noticed. This 
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indicates that biota samples collected within the same country and at close 

sampling points may have similar contamination profiles. The highest levels of 

antibiotics and NSAIDs (67.8 μg Kg-1), antidepressants, antipsychotic drugs 

and illicit drugs (53.8 μg Kg-1) and antihypertensive drugs (18.4 μg Kg-1) were 

detected in JDS4-29, while anesthetics and antiepileptics were detected at 

maximum levels of 21.3 and 86.9 μg Kg-1 in sample from JDS4-6.2, 

respectively. Up to 33.4, 204.9 and 21.2 μg Kg-1 of analgesics, other 

pharmaceuticals, and PCPs, were detected in JDS4-37, JDS4-49 and JDS4-6, 

respectively. 

4.3.4 Influent and effluent wastewater 

In total, 287 compounds from the studied list of 1,301 substances and their TPs 

were detected in wastewater samples. Among them, 239 pharmaceuticals and 

illicit drugs were present in at least one influent wastewater sample and 202 in 

at least one effluent wastewater sample. Parent compounds and metabolites 

from all classes were among the most ubiquitous contaminants, as they were 

detected in all wastewater samples, both influent and effluent, indicating that 

parent compounds were not efficiently removed through the processes that are 

applied in the wastewater treatments plants (WWTPs) and that TPs must not 

be underestimated in monitoring studies. Among these compounds were widely 

used pharmaceuticals such as caffeine, telmisartan, sulfamethoxazole, 

sulfapyridine, metformin, diclofenac, meclofenamic acid, norfentanyl (the main 

metabolite of fentanyl), hydrochlorothiazide, two main metabolites of 

metamizole: 4-formylamino antipyrine and 4-acetamido-antipyrine, 

phenoxybenzamide, valsartan, lamotrigine, oxcarbazepine, carbamazepine 

and its main metabolites 10,11-epoxide carbamazepine and 10,11-dihydro-

10,11 dihydroxy carbamazepine, galaxolide (metabolite of the synthetic musk 

galaxolide), as well as benzoylecgonine, the main metabolite of cocaine, and 

the antidepressant doxepin. Although most of the detected contaminants were 

detected at low (ng L-1) concentration levels, caffeine and its metabolite 

theophylline, tramadol, telmisartan, cloxacillin, sulfamethoxazole, valsartan, 

valproic acid, 10,11-dihydro- 10,11 dihydroxy carbamazepine, lidocaine-N-

oxide, hydrochlorothiazide, diclofenac, naproxen, galaxolidone and 

prednisolone, were the most abundant compounds with their maximum 
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detected concentration ranging from 1.11 to 9.88 μg L-1. 17beta-estradiol, 

included in the Watch List established by the Commission Implementing 

Decision (EU) 2018/840, was detected in five wastewater effluent samples, at 

concentration levels from 2.02 to 4.04 ng L-1. Amoxicillin, ciprofloxacin, 

sulfamethoxazole, trimethoprim, O-desmethyl- venlafaxine and fluconazole that 

are included in the updated Watch List of 2020 (EU 2020/1161), were also 

detected in wastewater samples. To visualize the results in graphs, the 

detected compounds were grouped into 17 main classes of pharmaceuticals, 

illicit drugs and their metabolites. Most of the detected compounds were 

antibiotics (41 compounds), antihypertensive drugs and their metabolites (33), 

antipsychotic drugs and their metabolites (31), whereas 38 compounds having 

diverse uses were classified as other pharmaceuticals. 

Results presented in Figure 6 show that although the number of detected 

compounds was significantly higher in influents (average 109) compared to 

effluents (81), the total cumulative concentration of the compounds did not vary 

remarkably between the two tested matrices, presenting average total 

cumulative concentrations of 1.28 and 1.06 μg L-1, in influents and effluents, 

respectively. 
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Concerning the influent wastewater samples, the highest total cumulative 

concentration of pharmaceuticals, illicit drugs and their metabolites was noticed 

in the influent WW7-HR, reaching up to 6.78 μg L-1, whereas the sample from 

Austria (WW2-AT) was the least contaminated (2.16 μg L-1). Overall, analgesics 

and their metabolites were the class that contributed most to the total detected 

concentration in influent samples, ranging from 30% (WW11-UA) to 46% 

(WW3-CZ). Antiepileptic drugs and their metabolites was the class that 

dominated the sample WW11-UA (40%) and contributed significantly (24%) to 

WW7-HR contamination. The highest total cumulative concentration of 

antibiotics (2.69 μg L-1), antihypertensive drugs and their metabolites (1.84 μg 

L-1), as well as diuretics (1.33 μg L-1), were detected in the WW8-RS influent 

sample. Cumulative concentrations of analgesics and antiepileptics, and their 

metabolites, were up to 3 and 7 times higher at WW7-HR (8.09 and 5.15 μg L-

1, respectively) compared to the rest of influent samples. Antilipidemic drugs 

and stimulants concentration levels reached up to tens of ng L-1 levels. 

Interestingly, hypoglycemic agents presented the lowest relative standard 

Figure 6: Overall detected cumulative concentrations of pharmaceuticals, illicit drugs and their 

TPs in the influent and effluent JDS4 wastewater samples. 
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deviation of cumulative concentrations across all the samples (24%). The 

maximum concentrations for antiviral drugs (352 ng L-1) and steroids (1.35 μg 

L-1) were detected at WW3-CZ, whereas NSAIDs and other pharmaceuticals 

reached up to 2.16 μg L-1 and 418 ng L-1, respectively, in WW6-SI. 

Concentration levels up to 50 times higher compared to the rest of influent 

extracts, were measured for total pharmaceuticals and PCPs in WW9-RO. 

Significantly lower concentrations of total antidepressants (32 ng L-1) and 

antipsychotic drugs (71 ng L-1) were detected in WW11-UA, compared to the 

maximum concentrations detected in WW3-CZ (240 ng L-1) and WW5-HU (928 

ng L-1), respectively. The sum of up to 26 detected illicit drugs, resulted in total 

cumulative concentrations that ranged from 102 (WW1-DE) to 759 ng L-1 

(WW3-CZ). 

Analgesics, antipsychotics, and antibiotics were the most frequently detected 

classes in the effluent wastewater, while antiepileptics, NSAIDs and PCPs were 

the most abundant compounds with median concentrations equal to 3.18, 1.32 

and 1.87 μg L-1, respectively. However, the high concentration levels observed 

for these classes were mainly attributed to the high concentration of one 

compound per class: 10,11-dihydro-10,11 dihydroxy carbamazepine for 

antiepileptics, diclofenac for NSAIDs and galaxolidone for PCPs. The maximum 

cumulative concentrations for several classes, including antibiotics (2.32 μg L-

1), antiepileptics (6.16 μg L-1), antidepressants (275 ng L-1), NSAIDs (3.41 μg L-

1), and other pharmaceuticals (113 ng L-1), were detected in WW1-DE. 

Stimulant drugs and antiviral agents were found less frequently and at lower 

concentration levels, with a maximum of 1.50 and 32.3 ng L-1 at WW11-UA and 

WW9-RO, respectively. The highest concentration levels of analgesics (999 ng 

L-1), diuretics (285 ng L-1) and illicit drugs (138 ng L-1) were measured in the 

effluent sample of Serbia (WW8). The concentration levels of antipsychotics 

ranged from 18 ng L-1 (in WW11-UA) to 673 ng L-1 (in WW7-HR), whereas the 

highest concentration of PCPs was detected in the sample from Romania 

(WW9), following the same profile of the influent samples. Influent wastewater 

samples were composed of both parent compounds and TPs of 

pharmaceuticals and illicit drugs. During the processes applied in WWTPs, 

parent compounds may be (bio) transformed into several TPs. In total 50 TPs, 
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including metabolites, were detected in the JDS4 wastewater samples, 

underlying the significance of collecting wide-scope target monitoring and 

suspect screening data to acquire a holistic view of the chemical fingerprint in 

the environmental samples. The parent compounds and TPs of 

pharmaceuticals and illicit drugs that were detected in the JDS4 wastewater 

samples, along with their frequency of detection and concentration range, are 

presented in Table S4 (S4.1.4, SI) (steroids were excluded from the table). 

The most frequently detected compounds were caffeine and its main 

metabolites theophylline and theobromine; metamizole and its metabolites 4-

formylamino-, 4-acetamido- and 4-amino-antipyrine; nicotine’s metabolites 

cotinine and cotinine-hydroxy; carbamazepine and 10,11-epoxide-, 10,11-

dihydro- 10,11 dihydroxy- and 10-hydroxy- carbamazepine, as well as cocaine 

and its metabolite benzoylecgonine. Metformin was detected in all influent and 

effluent samples, whereas its main biotransformation product guanylurea was 

detected in most effluent samples, indicating the incomplete removal and 

transformation of metformin during the treatment processes in the investigated 

WWTPs. There were also cases when only the TPs and not the parent 

compounds were detected; e.g. galaxolidone – metabolite of galaxolide was 

detected in all samples, whereas its parent compound was not detected in any 

of the samples. The same was observed for citalopram-N-oxide, a TP of 

citalopram. Three main metabolites of the antipsychotic drug venlafaxine were 

detected in the effluent samples, whereas the parent compound remained 

undetected. 

4.3.5 Presence of illicit drugs and drugs of abuse in the Danube River 

Basin 

The occurrence of illicit drugs, drugs of abuse and their metabolites in the 

Danube River Basin samples was significant, considering that overall, 87 

compounds were reported in at least one JDS4 environmental matrix (Table 4). 
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Table 4: Detected drugs of abuse, illicit drugs and their metabolites in the Danube River Basin. 

Classification Compounds Matrices 

Anesthetics & Met. Fentanyl, Norfentanyl R, WW, G, B 

Lidocaine, Lidocaine-N-oxide R, WW 

Tolycaine WW, B 

Norketamine, Propipocaine WW 

Antidepressants & Met. 8-Hydroxy-Mirtazapine, Clomipramine R, WW, G 

Normirtazapine R, WW, G, B 

Mirtazapine R, WW, S 

Doxepin, Imipramine, Zolpidem R, WW 

Amitriptyline, Quetiapine R 

Citalopram S 

AMT (Alpha-Methyltryptamine), Mazindol, GHB (Gamma- 

Hydroxybutyric acid) 

WW 

Antipsychotic drugs & Met. Amisulpride-N-Oxide, Venlafaxine-N-oxide, 9-Hydroxy- 

Risperidone, Alprazolam, Bromazepam, 

Chlorpromazine, Fluoxetine, Nordiazepam, 

Risperidone, Sertraline 

R, WW 

7-amino-flunitrazepam, Oxazepam R, WW, G 

Amisulpride R, WW, G, S 

Sulpiride R, WW, G, S, 
B 

Norvenlafaxine R, WW, S 

Midazolam, Temazepam WW, B 

Chlodiazepoxide, Medazepam, 

D,L-N,O-Didesmethyl-venlafaxine 

WW, G 

Norclozapine, Venlafaxine R 

Chlordiazepoxide, Clorpromazine S 

3-OH-Bromazepam, Citalopram N-oxide, D,L-

N,N- Didesmethyl-Venlafaxine, Flurazepam-

Desalkyl, 1-OH-Midazolam, (2-) Phenethylamine, 

Tiapride, 

Venlafaxine-O-Desmethyl (Desvenlafaxine), 

Lorazepam, Tetrazepam 

WW 
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Illicit drugs & Met. Cannabidiol, MDAI (5,6-methylenedioxy-2-aminoindane), 

Methadone, Methenolone 

R 

6-O-Monoacetylmorphine (6-MAM), Cathine, Codeine, 

EDDP, Heroin (3,6-diacetylmorphine), MDMA, 

Morphine, Remifentanil 

R, WW 

Norbuprenorphine R, WW, B 

Benzoylecgonine R, WW, G 

3,4-Methylenedioxyamphetamine (MDA), AB-PINACA 

5Cl, alpha-Pyrrolidinopentiophenone, Barbital- 

Pheno, Deschloroetizolam, DMPEA, MDPPP 

(3-4-Methylenedioxy-a-pyrrolidinopropiophenone), 

Mepirapim, 2,5-diethoxy-4-methoxyamphetamine, 

Amphetamine, Cocaine, 2-Oxo-3-hydroxy-LSD, 

Mephedrone, Methamphetamine (MA), Oxycodone 

WW 

Sympathomimemtics Ephedrine R, WW, B 

Norephedrine WW 

Methylephedrine B 

*R: river water, WW: wastewater, G: groundwater, S: sediments, B: biota 

The main contributors were antipsychotic drugs (40%) and illicit drugs (33%), 

whereas several antidepressants (15%), anaesthetics (8%) and 

sympathomimetics (3%), along with their metabolites, were also detected. 43 

compounds that were present in surface river water samples, groundwater, 

sediments and/or biota, were also detected in wastewater, indicating that 

WWTPs-derived loads may remarkably affect the quality of the Danube River 

Basin. Among them 10 compounds, including the antidepressants 

clomipramine and two metabolites of mirtazapine (normirtazapine and 8-

hydroxy-mirtazapine), the antipsychotics amisulpride, sulpiride and oxazepam, 

and benzoylecgonine, the main metabolite of cocaine, were present in at least 

one sample of all tested JDS4 water matrices (wastewater, river water and 

groundwater). 
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4.3.6 Comparison of illicit drugs and drugs of abuse occurrence data in 

JDS3 and JDS4 

The first evidence of illicit drugs in the Danube River samples in 2013 showed 

that more emphasis should be placed in their future monitoring using bigger 

targeted databases and extend their investigation to other environmental 

matrices, like groundwater, sediments and biota. For this reason, in JSD4, 

additional analysis was performed, and advanced methodologies were followed 

for the screening of more than 250 illicit drugs, antidepressants, antipsychotic 

drugs and their TPs in all tested matrices. The results were compared to those 

obtained during the previous campaign during JDS3 in 2013 [68], in order to 

get an insight on their trend over the years. Overall, 23 anesthetics, 

antidepressants, antipsychotic drugs and illicit drugs and their TPs were 

detected in JDS4 samples. Their average detected concentration and % 

frequency of appearance (FoA) during the two campaigns are listed in Table 

S5 (S4.1.5, SI). 

Most of the analytes, presented a decreasing occurrence trend in the most 

recent campaign. In particular, lidocaine, imipramine, mirtazapine, 

nordiazepam, alprazolam, risperidone, norclozapine, amisulpride, sulpride, 

sertaline, MDMA, EDDP, benzoylecgonine, codeine and 6-MAM were detected 

with both significantly lower frequency and in considerably lower average 

concentration levels in JDS4 samples. Furthermore, cocaine that was detected 

in high frequency in JDS3 river samples was detected in the most recent 

campaign only in wastewater. On the other hand, the monitoring data revealed 

that the antidepressant doxepin presented an increasing trend of occurrence in 

the Danube River during the two campaigns, reaching 92% FoA. The average 

detected concentrations for the antidepressant amitriptyline and the 

antipsychotic drug oxazepam were more than 50% higher in JDS4 samples, 

compared to those of JDS3. Additionally, 14 compounds that were not 

investigated during JDS3, were detected in JDS4 surface river water samples. 

Among them, the N-oxides of lidocaine, venlafaxine and amisulpride, were 

detected with remarkably high %FoA of 90, 78 and 41 in JDS4 surface river 

waters, respectively. Moreover, as presented in Table 4, 42 additional illicit 

drugs and drugs of abuse were detected in wastewater, groundwater, 
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sediments and/or biota. Several compounds including the antidepressants 8-

hydroxy-mirtazapine, normirtazapine, clomipramine, the antipsychotic drugs 

amisulpride, sulpiride and medazepam and the metabolite of cocaine, 

benzoylecgonine were present in groundwater samples. 

4.3.7 Commonly detected compounds in different environmental 

matrices 

Overall, by comparing the pharmaceuticals and illicit drugs that were detected 

in river water, wastewater, groundwater, sediments and biota, 140 compounds 

were detected in more than one of the JDS4 environmental matrices. Table S6 

(S4.1.6, SI) summarizes these compounds, along with the matrix in which they 

have been detected. Among them, 26 compounds were commonly detected in 

river water, wastewater and groundwater, while additional 82 and 17 

compounds were commonly detected in river water/wastewater and 

wastewater/groundwater, respectively, indicating that there might be a link in 

contamination profiles between these environmental compartments. The most 

ubiquitous class of compounds in all analysed water matrices were antibiotics 

(23 compounds), whereas the antipsychotic drug sulpiride and the metabolite 

of the synthetic musk galaxolide, galaxolidone were omnipresent in all analyzed 

matrices within JDS4. 

4.3.8 Risk assessment 

In order to assess the potential ecotoxicological threat of pharmaceuticals and 

illicit drugs, the measured concentrations of all the detected compounds were 

compared to their lowest PNEC values retrieved from the NORMAN 

Ecotoxicology database [61] . The Ecotoxicology database contains PNECs for 

freshwater, marine waters, sediments and biota. Risk assessment of 

groundwater samples is discussed elsewhere 

http://www.danubesurvey.org/jds4/jds4-

files/nodes/documents/jds4_scientific_report_20mb.pdf. In the NORMAN 

Prioritisation framework [65] effluent wastewater findings are used for risk 

assessment by converting the individual concentrations to freshwater 

concentrations using a factor of 5 (optionally 2 or 10). An outcome of such 

prioritization is presented in Chapter 36 of JDS4 Scientific Report 

http://www.danubesurvey.org/jds4/jds4-files/nodes/documents/jds4_scientific_report_20mb.pdf
http://www.danubesurvey.org/jds4/jds4-files/nodes/documents/jds4_scientific_report_20mb.pdf
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(http://www.danubesurvey.org/jds4/jds4-

files/nodes/documents/jds4_scientific_report_20mb.pdf). Table 5 

summarizes the list of compounds that exceeded their PNECs in the JDS4 

surface waters, sediments and biota, the extent of exceedance of PNEC and 

the most polluted samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.danubesurvey.org/jds4/jds4-files/nodes/documents/jds4_scientific_report_20mb.pdf
http://www.danubesurvey.org/jds4/jds4-files/nodes/documents/jds4_scientific_report_20mb.pdf
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Table 5: Compounds that exceeded their PNECs in JDS4 surface water, sediments and biota. 

Surface waters 

 
Compound 

 
PNECfw (ng/L) 

 
Samples 
>PNEC 

Range of 

concentrations 

>PNEC (ng/L) 

Sample 

with 

highest 

exceedanc

e 

Candesartan 3.10 8 4.2-31.2 JDS4-34 

17beta-Estradiol 0.4* 5 0.473-2.10 JDS4-13 

Carbamazepine 50.0* 4 50.9-57.6 JDS4-15 

Diclofenac 50.0* 2 51.2-63.1 JDS4-15 

Dicloxacillin 5.10 1 5.49 JDS4-13 

Sediments 

 
Compound 

 
PNECsed 

(μg/kg 

d.w.) 

 
Samples 
>PNEC 

Range of 

concentrations 

>PNEC (μg/kg 
d.w.) 

Sample 

with 

highest 

exceedanc

e 

Octocrylene 52.4 3 74.5-162 JDS4-47 

Fenbendazole 8.40 2 23.3-26.5 JDS4-6 

Sulfadiazine 7.29 2 15.6-120 JDS4-47 

Sulfaclozine 17.0 2 11.5-31.8 JDS4-47 

Carbamazepine 1.70 1 3.90 JDS4-6 

Apophedrin 205 1 213 JDS4-6 

Biota 

 
Compound 

 
PNECbio 

(μg/kg 

w.w.) 

 
Samples 
>PNEC 

Range of 

concentrations 

>PNEC (μg/kg 
w.w.) 

Sample 

with 

highest 

exceedanc

e 

Sulpiride 5.87 8 12.4-52.4 JDS4-29 

Cytarabin 16.0 7 16.2-41.6 JDS4-24 

Lovastatin 4.52 6 5.34-17.5 JDS4-29 

Niflumic acid 1.65 2 1.67-1.99 JDS4-6 

Sulfamethoxazole 15.9 1 28.9 JDS4-23 

Temazepam 2.9 1 3.70 JDS4-23 

Reproterol 0.200 1 0.519 JDS4-23 

*Environmental Quality Standard (EQS)/ EQS proposal 
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Only five out of 140 substances detected in the JDS4 Danube surface river 

water samples exceeded their respective PNECs values. Dicloxacillin, 

carbamazepine and diclofenac were detected slightly above their 

ecotoxicological threshold values (up to 1.3-fold), in one, four and two river 

samples, respectively. The antihypertensive drug candesartan exceeded its 

PNEC in eight samples, mainly from Germany, Czech Republic, and Hungary 

(maximum concentration 10-fold above the PNEC at JDS4-34). The steroid 

17beta-estradiol was detected in five samples in concentrations up to 5.3-fold 

higher than the respective PNEC. Maximum concentrations of cefazolin and 

estrone (E1) were detected close to their PNECs. Diclofenac was on the EU 

2015/4951 Watch List, whereas estrone and 17beta-estradiol were among the 

updated EU 2018/840 Watch List compounds. The outcomes of JDS4 justify 

further regulatory monitoring of these three compounds. 

Concerning sediments, six compounds exceeded the respective PNEC values 

calculated from PNECs for freshwater according to the NORMAN Prioritisation 

Framework [65]. The maximum detected concentrations were in most cases up 

to 3-fold higher than their respective PNECs, except for sulfadiazine, which was 

detected at the level exceeding 17-fold its PNEC in the JDS4-47 sample. 

Although most of the compounds exceeded their PNECs in one sediment 

sample, sulfadiazine and octocrylene were above the PNEC values in 2 and 3 

samples, respectively. Overall, JDS4-47 (BG/RO) was the sample in which the 

highest frequency and extent of PNECs exceedances were observed. 

Seven compounds exceeded the PNEC values in biota (fish muscle). The 

maximum detected concentrations for sulfamethoxazole, niflumic acid, 

temazepam and reproterol were up to 2.6-fold higher than their PNECs in one 

biota sample, while lovastatin and cytarabin values exceeded their PNEC 

threshold up to 3.9 and 2.6-fold in 6 and 7 samples, respectively. Sulpiride was 

the compound that most frequently exceeded its PNEC (73%), reaching up to 

almost 9-fold higher concentrations in the tested samples. The highest total 

exceedance of PNECs was observed at JDS4-29. 
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4.4 Conclusions 

A novel approach was presented demonstrating usefulness of wide-scope 

target screening of 1,301 pharmaceuticals, illicit drugs, PCPs and their TPs in 

surface water, wastewater, groundwater, sediments and biota samples. The 

application of HRMS screening methodology revealed the presence of 

hundreds of pharmaceuticals and 87 illicit drugs, drugs of abuse and their TPs 

in the JDS4 samples. The occurrence of several illicit drugs and drugs of abuse 

was reported for the first time on basin-wide scale. Although more than 300 

compounds were detected in the samples, only ca. 5% exceeded their 

ecotoxicological threshold values. These substances were included among the 

potential Danube RBSPs (see Chapter 36, JDS4 Scientific Report 

http://www.danubesurvey.org/jds4/jds4-

files/nodes/documents/jds4_scientific_report_20mb.pdf). The detected 

concentration levels of illicit drugs and their TPs seem to pose no environmental 

risk. The antipsychotic drugs sulpiride and temazepam exceeded the 

respective PNECs in biota. The majority of illicit drugs and drugs of abuse that 

were detected in surface water in JDS3 were determined at significantly lower 

concentration levels in JDS4 samples. The findings of this chapter are part of a 

largest work containing detailed description of all the procedure, analysis and 

data treatment methodologies.  

 

 

 

 

 

 

 

 

 

 

http://www.danubesurvey.org/jds4/jds4-files/nodes/documents/jds4_scientific_report_20mb.pdf
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5. Chapter 5 

Patterns of pharmaceuticals use during the first wave of 

COVID-19 pandemic in Athens, Greece as revealed by 

wastewater-based epidemiology 

 

Highlights 

 Significant increase was observed for antiviral drugs (170%) and 

paracetamol (198%). 

 Hydroxychloroquine consumption showed a 387% increase during 

lockdown. 

 The consumption levels for hypertensive agents were reduced in 2020. 

 Antibiotics demonstrated a noteworthy increase (57%). 

 NSAIDs consumption showed a 27% decrease during lockdown. 

This case study has been published in Science of The Total Environment (STOTEN), 

1st December 2021, Volume 798, Article 149014 

(https://doi.org/10.1016/j.scitotenv.2021.149014). 

 

 

https://doi.org/10.1016/j.scitotenv.2021.149014
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5.1 Introduction 

On March 2020, WHO declared a global pandemic for COVID-19. In Greece, 

restrictive measures started on February 27th 2020, and by March 23rd 2020 a 

general strict lockdown was implemented, affecting every aspect of economic 

and social life, including access to hospitals, primary care facilities and 

pharmacies and potentially the delivery of treatments to non-COVID-19 patients 

[70]. A concern regarding treatment adherence and access to special care, 

especially for those with chronic conditions (cardiovascular, metabolic, 

rheumatic or malignant diseases) was also raised during this period. 

Furthermore, hypotheses about risks of infection or severity of COVID-19 

associated with the use of certain drugs such as angiotensin converting enzyme 

inhibitors (ACEi) / Angiotensin II receptor blockers (ARBs) [71, 72] or potential 

anti-viral effects of others, like hydroxychloroquine, may have also affected their 

use. However, there is only limited data about changes in prescription patterns 

[73] of the various drugs and about their actual consumption during the 

lockdown period. 

Wastewater-based epidemiology (WBE) is a non-invasive, objective, chemical 

tool which provides unbiased epidemiological information about a population in 

real time [10]. Due to this fact, WBE demonstrates a wide range of applications 

such as the estimation of chemical exposure [10, 32], as well as changes in 

drug and other substance consumption [31, 74]. Human activity leaves 

chemical traces in sewage, including licit and illicit drugs [31, 75-79]. Parent 

drugs and their metabolites end up in Wastewater Treatment Plants (WWTPs) 

and their determination in influents provides data about their consumption, 

supporting public health authorities with valuable data [32]. 

In the present study, WBE was used to determine changes in consumption 

levels of different pharmaceutical compounds during 2019 and 2020. All the 

samples were collected from the WWTP of Athens which is serving a population 

that represents the 33% of the total Greek population and it is one of the largest 

WWTP in Europe. This fact implies that the results are representative for the 

Greek population. Biomarkers of public health (parent compounds and their 

metabolites) were identified and quantified in both years. LC-MS/MS 

methodologies were used to identify and quantify target analytes. In addition, 
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High Resolution Mass Spectrometry (HRMS) accompanied by novel data 

treatment tools, that gain popularity in the WBE field, were used in order to 

identify known and unknown compounds that are present in complex matrices. 

Suspect screening gives the opportunity for retrospective analysis and 

identification of new analytes [80]. In this study, HRMS and suspect screening 

were used to enrich the data obtained from LC-MS/MS analysis with more 

biomarkers of public health [81, 82]. Thus, the objective of the study was to 

investigate the drug use patterns and reveal the application of various 

treatments during the first lockdown in Greece by estimating the consumption 

of 14 drug classes of interest and comparing the use patterns between the 

same calendar period of 2019 and 2020. 

5.2 Material and methods 

5.2.1 Chemicals and reagents 

Pharmaceuticals (divided in the following sub-categories: NSAIDs, 

antihypertensives, diuretics, antiepileptics, antilipidemics, antibiotics, 

analgesics, antivirals, anticancer drugs, contrast drugs, antidiabetics, 

antiallergic drugs, antiulcers and pharmaceutical with different use) were 

purchased by Merck (Chalkidona, Greece) and Alfa-Aesar (Voula, Athens, 

Greece). More details about the used chemicals and reagents can be found in 

the supplementary information (S5.1.1). 

5.2.2 Sampling campaign 

24-h flow proportional influent wastewater samples were collected from the 

WWTP of Athens. This facility serves 4,562,500 people. It also receives hospital 

effluents of Attica peninsula. The WWTP of Athens is designed with primary 

sedimentation, activated sludge process with biological nitrogen and 

phosphorus removal and secondary sedimentation. The real number of 

inhabitants served by the WWTP of Athens as well as the pharmacokinetic data 

(excretion rate and bioavailability) for the detected compounds and the daily 

flow rates were used to back-calculate the consumption of the pharmaceutical 

compounds. In this study, the amount of the inhabitants was real-time 

calculated for each sample in 2019 and 2020 based on concentrations of P, N, 
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BOD, COD and NH4-N. One inhabitant is equivalent with 1.7 g/day P, 12.5 

g/day N, 59 g/day BOD, 128 g/day COD and 8.1 g/day NH4-N as described by 

van Nuijs et al. [74] and Been et al. [83]. The concentration of each of the five 

parameters was transformed into an amount of inhabitants (SI Table S8, S9 

and S10). The sampling campaign in 2020 started on 25th of March, two days 

after the lockdown announcement, while in 2019, on 13th of March. The same 

period (spring months) was chosen, in order to have comparable results and 

also to avoid underestimations and variances in consumption levels resulting 

from the sampling period. More specifically, 7 24-h flow proportional influent 

wastewater samples were collected and analyzed in 2019 under non-pandemic 

conditions (13–19 of March), whereas 15 were collected and analyzed in 2020 

under lockdown conditions (25 of March to 8 of April). Each year, on 25th of 

March Greek people celebrate Greek Independence Day. One of the greatest 

events in Athens is the military parade that takes place in the largest square of 

Athens. In 2020, the military parade as well as the celebrations were cancelled 

due to lockdown and restrictions. In Greece, as mentioned previously, the first 

lockdown was announced on 23rd of March and lasted 6 weeks. During March 

and April, the number of infections was low, compared to other European 

countries, according to the World Health Organization, WHO 

(https://covid19.who.int/) and National Public Health Organization, NPHO 

(https://eody.gov.gr/en/). 

5.2.3 Sample preparation and instrumental analysis 

All samples were stored at −20 °C until the end of the campaign and were 

analyzed in one-batch each year using solid phase extraction (SPE). More 

specifically, the samples were pre-treated and analyzed immediately after the 

end of the sampling campaigns in 2019 and in 2020, to avoid chemical 

degradation. Information about the SPE and quality assurance can be found in 

SI at Sections S5.1 and S5.2 respectively. The extracts were analyzed by liquid 

chromatography tandem mass spectrometry (LC-MS/MS) and ultra-

performance liquid chromatography quadrupole-time-of-flight mass 

spectrometry (UPLC-Q-ToF-MS). The validated methods are described in 

detail elsewhere [31, 32] and in SI at Section S5.3. 

https://covid19.who.int/
https://eody.gov.gr/en/
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5.2.4 Software 

All the raw files obtained by LC-HRMS analysis were processed using Bruker 

Data Analysis 4.4 and TASQ 1.4 software (Bruker Daltonics, Bremen, 

Germany) for target and suspect screening. CompassXport 3.0.9.2. (Bruker 

Daltonics, Bremen, Germany) was used to convert the Bruker binary files to 

mzML. Data files together with meta-data (contributor details, instrumental 

information, sample and sample-preparation information) were uploaded to 

DSFP [7] to screen for the presence of pharmaceutical compounds with known 

fragmentation not included in the target list. Wilcoxon signed-rank test was used 

to compare the change of the consumption levels between pandemic and non-

pandemic conditions using stats R-package. 

5.2.5 Estimation of drug use 

It is known that back-calculate drug use remains a challenge, due to the 

existence of many parameters that must be considered (population, flow rates, 

pharmacokinetic data, in sewer stability) [10] and affect the results. The real-

time calculation of the number of inhabitants (based on COD, BOD, P, NH4-N, 

N) that a WWTP serves, the daily flow rates as provided by the examined 

WWTP, as well as pharmacokinetic data and metabolites of the examined 

compounds, reduce the uncertainty of the results. There are numerous studies, 

providing the correction factors and the equations used for back-calculation 

purposes, especially for illicit and psychoactive drugs [76, 77] but there are 

limited data about many compounds from different pharmaceutical classes. 

Although WBE is widely used to reveal the use patterns for many 

pharmaceutical compounds (e.g. paracetamol, metoprolol, tramadol etc.), in 

most of the cases no correction factor or metabolite of the parent compound 

were used for back-calculations [77-79]. On the contrary, each analyte is used 

as biomarker of its own consumption. In this study, all the aforementioned 

parameters together with bioavailability and % excretion for target analytes 

were used to estimate drug consumption. In cases in which pharmacokinetic 

data were not available, the loads of pharmaceutical compounds were reported. 

Loads and consumed quantities were estimated using two equations: 

(1) Load (g day−1) = C x Q x 10−6  
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(2) Consumption (g day−1) =
Load (g day−1)

 Rabs x Rexcreted +1−Rabs 
 x 

PT

PS
 

where C (ng/ L) represents the measured concentration in untreated 

wastewater, Q (m3 day−1) the flow rate of wastewater measured each day, Rabs 

is the absorption rate of the drug (bioavailability), Rexcreted the percentage of the 

parent compound that excreted unchanged, PT the population of Athens 

(4,000,000) and PS the served population by the WWTP of Athens, based on 

physicochemical parameters [31]. 

5.3 Results and discussion 

In this study, we examined changes in consumption levels of pharmaceutical 

compounds and how the ongoing pandemic affected physical health of the 

examined population. However, there is an extended study about changes in 

chemical compounds use that are not included in this study, but will be 

published separately. A substantial increase in hydroxychloroquine 

consumption (387%) and a lower but significant increase in azithromycin 

consumption (36.3%) was observed during the lockdown period (Table 6). 

During the same period, there was also a major increase in the consumption of 

various antiviral drugs (by 170%), most of which are registered for use in 

patients with HIV or HBV infections (Table 6 & Table S15). There was also an 

important increase (61%) in the consumption of other antibiotics (even after 

excluding azithromycin, the consumption of which was also increased). There 

was also a remarkable increase in paracetamol consumption (198%), while a 

reduction in the consumption of opioid analgesics by 79.3% was observed. 

Interestingly, a significant decrease in the consumption of commonly used 

cardiovascular drugs such as angiotensin converting enzyme inhibitors (ACEi) 

/ Angiotensin II receptor blockers (ARBs) (29.4%) was observed, but also in 

beta-blockers and other antiarrhythmic drugs. More information about 

concentrations and consumption levels of the studied compounds, are 

presented in SI, Section S5.4. 
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Table 6: Selected drugs of interest during the COVID-19 outbreak and relative changes in their 

consumption. Consumption (g day−1) and standard deviation of specific drugs and of 7 drug 

classes and their % change during the same calendar period (March / April 2019–2020) are 

shown. 

Compound 

Name / Classes 

(number of 

compounds) 

Consumpti

on (g/day) 

2019 

Standard 

Deviation  

2019 

Consumpti

on (g/day) 

2020 

Standard 

Deviation  

2020 

Change 

(%) 2019-

2020 

Hydroxychloroquine 12 1 57 4 +387% 

Antivirals-exluding 

hydroxychloroquine 
5,576 453 15,010 786 +170% 

Azithromycin 2,222 168 3,028 322 +36.3% 

Other antibiotics – 

excluding 

azithromycin 

11,987 416 19325 641 +61% 

Paracetamol 76,044 4,796 226,449 21,859 +198% 

11 NSAIDs 99,250 4811 72,524 3,770 -26.9% 

Antihypertensives 

ARBs/ACEis  
106,706 2872 75,374 3,510 -29.4% 

B-Blockers 5,783 311 5,106 331 -11.7% 

Antiarrhythmics 217 22 156 12 -28.1% 
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5.3.1 Antibiotics and antivirals 

There are antiviral drugs which are effective to SARS-CoV-2, such as 

remdesivir. Some preliminary data indicated possible benefit by the use of 

some drugs which were not confirmed later. Despite the lack of solid data, 

physicians may have combined different antiviral drugs and antibiotics due to 

the lack of vaccines and effective treatment, in order to treat COVID-19. This 

fact was reflected in the identification of many substances from both 

pharmaceutical classes only in 2020 and not in 2019 such as tinidazole, 

linezolid, ritonavir, and entacapone. It is also important that access to antibiotics 

is rather liberal in Greece [84, 85] allowing for the public to get them even 

without prescription according to the National Public Health Organization 

(NPHO). 

 As a result, an overall increase of the consumption levels of both 

pharmaceutical classes in 2020 (170% for antiviral drugs, p-value<0.05 and 

57% for antibiotics, p-value<0.05) was observed (Figure 7). A possible 

explanation may be related to either in-hospital or out of hospital unregistered 

use of these drugs, since initially there was some confusion about their potential 

activity. Darunavir and tenofovir, which are widely used to treat HIV, showed an 

enormous increase during 2020 (664 and 198 g day−1 respectively); their 

increase however may be associated with other reasons, not related to the 

pandemic. The macrolide antibiotic azithromycin has been considered as a 

possible therapeutic agent for patients with COVID-19 in the beginning of the 

pandemic. As a result, azithromycin was one of the antibiotics with the highest 

relative increase in consumption in 2020 comparing with the other substances 

of the class (from 2222 g day−1 in 2019 to 3028 g day−1 in 2020, p-value <0.05). 

Metronidazole, demonstrated a significant increase during lockdown (from 

2664 g day−1 in 2019 to 4349 g day−1 in 2020, p-value<0.05), another 

pharmaceutical compound that has been postulated to decrease the levels of 

several cytokines, which are increased during COVID-19 [86]. All the examined 

compounds with antiviral activity showed increase during 2020, as antivirals are 

the drugs with the strongest correlation to a viral disease such as the one 

caused by the novel coronavirus [87]. Hydroxychloroquine is an anti-malarial 

and an essential treatment for many patients with rheumatologic conditions, 
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however, this drug gathered widespread attention as a potential treatment for 

COVID-19 infection, based on some early data. During the initial period of the 

pandemic, hydroxychloroquine, either alone or in combination with 

azithromycin, was considered as the most promising therapy for COVID-19 and 

was used for symptomatic patients but also even as prophylaxis after exposure. 

As a result, there was a remarkable increase in the consumption of 

hydroxychloroquine by approximately 390%, from 12 g day−1 to 57 g day−1 (p-

value <0.05) The increased consumption was to some extent expected [73] due 

to its use for COVID-19, based on preliminary reports that were published or 

announced at the first months of the pandemic. These findings, are in 

agreement with data from numerous research groups worldwide, that have 

reported increase in consumption levels of antibiotic and antiviral drugs, 

especially during lockdowns and highlighted the emergence of antimicrobial 

resistance, one of the most pressing health crisis before the ongoing pandemic 

[77, 78, 88, 89]. In Spain, azithromycin, showed 400% increase from February 

to March 2020 [88] while the analysis of sewage sludge in United States 

demonstrated increase for hydroxychloroquine which had gained popularity 

during the first wave of COVID-19 pandemic [89]. The fact that these studies 

presented similar consumption trends for antibiotics and antiviral drugs with 

those reported in the present study, provides confidence in our findings and 

proved that antibiotic and antiviral consumption increased worldwide. Even 

though the consumption level of hydroxychloroquine was increased in Athens 

during 2020, it remained lower than the Predicted Environmental Concentration 

(PEC) in raw wastewater (833 ng/L), as reported by Kuroda et al. [90]. 
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Figure 7: Bar plots of antibiotics and antivirals during the study period (2019–2020). The results 

are expressed as consumption (g day−1) and the error bars represent the Standard Deviation 

(SD). 
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5.3.2 Non-steroidal anti-inflammatory drugs (NSAID) and analgesics 

NSAID and analgesics are used for treatment of acute pain, inflammation and 

fever. After COVID-19 outbreak, related authorities worldwide advised patients 

to avoid NSAID. More specifically, they claimed that NSAID such as ibuprofen, 

diclofenac are associated with higher rates of complications after respiratory 

tract infections and in order to treat pain, people should prefer analgesics such 

as paracetamol [91]. These recommendations could have been reflected in the 

results for both pharmaceutical classes. Decreasing concentration levels was 

observed for the class of NSAID, from 99,250 g day−1 to 72,524 g day−1 (p-

value = 7.63E-09). Acetylsalicylic acid showed a significant decrease in 2020 

(56%). The same trend was observed for salicylic acid (from 9355 g day−1 to 

4733 g day−1, p-value<0.05), diclofenac (4021 g day−1 to 2531 g day−1, p-

value<0.05) and ibuprofen (7502 g day−1 to 3012 g day−1, p-value<0.05). On 

the other hand, a noteworthy increase was observed only for two compounds 

of the NSAID class, ketoprofen (from 425 g day−1 to 1131 g day−1, p-

value<0.05) and valdecoxib (from 1999 g day−1 to 2966 g day−1, p-value<0.05). 

For analgesics, the opposite trend was observed, mainly due to paracetamol. 

In 2019, the concentration levels for paracetamol were 76,044 g day−1 and in 

2020 an approximately 3-fold increase was observed (226,449 g day−1), while 

decrease was observed in the consumption of opioid analgesics tapentadol and 

tramadol. Paracetamol demonstrated the same trend in the same calendar 

period in United States and more specifically weekly and not daily increase [89], 

while in central New York paracetamol was the most consumed substance 

(sampling period April to July 2020) [78]. It is noteworthy that 4-aminophenol, a 

minor nephrotoxic metabolite of phenacetin and paracetamol was found in both 

years in high levels compared to all the other compounds of the class as 

revealed by suspect screening results (Fig. S13, SI). In 2020, the total increase 

for analgesics was 11%. 

5.3.3 Antihypertensives, diuretics and antilipidemics 

Antihypertensive, diuretic and antilipidemic drugs are pharmaceutical classes 

that showed decrease during lockdown: from 120,562 g day−1 to 87,888 g day−1 

for antihypertensive and diuretics (p-value 2.25E-15) and from 9561 g day−1 to 
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5083 g day−1 for antilipidemics (p-value = 2.39E-19). The observed decrease 

for antihypertensive drugs was mainly caused by a noteworthy decrease of 

valsartan, an angiotensin II antagonist (from 99,814 g day−1 in 2019 to 67,880 

g day−1 in 2020, p-value<0.05), and probably the most commonly prescribed in 

Greece, in various combinations [31]. Angiotensin-converting enzyme 2 (ACE2) 

is a functional receptor for coronaviruses and initially it was postulated that its 

expression could be increased by the use of angiotensin-receptor blockers such 

as valsartan [92]. Although there are no solid data to support this hypothesis 

and, in contrast, their use may even have positive effects in COVID-19 patients, 

there had been a debate in the early period of the pandemic, which may have 

been the main reason that affected their use. Hydrochlorothiazide and 

furosemide are the two most frequently used diuretics that showed a different 

trend from 2019 to 2020. For hydrochlorothiazide, a decrease was observed 

(approximately 26% from 2019 to 2020, p-value <0.05). In general, 

hydrochlorothiazide is commonly co-administrated with antihypertensive drugs 

like valsartan and as a result the two substances showed a similar trend. The 

measured loads in 2020 for furosemide were higher than in 2019 (from 1214 g 

day−1 to 2081 g day−1, p-value <0.05). Furosemide is a loop diuretic drug that 

is used to reduce cardiac load and peripheral edema in patients with heart 

failure; an improved adherence to heart failure drugs during this period has 

been postulated. Some studies noticed that statins may have a positive effect 

during COVID-19 [93]. Atorvastatin, a widely prescribed statin, is associated 

with decreased hazard for death in patients that suffered from COVID-19. 

However, this observation was announced later than the investigated period of 

our study but the increase in atorvastatin consumption levels (from 806 g day−1 

in 2019 to 2560 g day−1 in 2020, p-value<0.05) may again, at least in part reflect 

improved adherence. During lockdown, a major decrease in admissions for 

cardiovascular conditions was observed in hospitals in Athens, as in other 

countries [94, 95] even among those not severely hit by the pandemic, which 

may explain the aforementioned observations. 

5.3.4 Antidiabetics, antiallergics and gastric and ulcer drugs 

Antidiabetics, antiallergics and gastric anti-secreting (proton pump inhibitors) 

drugs showed a similar trend during the study period (2019–2020). For 
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antiallergic drugs, the overall decrease (by 27%, p-value = 2.59E-06) was 

caused by diphenhydramine an antihistamine substance that showed a 

noteworthy decrease (from 71 g day−1 in 2019 to 36 g day−1 in 2020, p-value 

<0.05). The total decrease of antiallergic drugs may have been a result of the 

five-week lockdown and stay-at-home measures during spring months, when 

the allergic rhinitis and other allergies reach to a peak level [12]. The observed 

decrease (from 34,150 g day−1 in 2019 to 13,014 g day−1 in 2020, p-value = 

5.11E-09) for antidiabetic drugs, was mainly caused by metformin that is used 

to treat people with type 2 diabetes (63% decrease from 2019 to 2020, p-

value<0.05). For gastric anti-secreting (proton pump inhibitors) drugs the 

consumption levels were higher in 2019 (2885 g day−1) when the conditions 

were normal and the population's daily routine (e.g work) was specific and 

sometimes stressful (52% decrease in 2020, p-value = 1.50E-12). 

5.3.5 Antiepileptics 

A slight and statistically non important decrease was observed, from 132,301 g 

day−1 to 130,882 g day−1 for antiepileptics. Carbamazepine, is one of the most 

widely prescribed drugs for the treatment of epilepsy and during lockdown the 

observed increase was from 2210 g day−1 in 2019 to 5605 g day−1 in 2020 (p-

value<0.05). Carbamazepine, is also used in schizophrenia and bipolar 

disorder [77]. However, COVID-19 pandemic did not affect the consumption 

levels for the aforementioned pharmaceutical class. 

5.3.6 Iodinated contrast drugs 

Iodine-contrast drugs demonstrated a different trend during the study period 

and an important decrease by 65% was observed (p-value = 8.65E-17). Iodine-

contrast agents are used widely in computed tomography (CT), however during 

the lockdown period many non-essential imaging tests were postponed or 

canceled, along with a major reduction in hospital visits and non-hospital 

physician visits. Moreover, public health authorities had advised people to avoid 

non-essential hospital visits during lockdown. 
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5.3.7 Other pharmaceuticals 

For the sympathomimetic ephedrine the concentration levels showed a 2-fold 

increase during lockdown (from 807 g day−1 to 1598 g day−1, p-value<0.05). 

Moreover, lidocaine showed a similar trend and an approximately 2-fold 

increase was observed (from 308 g day−1 in 2019 to 500 g day−1 in 2020, p-

value<0.05). 

5.4 Conclusions 

To the best of our knowledge, there are limited data about drug consumption 

monitoring during the lockdown period, especially for certain drugs of interest. 

Such data can provide information about important aspects of treatment use 

during this period, which may have affected many patients with chronic 

conditions, which extend beyond the direct effects of the viral infection. For 

hydroxychloroquine, the degree of increase that was observed cannot be fully 

explained by the number of confirmed COVID-19 cases in Athens area during 

this period, which were only a few hundred. Unregistered use, even in non-

confirmed cases, may explain a part of this increase, driven by the public 

perception that this drug could “protect” or “treat” COVID-19. Antiviral drug and 

antibiotic consumption was also increased substantially, although there were 

no data to support their use for COVID-19. Our data also indicate major shifts 

in drug consumption for other drug classes but the reasons behind these 

changes are not completely understood. More specifically a significant 

decrease in the consumption of commonly used cardiovascular drugs such as 

angiotensin converting enzyme inhibitors (ACEi) / Angiotensin II receptor 

blockers (ARBs) was observed, but also in beta-blockers and other 

antiarrhythmic drugs. Some reduction in drug consumption for certain drugs 

may be due to difficulty to reach health care facilities or visit physicians to refill 

prescriptions. Although the option to remotely refill prescriptions via SMS or e-

mail became available during this period, this was not adopted by all patients 

form the beginning while there may have been some difficulties or even fear to 

reach pharmacies. 

Thus, major shifts in the consumption of several drug classes was observed. 

The changes may reflect several different aspects of the challenges phased by 
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the health care system. Although more investigation is needed in order to 

understand these trends, such data can be of value to the authorities in order 

to prepare healthcare and public services for the future challenges of the 

ongoing pandemic. In general, the study showed that the COVID-19 pandemic 

is clearly affecting habits, lifestyle, mental and physical health, and has already 

created a new socioeconomic and health reality. 
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6. Chapter 6 

Change in the chemical content of untreated wastewater of 

Athens, Greece under COVID-19 pandemic 

 

Highlights 

 Findings reflect the effects of pandemic and social distancing. 

 Wastewater-based epidemiology was used to assess the exposure to 

various chemicals. 

 Significant changes in illicit drug consumption were observed. 

 Surfactants and biocides showed a notable increase 196% and 152%, 

respectively. 

 Significant reduction of the industrial chemicals (52%) due to business 

closure 

This case study has been published in Science of The Total Environment (STOTEN), 

10th December 2021, Volume 799, Article 149230 

(https://doi.org/10.1016/j.scitotenv.2021.149230). 
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6.1 Introduction 

The coronavirus SARS-CoV-2 was firstly reported in the Chinese city of Wuhan 

in December 2019. Since then, the coronavirus disease (COVID-19) spread all 

over the world and caused millions of deaths [96]. On 11th of March 2020, the 

World Health Organization (WHO) declared a pandemic and COVID-19 

became a public health threat that affects and harms the stability of societies 

[97, 98]. The wastewater-based epidemiology (WBE) community responded 

rapidly to the urgent need for public health monitoring, by validating new WBE 

methodologies for SARS-CoV-2. Untreated wastewater samples were collected 

from many cities worldwide and analytical methods were developed for the 

detection of SARS-CoV-2 produced by infected asymptomatic and 

symptomatic people [50, 99-101]. WBE is an advanced approach for measuring 

endogenous and exogenous biomarkers of humans in untreated wastewater. 

The applications of WBE have increased rapidly during the last decade and the 

findings provided important information objectively and in real time about public 

health, drug abuse, chemical exposure and population lifestyle [25, 102-106]. 

Liquid chromatography tandem mass spectrometry is the most widely-used 

technique in WBE for the identification and quantification of human biomarkers 

through target screening (reference standards available) [31, 105]. Recently, 

high resolution mass spectrometry (HRMS) methods have gained popularity 

and played a key role in the identification of overlooked compounds in complex 

matrices, such as wastewater, through suspect and non-target screening [32, 

81]. Application of these new HRMS methods can lead to the tentative 

identification of hundreds of overlooked emerging contaminants and their 

transformation products (TPs) and thus provide better insights [107]. 

So far the majority of the WBE researchers have focused on the detection of 

SARS-CoV-2, with a few studies evaluating substances related to population 

habits and life style changes during the COVID-19 pandemic [77, 78, 108]. 

Changes in alcohol consumption due to social distancing measures activated 

by COVID-19 were investigated in South Australia. Wastewater analysis 

showed that alcohol consumption decreased following enforced restrictions. 

Moreover, the usual weekend peak that is typical for alcohol consumption was 

also flatter than usual [108]. Likewise, a study in Austria observed a similar 
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trend where the alcohol consumption declined around 20%. The same study 

investigated licit and illicit drug consumption. No variation before and during 

COVID-19 lockdown on the consumption of long-term pharmaceuticals was 

found, but significant changes were estimated for short-term pharmaceuticals 

and some recreational drugs. No statistically significant difference was found 

for caffeine and nicotine consumption [77]. In New York, a research group 

compared the quantity of SARS-CoV-2 in wastewater with the overall COVID-

19 positive tests in humans and the consumption of drugs estimated by WBE 

analysis. It was concluded that high quantities of SARS-CoV-2 in wastewater 

and many positive clinical tests were strongly correlated to higher consumption 

rates of antidepressants, antiepileptics, antihypertensives, antihistamines, 

opioids, and stimulants [78]. Finally, the stress of the population in Kentucky 

and Tennessee during the first period of the pandemic was assessed by 

determination of isoprostanes in wastewater. The elevated levels of these 

specific human stress biomarkers in wastewater were attributed to the oxidative 

anxiety induced by COVID-19 uncertainties [109]. 

The objective of this study was to investigate the presence of different classes 

of chemical compounds in influent wastewater before and during the pandemic 

that could be related to measures taken by the authorities, such as social 

distancing and lockdown. Therefore, novel HRMS methods such as wide-scope 

target and suspect screening were used to screen for the occurrence of 

emerging substances in combination with WBE to estimate the exposure and 

use of the detected substances. Critical evaluation and comparison of the 

results under lockdown conditions and under non-pandemic conditions were 

performed and differences in the consumption were revealed for (i) 

antipsychotic drugs including benzodiazepines and antidepressants, (ii) illicit 

drugs and (iii) markers of human habits and activities, such as food additives, 

dietary supplements, tobacco compounds, biocides and surfactants. For the 

first time, this study examined and estimated the loads of such a high number 

of compounds (11,286 compounds were screened) from various chemical 

classes that might be associated with the COVID-19 pandemic situation in 

Athens, Greece. This work can be used as an indicator for further studies and 

could potentially be extended to other countries. 
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6.2 Material and Methods 

6.2.1 Chemicals and reagents 

Acetonitrile, methanol, hydrochloric acid (37%) and ethyl acetate (99.9%) were 

purchased from Merck (Darmstadt, Germany), 2-propanol was purchased from 

Fisher Scientific (Geel, Belgium), sodium hydroxide monohydrate (NaOH) for 

trace analysis, formic acid, ammonium formate were purchased from Fluka 

(Buchs, Switzerland), and ammonia 25% was purchased from Panreac 

(Barcelona, Spain). Empty polypropylene tubes (6 mL) and the following 

sorbent materials: Sepra ZT (Strata-X), Sepra ZT-WCX (Strata-X-CW) and ZT-

WAX (Strata-X-AW) were purchased from Phenomenex (Torrance, USA). The 

polar sorbent (hyper crosslinked hydroxylated polystyrene-divinylbenzene 

copolymer; isolute ENV+) and the frits (20 μm, 6 mL) that separate the cartridge 

in layers were purchased from Biotage (Ystrad Mynach, UK). Wastewater 

filtration was realized with glass fiber filters (GF/F, pore size 0.7 μm), purchased 

from Whatman International Ltd. (Maidstone, England). 

Benzodiazepines and antipsychotics antidepressants, further subcategorized 

into tricyclic, tetracyclic, selective serotonin reuptake inhibitors (SSRIs), 

serotonin−norepinephrine reuptake inhibitors (SNRIs), were purchased from 

Alfa-Aesar (Voula, Athens, Greece) and Merck (Chalkidona, Greece). Target 

compounds were supplied by Bruker Daltonics (in total 675 reference standards 

of pesticides), the EAWAG (270 standards covering different chemical classes), 

the Laboratory of the Olympic Sports Center of Athens (142 illicit drugs 

including new designer drugs). Drugs of abuse, divided in the following sub-

categories: i) opiates, opioids and related metabolites, ii) amphetamines, iii) 

hallucinogens (cannabinoids, lysergic acid diethylamide (LSD), and 

derivatives)) and iv) cocaine and related metabolites were purchased from LGC 

Standards (Athens, Greece). Information on the determined compounds is 

given in Table S19 of the Supplementary Material. 

6.2.2 Sample collection 

24-h composite flow-proportional influent wastewater samples were collected 

from the inlet of Psyttalia WWTP in cooperation with Athens Water Supply & 

Sewerage Company (EYDAP). The WWTP of Athens is designed with primary 
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sedimentation, activated sludge process with biological nitrogen and 

phosphorus removal and secondary sedimentation. The hydraulic retention 

time in bioreactors is 9 h, and the sludge residence time is 8 days. The sludge 

is managed by thickening, anaerobic digestion and mechanical dewatering. 

The closest connected household is 0.5 km and the most remote 30 km from 

the WWTP. Seven daily samples were collected in 2019 under non-pandemic 

conditions (from 13th to 19th of March), in context of the annual monitoring 

campaign organized by the SCORE action ES1307 [58]. Samples were 

obtained during a ‘normal’ week, avoiding special events such as public 

holidays or festivals and heavy rain conditions that can potentially limit the 

WWTP capabilities. A prolonged sampling of fifteen wastewater consecutive 

days was executed in 2020 under full lockdown conditions (from 25th of March 

until 8th of April). The first lockdown involved business closure, school closure, 

court closure, traveling restriction, interruption of sports, social distancing 

measures and strict restrictions in movement of citizens [110]. The average 

wastewater flow rate was 794,871 m3 day−1 in 2019 and 788,727 m3 day−1 in 

2020. The number of inhabitants was estimated at 3,995,020 for 2019 and 

4,009,346 for 2020 [83]. The estimated number of inhabitants between the two 

campaigns did not change significantly. All the information about the studied 

WWTP can be found in Section S5.1.2. of the SI document, as the examined 

samples are the same as those presented in Chapter 5. All influent wastewater 

samples were collected in high-density polyethylene bottles previously cleaned 

with methanol and Milli-Q water. The wastewater samples were filtered with 

glass fiber filters (pore size 0.7 μm) upon arrival at the laboratory and the pH 

was adjusted (6.5 ± 0.1) using formic acid 0.1 M. 

6.2.3 Sample preparation protocol 

Extraction of the samples was carried out using a modified protocol [111, 112]. 

Sample aliquots (100 mL) were pH-adjusted, spiked with a mix of internal 

standards (Table S11, SI) and then passed through the cartridge made by 

different sorbent types (Strata-X, Strata-X-CW, Strata-X-AW, isolute ENV+) 

[32]. Briefly, the cartridges were activated with 3 mL of methanol, followed by 3 

mL of water. Afterwards, the samples were loaded without using vacuum. Then, 

cartridges were dried for 1 h under vacuum. The elution was performed with a 
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mixture of 4 mL methanol and ethyl acetate (50:50, v/v) containing 2% ammonia 

and a mixture of 2 mL methanol and ethyl acetate (50:50, v/v) containing 1.7% 

formic acid. The extracts were evaporated to a volume of 50 μL approximately, 

using a nitrogen stream and were reconstituted to a final volume of 500 μL 

methanol and water (50:50, v/v). Finally, the extracts were filtered using 0.2 μm 

RC membrane filters (Phenomenex, Torrance, CA, USA). 

6.2.4 Instrumentation and analytical methods 

The extracts were analyzed with two instrumental methods: a highly sensitive 

method for the detection and quantification of drugs of abuse and antipsychotic 

drugs by liquid chromatography tandem mass spectrometry (LC-MS/MS) [30, 

31] and a wide-scope target screening method able to screen compounds of 

various chemical classes by liquid chromatography quadrupole time-of-flight 

mass spectrometry [32, 111]. The LC-MS/MS method was used for selected 

target drugs since it yields lower limits of detection (LOD). 

6.2.4.1 LC-MS/MS analytical method 

LC-MS/MS analysis was conducted using a Thermo UHPLC Accela system, 

which was connected to a Thermo TSQ Quantum Access triple-200 quadrupole 

mass spectrometer (San Jose, USA). The mass spectrometer is equipped with 

an electrospray ionization source in both positive and negative ionization. The 

chromatographic column Atlantis T3 C18 (100 mm × 2.1 mm, 3 μm) was used 

for separation at a constant flow rate (100 μL min−1). The injection volume was 

10 μL. Detailed information about the gradient program and the ESI settings 

are presented in Table S12. 

6.2.4.2 LC-HRMS analytical method 

LC-HRMS analysis was performed on an UHPLC/QTOF-MS system. The 

system is equipped with a UHPLC device (Dionex UltiMate 3000 RSLC from 

Thermo Fisher Scientific) and is coupled to the Bruker Maxis Impact QTOF-

MS/MS analyzer (Bremen, Germany). The chromatographic column Acclaim 

RSLC C18 column (2.1 × 100 mm, 2.2 μm) was preceded by a pre-column 

ACQUITY UPLC BEH C18 1.7 μm (Waters, Ireland). The pre-guard column and 

the analytical column were thermostated at 30 °C during separation. 
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The samples were analyzed with four acquisition modes: broadband collision-

induced dissociation (bbCID, data-independent) in positive ionization, bbCID in 

negative ionization, data-dependent MS/MS acquisition (AutoMS) recording the 

five most-abundant ions per scan in positive ionization and AutoMS in negative 

ionization. In both cases the scanning range was set to 50–1000 Da with scan 

rate of 2 Hz. The collision energy was set to 25 eV for bbCID and predefined 

values based on the mass and the charge state of every ion. More information 

of the instrumental performance is provided in Tables S13 and S14. 

6.2.5 Computational resources 

6.2.5.1 LC-MS/MS computational workflow 

The Xcalibur software suite (TSQ14, SUR1, XReport 1.0, 2.0 SR2) was used 

for instrument control, data recording and assessment. The selected reaction 

monitoring (SRM) mode was used and the transitions of the precursor ion and 

its two most abundant product ions were monitored. All the peaks were finally 

integrated using LCquan 2.7 (Thermo Fisher Scientific). 

6.2.5.2 LC-HRMS computational workflow 

The raw files of the LC-HRMS analysis (target screening), were processed by 

Bruker TASQ 1.4 software (Bruker Daltonics, Bremen, Germany). A calibration 

method ensured mass accuracy below 2 mDa for the whole chromatographic 

run. Target list of the National and Kapodistrian University of Athens can be 

found at NORMAN suspect list exchange (https://www.norman-

network.com/nds/SLE/). 

For wide-scope suspect screening, all files were converted to open-source 

format (mzML) using Bruker CompassXport 3.0.9.2. (Bremen, Germany). Data 

files with meta-data were uploaded to NORMAN Digital Sample Freezing 

Platform (DSFP) [7]. 

The uploaded mzML samples in DSFP pass from a non-target screening 

workflow involving processing with centWave peak picker (via xcms R-

package) [113] using previously optimized ppm and peakwidth parameters 

[114]. The peak picking algorithm searches for consecutive masses within a 

mass error threshold forming peak shape in chromatographic dimension [113]. 

The next step is componentization, which is a procedure for grouping peaks 

https://www.norman-network.com/nds/SLE/
https://www.norman-network.com/nds/SLE/
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coming from the same compound (adducts, isotopic peaks, in-source 

fragments). For this purpose, functions from nontarget R-package are used 

[115]. The final output is a component list. This component list can be searched 

for thousands of compounds by suspect screening. Once the samples are 

uploaded to DSFP, they can be screened for a ‘yes/no’ presence of virtually 

any compound amenable to LC-MS analysis using a combination of information 

on its (i) exact mass, (ii) predicted retention time window in the chromatogram 

(iii) isotopic fit and (iv) qualifier fragment ions. 

DSFP is part of the NORMAN Database System (NDS) [61]. It is connected to 

the NDS module called NORMAN Substance Database (https://www.norman-

network.com/nds/susdat/) [116], in which mass spectrometric information for 

the contaminants is collected (adducts, fragmentation pattern, preferable 

ionization, predicted retention time index etc.). DSFP uses this information to 

screen substances. 

Suspect screening of 9150 compounds was performed in this study: 7586 

environmentally-relevant compounds with known fragmentation, and the 

surfactant specific lists S7 EAWAGSURF (410 compounds) and S23 

EIUBASURF (1154 compounds). 

6.2.6 Semi-quantification methodology 

Detected suspected compounds were semi-quantified based on the standard 

addition curve of the structurally most similar target compound. For example, 

the suspected plasticizer diisobutyl phthalate was semi-quantified based on the 

calibration curve of the diethyl-phthalate, because the compounds have high 

structural similarity. To find the structurally most similar target compound, 2D-

linear fragment descriptors based on the original definitions of atom pairs and 

atom sequences were calculated [117] and Tanimoto coefficient was used as 

the similarity distance function. The output of the calculation is the structurally 

most similar target compound, and the similarity percentage between the 

suspected compound and the compound with the closest structure is reported. 

The semi-quantification approach was validated to acquire some knowledge on 

the expected uncertainty. The calibration curves for 778 compounds were 

generated for positive (681 compounds) and negative (207 compounds) 

https://www.norman-network.com/nds/susdat/
https://www.norman-network.com/nds/susdat/
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electrospray ionization. These calibration curves were used to semi-quantify 

compounds, which were previously quantified by target screening analytical 

methods. The result of this investigation, which was performed in an iterative 

way, leaving out a known concentration at a time, can be found in Figure S15. 

The percentage structural similarity proved to be a good measure of the 

uncertainty of the semi-quantification. Overall, structure similarity above 30% 

indicated a maximum error in semi-quantification of one order of magnitude. 

This semi-quantification method together with other semi-quantification 

strategies [118] is currently under comparison within the collaborative trial on 

semi-quantification organized by the NORMAN network [119]. 

6.2.7 Quality assurance and quality control 

For each sampling year, 24-h flow-proportional influent wastewater samples 

were collected by the WWTP operators and were stored in a freezer (−20 °C) 

at the laboratory of the water company (EYDAP S.A.) in the Psyttalia island. All 

the samples were transferred in a portable freezer at the laboratory and were 

let at room temperature in the fume hood to defreeze. The samples were 

processed immediately after defreeze and in a single batch. The samples 

collected from 13th to 22nd of March 2019 were processed immediately after the 

campaign and were analyzed as soon as the instruments were available (27th 

and 28th of March 2019). The same methodology was followed for the sampling 

campaign of 2020 (sample collection from 25th of March to 8th of April 2020), 

immediate processing and analysis (11th and 12th of April 2020). The reason of 

the immediate processing was to minimize the likelihood of potential 

degradation of the samples. 

For each year, the batch of the samples was supplemented with an ultrapure 

Milli-Q water sample serving as procedural blank sample with the aim to identify 

any contamination originating from solvents and laboratory conditions. 

Moreover, a pooled sample (mixture of all influent samples) was divided in four 

fractions and was spiked with target compounds at the following concentration 

levels 0, 10, 100 and 1000 ng L−1. Quantification was performed by standard 

addition for the majority of the compounds and by isotopic dilution for selected 

compounds (internal standard available). An additional quantification 
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experiment was conducted for few detected target substances that were not 

initially spiked or/and substances that were spiked but proved to be at much 

higher concentration levels (>1000 ng L−1). All samples (including spike 

samples) were spiked with a mix of internal standards (Table S11) at 100 ng 

L−1 level to facilitate precise quantification of these specific target analytes, for 

evaluation analyte losses (recovery) during the sample preparation and for 

evaluation of instrumental stability (injection volume, instrument sensitivity and 

ionization efficiency). Prior to the analysis of the extracts, the electrospray 

ionization (ion transfer tube and skimmer cone) was cleaned with a mixture of 

water and isopropanol (70:30) in a thermostated sonication device (50 °C) for 

15 min followed by Milli-Q water (15 min, 50 °C) and methanol (15 min, 50 °C). 

The mass spectrometer was let at operate mode for 45 min, was calibrated with 

sodium formate (LC-QTOF) and polytyrosine (LC-MS/MS) and was checked 

regarding sensitivity. The performance of the instruments was continuously 

monitored through the peak area and the retention time of the internal 

standards. The performance of the instruments during the chromatographic 

batch proved to be satisfactory in terms of quality assurance and quality control 

[120, 121]. The chromatographic system proved to be highly repeatable with 

drift in retention time less than 0.1 min based on the expected retention time of 

target compounds. No loss in sensitivity was observed based on the response 

of the internal standards (Figure S16, SI). Principal component analysis (PCA) 

in positive (Figure S17, SI) and negative ionization (Figure S18, SI) showed 

clustering of the QC samples, samples of 2019 and 2020 showed high variation 

and no specific clustering and blank samples were in both cases isolated from 

the samples. It is worth stating that the laboratory is accredited (ISO/IEC 

17025:2017) for numerous analytical methods using equipment and 

instruments that were used in this study. Moreover, the laboratory has 

established standard operational procedures (SOPs) for performance check of 

the instruments.  

All target detections passed the following identification criteria: i) mass accuracy 

<2 mDa, ii) RT tolerance ±0.2 min, iii) presence of at least two qualifier fragment 

ions, except substances that do not yield more fragments because of their 

chemical structure and iv) compliant isotopic fit in case isotopic peaks were 
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available. All suspect identifications were verified manually to reduce the 

possibility of false findings. The detections were allocated in identification 

confidence levels (Table S19, SI). Identification confidence 2A was indicated 

with spectral match between experimental and library spectrum with match 

more than 90% using OrgMassSpecR [122, 123]. 

6.2.8 Calculation of loads, assessment of the consumption of drugs and 

statistical analysis 

Mass loads were calculated by multiplying the concentrations and the daily 

wastewater flow rate for each daily sample. Afterwards, these loads were 

multiplied by specific correction factors (Table 9). Finally, population normalized 

consumption rates were estimated, by dividing by the number of inhabitants 

(inh.) within the WWTP service area and then multiplying by 1000 (mg/day/1000 

inh.). The non-parametric Wilcoxon signed-rank test was utilized to compare 

the load levels between the two sampling campaigns considering a statistical 

significance level of p < 0.05, given that the data were not normally distributed. 

The application of the statistical test was realized in R v4.0.3 through the 

function wilcox.test included in the stats R-package. 

6.3 Results and discussion 

The Greek government announced the total lockdown due to COVID-19 

pandemic on the 23rd of March 2020. The official lockdown lasted more than 

five weeks according to the national organization of public health (EODY), 

followed by gradual lifting of restrictions. The pandemic lockdown caused 

serious economic losses, reduction in trading and drastic lifestyle changes. The 

results of the present study reflected the change of the chemical universe of 

untreated wastewater under COVID-19 pandemic. 

The detected classes of compounds are summarized in Table 7. The highest 

increase under lockdown conditions were observed for cationic quaternary 

ammonium surfactants (+331%), surfactants (+196%) and biocides (+152%), 

whereas the most important decrease was found for tobacco (−33%) and 

industrial chemicals (−52%). 
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Table 7: Mean mass loads (g day−1), standard deviations (SD) of the untreated wastewater 

samples for each year and % change during the study period (2019–2020). 

Chemical class 

Loads 2019  

(g day-1) 

SD 

2019 

Loads 2020  

(g day-1) 

SD 

2020 

Change  

2019-2020 

(%) 

p-value 

Cationic 

surfactants 

(Biocides) 

478 173 2,061 476 +331 <2.0E-06 

Surfactants 327,063 32,953 968,818 163,259 +196 
<2.0E-

06 

Biocides (used 

also as pesticides) 
62 4.7 156 8.5 +152 <2.0E-06 

Food additives and 

Dietary 

Supplements 

10,394 1,852 22,128 1,673 +113 <2.0E-06 

Illicit drugs 1243 86 1632 73 +31 
<2.0E-

06 

Benzodiazepines 257 21 309 16 +20 4.1E-06 

Pesticides only 5,174 329 5,873 350 +14 2.0E-04 

Antidepressants 2156 111 2227 92 +3 8.4E-02 

Antipsychotics 481 28 481 11 0 5.1E-01 

UV filters 1,100 145 886 63.9 -24 2.8E-04 

Tobacco 58,929 4582 44,401 3466 -33 <2.0E-06 

Industrial 

chemicals 
37,145 5,757 24,371 1,558 -52 <2.0E-06 
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The loads for all individual substances are provided at Section S6.4 (SI). The 

results of suspect screening are presented as heatmaps in SI at Section S6.5. 

The loads (g day−1) and the % change before and during the COVID-19 

pandemic for the various detected chemicals are discussed in detail per 

chemical class. 

6.3.1 Antipsychotic drugs 

COVID-19 pandemic and the measures implemented by the authorities had 

short- and long-term psychosocial and mental health implications [124]. Studies 

performed in Greece showed that the citizens were affected by severe anxiety, 

fear, depressive symptoms and uncertainty to this frightening condition due to 

disrupted social, and family life, education disruption, traveling cancelation, and 

other aspects of life [125-127]. Wastewater analysis showed which 

psychoactive pharmaceuticals were used more under pandemic conditions and 

to what extent. The combination of wastewater results with medical, 

sociological and psychological studies can give more insight into the mental 

health of Athenians’ and, potentially, other populations worldwide. Our findings 

showed no increase for antipsychotics, insignificant increase by 3% for 

antidepressants and increase in benzodiazepines by 20%. 

Other pharmaceuticals, not belonging to antipsychotic drugs which are used for 

therapeutic purposes (e.g. antihypertensive drugs, antiepileptic drugs, 

analgesics and many other classes) proved to be a class of compounds with 

high variations in consumption during the first strict lockdown. Given their 

importance and the need for thorough investigation of their consumption 

patterns, they were studied separately in Chapter 5. 

6.3.1.1 Benzodiazepines 

Benzodiazepines are a class of psychoactive pharmaceuticals with anxiolytic 

and hypnotic action. During COVID-19 pandemic, an overall increase (+20%) 

was observed (Table 7). In 2019, the detected concentration levels for 

lorazepam, one of the most widely prescribed anxiolytic drugs [128], were 

approximately 111 g day−1 and a remarkable increase of 77% was observed in 

2020. However, the detected loads for few benzodiazepines did not follow the 

same change of lorazepam and showed a slight decrease in 2020. Oxazepam, 
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the second most widely used benzodiazepine, showed a slight decrease of 

−16%. 

6.3.1.2 Antidepressants and antipsychotics 

The concentration levels of antidepressants showed a non-significant increase 

of +3% during lockdown. A noteworthy increase was observed only for 

venlafaxine, a serotonin−norepinephrine reuptake inhibitor (SNRI), from 383 g 

day−1 in 2019 to 1059 g day−1 in 2020. On the contrary, 8-OH-Mirtazapine 

showed a substantial decrease in 2020 (from 653 g day−1 to 325 g day−1). 

Overall, the observations for antidepressants, used to monitor mental health of 

a catchment, are in agreement with the results of Tyrol region in Austria [77]. 

Both Reinstadler et al., and our WBE results did not show significant variations, 

even though there is evidence that the lockdown and quarantine had an impact 

on mental health of the communities [127]. 

Mass loads of antipsychotics remained steady. The compounds of this 

pharmaceutical class are used to manage psychosis, schizophrenia, paranoia 

or disordered thought. Mesoridazine was the only antipsychotic drug that 

showed noteworthy increase during lockdown (from 18 g day−1 to 39 g day−1, 

p-value<0.05), perhaps due to a change in prescription patterns. 

6.3.2 Illicit drugs 

Tetrahydrocannabinol-9-carboxylic acid (THCA) did not show a statistically 

significant change during quarantine (Table 8), which is in agreement with the 

report by the European Monitoring Centre for Drugs and Drug Addiction 

(EMCDDA) [129]. Ecstasy (MDMA) showed a significant decrease during 

lockdown. The loads in wastewater were reduced from 24 g day−1 to 11 g day−1. 

The loads were back-calculated in consumption (Table 8) and doses per 1000 

people (Table 9). The doses for MDMA were calculated to 0.28 per 1000 people 

in 2019 and 0.13 per 1000 people in 2020. MDMA is a substance largely linked 

to parties, clubs and generally night life. The stay-at-home measures and the 

closure of night clubs drastically affected the concentration levels of MDMA. 
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Table 8: Consumption (mean ± standard deviation) of cocaine, amphetamine, 

methamphetamine, and MDMA expressed as mg/day/1000 people, using correction factors. 

Compound 
Consumption 

2019 

Consumption 

2020 

p-value Variation 

Amphetamine 20.0 ± 10.4 86 ± 22 1.7E-05 Increase 

Cocaine 134 ± 38 216 ± 39 2.1E-04 Increase 

Methamphetamine 25.9 ± 8.4 37.9 ± 6.6 5.6E-03 Increase 

ΜDMA (ecstasy) 8.8 ± 3.4 4.1 ± 2.6 7.4E-03 Decrease 

THC (cannabis) 7389 ± 2075 5913 ± 1793 9.1E-02 Decrease 

 

Table 9: Correction factors used in the present study and calculated doses per 1000 people 

under normal (year 2019) and strict lockdown (year 2020) conditions. 

Compound Biomarker 
Correction 

factor 

References 

for 

correction 

factors 

Doses 

(mg) 

Reference

s for 

doses 

Doses 

per 

1000 

people 

in 2019 

Doses 

per  

1000 

people 

in 2020 

Cocaine Benzoylecgonin
e 

3.59  [58, 130] 100  [58] 2.0 3.39 

Amphetamine Amphetamine 2.77  [58, 130] 50  [58] 0.36 3.64 

Methampheta

mine 

Methamphetami

ne 
2.44  

[58, 130] 
50  

[58] 
0.59 0.87 

ΜDMA 

(ecstasy) 
ΜDMA 4.4  

[58, 130] 
100  

[58] 
0.28 0.13 

Nicotine Cotinine 3.4 [131] 1.25 [131] 3,800 2,347 

Nicotine Hydroxycotinine 1.9 [131] 1.25 [131] 3,472 2,809 

THC 

(Cannabis) 
THCA 0.6 

[132] 
125 

[133] 
59.1 47.3 
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However, an increasing trend was observed for other stimulants such as 

amphetamine, methamphetamine and cocaine. Cocaine consumption was 

monitored through concentrations of benzoylecgonine, which is the major 

metabolite of cocaine. Amphetamine, showed a noteworthy increase in 

consumption. Methamphetamine use in Athens continue to increase during the 

last years [58]. This trend continued and loads increased from 45 g day−1 in 

2019 to 62 g day−1 under lockdown conditions in 2020. These mass loads were 

back-calculated to 0.87 doses per 1000 people for 2020 and 0.59 for 2019. 

Benzoylecgonine showed a substantial increase from 207 g day−1 to 350 g 

day−1. This translates to an increase of cocaine consumption from 2.0 doses 

per 1000 citizens to 3.39 doses per 1000 citizens. This remarkable increase in 

consumption of cocaine, amphetamine and methamphetamine is of concern 

and highlights that users maintained their access to illicit drugs despite the strict 

measures in movements. It is also likely that this increase is associated with 

the increasing depression levels observed during lockdown [134]. Further 

investigation to confirm the establishment of these mental health conditions is 

needed to reach robust conclusions. 

Despite the increasing trend, cocaine consumption remained lower than the 

mean consumption estimated in 120 cities (37 countries) between 2011 and 

2017 [58]. Methamphetamine consumption is close to the average consumption 

levels, whereas amphetamine is above the average consumption levels 

revealed by the same multinational study [58]. The findings of our study indicate 

that significant and rapid changes in drug consumption patterns were observed 

during the early stages of the COVID-19 pandemic. These changes can be 

attributed to the implementation of confinement and restriction of social 

interactions [129, 135]. 

Another interesting observation was the identification using the HRMS target 

method and corresponding reference standards, of other stimulants, such as 

amphetamine-p-hydroxy, para methoxy amphetamine (PMA), para-methoxy-N-

methylamphetamine (PMMA) and amfepramone that were found only in 2020. 

It has to been noted that these compounds were rarely detected in other 

studies. PMMA was only identified in Athens and Zurich [136, 137] and PMA in 

Athens and Australia [102, 138, 139]. Suspect screening analysis resulted in 
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the identification of six stimulants, namely cis-4-methylaminorex, N-methyl-2-

AI, TDIQ, MMDA-2, 4,4’-Dimethylaminorex and N-hydroxy-MDA (Fig. S5B). 

Three of them were detected only in 2020. This is the first time that these 

compounds were detected in influent wastewater, as can be verified from the a 

published study [140]. The increasing detection of new stimulants in wastewater 

is of concern and may indicate that drug users were pushed toward alternative 

psychotropic drugs due to social isolation and the limited access to 

detoxification centers [141]. 

Seven opioids (buprenorphine, morphine, codeine, codeine-6-glucuronide, 6-

monoacetylmorphine, methadone, EDDP) were detected in untreated 

wastewater, including parent compounds and human urinary metabolites. More 

specifically, the mass loads of buprenorphine, a prescription opioid, were 

decreased significantly in 2020, but the loads of methadone remained stable. 

However, the metabolite of methadone (2-ethylidene-1,5-dimethyl-3,3-

diphenylpyrrolidine, EDDP) showed increased mass loads (35%) in 2020. The 

ratio of EDDP/methadone measured in wastewater was 1 (2019 campaign) and 

1.5 (2020 campaign) indicating that direct disposal of methadone occurred both 

years, since a ratio around 2 is used to confirm that the found levels are mainly 

due to human metabolism [142]. Mass loads of morphine and codeine were 

increased substantially, but the exclusive metabolite of heroine, 6-

acetylmorphine, decreased drastically (90%) in 2020. This metabolite has low 

stability, can revert to morphine in wastewater and its excretion rate is limited 

[143, 144]. The transformation of 6-acetylmorphine to morphine could be a 

potential reason for the increased mass loads of the latter. Back-calculation of 

heroin based on morphine (most abundant metabolite) should be done with 

caution, since morphine is also a metabolite of some pharmaceuticals such as 

codeine, ethylmorphine and pholcodine and the amount of therapeutic 

morphine and codeine should be subtracted [143]. Therefore, back-calculation 

was not performed for heroin. 

6.3.3 Tobacco consumption 

Smoking is associated with the risk of respiratory tract infections. A population-

based research suggested that youth using e-cigarettes and cigarettes are at 
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higher risk of COVID-19 [145]. However, the harm from the joint effect of 

tobacco use and COVID-19 is not fully supported [146, 147]. In this study, 

nicotine and two human urinary metabolites, namely cotinine and 

hydroxycotinine that represent smoking habits of a population were determined 

in wastewater. According to the findings, a reduction in smoking habits was 

noticed. The cumulative loads of cotinine, hydroxy-cotinine and nicotine 

reduced from 58,929 g day−1 to 44,401 g day−1 in 2020. Furthermore, nicotine 

consumption was calculated using the WBE approach and specific correction 

factors (Table 9). The number of cigarettes per 1000 people for the campaign 

of 2019 were estimated between 3472 and 3800, while for 2020 were calculated 

between 2347 and 2809. This behavior can be regarded as a compliance of 

citizens to the studies associating smoking with SARS-CoV-2 [148] which was 

intensively communicated by the mass media during the first lockdown. It 

should be stated that some people may found the opportunity to quit smoking, 

since it was revealed that the pandemic is related to respiratory diseases. On 

the contrary, some others may presented an increased desire to smoke due to 

augmented stress of a possibly fatal illness, possibility of unemployment and 

feelings of insecurity [147]. The results of this study showed that the general 

population decided to reduce smoking. Our investigation highlights that WBE 

can act as monitoring tool to evaluate the effect of decision-making by policy-

makers to measure the effect of promotional activities. 

6.3.4 Surfactants 

In the present study, various classes of surfactants were examined under 

normal conditions in 2019 and during lockdown in 2020. An overall significant 

increase (196%, p-value <2.0E-6) was observed that indicated a wide use for 

all the compounds with disinfectant activity (Table 10 and Figure S21). The 

study reported anionic detergents and surfactants found in personal care 

products (soaps, shampoos, and toothpaste), surfactants used as antioxidants, 

solubilizers, laundry and dish products and anionic surfactants used in 

dishwashing and laundry, such as sodium lauryl ethyl sulfates (SLES), linear 

alkylbenzene sulfonates (LAS), sulfophenyl alkyl carboxylic acids (SPAC), 

nonylphenol ethoxylates (NPEO), nonylphenol ethoxylate sulfate (NPEO-SO4), 
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secondary alkane sulfonates (SAS), glycol ether sulfates (GES), cationic 

surfactants and polyethylenoglycols (PEGs). 

Table 10: Mean mass loads expressed in g day-1, standard deviations (SD), % change during 

the study period (2019-2020) and p-values for various classes of surfactants. 

Class 

Loads 

2019  

(g day-1) 

SD 

2019 

Loads 

2020  

(g day-1) 

SD 2020 

Change  

2019-2020 

% 

p-value 

SLES 20,297 4,212 91,975 60,821 +353 2.E-04 

LAS 97,229 20,425 358,832 114,268 +269 1.E-07 

SPA-C 12,060 4,688 32,813 9,013 +172 2.E-07 

SPC-C 11,994 4,820 33,097 9,000 +176 2.E-07 

STA-C 836 274 1,132 292 +35 1.E-02 

DATS 2,266 520 8,495 3,668 +275 5.E-06 

NPEO and NPEO-

SO4 
398 160 1,583 784 +298 2.E-05 

SAS 2,778 2,049 10,568 5,393 +280 4.E-05 

GES 37,359 12,660 199,292 94,559 +433 5.E-06 

cationic surfactants 429 156 1,897 673 +342 2.E-07 

PEGs 141,417 20,997 229,135 27,383 +62 5.E-08 

Surfactants 327,063 32,953 968,818 163,259 +196 5.E-11 
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It is noteworthy, that this is the first study that reported the detection of such 

long homologue series of PEGs in wastewater of Athens. The heatmap that 

includes the summary of all detected surfactants, highlights the increase of all 

classes of surfactants during lockdown (Figure S21). Stay-at-home measures, 

working from home, social distancing, hand-washing and surface-disinfection 

advisories may have driven the observed high detection levels for all the 

aforementioned compounds in 2020 compared to the previous year. More 

specific, LAS, GES and PEGs were the 3 surfactant classes with the highest 

detection levels for both years. 

6.3.5 Pesticides and biocides 

The European Commission has implemented different regulations for the 

chemical classes of pesticides and biocides (also referred as plant protection 

products, PPPs) and it distinguished them according to their use. Pesticides 

are used to protect plants against harmful organisms, to preserve the crop, and 

to prevent the growth of competitive plants [149]. Likewise, the European 

Biocidal Product Regulation (BPR) defines that biocides are used “with the 

intention of destroying, deterring, rendering harmless, preventing the action of, 

or otherwise exerting a controlling effect on, any harmful organism by any 

means other than mere physical or mechanical action” [150]. Although, distinct 

regulations were applied, some active ingredients can be used both as 

pesticides and biocides. Thus, the findings of the present work were 

categorized in three groups: 1) PPPs used as pesticides only; 2) PPPs used as 

biocides and pesticides; 3) cationic surfactants with increased biocidal activity. 

A slight increase of pesticide amounts was observed in the present work (Table 

7). However, high variation was estimated for the compounds; for instance, the 

fungicides spiroxamine (+364%) and propamocarb (−256%) showed the 

highest increase and reduction, respectively. It has to be noted that seven 

pesticides were detected only in the 2020 sampling campaign (Table S20). 

Nevertheless, the herbicide dinoterb and the plant growth regulator indole-3-

acetic acid showed high mass loads in 2019 and both were reduced 

significantly in 2020. Metolachlor and its transformation product metolachlor-

morpholinon presented the same % increase during quarantine. The use of 
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metolachlor is banned in Europe, but its isomers’s metolachlor is licensed. The 

occurrence of metolachlor was confirmed by the corresponding standard, but 

one of the main limitations of the generic HRMS methodology is that usually 

cannot distinguish isomeric compounds. Furthermore, it is expected that s-

metolachlor presents the same characteristics (e.g. retention time and fragment 

ions) with those of metolachlor. Thus, it cannot be confirmed if it is either 

metolachlor which has been banned or its isomer. Amitraz was not detected in 

either campaign, in contrast to its main transformation product N-2,4-

dimethylphenylformamide. Furthermore, two pesticides, namely fluazifop-P and 

thiofanox-sulfoxide were detected only in 2020 sporadically by suspect 

analysis. It should be stressed that in total twenty pesticides were quantified 

and the use of nine of them is forbidden in the EU, which is a situation of 

concern. No specific variations were observed for pesticides according to the 

obtained results during the pandemic period. It has to be highlighted that the 

sampling campaigns did not exactly match (13–19 March 2019 vs 25 March–8 

April 2020) and some higher loads in 2020 could be due to the fact that April is 

the beginning of pesticide (i.e. insecticides) application season. However, the 

impact caused by COVID-19 pandemic (lockdown, travel restrictions, border 

closures and quarantine) in the flow of pesticides resulted to their limited 

production and supply. China, which is a key producer and supplier of 

pesticides worldwide reported a sharp decrease in production [151]. Finally, the 

human exposure to pesticides was not evaluated on this work, since no human 

urinary metabolites were investigated [152]. 

The presence of biocides in wastewater was increased considerably and the 

majority of them, ten out of fourteen, were only identified in 2020 (Table S20). 

These biocides are used as preservatives and for pests control with the 

exception of mecetronium ethyl sulphate which is used as disinfectant. Indeed, 

the United States Centers for Disease Control and Prevention (CDC) 

recommended that cleaning visibly dirty surfaces followed by disinfection is a 

highly effective way to battle the spread of SARS-CoV-2 in households and 

community settings [153]. It was proved that SARS-CoV-2 remained active on 

hard surfaces for hours and even days [154]. The population may have applied 

biocides used in pest control for disinfection purposes by mistake, showing the 
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unawareness of the citizens in the use of chemicals. Additionally, the observed 

increase in biocides could be attributed to the fact that people remained at 

homes and engaged with household activities. Athenian citizens, obeying to the 

authorities’ instructions, used various types of biocidal agents for chemical 

disinfection. 

In the present work the highest increases under lockdown conditions, 

considering all classes of chemicals, were observed for cationic quaternary 

ammonium surfactants (331%) (Table 7), and more specifically to 

benzalkonium chloride (BAC), alkyltrimethylammonium chlorides (ATMAC) and 

diallyldimethylammonium chloride (DADMAC) groups. Furthermore, six out of 

eleven compounds were identified only in 2020 (Table S20). Many authorities 

worldwide published documents and official guides recommending disinfecting 

products with viricidal efficacy. These products included alcohols, quaternary 

ammonium salts, phenolic compounds and others in order to be used on 

surfaces and hand hygiene [155]. Wastewater analysis pointed out the change 

in the population habits during pandemic and showed that citizens followed the 

recommendations given by the authorities. However, to fully support our 

findings more research is needed at local level (i.e. houses), to investigate the 

“real” use of these chemicals using probably questionnaires (i.e. name of used 

chemicals, frequency of use, way of application and application space). 

6.3.6 Industrial chemicals 

Industrial chemicals showed a noticeable decrease from 37,145 g day−1 to 

24,371 g day−1 (Table S20). Benzoic acid and N-methyl-2-pyrrolidone were the 

two compounds with the highest mass loads. Benzoic acid, a compound with 

many uses in industry (e.g. adhesive, sealant chemical, intermediate in 

synthesis, lubricant additive and plasticizer), showed a slight decrease in 2020 

from 14,519 g day−1 to 13,170 g day−1. Additionally, N-methyl-2-pyrrolidone 

showed a 2-fold decrease from 13,537 g day−1 to 6448 g day−1. Due to 

lockdown, strict restrictions and stay-at-home measures, many industries 

reduced their production as reflected in the results of many chemicals that are 

strongly correlated with industries. The industrial activity actually changed 

during the COVID-19 pandemic, since the economic operations reduced, 



 

119 
 

keeping open only the businesses essential to the supply chains. Therefore, 

positive and negative consequences in the environment and on wastes more 

specifically were identified globally, such as higher air quality and increased 

plastic pollution [156]. 

Benzotriazoles and benzothiazoles are produced in high volumes and are used 

in many industrial and consumer products [157]. Generally, the compounds of 

these classes showed increase in 2020, but benzotriazole and 4/5-methyl-

benzotriazole, the compounds with the highest mass loads in 2019, decreased 

during lockdown (from 186 g day−1 to 122 g day−1 and from 188 g day−1 to 175 

g day−1 respectively). 

Bisphenols and alkyl phenols are widespread chemicals and two of the most 

used classes of phenols. They are used in many industrial and consumer 

products and more specifically in production of epoxy resins and polycarbonate 

plastics, as disinfectants and antioxidants and can be formed as breakdown 

products of detergents [158]. 4-tert-Octylphenol (4-t-OP), an endocrine 

disrupter alkyl phenol, is the most widely used industrial chemical as 

demonstrated by the concentration levels in both years (2794 g day−1 in 2019 

and 2100 g day−1 in 2020). Among bisphenols, bisphenol A (BPA) is the most 

widely used for decades and here showed a slight increase during lockdown 

(from 347 g day−1 in 2019 to 382 g day−1 to 2020). BPA has been identified as 

an agent that interferes with natural hormones in the body, which are 

responsible for the homeostasis, reproduction or behavior [159]. 

Per and polyfluoroalkyl substances is a class of artificial, fully fluorinated 

organic compounds that are potentially harmful. They are used as polymers, 

surfactants, friction reducers, and repellents. Per- and polyfluoroalkyl 

substances (PFAS) are also used directly or as technical aids (dispersants and 

emulsifiers) in many industrial applications and in the synthesis of adjuvants in 

pesticides [160]. They were detected at low levels both years and most of them 

(perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), 

perfluorooctanesulfonic acid (PFOS)) showed noteworthy decreases during 

lockdown, while perfluorobutane sulfonic acid (PFBuS) and perfluoroheptanoic 

acid (PFHpA) were detected only in 2020. Many organizations and agencies 



 

120 
 

such as the US EPA, Europe's REACH, the Canadian and Australian 

governments, have taken measures to control or eliminate their use [25]. 

Phthalates and phosphates have widespread use and environmental 

persistence [161]. In addition, they are two of the most important industrial 

chemicals with enormous amounts of production especially in Europe. The only 

compounds that showed increase during lockdown were diethyl phthalate and 

dimethyl phthalate. Di (2-ethylhexyl) phthalate (DEHP), the most studied 

plasticizer worldwide, showed a 2-fold decrease (from 503 g day−1 to 274 g 

day−1 in 2020). It has to be mentioned that the use of DEHP in the European 

Union is restricted, as referred to REACH regulation [162]. 

Suspect analysis was able to detect seventeen compounds without the need of 

the corresponding reference standards (Figure S19), belonging to the general 

category of industrial chemicals. Three compounds were phosphate esters 

(tris(2-butoxyethyl) phosphate, trioctyl phosphate and diethyl phosphate), three 

phthalate esters (isobutyl phthalate, diisobutyl phthalate and dimethyl 

terephthalate), five amines (diethanolamine, triethanolamine, tetradecylamine, 

bis-2-ethylhexylamine, and 2-naphthylamine), and six other industrial 

substances. The estimated loads were lower for 2020, which was in agreement 

with the results from target screening. 

6.3.7 Food additives and dietary supplements 

An increasing pattern was observed on dietary habits based on the 

investigation of the following seven compounds: acesulfame, cyclamic acid, 

saccharine, sucralose, triethylcitrate, indole-3-carbinol, sulforaphane. The 

loads of these compounds cumulatively showed a substantial increase (p-value 

<2.0E-06) in loads from 10,394 g day−1 in 2019 to 22,128 g day−1 in 2020. 

Despite the low number of analytes, the consumption of food may change 

during lockdowns. The COVID-19 pandemic influenced all parts of human life 

including food consumption. Staying indoors and working remotely altered the 

food habits and the food purchased by households [163]. This change may be 

depicted in the chemical substances of influent wastewater. A more detailed 

investigation is needed toward monitoring of food additives and dietary 

supplements by WBE. 
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6.3.8 UV filters 

The results of four UV filters, namely benzophenone 3, benzophenone 4, 

phenylbenzimidazole sulfonic acid and dioxybenzone showed a slight decrease 

(−24%), mainly attributed to benzophenone 3, which is found in sunscreen 

lotions, conditioners and cosmetics. UV filters are designed to protect skin 

against harmful UV radiation. Therefore, they are mainly used in sunscreen 

lotions and cosmetics, but they are also found in other products, such as 

plastics, food packages and rubbers. The WBE approach was rarely applied for 

the evaluation of human exposure to this chemical class and thus the data 

availability is limited [158]. The low reduction of these compounds could be 

attributed to the fact that people staying at home do not need to protect against 

the sun. However, given the low number of detected UV filters, no robust 

conclusions can be drawn. 

6.4 Limitations and future perspectives 

The present work investigated the presence of 2136 target compounds and 

9150 suspected compounds in untreated wastewater sampled in two different 

years (under lockdown and non-lockdown conditions), using advanced 

analytical and computational approaches. An attempt was conducted to 

investigate the effect of COVID-19 pandemic on the use of specific compounds 

and the human exposure and consumption through the WBE approach. 

Approximately 3% of the screened compounds were detected. Some of them 

have been rarely reported in the literature, highlighting the need to constantly 

create and update environmentally-relevant compound databases. Conducting 

such wide-scope investigations is not trivial, requires experience and significant 

time. Furthermore, it is critical to apply strong quality assurance and quality 

control (QA&QC). QA&QC requires the use of many internal standards with 

various physico-chemical properties from the beginning of an analysis (sample 

preparation). It was underlined that reference standards can assist on the semi-

quantification of suspect compounds and therefore it is suggested to use 

chemicals of several classes that present different structures and elute 

throughout the chromatography. Although a large number of chemicals was 

identified, only few of them could be related to human consumption. This was 
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due to the fact that the compound lists consisted mainly of parent compounds 

and not human urinary metabolites, as required by the WBE approach. Hence, 

new lists should be built containing mainly metabolites. Furthermore, estimation 

of human exposure to some of the identified compounds could not be 

performed, since stability data (in-sample and in-sewer), human urinary 

pharmacokinetic studies and data on interferences from additional sources in 

wastewater are not available. Future studies could investigate all the mentioned 

limitations and propose suitable WBE biomarkers. Other WBE issues relate to 

the population estimation and the refinement of existed correction factors. 

Finally, we acknowledge the fact that WBE is inevitably accompanied with back-

calculation estimations, which must be minimized to reduce the noise in the 

datasets. 

6.5 Conclusions 

The present study investigated the change of chemical universe in untreated 

wastewater before and during the COVID-19 pandemic in Athens. An advanced 

methodology was applied combining the advantages of wide-scope screening 

with the wastewater-based epidemiology approach. WBE was used as a tool to 

examine and assess the consumption and use of a wide variety of chemicals. 

Many classes of compounds were associated with COVID-19 pandemic, 

reflecting the effects of lockdown and other measures in population health, 

habits, lifestyle and disposition. The findings of our study indicate that 

significant and rapid changes in drug consumption patterns were observed 

during the early stages of the COVID-19 pandemic. These changes can be 

attributed to the implementation of confinement and restrict social interactions. 

The Athenian population followed the authorities’ advisories and restrictions as 

indicated by the substantial increase of chemical classes such as surfactants 

and disinfectants. However, the consumption of drugs of abuse showed mixed 

trends. COVID-19 pandemic represents a global challenge for the whole 

population at all levels of societies such as safety, accessible health, food 

security, stability of economy and unemployment. 
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7. Chapter 7 

SARS-CoV-2 wastewater surveillance data can predict 

hospitalizations and ICU admissions 

 

Highlights 

 SARS-CoV-2 RNA load was measured in wastewater over 192 

consecutive days. 

 The analytical protocol (including storage conditions) was validated and 

optimized. 

 Three SARS-CoV-2 variants were analyzed in raw waste water. 

 New computational workflow was proposed for modeling of COVID-19 

infection dynamic. 

 This case study has been published in Science of The Total Environment (STOTEN), 

15th January 2022, Volume 804, Article 150151 

(https://doi.org/10.1016/j.scitotenv.2021.150151). 
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7.1 Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has grown 

rapidly worldwide, infecting more than 186 million people and claiming 4 million 

lives as of June 2021 [1]. It can be transmitted via inhalation of airborne droplets 

and its main manifestation is infection of the respiratory system that ranges from 

innocuous to severe [164, 165]. Limited diagnostic testing capacity, 

asymptomatic infections and pandemic fatigue to public health measures have 

hindered the ability to track the spread of SARS-CoV-2 and the Coronavirus 

disease 2019 (COVID-19) pandemic. In response, the surveillance of SARS-

CoV-2 ribonucleic acid (RNA) measurements in wastewater has been used to 

study COVID-19 epidemiology because it is excreted into sewer system via 

feces, saliva, swabs and/or sputum of infected individuals [165, 166]. Such 

excretion into wastewater can be described using the RNA load shedding 

profile from the total amount of virus RNA in wastewater at several time points 

after infection [49, 167-169].  

Wastewater-based epidemiology (WBE) is a non-invasive approach that allows 

chemical identification of substances excreted into sewage collected at a 

wastewater treatment plant servicing specific community. It has been found to 

be a useful method to track COVID-19 and potentially other infectious diseases 

[170]. It has several advantages over individual patient testing. First, WBE is 

able to identify infections in asymptomatic, presymptomatic or mild cases (i.e., 

individuals unlikely to be diagnosed and tested clinically) [166, 171]. Second, 

WBE due to its nature can provide an accurate measure of the community viral 

load overcoming the barriers of non-representativeness and bias in sampling. 

Third, WBE is more efficient in that it reduces the number of tests required to 

evaluate a large population, costs considerably less, does not require patient 

consent, and test results are available earlier. Fourth, it is especially useful in 

locations where clinical testing is restricted, such as in poor countries in which 

the monitoring programs for COVID-19 are not developed or such 

developments are not a priority. Finally, the emergence of new variants within 

the population can be detected.[52] Reflective of these benefits, WBE has been 

utilized to monitor and track SARS-CoV-2 RNA within communities in many 

countries [172-182]. 
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While the number of studies reporting the detection of SARS-CoV-2 RNA in 

wastewater collection systems continues to grow, few reports have attempted 

to develop environmental surveillance tools or epidemiological models that 

relate SARS-CoV-2 RNA concentrations in wastewater with meaningful public 

health endpoints, such as hospital admission rates [166, 171]. As such, there 

is a need to correlate SARS-CoV-2 RNA levels and/or SARS-CoV-2 variants in 

wastewater with reported COVID-19 cases to find leading indicators, e.g., time 

delay. Such information would allow inferences to be made about the progress 

of infection within the community and inform stakeholders regarding the 

implementation of regulations or policy measures [177]. For example, the 

prediction of hospital admission rates from viral load can serve as an early-

warning system for the health care infrastructure. Peccia et al. created 

epidemiological models after measuring the concentration of SARS-CoV-2 

RNA in primary sludge over a 3 month period [166]. They reported a 2 to 8 day 

lag time between RNA load in the sludge and the manifestation of positive 

cases (as well as hospitalizations). However, due to the small sampling size, 

and positivity rates greater than 50% in the early pandemic case data, a direct 

correlation between absolute SARS-CoV-2 RNA concentrations in sludge and 

COVID-19 cases was not examined. Kaplan et al. used a differential equation 

-based epidemiological model and assumed SARS-CoV-2 shedding 

distributions to demonstrate that hospitalizations could be anticipated from the 

SARS-CoV-2 RNA load in primary sludge with a 3 to 5 day time lag [171]. They 

used basic reproductive number (R0) RNA versus hospitalization rate and 

found the lagging indicator in a more epidemiologically meaningful way. The 

developed model provided a maximum error of 15 cases (from a total of 30 

hospitalizations). Huisman et al. reported the lag indicators between SARS-

CoV-2 RNA load in wastewater and pandemic indicators from data collected 

over a 4 month sampling period [183]. This study provided a computational 

framework to optimize fit between RNA load data and pandemic clinical 

indicators, specifically adjusting the testing-cases inconsistencies. These 

investigators reported a time delay between RNA load in wastewater/primary 

sludge and pandemic clinical indicators of 4 to 9 days. Using linear correlation, 

Medema et al.  [101] related cumulative COVID-19 cases to SARS-CoV-2 RNA 

load in wastewater (RNA copies/mL) with a time lag of 6 days.  
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Causes of the variation in the lag times between RNA detection in sewage and 

clinical manifestation of infection include societal responses to the pandemic, 

daily variations in population size, limitations and differences in the sampling in 

wastewater, as well as analytical approaches and inconsistencies with the 

clinical COVID-19 testing or the changes in the time required to report case 

data as the pandemic progresses [101, 166]. This makes the correlation 

between the absolute SARS-CoV-2 RNA load and COVID-19 prevalence data 

less reliable [101]. Normalization of wastewater RNA load to population size 

may partially resolve the variation in the cases due to increases/decreases in 

population of the city [50]; however more work is needed to improve the 

analytical methods, [184] population estimation, and epidemiological modelling 

methods for sewage surveillance of SARS-CoV-2. All of these factors affect 

conclusions about the lag time between RNA load in wastewater and pandemic 

clinical indicators. With the emergence of new SARS-Cov-2 variants that 

demonstrate different transmission and COVID-19 severity, [185, 186] their 

detection and quantification are important during sewage surveillance of SARS-

CoV-2 to explain accurately the infection dynamics. Last but not least, the time 

lag variation between SARS-CoV-2 RNA load data and COVID-19 pandemic 

clinical indicators needs to be investigated over a longer period to validate the 

application of sewage surveillance of SARS-CoV-2 as an early warning system.  

The aims of the present study are to: (1) use an optimized analytical method 

with a strict quality assurance (QA)/quality control (QC) system to determine 

SARS-CoV-2 RNA concentrations in 192 consecutive days of wastewater 

samples; (2) detect the SARS-CoV-2 variants in wastewater and the effects on 

pandemic clinical indicators; (3) create advanced computational workflows 

based on distributed lag modelling and artificial neural networks to estimate the 

new admission rates to hospitals or ICUs from wastewater viral loads.  

7.2 Material and methods 

7.2.1 Wastewater sampling 

Daily composite flow proportional raw wastewater samples were collected from 

the wastewater treatment plant of Athens, Attica, Greece; this includes primary 

sedimentation, activated sludge processed with biological nitrogen and 
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phosphorus removal and secondary sedimentation [31]. The wastewater 

treatment plant of Athens serves a large percentage of the population of 

Greece. All the information and the details about the studied wastewater 

treatment plant are provided in Table S21 of the Supporting Information (SI) 

document. The number of inhabitants was estimated daily based on the 

concentrations of total phosphorus (P), total nitrogen (N), biochemical oxygen 

demand (BOD), chemical oxygen demand (COD) and ammonium-nitrogen 

(NH4-N) (as described elsewhere) [187, 188]. The raw wastewater samples 

were collected daily (from August 31, 2020 through March 21, 2021) in pre-

cleaned high-density polyethylene (HDPE) 2L bottles, and transported at 4°C 

to the laboratory. All samples were processed immediately upon arrival at the 

laboratory. Biosafety guidelines were followed during sampling, transportation 

and the analytical procedure (as described below). Additional details regarding 

sample preparation and analytical methods used for SARS-CoV-2 RNA 

extraction and analysis (using RT-qPCR) are provided in the Supplementary 

Material, Section S7.1. 

7.2.2 Stability study 

There are only a few studies that have investigated the stability of SARS-CoV-

2 concentration in wastewater under various conditions [179, 189, 190]. In the 

present study, the stability of qPCR targets for SARS-CoV-2 and Mengo Virus 

(MgV) in wastewater samples was investigated by measuring the levels of the 

N1 and N2 gene of SARS-CoV-2 and the exogenous control MgV at three 

different storage temperatures, i.e., 4°C, -20°C, and -80°C. One wastewater 

sample positive for SARS-CoV-2 was mixed and divided into five aliquots of 50 

mL, with 10 μL of MgV (Biomerieux, France) being spiked into each aliquot. 

The first aliquot was immediately analyzed. The second aliquot was stored at 

−20°C for one day before being analyzed. The third aliquot was stored at -20°C 

for 7 days and then analyzed. The fourth aliquot was stored for one day at 4°C 

before being analyzed again. The fifth aliquot was stored at -80°C and analyzed 

one day later. All experiments were performed in duplicate for the whole 

analytical procedure (Fig. S22). 
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7.2.3 Validation and quality control measures 

To ensure the quality of the measurements and the overall analytical process, 

the following QA/QC measures were applied to every batch of analyses: 

analysis of a procedural blank sample (PCR Grade water) to evaluate cross-

contamination, analysis of a positive quality control sample to insure run 

reliability, addition and determination of synthetic DNA as internal control 

(Magnetic Bead kit (IDEXX)) to assess inhibition and RNA purification, analysis 

of a PCR positive control and a PCR negative control and construction of a five-

point calibration curve in each run. More details about QA/QC can be found in 

the Supplementary Material Section S7.1.5. and Table S22 and S23. 

7.2.4 Viral Load 

The population served by the wastewater treatment plant was calculated in real 

time based on the concentration levels of five physicochemical parameters (i.e., 

total phosphorus, total nitrogen, BOD, COD and NH4-N) for each sampling day 

from the beginning of the study period. In addition, flow rates from the 

wastewater treatment plant were provided daily (Table S21, SIF). After the 

determination of virus genome copies per liter (copies/ L, Section 3, SIF), the 

concentration was normalized to estimated population and the flow rates. In 

cases in which inhibition was observed (i.e., ΔCq<2 between undiluted sample 

and 1:4 dilution or ΔCq<3.3 between undiluted sample and 1:10), the viral load 

was corrected using the following equation:  

RNA copies per L

= genome copy number ∗  (
RNAtotal

RNAPCR
) ∗ (

concentratetotal

concentrateextracted
)

∗ (
1000 mL

wastewater
) ∗ DF 

where: RNAtotal is the total volume of RNA eluted from magnetic-bead extraction 

(0.1 mL); RNAPCR is the volume of purified RNA tested in PCR (0.005 mL); 

concentrate total is the total volume of wastewater concentrate (0.5 mL); 

concentrateextracted is the volume of wastewater concentrate from which RNA 

was extracted (0.2 mL); wastewater is the volume of original wastewater 
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sample processed with PEG procedure (50 mL); DF= 4 when the viral load was 

corrected based on Cq values for 1:4 dilution or 10 for 1:10 dilution.  

7.2.5 SARS-CoV-2 variant analysis with high-throughput sequencing 

Next-generation sequencing (NGS) was utilized for the investigation of existing 

variants of SARS-CoV-2 in wastewater samples in February 2021 (as described 

in our previous study) [191]. Briefly, library preparation was carried out using 

the Ion Xpress Plus Fragment Library Kit (Ion Torrent, Thermo Fisher Scientific 

Inc.). Adapter ligation, nick-repair and clean-up of the ligated dsDNA were 

carried out according to the manufacturer’s protocol. Quantification of the 

adapter-ligated library was performed using the Ion Library TaqMan 

Quantitation Kit (Ion Torrent) in an ABI 7500 Real-Time PCR system (Applied 

Biosystems). Emulsion PCR was employed for the template preparation 

process on an Ion OneTouch 2 System, while enrichment was carried out on 

the Ion OneTouch ES instrument, using the Ion PGM Hi-Q View OT2 kit (Ion 

Torrent). Finally, NGS based on the semi-conductor sequencing methodology 

was performed in the Ion Torrent PGM system. 

Bioinformatic evaluation of the derived NGS datasets included alignment of the 

sequencing reads to the SARS-CoV-2 reference genome (NC_045512.2) with 

the Burrows-Wheeler Aligner (BWA-MEM) [192]. The successfully aligned 

sequencing reads were visualized using the Integrative Genomics Viewer (IGV) 

[193]. Finally, variant calling of both SNVs and insertions/deletions was 

implemented using the iVar algorithm with the recommended parameters [194]. 

7.2.6 Development of hospital admission rates model 

The data including normalized RNA copies SARS-CoV-2/100K inhabitants, 

number of positive cases in Athens, and the number of new patients admitted 

to hospitals and ICUs were compiled for the period August 31, 2020 through 

March 21, 2021. The coefficient of variation for log-normal distributed data 

(CVln) [195] was plotted against log10(RNA copies/L) for more than 40 data 

points with at least 3 replicates to find a threshold at which the wastewater-

based epidemiology data was statistically meaningful and they could be used 

for modelling purpose.  
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𝐶𝑉𝑙𝑛 = √(1 + 𝐸)(𝑆𝐷(𝐶𝑞))2×ln (1+𝐸) − 1 

where E is efficiency of PCR method, the Cq is the quantification cycle. Each 

variable (RNA load in wastewater and pandemic clinical data) was treated as 

time-series data and was checked to detect turning points using the mean and 

linear slope difference test in the timeSeries R-package. The significance of 

turning points was evaluated by a probability value (P) (0.95) and quantity of 

information (I) according to Kendall's information theory [196]. If I and P gets 

large and small, there is a high possibility that the time-series data contain a 

longer sequence of decreasing or increasing trends around the detected turning 

point. This was used to evaluate a relationship between the variables by having 

similar changes in their turning points [197]. The data was normalized between 

0 and 100 for internal comparability in their turning point detection. The turning 

points were also used to investigate the lag between measurement of RNA 

copies of SARS-CoV-2 in wastewater and positive COVID-19 cases. To 

evaluate strength of Pearson’s (linear) correlation coefficient between variables 

(positive cases and new admissions to hospitals or to ICUs versus RNA copies 

of SARS-CoV-2), several levels of averaging terms (n=3, n=4, n=5 and n=7) 

were applied. This was done to establish linear regression models between 

time-series data. The averaging was not based on a moving average, and 

averaging was performed independently for n consecutive days without being 

including in the next averaging batch. This was to decrease the effect of 

variation between daily activity and life/working style. The forecasting ability of 

the linear model was evaluated externally by the data collected between 

February 15 and 21, 2021. This approach was compared to the distributed lag 

measurement error time-series model (DLM). Although turning points allow the 

detection of several top (lowest p-value) lags, they may not represent the 

relationship between whole data and are useful only for detecting peaks, not 

valleys. The second method (which is used to estimate the lag value and 

averaging term) was based on root mean square error of leave-one-out cross 

validation (RMSECV). The RMSECV was calculated for averaging term and lag 

values between 0 and 10 (which is representative for long-term modelling of 

pandemic data). To check by-chance correlation, RNA load in wastewater data 

were randomly shuffled 10,000 times. The RMSECV, R2 and Q2 values of these 
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shuffled models should be less than the main model to verify that the 

relationship between averaged SARS-CoV-2 RNA load in wastewater data and 

the pandemic clinical data is not random.  

In addition to linear models, a multilayer artificial neural network (ANN) model 

was developed using a backpropagation algorithm, the leave-one-out cross 

validation technique and a test set to predict the pandemic clinical indicators. 

To construct the ANN, SARS-CoV-2 RNA copies in wastewater, fingerprint data 

(if RNA copies in wastewater were above LOQ, SARS-CoV-2 RNA fingerprint 

gives a value of 1; when the inverse scenario occurs, it provides a value of 0) 

and positive cases of SARS-CoV-2 infections were treated as independent 

variables to model new admissions to hospitals. In the ANN model structure, a 

fixed optimized lag value was applied to the input data. ANN models were 

optimized and constructed in the R environment using the neuralnet R package. 

The third method used for evaluating the COVID-19 pandemic data was based 

on the association between the logarithm of the normalized SARS-CoV-2 RNA 

copies /100K inhabitants using a Bayesian Distributed-Lag Nonlinear Model of 

Poisson family with log-link [198]. To explore the association over a long period, 

a maximum lag of +50 days and minimum of -30 days were used, together with 

an imputation model with vague prior variance for the viral load in wastewater 

beyond the limits of the study period. A gamma-shaped lag-response 

association was assumed, [171, 199] i.e., the regression coefficients were 

constrained to be positive and to follow a gamma distribution with unknown 

shape and scale. This approximates the shape of both the incubation period of 

SARS-CoV-2 and the viral shedding in feces,[167] making it a rational choice. 

Analyses were undertaken using the JAGS R package. All codes are available 

in http://trams.chem.uoa.gr/covid-19/. 

7.3 Results and discussions 

7.3.1 Optimization and validation of the analytical method 

The effect of pre-analytical factors on the measurement of SARS-CoV-2 RNA 

load in wastewater samples was performed to allow the development of an 

optimized and validated method that would minimize day-to-day variations in 

the analytical measurements [200-203]. Details about optimization and 

http://trams.chem.uoa.gr/covid-19/
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validation of the analytical methods can be found in the supplementary file 

which includes: (1) the effect of storage conditions on the stability of SARS-

CoV-2 RNA concentrations (Figure S22); (2) comparison of analytical methods 

(Table S24); and (3) method validation (Table S22 and S23). The optimized 

protocol was validated for limit of detection (LOD), method sensitivity, 

repeatability, trueness and precision, and proved to be fit for purpose. A strict 

QA/QC protocol was established and followed every day. In addition to these 

conventional method validation criteria (which can be found in the literature, 

[204, 205], the storage conditions were evaluated. The results clearly revealed 

that the ideal storage temperature for SARS-CoV-2 detection and 

mutational/variant analyses in wastewater samples was 4 °C and the RNA load 

remained stable for up to seven days. Very low temperatures (i.e., −20° and 

−80 °C) were shown to rapidly destroy the genetic material, likely due to 

destabilization of the capsid of the virus and consequent exposure of the RNA 

to RNAses present in the wastewater. 

7.3.2 Monitoring the SARS-CoV-2 load in wastewater treatment plants of 

Attica 

The first COVID-19 case in Greece was recorded on February 26, 2020 and 

the highest number of confirmed cases (during the sampling campaign) in Attica 

(1701 infections) occurred on March 17, 2021 [206]. Since the start of the 

pandemic, Greece has implemented three lockdowns (the last one being on 

February 20, 2021). Using the final validated method, the viral load was 

investigated and detected in all wastewater samples. The time-course of viral 

load and the measured COVID-19 positive cases data by National Public Health 

Organization (NPHO) of Greece are presented in Figure 8. 
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Figure  8: Viral load in wastewater and surveillance data; the SARS-CoV-2 load (RNA copies 

SARS-CoV-2/100K inhabitants) in the wastewater from wastewater treatment plants in Athens 

(blue bars) and NPHO-reported COVID-19 confirmed cases (orange line) are shown for the 

period August 31, 2020 through March 21, 2021. SARS-CoV-2 data are presented as mean ± 

SE from 191 wastewater samples. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

The reported COVID-19 cases can be separated into 3 phases (Figure 8). The 

first was August 31st through November 7th. At the beginning of this phase, the 

viral load was relatively steady, with no large fluctuations. There was an 

increased viral load after the first week of opening schools (September 14). This 

period also included the return from summer vacation, likely resulting in the 

number of inhabitants served by the wastewater treatment plants of Athens 

being lower than normal. There was a steep increase in the wastewater viral 

load after October 20. This phase ended with the announcement of the second 

lockdown on November 7. The second phase, November 8 through January 

25, reflects the effectiveness of restrictions during the lockdown period (which 

included the Christmas holidays). During this phase, the viral load was the 

lowest for the whole study period, with values below the limits of quantitation 

(LOQ) most of the time. However, a gradual increase was observed during the 

last days of January. The third phase, January 26 through March 21, almost 

coincides with the third wave of the pandemic. During this period, the largest 

increase in the number of cases occurred, and was likely related to the 

increasing prevalence of the alpha variant (B.1.1.7) of SARS-CoV-2 [207]. 

Although the third lockdown started on February 20, there was no reduction in 
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viral load or cases immediately after the lockdown announcement. During this 

period, the viral load was the highest for the entire study. It is notable that the 

viral load was usually lower on days of the weekend than weekdays. This 

pattern may have resulted from commuters in and out of the Athens peninsula. 

This trend was observed during all of the study period. 

7.3.3 SARS-CoV-2 variants analysis in the wastewater treatment plant of 

Attica 

The surge in viral load in wastewater and confirmed COVID-19 cases recorded 

in Attica (the central region of Athens) from the beginning of February 2021 

prompted us to analyze the mutational/variant profile of SARS-CoV-2 in 

wastewater samples collected in February 2021. S gene-related deletions 

(del69-70HV, del144Y), and missense mutations (L18F (C21614T), T20N 

(C21621T/A), P26S (C21638T), D80A (A21801C), K417N (G22813T), E484K 

(G23012A), N501Y (A23063T), D614G (A23403G), H655Y (C23523T), P681H 

(C23604A), A701V (C23664T), T716I (C23709T), S982A (T24506G)) were 

targeted for the detection and quantification in the following SARS-CoV-2 

variants of concern (VOC): Β.1.1.7/UK lineage (Variant VOC_202012/01; alpha 

variant), B.1.351/South Africa lineage (Variant 20H/501.V2; beta variant) 

and.1/Japan-Brazil lineage (Variant 20J/501Y.V3; gamma variant). These 

analyses led to the conduct of 5.38 million sequencing reads, with a median 

read length of 339 bp. The findings of these analyses are summarized in Tables 

11 and 12. 
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Table 11: SARS-CoV-2 variant analysis in the wastewater treatment plant of Athens; targeted 

DNA-seq analysis of genetic markers for detection and quantification of SARS-CoV-2 variants 

of concern.   

Position Referenc

e base 

Alternative 

base 

Alternative 

frequency 

(%) 

Total 

depth 

Referenc

e amino 

acid 

Alternative 

amino acid 

del69-70HV TACATG -N(6) 98.63 25280

8 

HV - 

del144Y TTA -N(3) 98.31 22580

4 

Y - 

N501Y 

(A23063T) 

A T 99.88 24419

8 

N Y 

D614G 

(A23403G) 

A G 84.26 26158

3 

D G 

P681H 

(C23604A) 

C A 93.29 34439

0 

P H 

T716I 

(C23709T) 

C T 99.85 33801

6 

T I 

S982A 

(T24506G) 

T G 99.90 25780

1 

S A 

 

Table 12: SARS-CoV-2 variants present in the wastewater treatment plant of Athens; 

frequencies of analyzed SARS-CoV-2 variants of concern. 

Variant of concern % frequency† Genetic markers analyzed 

Β.1.1.7/UK lineage  

(Variant VOC_202012/01) 
96.3 ± 2.2 

N501Ya, D614Ga, P681H, T716I, S982A,  

del69-70HV, del144Y 

B.1.351/South Africa lineage  

(Variant 20H/501.V2) 
ND 

D80A, K417Nb, E484Kb, N501Ya, D614Ga, 

A701V 

P.1/Japan-Brazil lineage 

(Variant 20J/501Y.V3) 
ND 

L18F, T20N, P26S, K417Nb, E484Kb, 

N501Ya, D614Ga, H655Y 

† % proportion of SARS-CoV-2 variants of concern in wastewater samples.  Data are 

presented as the mean ± SE 

a Common genetic marker for Β.1.1.7/UK, B.1.351/South Africa & P.1/Japan-Brazil variants 

b Common genetic marker for B.1.351/South Africa & P.1/Japan-Brazil variants 
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ND: not detected 

Based on the frequency of the genetic markers analyzed, the Β.1.1.7/alpha 

lineage variant of concern was detected in 96.3% ± 2.2 (mean ± SE) of the total 

sequencing reads, while genetic markers specific for the B.1.351/beta (i.e., 

D80A, K417N, E484K and A701V) and P.1/gamma (i.e., L18F, T20N, P26S, 

D138Y, K417N and E484K) lineages were not detected. The Β.1.1.7/UK 

lineage (Variant VOC_202012/01), which emerged in southeast England in 

November 2020, has been associated with ≈50% increased transmissibility and 

mortality rates [208-210]. The prevalence of the Β.1.1.7 variant in of February 

2021 wastewater samples agrees with the significantly increased new COVID-

19 cases and hospitalization cases in Attica for this period onwards. 

7.3.4 Estimation of hospital admission rates: short-term modelling 

An inherent uncertainty associated with environmental surveillance of SARS-

CoV-2 RNA in wastewater is that the measurements might fall below the LOQ 

of the qPCR analytical method leading to the estimation of new hospitalizations 

not being accurate. For instance, Huisman et al. excluded few samples due to 

low quality and included the samples that had a threshold greater than 10% of 

the Beta Coronavirus (BCoV) concentration in their study [202]. In our study, a 

threshold of 2.60e+11 SARS-CoV-2 RNA copies/100K inhabitants was applied 

to the normalized RNA load. This value was calculated from the CVln versus 

log10(RNA copies/L) curve of PCR results. As can be seen in Fig. S2, data with 

a CVln higher than 35% (which equates to SARS-CoV-2 RNA copies/100K 

inhabitants below 2.6e+11) would show great variation and therefore should 

not be used for modelling of COVID-19 indicators. Two modelling workflows 

were used: 1) models that use an averaging term in addition to lag and 2) 

models that do not include averaging terms and are based on probability 

modelling. For a first modelling approach based on linear regression, use of 

several levels of averaging terms (n = 3, n = 4, n = 5 and n = 7) was found to 

be necessary to improve the ability to predict pandemic clinical data. This could 

be due to day-to-day variations in life and working activities of Athens 

inhabitants, as well as weekly public restriction measures. Another factor 

affecting the correlation between WBE and pandemic clinical data was the time 

lag between wastewater RNA concentration and patient cases/hospitalizations. 
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The aim of the present study was to improve the resolution of forecasting to 

several days ahead and determine the offset between RNA load in wastewater 

and pandemic clinical data. 

Temporal differences in the turning points of these data (i.e., between a large 

increase or decrease in the number of SARS-CoV-2 RNA copies/100K 

inhabitants and in the number of positive cases/new admissions to hospitals or 

ICUs) provide information about the delay (or lag time) between the RNA load 

in wastewater and pandemic clinical data. The most significant turning points 

are shown in Figure 9. Most of the detected turning points revealed low p-values 

ranging from 1.26e−05 to 8.45e−43. This implies that at the detected turning 

points and dates, the turning points followed a normal distribution. Five potential 

turning points were detected in the time series data of normalized SARS-CoV-

2 RNA copies/100K inhabitants. These preceded the turning points in the 

number of pandemic clinical cases by an average of 2 to 4 days (Figure 9). 

These results can be used qualitatively in that pandemic clinical cases would 

be expected to increase 3–4 days after a rise in the SARS-CoV-2 RNA 

copies/100K inhabitants in wastewater.  

 

Figure 9: Identifying the time lag between RNA load in wastewater and SARS-CoV-2 pandemic 

clinical cases; turning points and difference between changes in the scaled SARS-Cov-2 RNA 

copies in wastewater/100k inhabitants and number of positive cases are presented. The grey 

dashed line is the CVln (%) threshold (i.e., 2.6e+11 normalized SARS-CoV-2 RNA copies/100K 

inhabitants (scaled value is 14%)). The black dashed lines are the top five detected turning 

points in the scaled SARS-Cov-2 RNA copies in wastewater/100k inhabitants. The blue dashed 

lines are the turning points detected in the trend profile of COVID-19 positive cases. The 

temporal separation between the blue dashed lines and the black dashed lines were used to 

derive lag time (delay) between turning points and peaks. Kendall information theory is 

calculated from −log2 (probability value |t) at given time (P is the probability to observe a turning 

point at time (t)).  
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The data were averaged (maximum for 4 days) after applying 3 or 4 days lags. 

The models of normalized SARS-CoV-2 RNA copies/100K inhabitants and 

pandemic clinical cases (i.e., positive clinical cases), new patients admitted to 

hospital or to ICU after 4 days lag followed by 3–4 days average are shown in 

Figure S24. Using these averaged and lagged linear regression models and the 

data from 3 or 4 days of normalized SARS-CoV-2 RNA copies/100K 

inhabitants, the positive clinical cases, new patients admitted to hospital or to 

ICU can be estimated 3–4 days in advance. The predictive utility of these 

models was evaluated for the period February 19 to 22, 2021 (test set) (Table 

13). This period of data collection was intentionally not included during the 

modelling procedure in the training set. Despite the increase in viral loads, the 

number of reported positive clinical cases was lower than the model predicted. 

This was mainly due to the number of tests being performed decreasing 

because of heavy snow and bad weather conditions which hindered clinical 

testing. However, the numbers of new admissions to hospitals and the ICU 

were predicted (confirmed n = 156, estimated n = 180 (165–195)). This 

supports the contention that reliable wastewater data may be used to predict 

the dynamics of SARS-CoV-2 infections, especially when clinical testing is 

restricted. However, from the R2 value results (R2 = 0.888 (lag = 4 days, 

averaging = 4 days) for new hospitalizations and R2 = 0.877 (lag = 4 days, 

averaging = 4 days) for new ICU admissions), it is apparent that admissions to 

hospitals or to ICUs don't have similar lag and averaging values as those 

derived for COVID-19 positive cases (R2 = 0.947 (lag = 4 days, averaging = 4 

days)). 
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Table 13: Predicting pandemic clinical cases in Athens using the averaged and lagged linear 

regression models; prediction of the number of SARS-CoV-2 positive clinical cases, new 

admissions to hospital or new admissions to ICU cases in Athens using normalized SARS-

CoV-2 RNA copies /100K inhabitants identified in wastewater from February 19 to 22 (2021) 

by 4 days lag and 4 days average data. 

Variable Experimental data           

(Averaged by 4 days) 

Predicted data a 

(Averaged by 4 days and +4 

day lag) 

Positive clinical cases 564 930 (874-987) 

New hospital admissions 156 c 180 (165-194) 

New ICU admissions 13 16 (14-17) 

a Numbers in parentheses represent the lower and upper 95% confidence intervals. 

b  Averaged data between February 15 and 18, 2021 

c  The number of people being tested for SARS-CoV-2 decreased due to adverse weather 

conditions occurring between February 15 and 21, 2021. 

While other important studies have established the correlation between viral 

RNA loads in wastewater and the rise in positive clinical cases and new 

admissions to hospital via distributed lag regression[166, 211] or sewage 

surveillance of SARS-CoV-2, [101] only qualitative conclusions have been 

made thus far. Peccia et al. have found that the rise in copies of RNA in primary 

sludge from wastewater treatment plants were reflected in reported COVID-19 

cases within 6-8 days.[166] The present study serves as a proof of concept that 

the positive clinical cases and new admissions to hospitals and ICUs can be 

predicted using a linear regression analysis during the rise of a pandemic wave 

if the daily RNA copies/L measurement in wastewater has a CVln value below 

35% and is higher than LOQ.  

7.3.5 Estimation of hospital admission rates: long-term modelling 

It is also possible to predict SARS-CoV-2 positive clinical cases, and new 

admissions to hospitals and ICUs 5 to 9 days ahead. The lag duration between 

copies of SARS-CoV-2 RNA in wastewater and pandemic clinical data and 

averaging values were optimized by root mean square error (RMSE) of leave-

one-out cross validation technique (Figure 10). The positive clinical cases can 

be estimated 5 days ahead if the number of RNA copies in wastewater are 
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averaged by 8 days. The new admissions to hospitals and ICUs can be 

estimated 8 and 9 days (respectively) ahead if the number of RNA copies in 

wastewater are averaged by 8 days. As can be seen in Figure 10, if the 

averaging factor is being neglected and only the lag value is considered, the 

RMSECV values become unacceptably high in the modelling of pandemic 

clinical data. Therefore, the present results support the inclusion of an 

averaging term in addition to the lag value during the modelling of SARS-CoV-

2 pandemic clinical data when using normalized SARS-Cov-2 RNA 

copies/100K inhabitants. This is understandable given that with every new 

measure, there were varying lifestyle and working patterns throughout the 

recorded period. Such variations could alter the means by which individuals 

were exposed to SARS-CoV-2 within the week; averaging the data 

compensates for these variations. However, the number of data entries 

recorded over a longer period of time may be needed to enhance the predictive 

accuracy. It is noteworthy that using lag values between 2 and 8 provides lower 

RMSECV than those models without a lag value (Figure 10). This supports the 

results in the previous “short-term modelling” section. However, as seen before, 

the models include several outliers (compare Figure S24 with Figure 10). The 

correlation and shuffling of RNA load in wastewater are presented in Figure 10. 

All of the shuffled models provide RMSECV, R2 and Q2 values less than the 

main models developed for positive cases, and new admissions to hospitals 

and ICUs. 
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Figure 10: Grid search for optimal averaged lagged linear regression model; optimization of 

lag and averaging term using RMSE of leave-one-out cross validation in the estimation of 

positive cases (A), and new admissions to hospitals (B) or ICUs (C).  The lower RMSECV 

results in better prediction performance. Each surface plot (A-C) shows the changes in 

RMSECV value around lag and averaging values. In plots D-F (positive cases, new admissions 

to hospitals, and new admissions to ICUs, respectively), data were subjected to linear 

regression analysis, with the line of best fit being shown as a dotted line. The test date with bad 

weather is shown with red marker. The grey dashed line is the CVln (%) threshold (i.e., 2.6e+11 

normalized SARS-CoV-2 RNA copies/100K inhabitants). In the plots G-I (positive cases, new 

admissions to hospitals and new admissions to ICUs, respectively), the RNA load data were 

shuffled randomly and then subjected to linear regression analysis. R2 and Q2 values were 

calculated for the randomized data and compared with the main model (shown as red and 

green dotted lines, respectively).   

Estimation of RNA load in wastewater can be made independently of clinical 

testing indicators, and, in specific circumstances, such as adverse weather 

conditions and decreases in testing, provide a better representation of the 

status of SARS-CoV-2 infections in a population [212]. On the other hand, 

SARS-CoV-2 RNA loads in wastewater can be significantly influenced by sewer 
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transportation, the analytical method used, environmental conditions (e.g., 

temperature) [184] and insufficient sensitivity (e.g., levels fall below 35% CVln). 

To address these limitations, an artificial neural network model was used in the 

present study that combined the results from clinical testing (COVID-19-positive 

cases) and SARS-CoV-2 RNA load in wastewater to model new admissions to 

hospitals and to ICUs. The resultant analyses revealed the most optimal lags 

(taking into account their RMSECV) to be used to correlate SARS-CoV-2 RNA 

copies/100k inhabitants with positive clinical cases, new admissions to 

hospitals and ICUs to be 5, 8 and 9 days, respectively (Figure 10). As such, the 

ANN models (Figure 11) were also developed that included the averaging terms 

of 3 and 4 days for new admissions to hospitals and ICUs, respectively. These 

were the minimum averaging terms found to have lowest number of outliers and 

RMSEtest values. 
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Figure 11: Artificial Intelligence for modelling of SARS-CoV-2 pandemic data; the grid search 

results for selection of hidden layers in ANN in new admissions to hospitals (A) and new 

admissions to ICUs (B). The best combination of the hidden layer is the region where it showed 

the lowest RMSE value. Plots C and D show the ANN structure for new admissions to hospital 

and ICUs, respectively. The blue lines are bias in each node and the black line is the 

combination of layers and the weights used for each input data. The bar charts in the plots C 

and D show the importance of variables in ANN structure. Plots E and F show the predicted 

versus experimental data for new admissions to hospitals and ICUs, respectively. 

ANN models are also useful for estimating the new admissions to hospitals and 

ICUs from RNA load from 8 to 9 days ahead with lower averaging terms if 

combined with positive cases (3 and 4 days averaging for new admissions to 

hospitals and ICUs, respectively). The results indicate that inclusion of the 3 

day lag for positive cases data and 8 day lag for SARS-CoV-2 RNA load in 

wastewater data results in very accurate prediction of the new admissions to 

hospitals, i.e., training set R2= 0.956 and test set R2= 0.924 (Figure 11E). 
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Acceptable results (training set R2= 0.902 and test set R2= 0.865) were also 

obtained in modelling new admissions to ICUs using a 4 day lag for positive 

cases data and 9 day lag for RNA load in wastewater data (Figure 11F). 

However, the importance of variables in ANN structure (bar chart in Figure 11C 

and 4D) indicates that the use of positive cases in modelling new admissions 

to hospitals is more significant than modelling new admissions to ICUs (equal 

variable importance for positive case and RNA load in wastewater data). This 

result may have been anticipated, given that not all of the positive cases would 

be expected to end up in the ICU. Our results relating to new admissions to 

hospitals are consistent with Peccia et al. [166] who reported that sewage 

sludge results are not a leading indicator of progress of SARS-CoV-2 infection 

compared to positive test results. Finally, we have not reported the use of new 

hospital admission data in addition to positive cases and RNA load in 

wastewater data because the lag between new admissions to hospitals and 

new admissions to ICUs is 1 day. Such a model would have limited applications 

in planning actions to be taken to deal with the pandemic. Another issue 

associated with the use of positive cases in the ANN model is that any factors 

that disrupt the clinical testing process (such as inclement weather or 

pandemic-related restrictions on movement by the general public) can 

adversely impact the reliability of the model. This would reduce its forecasting 

ability and lead to inaccurate estimation of new admissions to hospitals or to 

ICUs. On the other hand, the advantage of these ANN models is that it can 

reduce the error of prediction of new admissions to hospitals or to ICUs for any 

SARS-CoV-2 RNA load in wastewater measurement that is below LOQ or CVln 

35% by using data from positive clinical cases. The developed ANN and linear 

regression models were applied on the pandemic data recorded between 

February 15 and 22, 2021. Table S25 lists the estimated and actual observed 

data for each pandemic indicator (i.e., positive cases, new admissions to 

hospitals or ICUs). The new admissions to hospitals during this week were 102 

(February 15 - 17, 2021) and 150 (February 18 - 20, 2021) which are very close 

to the estimated values of 86 (95% CI: 82-90) and 153 (95% CI: 148-159), 

respectively. Over these same periods, the number of new admission to ICUs, 

12 and 13, are also close to the estimated values of 9 (95% CI: 8-10) and 14 

(95% CI: 13-15) (Table S25). 
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7.3.6 Estimation of hospital admission rates; Bayesian distributed-lag 

nonlinear modeling 

The aforementioned models were based on fixed lags and they included an 

averaging term. Although exclusion of the averaging terms results in somewhat 

less accurate prediction, it remains valid to track the changes in pandemic data 

in accordance with changes in RNA load in wastewater (Figure S25). The 

distributed finite lag models provided mean errors of 141.08, 23.61 and 3.024 

cases for positive cases, new admissions to hospitals, and new admissions to 

ICUs, respectively. In an attempt to decrease the error, the data was subjected 

to Bayesian Distributed-Lag Nonlinear Model (DLNM) analyses. The 

cumulative regression coefficients were 0.74 (95% CI: 0.63–0.89) for positive 

cases, 0.95 (95% CI: 0.80–1.29) for new admissions to hospitals, and 0.72 

(95% CI: 0.59–0.91) for new admissions to ICUs. This indicates that a 10% 

increase in viral load results in 7.3% (95% CI: 6.2–8.9%), 9.5% (95% CI: 7.9–

13.1%) and 7.1% (95% CI: 5.8–9.0%) increases in cases, new admissions to 

hospitals and to ICUs (respectively) spread out over a long time period. Despite 

the diffuse lag-response association, the model had a good fit to the data, as 

illustrated in Figure S26. The DLNM analyses revealed viral load 

measurements to be associated with pandemic clinical indicators and, 

therefore, could be used to predict the burden on healthcare services. However, 

without adopting an averaging term, the substantial day-to-day variation in viral 

load in wastewater limits the practicality of predictions using DLNM, and the 

alternative aforementioned modeling approach would be anticipated to be a 

more reliable means of estimating COVID-19 pandemic indicators. 

7.4 Conclusions 

In the present study, we developed and showed that an optimized wastewater-

based epidemiology measurements for SARS-CoV-2 RNA load in raw 

wastewater that accounted for the uncertainty derived from various sources 

(population estimation, viral load, feces quantity per person, quantity of SARS-

CoV-2 shed for symptomatic and asymptomatic cases and measurement of 

various SARS-CoV-2 variants present in wastewater samples) can be used as 

a means to estimate the progression of the CovidID-19 pandemic within a 
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community. We showed that daily measurements of wastewater samples 

correlate well with the clinical data. This enables real-time monitoring of COVID-

19 pandemic indicators, improves prevalence prediction, and thereby facilitates 

the decisions by stakeholders, such as health departments and health care 

systems. A long period of monitoring SARS-CoV-2 load (and analyzed its 

variants) in raw wastewater samples was performed. This was needed to reveal 

important epidemiological information about the trends of infection and causes 

of rapid changes in both environmental and clinical data. Based on the 

frequency of the genetic markers analyzed, the Β.1.1.7/alpha lineage VOC was 

detected in 96.3% ± 2.2 (mean ± SE) of the total sequencing reads. The 

prevalence of the Β.1.1.7 variant in wastewater samples collected in February 

2021 supports the rapid variation and increases in the new COVID-19 cases 

and hospitalization cases seen in Attica, at the time. The use of LOQ as a 

threshold was found to result in some outliers (measurements with insufficient 

sensitivity), whereas the use of the coefficient of variation for log-normally 

distributed data 35% (CVln) during environmental surveillance of SARS-CoV-2 

seems to be a better way to measure threshold. Novel modeling approaches 

under epidemiological constraints were developed to estimate new admissions 

rates to hospitals and intensive care units from population-based, normalized 

SARS-CoV-2 RNA loads in wastewater samples. Two modeling workflows 

were developed: 1) models that use an averaging term in addition to lag time 

to remove variations; 2) models that do not include averaging terms and are 

based on probability modeling. Using an averaging term between 3 and 8 days, 

the new admissions to hospital and to ICUs can be accurately estimated from 

2 to 8 days ahead with 95% confidence. Day-to-day variations in SARS-CoV-2 

RNA load and clinical data (e.g., changes in testing frequency throughout the 

week) introduces variability into the modeling results. Although their estimation 

accuracy for pandemic indicators may not be comparable to the averaged-lag 

regression analysis presented here, the mean error derived from lag regression 

analysis remains low. For example, in the present study, mean errors (%) of 

7.72%, 8.29% and 10.8% (mean error divided by maximum number of cases 

observed for each pandemic indicator) were observed for new admissions to 

hospital, confirmed positive cases and new admissions to ICUs, respectively. 

The grid search approach to find optimum lag times between SARS-CoV-2 
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RNA load in wastewater sample and pandemic clinical indicators provided even 

better results than the turning point-based method. The two ANN-based models 

revealed that both clinical and environmental surveillance data are 

complementary and can be used together with other epidemiological indices to 

better understand the status of COVID-19 in the general population. Especially 

in the case of new admissions to ICUs, environmental surveillance data 

appeared to be as important an indicator as community-based clinical 

surveillance. The findings of the present study provide valuable new 

approaches for predicting SARS-CoV-2 outbreaks and estimating the risk of 

SARS-CoV-2 transmission from symptomatic and presymptomatic cases. We 

anticipate the conditional uses of SARS-CoV-2 RNA load in wastewater (e.g., 

lag, averaging terms, and filtering out less meaningful analytical measurements 

by 35% CVln value) may advance the development of new approaches under 

epidemiological rational constraints. 
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8. Chapter 8 

Delta SARS-CoV-2 variant is entirely substituted by the 

omicron variant during the fifth COVID-19 wave in Attica 

region 

 

Highlights 

 SARS-CoV-2 spike protein mutations of the delta and omicron variants 

were detected  

 Omicron variant completely prevailed within one month from its 

appearance  

 NGS and RT-qPCR showed good concordance in calling mutation 

presence  

 Wastewater genomic surveillance has a lead time over clinical 

surveillance  

 SARS-CoV-2 RNA load was measured in wastewater over 10 

consecutive months 

 

This case study has been published in Science of The Total Environment 

(STOTEN), 15th January 2023, Volume 856, Article 159062 

(https://doi.org/10.1016/j.scitotenv.2022.159062). 
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8.1 Introduction 

Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) is an 

enveloped respiratory virus with one of the largest RNA genomes (~ 30,000 nt) 

[213-215]. After SARS-CoV-2 prevalence since December 2019, many genome 

variants were observed, which are characterized by spike protein substitutions 

and deletions. Emerging variants of concern (VOCs) and variants of interest 

(VOIs) can increase transmissibility, disease severity and immune escape and 

may interfere with diagnostic assay performance [213, 216-219]. 

Genomic surveillance of SARS-CoV-2 basically relied on the sequencing of 

clinical Corona Virus Disease 2019 (COVID-19) samples. However, clinical 

genomic surveillance is expensive, inefficient, lacks community representation 

and has sampling bias due to testing of only symptomatic individuals and to 

systemic healthcare disparities, particularly in poor and underserved 

communities [166, 219-222]. Variants of SARS-CoV-2 can also be tracked in 

community wastewater (wastewater genomic surveillance) which offers cost-

effective, unbiased and real-time capture of virus spread and dynamic [213, 

219, 221, 223]. In addition, wastewater genomic surveillance tracks existing 

and new emerging variants, for which targeted assays do not exist as yet. 

These data are valuable for transmission network analysis and interpretation, 

as well as an emerging technology for tracing viral evolution [219, 224]. 

However, wastewater genomic surveillance remains a challenge, since low viral 

loads, matrix effect, heavily fragmented RNA, poor enrichment or amplification 

of SARS-CoV-2 genome and PCR inhibitors could lead to poor sequencing 

quality [219, 222]. 

According to World Health Organization (WHO) and Centers for Disease 

Control and Prevention (CDC), Alpha (B.1.1.7 and Q lineages), Beta (B.1.351 

and descendent lineages), Gamma (P.1 and descendent lineages) and Epsilon 

(B.1.427, B.1.429) were designated as VOCs, while Delta (B.1.617.2 and AY 

lineages) and Omicron (B.1.1.529 and BA lineages) are the most current VOCs 

identified in both clinical and wastewater samples. To date, several publications 

have explored SARS-CoV-2 variants in wastewater. Heijen et al. detected a 

single nucleotide polymorphism (SNP) (mutation N501Y) present in Beta and 

Alpha [225] while Lee et al. applied RT-qPCR assays that detect mutations 
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present in Alpha to wastewater samples [226]. Jahn et al. used wastewater 

genome sequencing to detect Alpha, Beta and Gamma variants [218].Yaniv et 

al. developed RT-qPCR assays for Alpha, Beta, Gamma and Delta [227, 228]. 

In addition, in our previous studies [229, 230], we showed that wastewater-

based epidemiology (WBE) can predict hospitalizations and ICP admissions, 

whereas using our novel Nested-Seq assay for SARS-CoV-2 mutation/variant 

analysis we provided real-time monitoring of SARS-CoV-2 variants and 

identified those strains with selective advantage to become dominant in 

community/population level. 

From the aforementioned VOCs, Omicron variant (B.1.1.529) is more 

transmissible and is spreading faster than any previous variant, although 

causing less severe symptoms. It was detected for the first time on the 25th of 

November 2021 in Botswana and South Africa and is spreading quickly across 

South Africa and all over the world [213, 231]. The B.1.1.59 genome includes 

over 50 mutations, with more than 30 in the spike protein [213]. In addition, 

Omicron is associated with a significant increase in the risk of reinfection 

(2.39x), may escape the immune system’s defenses and two doses of 

vaccination seem to be less effective against the Omicron infection [213, 231, 

232]. 

As a consequence, viral variant monitoring in wastewater will benefit from the 

implementation of viral Whole Genome Sequencing (WGS) but it has to 

overcome many challenges [233]. The main question is: NGS or PCR-based 

targeting of key mutations? As mentioned in the literature, during Alpha variant 

prevalence a S-gene “dropout” during RT-qPCR testing with certain kits 

indicated the presence of this mutation and the potential presence of the B.1.1.7 

lineage [215]. In addition, there is often a lag in the availability of primers and 

probes and in many cases, PCR cannot distinguish between variants leading 

to loss of data about the range of mutations [221, 227, 234]. On the other hand, 

RT-qPCR is a highly sensitive, highly specific, cost-effective, and high-

throughput rapid tool which provides fast obtention and easy interpretation of 

the specific variants. In contrast, NGS provides massive genomic data, 

however is expensive, time consuming and requires experienced staff for 

sample and seq-data analysis [235]. For comprehensive community 
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surveillance, both NGS and RT-qPCR are necessary but in cases where there 

is a lack of time and money, RT-qPCR seems to provide reliable and sufficient 

information. 

Due to Omicron’s high transmissibility, numerous research groups worldwide 

have already detected this VOC in wastewater. Either by using NGS technology 

[236-238] or by designed RT-qPCR based assays for the rapid screening of the 

Omicron variant followed by Sanger Sequencing [239-242]. 

Nonetheless, by December 2nd, Greece reported its first Omicron case, as 

revealed from clinical testing, while Delta was dominant during summer 

according to National Public Health Organization (NPHO) [243]. The aims of 

the current study were 1) to evaluate the presence of SARS-CoV-2 VOCs in 

wastewater samples simultaneously by two different methods: a) our previously 

reported targeted Nested-Seq method and b) a commercially available RT-

qPCR assay, 2) to compare the used methods based on actual data obtained 

during the study and provide the advantages and drawbacks of each method, 

3) to report the total domination of Omicron variant in Attica peninsula by 

evaluating for the first time 4 different aspects: SARS-CoV-2 wildtype analysis, 

NPHO COVID-19 cases from clinical testing, novel Nested-Seq assay and RT-

PCR variants assay, and 4) to correlate the results with SARS-CoV-2 infection 

dynamic in Attica for an extended period (from June 2021 to March 2022). A 

fully validated 3-step analytical protocol which includes concentration, 

extraction and clean-up step and RT-qPCR for the detection and quantification 

of N1 and N2 target genes was also used [244]. This study provides a 

comprehensive community monitoring in the Attica region and highlights the 

importance and effectiveness of both RT-qPCR assays and NGS. 

8.2 Material and methods 

8.2.1 Sampling and storage 

24-hour composite flow proportional raw wastewater samples were collected 

from the wastewater treatment plant of Attica, the region of Greece that includes 

Athens metropolitan area and suburbs. The wastewater treatment plant 

(WWTP) that services Attica is located on Psyttalia, an uninhabited island in the 

Saronic Gulf. Background and features of this WWTP that serves a large 
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percentage of the population of Greece have been described previously [245]. 

The number of inhabitants was estimated daily as described elsewhere [246]. 

While the WWTP facility serves 4,562,500 people, the daily estimation of the 

active population was taken into account for all calculations necessary in this 

study and this estimation is described in detail in the Supplementary Information 

(Table S26 and Table S27). The raw wastewater samples were collected daily 

(from June 1st, 2021 through March 2nd, 2022) in pre-cleaned high-density 

polyethylene (HDPE) 2 L bottles, and transported at 4 °C to the laboratory. All 

samples were processed immediately upon arrival at the laboratory. Biosafety 

guidelines were followed during sampling, transportation and the analytical 

procedure. 

8.2.2 Isolation of total nucleic acid from wastewater 

The SARS-CoV-2 RNA was extracted from wastewater samples as previously 

described [244]. As a negative sample control, 40mL of nuclease-free water 

were processed with each run to ensure lack of sample-to-sample carryover 

contamination. A quality control sample for the evaluation of the viral RNA 

recovery was also used in each run. Specifically, 106 gene copies from the 

EURM-19 synthetic single stranded RNA (European Commission, Joint 

Research Centre, Geel, Belgium) was spiked in the 1mL eluate from the 

PureYield™ Midi Binding Column. Endogenous viral gene copies were 

subtracted from the recovered EURM copies in order to calculate the % 

recovery. 

8.2.3 PCR reactions for the detection of N1 & N2 SARS-CoV-2 amplicons 

Reverse transcription quantitative PCR (RT-qPCR) was performed in the 

extracted TNA by using the Water SARS-CoV-2 RT-PCR ready-to-use kit 

(IDEXX Laboratories, Inc., Westbrook, ME, USA), designed to target both the 

2019-nCoV_N1 and 2019-nCoV_N2 target genes of the virus. Each sample 

was quantified by RT-qPCR in duplicate wells in a Touch CFX96TM Real-Time 

PCR (Bio-Rad, United States). Both positive-control and negative-control 

reactions were performed for quality control in each run. Five RT-qPCR 

standards were prepared through a ten-fold serial dilution of the EURM-19 

synthetic single stranded RNA standard from 5 × 105 to 50 genome copies/well. 



 

153 
 

One standard curve was prepared and analyzed in each run in triplicate. Gene 

copy number per PCR reaction was calculated from the standard curve 

according to the equation Copiesreaction=10(Cq-a)/b, where Cq corresponds to the 

threshold cycle of the sample, and a and b correspond to the Y-intercept and 

slope of the logarithmic standard curve, respectively. In order to address the 

issue of PCR reaction inhibitions [247], 4-fold and 10-fold dilutions of each TNA 

sample were prepared and analyzed along with the undiluted ones. Further 

description of the assessment of PCR inhibition and the backward calculation 

of the SARS-CoV-2 genome copies per liter of wastewater and per 100,000 

inhabitants can be found in the Supplementary Material, Sectioms S8.2 and 

S8.3. 

8.2.4 PCR reactions for the detection of SARS-CoV-2 mutations 

The RT-PCR for the detection of amplicons corresponding to variant SARS-

CoV-2 strains was performed in the extracted TNA by using the Wastewater 

SARS-CoV-2 RT-PCR Variant Panel (Promega Corp.). Specifically, daily 

wastewater samples were assayed for the presence of 4 different amplicons 

each one being able to track specific mutations associated with one or more 

variant strains of the SARS-CoV-2 virus. All mutations monitored were located 

in the spike (S) protein of the virus and corresponded to the strains mentioned 

in parentheses: N501Y (variants alpha [B.1.1.7], beta [B.1.351], gamma [P.1] 

and omicron [B.1.1.529]), Del H69-/V70- (variants alpha and omicron), Κ417Ν 

(variants beta and omicron) and P681R (variants delta [B.1.617.2] and kappa 

[B.1.617.1]). All PCR reactions were performed in a Touch CFX96™ Real-Time 

PCR Detection System (Bio-Rad, United States) using automatic settings for 

threshold and baseline. All variant amplicons were monitored in the FAM 

channel. In a separate channel (HEX), the multiplexed assays provided Cq 

values for the wild type (original Wuhan strain) equivalents of the mutant 

amplicons. Due to the absence of a reference material spanning the S gene-

both for the wild type and the heavily mutated-an arbitrary but reasonable value 

of 36 cycles was set as a cut-off for each amplicon positivity. 
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8.2.5 SARS-CoV-2 mutational analysis using novel nested-Seq assay 

Identification and quantification of SARS-CoV-2 variants in wastewater 

samples from December 2021 and January 2022 was carried out by barcoded 

DNA-seq targeting S gene in Ion PGM™ platform (Ion Torrent, Thermo Fisher 

Scientific Inc), as previously described [229, 230]. Barcoded libraries were 

constructed with the Ion Xpress Plus Fragment Library Kit (Ion Torrent). 

Adapter ligation, nick-repair and clean-up of the ligated library were performed 

based on the protocol of the manufacturer, and each barcoded library was 

quantified with the Ion Library TaqMan Quantitation Kit (Ion Torrent) in an ABI 

7500 Real-Time PCR system (Applied Biosystems). Equimolar amounts of 

each library were used for the downstream template preparation step on an Ion 

OneTouch 2 System, whereas the enrichment process was carried out on the 

Ion OneTouch ES instrument, using the Ion PGM Hi-Q View OT2 kit (Ion 

Torrent). Finally, semiconductor NGS was carried out in Ion 316TM Chip v2 

using the Ion PGM™ Hi-Q™ View Sequencing kit. 

Barcoded libraries were constructed from samples obtained during December 

2021-January 2022, and more precisely during 1-15/12/2021 (sample 1), 16-

23/12/2021 (sample 2), 27-30/12/2021 (sample 3), 01-10/01/2022 (sample 4), 

16-20/01/2022 (sample 5) and 26-30/01/2022 (sample 6). S gene-related 

missense mutations G339D (G22578A), S371L (TC22673CT), S373P 

(T22679C), S375F (C22686T), K417N (G22813T), N440K (T22882G), G446S 

(G22898A), as well as T19R (C21618G), L452R (T22917G), D950N 

(G24410A) were targeted for the detection and quantification of Omicron 

(B.1.1529) and Delta (B.1.617.2) variants, respectively. These analyses led to 

the conduct of >1.5 million sequencing reads per barcode. 

The in silico analysis for the mutational and variant profiling of SARS-CoV-2 

included an initial alignment to the SARS-CoV-2 reference genome 

(NC_045512.2) with the Burrows-Wheeler Aligner (BWA-MEM) [192]. 

Alignment was followed by alignment clean-up to prepare data for variant 

calling of SNVs and insertions/deletions, which was performed with the iVar 

algorithm with the recommended parameters [248]. 
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8.3 Results 

8.3.1 SARS-CoV-2 variants analysis by novel nested-Seq 

The first confirmed omicron (B.1.1529) case in Greece, was confirmed in Crete 

in early December 2021.In addition, Omicron variant was firstly detected in 

WWTP of Attica in the sampling period 16–26/12/2021 and based on the 

frequency of the genetic markers analyzed, in 29.4 % ± 1.3 (mean ± SE) of the 

total sequencing reads, compared to approximately 70.0 % ± 1.7 of the Delta 

variant. Interestingly, the frequencies of omicron genetic markers were 

immediately increased in the following sampling period, and more precisely to 

76.1 % ± 0.9 and 72.5 % ± 1.7 in 27–30/12/2021 and 01–10/01/2022 samples, 

in combination with a corresponding reduction of Delta variant to 22.0 % ± 3.5 

and 27.3 % ± 7.6, respectively. As expected, the analysis of the following 

libraries, 16–20/01/2022 and 26–30/01/2022, confirmed the prevalence of 

omicron variant (B.1.1529) in Attica, Greece in percentage 98.5 % ± 0.3 and 

98.7 % ± 0.3, respectively. Despite the delta variant (B.1.617.2), specific 

genetic markers for the other VOC Gamma (P1) and Beta (B.1.351) were not 

detected at the same sampling period. The findings of these analyses are 

summarized in Table 14, Table 15 and illustrated in Figure 12. 
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Table 14: Novel Nested-Seq for the detection and quantification of omicron (B.1.1.529) variant. 

Position 1-15/12/21 16-23/12/21 27-30/12/21 1-10/1/22 16-20/1/22 26-30/1/22 

G339D 

(G22578A) 

ND 24,95% 73,98% 80,95% 99,12% 99,22% 

S371L 

(TC22673CT) 

ND 28,02% 76,22% 74,89% 98,85% 99,31% 

S373P 

(T22679C) 

ND 28,57% 76,13% 74,39% 97,59% 98,13% 

S375F 

(C22686T) 

ND ND 72,26% 69,58% 97,82% 96,96% 

K417N 

(G22813T) 

ND 33,45% 78,95% 70,65% 99,42% 99,53% 

N440K 

(T22882G) 

ND 32,74% 77,79% 69,81% 98,58% 98,75% 

G446S 

(G22898A) 

ND 28,88% 77,09% 67,20% 98,24% 98,70% 

Mean ± SE ND 29.4% ± 1.3 76.1% ± 0.9 72.5% ± 

1.7 

98.5% ± 

0.3 

98.7% ± 

0.3 
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Table 15: Novel Nested-Seq for the detection and quantification of delta (B.1.617.2) variant. 

Position 1-15/12/21 16-23/12/21 27-30/12/21 1-10/1/22 16-20/1/22 26-30/1/22 

T19R 

(C21618G) 

99,87% 69,31% 15,99% 21,99% ND ND 

L452R 

(T22917G) 

99,90% 67,52% 21,76% 42,42% ND ND 

D950N 

(G24410A) 

99,70% 73,21% 28,19% 17,59% ND ND 

Mean ± SE 99.8% ± 

0.06 

70.0% ± 1.7 22.0% ± 3.5 27.3% ± 

7.6 

ND ND 

 

 

Figure 12: Means of frequencies of mutations representative for delta and omicron variants for 

six time periods as determined by Novel Nested-Seq. 
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8.3.2 SARS-CoV-2 variants detection by RT-PCR 

As shown in Figure 13, while the P681R mutation corresponding to the delta 

variant had been consistently detected in all samples (except the one from 27th 

of December) analyzed from December 15th, 2021 till January 9th 2022, two of 

the three “omicron” mutations (N501Y & K417N) were not detectable in Attica 

wastewater until December 23rd and 22nd 2021, respectively. During 

December 28th to January 9th, 2022, N501Y, K417N and P681R mutations 

were detected in wastewater indicating the parallel presence of the delta and 

omicron variants in Attica region during the omicron surge of the last weeks of 

2021 and the first ones of 2022. 

 

Figure 13: RT-PCR qualitative results for the four surrogate mutations of the SARS-CoV-2 

variants omicron and delta that were circulating in the Attica region in late 2021/early 2022. 

These RT-qPCR results are in general agreement with the Novel Nested-Seq 

results reported above. Omicron variants started appearing in the 16–23/12/21 

pooled samples by sequencing and were first detected on 23/12/21 by RT-

qPCR. The latter was able to detect both delta and omicron variants till 9/1/22 

in complete agreement with DNA-Seq results (lastly observed delta specific 

markers in the 1–10/1/22 pool of samples). One of the important inherent 

advantages of wastewater surveillance over conventional clinical testing of a 

population is that it can provide information representative of the whole 

population with a significant lead time before the population actually gets sick 
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and/or tested [219]. This is the case for SARS-CoV-2 as well, since viral 

shedding to human feces takes place early in the course of infection. 

As can be seen in Figure 14, delta variant was present in wastewater until 

12/01/2022 (P681R), while kappa variant was detected neither in wastewater 

nor by clinical testing. After 12/01/2022, P681R mutation strain was not 

detected and this phase represented the delta to omicron transition period. On 

the other hand, omicron variant was firstly detected on 22/12/2021 (K417N) and 

since 28/12/2021, omicron variant was consistently detected in all samples. 

 

Figure 14: Cq values for SARS-CoV-2 mutation strains from 15/12/2021 to 2/03/2022. 40 Cq 

value represents no detection of mutation strains. 

8.3.2.1 Comparison of both methods: novel nested-Seq and RT-PCR 

In this study, results from both Novel Nested-Seq and RT-PCR methods for 

SARS-CoV-2 mutations are provided as each method is complementary to the 

other giving a different aspect of the presence of mutations. Each method has 

its own advantages and disadvantages that need to be clearly addressed and 

can be used for different reasons based on the laboratory's aim. NGS methods 

provide more precise, quantitative and detailed results about specific genetic 

markers and SARS-CoV-2 VOCs. However, RT-PCR assays, demonstrate the 

trend of VOCs and provide qualitative results about the presence of SARS-
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CoV-2 mutations in wastewater samples rapidly and cost-effectively. In Table 

16, the strengths and weaknesses of both methods are provided. 

Table 16: Comparison of Novel Nested-Seq and RT-PCR methods for the analysis of SARS-

CoV-2 mutations. 

 

Novel Nested-Seq Wastewater SARS-CoV-2 
RT-PCR variant panel 

(Promega Corp.) 

Sensitivity High Low 

Specificity High Low 

Variants/Mutations Quantitative 
results 

Qualitative 
results 

Cost High Low 

Labor 1 week 1 day 

Data Analysis Bioinformatics 
/Data interpretation 

Not required 

Prior Knowledge of 
targets 

No Required 

Number of Targets Unlimited Defined based on  
the assay 

 

8.3.3 SARS-CoV-2 infection dynamic in Attica 

The results from both PCR assay and NGS were confirmed by clinical testing 

and NPHO reported cases. As mentioned elsewhere [230], Greece has 

implemented three lockdowns during 2020-2021 and the last one ended on 15th 

of May 2021. Since then, only local lockdowns and restrictions were 

announced, especially in Greek islands during summer months. SARS-CoV-2 

infection dynamics in Attica was monitored from 1st of June 2021 until 2nd of 

March 2022, employing wastewater analysis. The viral load and the measured 

COVID-19 cases in Attica by NPHO are presented in Figure 15. 
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Figure 15: SARS-CoV-2 copies/100 K inhabitants in the wastewater from wastewater 

treatment plant in Athens (blue bars) and NPHO-reported COVID-19 cases (orange line) are 

shown for the period June 1, 2021 to March 2, 2022. 

The reported COVID-19 cases can be clearly separated into 2 phases (Phase 

1 and Phase 2) based on which VOC was dominant during the examined period 

(Figure 13). The first phase started on 1st of June and ended on 15th of 

December 2021. At the beginning of this phase, viral load was the lowest of the 

whole study period. Since then, COVID-19 infections gradually increased due 

to the high tourist season (July to August) and the widespread of the highly 

contagious Delta variant. After schools opening on 13th of September 2021, the 

viral load was relatively steady with no high fluctuations. An insignificant 

increase was reported in November 2021. By November 29th, Greece reported 

its first omicron case as revealed from clinical testing, which was located in 

Crete. On 4th of December clinical genome sequencing revealed only two 

confirmed omicron variant infections in Attica which gradually led to Phase 2, 

when omicron Variant was spread rapidly with the greatest increase in the viral 

load and the number of cases in Attica from the beginning of the pandemic. 

The second phase started on 16th of December and ended on 2nd of March in 

agreement with NGS and PCR results. The omicron variant was likely present 

or more widely distributed in the community than originally indicated by clinical 

testing alone. More specifically, on 24th of December omicron variant was 
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detected for the first time in wastewater as resulting from PCR assay, which 

means that the shedding of the virus was already incredibly high. As a 

consequence, the Greek government enforced restrictions and measures on 

30th of December due to the wide and steep spread of the omicron variant. 

Entertainment venues had to close at midnight and would be open only for 

vaccinated customers who must be seated. The measures, after a third 

extension, did remain in effect until January 31st. In addition, NPHO reported 

the highest number of confirmed COVID-19 cases on 4th of January, after New 

Year's Eve and Christmas Holidays, as the omicron variant seems to be more 

transmissible than previous VOCs. During December and January the viral load 

reached extremely high levels in both clinical and wastewater samples. After 

17th of January viral load demonstrated a relative reduction but the observed 

viral levels remain a matter of concern. 

8.4 Conclusions 

In this study, two complementary methods that can untangle different aspects 

of the viral evolution (Novel Nested-Seqand RT-qPCR) were utilized in order to 

monitor the transition from delta to omicron SARS-Cov-2 virus prevalence in 

raw wastewater during a viral surge in Attica region, Greece in late 2021/early 

2022. In addition, total viral levels were monitored using our N gene RT-qPCR 

validated assay. Specifically, seven omicron (G339D, S371L, S373P, S375F, 

K417N, N440K and G446S) and three delta (T19R, L452R and D950N) specific 

mutations were tracked with Novel Nested-Seq, and three omicron (N501Y, 

delHV69/70 and K417N) and one delta (P681R) mutations with RT-qPCR. The 

frequency of omicron variant in combination with delta variant was in agreement 

for each day or set of dates. The total percentage was almost 100% with Novel 

Nested-Seq and the detection was also confirmed by RT-qPCR. The 

application of both methods in wastewater for the detection of SARS-CoV-2 

showed that could offer either fast monitoring of known variants or the detection 

of variants missed by clinical testing. 

Furthermore, the agreement of the two methods for the presence/absence of 

each variant was deemed to be very good. The viral surge during this period 

that was observed by the daily monitor of the total viral levels was attributed to 
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the omicron variant that is characterized by increased transmissibility and 

immune evasion when compared to the delta variant mainly due to the number 

of mutations present in the RBD domain of the spike protein of the virus. 

Overall, wastewater-based epidemiology can serve as an early alert tool that 

may guide decisions and policies regarding public protection measures timely 

before disease outbreaks take place at international, national or local level. 
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9. Chapter 9 

Conclusions 

 

It is realized, that the 6 chapters of the proposed thesis, deal with emerging 

problems that concern the research community and all societies worldwide. The 

monitoring of CECs of various chemical classes in environmental samples 

provides the opportunity to obtain more information about their existence and 

behaviour in the environment and if they are a threat to the stability of 

ecosystems and human lives. The exchange of such information and the 

cooperation of European countries may enable the implementation of 

legislation to reduce environmental pollution on a global scale. 

The examination of ecosystems of decisive environmental importance such as 

the Danube River Basin (Chapters 3 and 4) and the 

technological/computational progress provide the ability to capture the whole 

framework of their chemical composition. In recent years, when 

chemical/environmental pollution is a major survival problem such knowledge 

helps humanity to learn, understand and provide solutions via the collaboration 

of the scientific community with Relative Authorities.    

Due to the COVID-19 pandemic, WBE gained in popularity and its importance 

was highlighted and identified. Humanity has suffered irreparably socially, 

financially, mentally and physically, especially during the first COVID-19 wave 
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(Chapters 5 and 6). WBE is nowadays installed as one of the most efficient 

supplementary chemical tools to monitor and quantify the pandemic’s 

prevalence, physical and mental health condition of the examined population, 

chemical exposure and the whole picture the spatially and temporal distribution 

of the population’s habits and lifestyle.  

As can be seen, COVID-19 has become part of our lives. VOCs and VOIs are 

presented continuously which led to waves and changed the total health status 

of the population. As a result, it is an urgent need to monitor all the changes 

associated with these health threats. Due to the great complexity of this 

research, interdisciplinary teams from different scientific fields (Chemistry, 

Biology and Medicine) were developed and collaborated to fight the pandemic 

and produce knowledge useful for each of the individual fields and society. 

European Commission and World Health Organization strengthen the effort of 

the scientific community by providing recommendations on the way 

sewage/wastewater surveillance could be helpful for our society. WBE is 

capable to establish a robust occupational health and safety system worldwide.  
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10. ABBREVIATIONS AND ACRONYMS 

  

(ESI)-
QTOFMS 

High-resolution Mass Spectrometric analysis by LC-
Electrospray 

4/5-Me-
BTR 4/5-methyl-benzotriazole 

ACEi Angiotensin Converting Enzyme Inhibitors  

ANN Artificial Neural Network 

ARBs Angiotensin II Receptor Blockers  

ASWs Artificial Sweeteners 

ATMAC Alkyltrimethylammonium Chlorides  

BAC Benzalkonium Chloride  

bbCID broadband collision-induced dissociation 

BCoV Beta Coronavirus 

BOD Biochemical Oxygen Demand 

BTR Benzotriazole 

CDC Centers for Disease Control and Prevention  

CECs Contaminants of Emerging Concern  

COD Chemical Oxygen Demand  

COVID-19 Coronavirus Disease 2019 

Cvin coefficient of variation for log-normal distributed data  

DADMAC Diallyldimethylammonium Chloride  

DCTs Data Collection Templates 

DDA Data-dependent Acquisition 

DEET Diethyltoluamide  

DIA Data-independent Acquisition 

DLNM Distributed-Lag Nonlinear Model  

DNA Deoxyribonucleic Acid 

DRB Danube River Basin 

DSFP Digital Sample Freezing Platform 

EC European Commission  

EC JRC European Commission Joint Research Centre 

ECs Emerging Contaminants 

EDCs Endocrine Disruptors Chemicals  

EI Environmental Institute 

EMCDDA European Monitoring Centre for Drugs and Drug Addiction  

EQS Environmental Quality Standard  

EU European Union 

FoA Frequence of Appearance 

FRs Flame Retardants  

GC-MS Gas chromatography coupled to mass spectrometry 

GES Glycol Ether Sulfates  

HDPE High Density Polyethylene 
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HRMS High Resolution Mass Spectrometry 

ICU Intensive Care Units 

IGV Integrative Genomics Viewer 

IT-FT linear ion trap-Orbitrap  

JDS4 Joint Danube Survey 4 

LAS Linear Alkylbenzene Sulfonates 

LC-HRMS 
Liquid Chromatography coupled to High-Resolution Mass 
Spectrometry  

LC-MS Liquid Chromatography coupled to Mass Spectrometry  

LC-
MS/MS 

 Liquid Chromatography coupled with tandem Mass 
Spectrometry  

LOD Limit of Detection 

LOQ Limit of Quantification 

LVSPE Large Volume Solid Phase Extraction 

MgV Mengo Virus 

MRM Multiple Reaction Monitoring 

NaOH sodium hydroxide monohydrate  

NDS NORMAN Database System 

NGS Next-generation Sequencing 

NPEO Nonylphenol Ethoxylates 

NPEO-
SO4 Nonylphenol Ethoxylate Sulfate  

NPHO National Public Health Organization 

NSAIDs Non-Steroidal Anti-inflammatory Drugs 

PCA Principal Component Analysis 

PCPs Personal Care Products  

PEC Predicted Environmental Concentration 

PEGs Polyethylenoglycols  

PFAS Per- and polyfluoroalkyl substances 

PFBuS Perfluorobutanesulfonic Acid  

PFHpA Perfluoroheptanoic Acid 

PFHxA Perfluorohexanoic Acid  

PFHxS Perfluorohexanesulfonic Acid 

PFOA Perfluorooctanoic Acid  

PFOS Perfluorooctanesulfonic Acid 

PMA Para Methoxy Amphetamine  

PMMA Para-Methoxy-N-Methylamphetamine  

PNEC Predicted no-effect Concentration  

PPCPs Pharmaceutical and Personal Care Products  

PPPs Plant Protection Products 

PS Priority Substances 

QA/QC Quality Assurance/Quality Control 

Q-FT Quadrupole-Orbitrap  

QSAR Quantitative Structure-activity Relationship  

QSRR Quantitative Structure  Retention Relationship 
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QSTR Quantitative Structure Toxicity Relationship  

Q-TOF Quadrupole Time of Flight 

RBSPs  River Basin Specific Pollutants 

RMSE Root Mean Square Error 

RMSEcv Root Mean Square Error of leave-one-out cross validation 

RNA Ribonucleic Acid 

RT Reverse Transcription 

RT-qPCR quantitative Reverse Transcription Polymerase Chain Reaction 

SARS-
CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2  

SAS Secondary Alkane Sulfonates  

SIM Selected Ion Monitoring 

SLES Sodium Lauryl Ethyl Sulfates  

SNP Single Nucleotide Polymorphism  

SNRIs Serotonin−Norepinephrine Reuptake Inhibitors  

SPAC Sulfophenyl Alkyl Carboxylic acids  

SPE Solid Phase Extraction 

SRM Selected Reaction Monitoring 

SSRIs Selective Serotonin Reuptake Inhibitors  

TEP Phosphate-Triethyl 

THCA Tetrahydrocannabinol-9-carboxylic acid  

TNA Total Nicleic Acids 

TPhP Phosphate-Triphenyl 

TPs Transformation Products 

UoA University of Athens 

UPLC-Q-
ToF-MS 

Ultra-Performance Liquid Chromatography Quadrupole-Time-
of-Flight MassSspectrometry 

UV Ultraviolet 

VOCs Variants of Concern 

WBE Wastewater based Epidemiology 

WFD Water Framework Directive 

WGS Whole Genome Sequencing 

WHO World Health Organization 

WWTPs Wastewater Treatment Plants 
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