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Abstract

Department of Mathematics

Master In Statistical And Operational Research

Comparison of parametric hidden semi-Markov models for analysing the different phases of

cardiac cycle

by Nektarios Kyrios

In this master thesis we present modern statistical techniques of heart sound segmentation via

hidden semi-Markov models (HSMMs). The cardiac cycle can be broken down into different phases,

these are the phase of S1 sound, Systole, S2 sound diastole. So modeling this heart cycle periodicity

through an HSMM gives very important information about the health status of the heart and can be

used to detect abnormalities in its operation. Using electric and magnetic signals we make an effort

to accurately predict the sojourn times of cardiac cycle phases suggesting also the Hidden semi-

Markov models appropriate to predict. In this thesis, different parametric Hidden semi-Markov

models are compared in their predictive ability and this is done using real data. To achieve that

we extracted three different signal features (Homomorphic envelogram, Hilbert envelope and Power

Spectral Density envelope) apart from original signal. Continuously we test all the different modeling

assumptions. The hidden structure of the model concerning the different phases of cardiac cycle

which alternate in time and can be considered as the states of an unobserved semi-Markov chain.

Using different assumptions. For the state-dependent sojourn time distributions, we create different

HSMMs which compare. So, this thesis extends the results are presented in the thesis of Konstantina

Katachana "Signal Processing and Statistical Analysis of the Cardiac Cycle via hidden semi-Markov

models" comparing different HSMMs on their ability to accurately identify the fundamental phases

of heart cycle.
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Chapter 1

Biological Background

1

1.1 Cardiovascular Diseases

The cardiovascular system consists of the heart and blood vessels. The problems that can be arised

within the cardiovascular system are many, for example, endocarditis rheumatic heart disease, ab-

normalities in the condition system, among others that we are going to refer below

1. Coronary artery disease (CAD): Sometimes referred to as Coronary Heart Disease (CHD), re-

sults from decreased myocardial perfusion that causes angina, myocardial infarction (MI) and/or

heart failure. It accounts for one-third to one-half of the cases of CVD.

2. Cerebrovascular disease (CVD): Including stroke and transient ischemic attack (TIA)

3. Peripheral artery disease (PAD): Particularly arterial disease involving the limbs that may result

in claudication.

4. Aortic atherosclerosis: Including thoracic and abdominal aneurysms

It is paramount the fact that cardiovascular diseases are the leading cause of death worldwide

except Africa. In 2015, CVDs led to death 17,9 million people 32,18 % of global deaths, up from

12,3 million 25,8 % of global deaths in 1990. Deaths, at a given age, from CVD are more common

and have been increasing in much of the developing world, while rates have declined in most of

the developed world since the 1970s. It’s worthwhile that tobacco use, unhealthy diet, obesity, high

blood cholesterol, excessive alcohol consumption, lack of sleep and others consists risk factors which

are associated with the most CVDs. It is estimated that up to 90 % of CVD involves improving risk

factors through: healthy eating, exercise avoidance of tobacco smoke and limiting alcohol intake.
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Treating risk factors, such as high blood pressure, blood lipids and diabetes is also beneficial. Unfor-

tunately, CVDs have often no symptoms of the underlying disease of the blood vessels. A warming

of underlying diseases may be a heart attack or stroke. That is, early detection plays an essential role.

As CVDs are the most important factor related to human mortality, a lot of research effort has

been made in the development of medical techniques and associated tools for the diagnosis of such

diseases. In this application we focus on a non-invasive automated method. Such methods are often

preferable due to their simplicity and lower cost. Ordinary investigations in cardiovascular disease

include :

• Myocardial perfusion scan (MPS)(sestamibi scan / thallium scan) MPS is a noninvasive nuclear

medicine scan that examines myocardial perfusion both at rest and under stress using a small

amount of a radioactive substance , called a radionuclide.

• Cardiac computerised tomography (CT) Cardiac CT uses CT technology to provide detailed

heart image. This may include the identification of anatomical abnormalities such as aneurysms

or valve dysfunction.

• Cardiac MRI uses high intensity magnetic fields and radio-frequency to produce 3D images

with high resolution. The image provides accurate information about cardiac volumes, muscle

mass, contractility, tissue scarring and ejection fraction.

• Echocardiography is the gold standard investigation for the diagnosis of heart failure and

should be re-evaluated at least every 2 years after completion of the medication titration. It

provides an ultrasound image of the cardiac anatomy and can identify the type and region of

heart abnormalities.

• Blood tests Identifies the presence of infection, anaemia and other blood disorders.

• Electrocardiography (ECG) ECG records the electrical activity of the heart. It is a simple test that

identifies heart rate, conduction disturbances, myocardial ischaemia and possible structural

defects. ECG aids in the diagnosis of underlying causes of heart disease such as coronary artery

disease or arrythmias.

• Chest X-Ray (CXR) A chest X-ray helps differentiate between respiratory and cardiac causes

of dyspnoea. In people suffering from heart diseases cardiomegaly, interstitial oedema, pul-

monary oedema and pleural effusions are common findings.
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• Coronary angiography Coronary angiography examines the integrity of the coronary arteries

by inserting a catheter into the coronary vasculature and using dye to produce the image. Pos-

sible sources of symptoms can be identified through the image.

1.2 Cardiac Cycle

The heart is a muscular organ that serves to collect deoxygenated blood from all parts of the body,

carries it to the lungs to be oxygenated and release carbon dioxide. Then, it transports the oxygenated

blood from the lungs and distributes it to all the body parts

• The heart pumps around 7.200 litres of blood in a day throughout the body.

• The heart is situated at the centre of the chest and points slightly towards the left.

• On average, the heart beats about 100.000 times a day, i.e, around 3 billion beats in a lifetime.

• An adults heart beats about 60 to 80 times per minute, and newborn babies heart faster that an

adult which is about 70 to 190 beats per minute.

As for the structure of heart, this is subdivided by septa into right and left halves, and a con-

striction subdivides each half of the organ into two cavities, the upper cavity being called the atrium,

the lower the ventricle. The heart, therefore, consists of four chambers

• right atrium

• left atrium

• right ventricle

• left ventricle

It is best to remember the four chambers and four valves in order of the series that blood travels

through the heart:

• Venous blood returning from the body drains into the right atrium via the SVC, IVC and coro-

nary sinus.

• The right atrium pumps blood through the tricuspid valve into the right ventricle.

• The right ventricle pumps blood through the pulmonary semilunar valve into the pulmonary

trunk to be oxygenated in the lungs.

• Blood returning from the lungs drains into the left atrium via the four pulmonary veins.
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FIGURE 1.1: Anatomy of the heart
Source: Wikipedia

• The left atrium pumps blood through the bicuspid (mitral) valve into the left ventricle.

• The left ventricle pumps blood through the aortic semilunar valve into the ascending aorta to

supply the body.

In addition the heart has four valves. All four valves of the heart have a singular purpose:

allowing forward flow of blood but preventing backward flow. The outflow of each chamber is

guarded by a heart valve:

Atrioventricular valves between the atria and ventricles

1. tricuspid valve (right side of the heart): Controls blood flow between the right atrium and right

ventricle.

2. mitral valve/bicuspid valve (left side of the heart): Lets oxygen-rich blood from your lungs

pass from the left atrium into the left ventricle.

Semilunar valves which are located in the outflow tracts of the ventricles

1. aortic valve(left side heart): Opens the way for oxygen-rich blood to pass from the left ventricle

to your body’s largest artery, called aorta.

2. pulmonary valve (right side heart): Controls blood flow from the right ventricle into pulmonary

arteries, which carry blood to your lungs to pick up oxygen.
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Lets describe the cardiac cycle. The cardiac cycle is the sequence of events in which the heart

contracts and relaxes with every heartbeat. The period of time during which the ventricles contract,

forcing blood out into the aorta and main pulmonary artery, is known as systole, while the period

during which the ventricles relax and refill with blood is known as diastole. The atria and ventricles

work in correct, so in systole when the ventricles are contracting, the atria are relaxed and collecting

blood. When the ventricles are relaxed in diastole, the atria contract to pump blood to the ventricles.

This coordination ensures blood is pumped efficiently to the body. In our application we focus on

systole and diastole. Also we are interested of the rhythmic noises accompanying heartbeat. These

are two distinct sounds which are heard through the stethoscope a low, slightly prologned "lub" S1

sound occuring at the beginning of ventricular contraction or systole, and produced by closure of the

mitral and tricuspid valves, and a sharper, higher-pitched "dup" S2, caused by closure of aortic and

pulmonary valves at the end of systole.

1.3 ECG and PCG

An electrocardiogram - abbreviated as EKG or ECG - is a test that measures the electrical activity of

the heartbeat. With each beat, an electrical impulse (or "wave") travels through the heart. This wave

causes the muscle to squeeze and pump blood from the heart. A normal heartbeat on ECG will show

the timing of the top and lower chambers.

The right and left atria or upper chambers make the first wave called a "P-wave"-following a

flat line when the electrical impulse goes to the bottom chambers. The right and left bottom chambers

or ventricles make the next wave called a "QRS complex". The final wave or "T wave" represents

electrical recovery or return to a resting state for the ventricles.

ECG is very useful because gives two major kinds of information. First, by measuring time

intervals on the ECG a doctor can determine how long electrical wave takes to pass through the

heart. Finding out how long a wave takes to travel from one part of the heart to the next shows if

the electrical activity is normal or slow, fast irregular. Second, by measuring the amount of electrical

activity passing through the heart muscle, a cardiologist may be able to find out if parts of the heart

are too large or overworked.
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FIGURE 1.2: Example of an ECG-labeled PCG, with the ECG, PCG, and four states of
the heart cycle (S1 , systole, S2 , and diastole) shown. The R-peak and end-T-wave are
labeled as references for defining the approximate positions of S1and S2 , respectively.

Midsystolic clicks, typical of mitral valve prolapse, can be seen.
Source: Physionet

As for the phonocardiogram, a phonocardiogram (or PCG) is a plot of high-fidelity recording

of the sounds and murmurs made by the heart with the help of machine called the phonocardiogram;

thus, phonocardiography is the recording of all the sounds made by the heart during a cardiac cycle.

Heart sounds result from vibrations created by the closure of the heart valves. There are at least two;

the first (S1) is produced when atrioventricular valves (tricuspid and mitral) close at the beginning of

systole and the second (S2) when the aortic valve and pulmonary valve (semilunar valves) close at the

end of systole. Phonocardiogram is a very important tool since it allows the detection of subaudible

sounds and murmurs and makes a permanent record of these events. In contrast, the stethoscope

cannot always detect all such sounds or murmurs and provides no record of their occurence.

The ability to quantitate the sounds made by the heart provides information not readily avail-

able from more sophisticated tests and provides vital information about the effects of certain drugs

on the heart. It is also an effective method for tracking the progress of a patient’s disease.



Chapter 1. Biological Background 13

FIGURE 1.3: The diagram shows changes in the pressure and volume of the left ventri-
cle during normal heart beat. The phonocardiogram records heart sounds during the

cardiac cycle
Source: Wiggers, Carl J. 1923.Modern Aspects of Circulation in the Health and Disease,

2nd ed. Philadelphia: Lea and Febiger, p. 97.
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Chapter 2

Data preprocessing

Data preprocessing is an iterative process for the transformation of the raw data into understand-

able and usable forms. Raw datasets are usually characterized by incompleteness, inconsistencies,

lacking in behavior and also many times are noisy. Data preprocessing is essential to make our data

easier to handle and to obtain more reliable results. There are many techniques to do it; we mainly

work with data normalization and feature extraction[41]. In this chapter we describe the types of

normalization and filtering techniques that are relative to the the dataset which is available in this

master thesis, as well as the different features that are extracted and tested along with the original

signal. Finally, we describe the way that the annotated data are used in order to properly label the

heart sounds.

1 Normalization

Normalization techniques enable us to reduce the scale of the variables and make an entire set of

values more balanced and easier to handle. Let’s see some of them:

• In real world scenarios, we often work with unevenly distributed data, “suffering” from high

skewness or/and values differing by several orders of magnitude. In such cases, the easiest

way to scale them is through a log-transformation, e.g., in the following table

yi 1000 29000 345 500 872 3223

y
′
i 6.90775 10.27505 5.84354 6.21460 6.77078 8.07806

notice that if y
′
i = log yi, then {y′i} seem to be easier to handle than {yi}.

• Another efficient way of Normalizing values is through the Min-Max Scaling method. With this

method, the data values will finally range from 0 to 1. Consequently, the effect of outliers on
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the data values suppresses to a certain extent. Moreover, it often reduces standard deviation.

This normalization procedure is described by the transformation

y
′
i =

yi −mini yi

R
,

where {yi} are the initial values of the signal and R = maxi yi −mini yi is the data range. In the

dataset described above, we have mini yi = 50, maxi yi = 29000 and R = 28950, so we have:

yi 1000 29000 345 500 872 3223

y
′
i 0.02286 1 0 0.00541 0.01849 0.10098

• A third method concerns the Standard scaling, also known as Standardization of values, which

consists in scaling the data values in such a way that the mean and the variance of the values

of every variable become 0 (centering) and 1 respectively. If y is the arithmetic mean and sy

the standard deviation of the initial values, then the normalized data result from the following

standardization procedure:

y
′
i =

yi − y
sy

.

In our numerical example, the normalization corresponds to the following table:

yi 1000 29000 345 500 872 3223

y
′
i -0.42301 2.03265 -0.48046 -0.46687 -0.43424 -0.22806

2 Butterworth band-pass filter

A Butterworth filter is a type of signal processing filter designed to have a frequency response as flat

as possible in the passband. Hence the Butterworth filter is also known as "maximally flat magni-

tude". It was invented in 1930 by the British engineer and the physicist Stephen Butterworth in his

paper entitled " On the Theory of filter Amplifiers". Butterworth had a reputation for solving "impos-

sible" mathematical problems. At the time, filter design required a considerable amount of designer

experience due to limitations of the theory then in use. The filter was not in common use for over 30

years after its publication. Butterworth stated that:

"An ideal electrical filter should not only completely reject the unwanted frequencies but should

also have uniform sensitivity for the wanted frequencies. "
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Such an ideal filter cannot be achieved, but Butterworth showed that succesively closer approxi-

mations were obtained with increasing numbers of filters elements of the right values. As for band-

pass, a band-pass filter is a device that passes frequencies within a certain range and rejects (attenu-

ates) frequencies outside that range.

A circuit determines which frequencies are going to pass at the output and which are not. It

also determines these frequencies’ attenuation. This circuit response is called the circuit’s frequency

response at the various input frequencies. In short, the way an object responds to sounds of different

pitches is called its frequency response.

A flat response reproduces the input more accurately through the output without any improve-

ments in a given area. The Butterworth filter is designed to have a frequency response as flat as

possible in the passband. For an audio system the goal may be to reproduce the input signal without

distortion. This would require a uniform (flat) response magnitude up to the system’s bandwidth

limit with the signal being delayed at all frequencies by exactly the same amount of time.

Unlike a low-pass filter where only signals with a low frequency range are allowed to pass

or, a high-pass filter, where only signals with a higher frequency range are allowed to pass, the

band-pass filter is designed to accept signals within a certain frequency "band" without distorting

the input signal or introducing extra noise.

For a band-pass filter, the upper and lower frequency value can be found by:

fC =
1

2πRC
Hz,

where R is the resistance in ohm (Ω) and C is the capacitance in farad (F).

The complexity or filter type is defined by the filter’s "order", which is dependent upon the num-

ber of reactive components such as capacitors or inductors within its design.

The frequency response of a filter can be defined mathematically by its transfer function, hence,

the general equation for a Butterworth filter’s frequency response is given by the following:
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FIGURE 2.1: Unrestricted signal (upper diagram). Bandpass filter applied to signal
(middle diagram). Resulting passband signal (bottom diagram). A( f ) is the frequency

function of the signal or filter in arbitrary units.
Source: Wikipedia
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FIGURE 2.2: Frequency response (up) and phase shift (bottom) of a band-pass
Source: Electronicspot

FIGURE 2.3: Band-pass filter circuit
Source: Electronicspot
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FIGURE 2.4: Frequency Response for a Butterworth Filter
Source: Electrical 4 U

|Hiω| =
1√

1 + ε2( ω
ωc
)2n

where n indicates the filter order, ω = 2π f , ε is maximum pass band gain, (Amax). If we define

Amax at cut-off frequency -3dB corner point ( fC), then ε will be equal to one and thus ε2 will also

be equal to one. But, if we want to define Amax at another voltage gain value, consider 1dB, or

1.1220(1dB = 20 log(Amax)) then the value of ε can be found by:

H1 =
H0√

1 + ε2
,

where H0 represents the maximum pass band gain and H1 represents the minimum pass band

gain. Now, if we transpose the above equation, then we will get

H0

H1
= 1.1220 =

√
1 + ε2 ⇒ ε = 0.5088.

Remark. As we have mentioned the frequency response of a filter can be defined mathematically by its transfer

function with the Voltage Transfer function the H(iω) written as

H(iω) =

[
Vout(i ·ω)

Vin(i ·ω)

]
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where Vout = voltage of output signal, Vin = input voltage signal, ω = 2π f is the radian frequency.

After the implementation of the Butterworth band-pass filter on the signals we extract four dif-

ferent features. These features are described in the following sections. We start by the homomorphic

envelogram.

3 Homomorphic Envelogram

Homomorphic filtering is a generalized technique for signal and image processing, involving a

nonlinear mapping to a different domain in which filtering techniques are applied, followed by map-

ping back to the original domain. In the present approach, homomorphic filtering is used to extract

a smooth envelogram, which enables the detection of events that are suspected to be S1, S2 or others.

The advantage of such a homomorphic envelogram is its scalable smoothness, which handles a wide

range of problems such as peak splits. Peak splitting is when a Gaussian peak gets a shoulder (see

Figure 2.5 ) or a twin . They have the same base, are unexpected and can be caused by a number of

factors.

FIGURE 2.5: Each one of Gaussian peaks gets a shoulder.

A monocomponent AM-FM signal can be expressed as a product of its amplitude modulation

(AM) and frequency modulation (FM) components:

x(t) = a(t) f (t), a(t) > 0, (2.1)

where a(t) is the AM component or instantaneous amplitude (IA) and f (t) is the FM component and

can be expressed as:

f (t) = sin(φ(t)), (2.2)

where φ(t) corresponds to the instantaneous phase.
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FIGURE 2.6: A phonocardiogram(red) and its Homomorphic Envelogram(blue).

By assuming a simple approximated model by which the PCG is a narrow-band non-stationary

signal, we can express it as a monocomponent AM-FM signal (see [46]).We denote:

p(t) = log |x(t)| (2.3)

Remark. In cases where x(t) = 0 we add a small positive value, and then we have p(t) = log(a(t)) + log

| f (t)|

By applying an appropriate linear low-pass filter on p(t) we can eliminate the FM component,

which is characterized by rapidly variations in time. We denote the low pass filter system by L and

the filtered signal by pl(t). Because L is a linear system we obtain:

pl(t) = L(p(t)) = L(log |x(t)|) = L(log a(t)) + L(log | f (t)|) (2.4)

By using a low-pass filter whose pass-band covers the typical frequencies of the AM component

and attenuates the typical high frequencies of the FM component, we obtain:

pl(t) = L(log a(t)) + L(log | f (t)|) = log a(t) (2.5)

The reversal procedure is done by an exponential operation and derives the Homomorphic En-

velogram:

HomomorphicEnvelogram = exp{L(p(t))} = exp{log a(t)} = a(t) (2.6)

In this study, the linear low-pass filter L that is used is a first order Butterworth filter cutoff

frequency at 8 Hz.
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4 Hilbert Transform

Let us first present the Cauchy principal value P[45]:

Definition 2.1. Let [α, β] be a real interval and let f be a complex-valued function defined on [α, β]. If f is

unbounded near an interior point ξ of [α, β], the integral of f over [α, β], the integral of f over [α, β] does not

always exist. However, the two limits

lim
ε→0

∫ ξ−ε

α
f (x)dx and lim

ε→0

∫ β

ξ+ε
f (x)dx

still may exist, and if they do their sum is called the improper integral of f over [α, β] and is denoted by the

ordinary integration symbol ∫ β

α
f (x)dx

Even if these two limits do not exist, it may happen that the "symmetric limit"

lim
ε→0+

(∫ ξ−ε

α
f (x)dx +

∫ β

ξ+ε
f (x)dx

)
exists and if it does, it is called the principal value integral of f from α to β and is denoted by the symbol

P
∫ β

α
f (x)dx.

Consequently we present the Hilbert Transform. Many of the common integral transforms can

be written in the following form:

g(x) =
∫ b

a
k(x, y) f (y)dy, (2.7)

k(x,y) is called the kernel function, or just the kernel of the equation.

Definition 2.2. The Hilbert transform on R, the real line, is defined by

H f (x) =
1
π

P
∫ +∞

−∞

f (y)
x− y

dy, x ∈ R, (2.8)

where P is the Cauchy principal value.

The kernel function in this definition is given by

k(x, y) =
1

π(x− y)
(2.9)
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Example 2.4

i) If f (x) = cos(ω · x) , then

H f (cos(ωx)) = − 1
π

P
∫ +∞

−∞

cos(ω · y)
y− x

dy

= − 1
π

P
∫ +∞

−∞

cos[ω · (z + x)]
z

dz

= − 1
π

{
cos(ω · x)P

∫ +∞

−∞

cos(ω · z)
z

dz− sin(ω · x)P
∫ +∞

−∞

sin(ω · z)
z

dz
}

= sin(ω · z).

The result is due to the fact cos(ω·z)
z is an odd function and P

∫ +∞
−∞

sin(ω·z)
z dz = π.

ii) If f (x) = pa(x) then

Hpα(x) =
−1
π

P
∫ x−ε

−α

dy
y− x

− 1
πx

P
∫ α

x+ε

dy
y− x

= lim
ε→0

{
− 1

π
log(y− x)|x−ε

−α −
1
π

log(y− x)|αx+ε

}
=

1
π

log
∣∣∣∣ t + α

t− α

∣∣∣∣ .

iii) If f (x) = α, then

αH f (1) = α lim
α→∞

1
π

log
∣∣∣∣ t + α

t− α

∣∣∣∣ = 0

Hence, if fα = constant is the mean value of a function, then f (x) = f0 + f1(x). Therefore H{ f0 +

f1(x)} = H{ f1(x)}. This implies that the Hilbert transform cancels the mean value or the DC term

in electrical engineering terminology.

4.1 The Hilbert transform of functions in L1

An obvious omission from the discussion of the previous section and earlier parts of the book is

the case of Hilbert transforms for functions that belong to L1(R). The reader is reminded, following

the standard custom, that L1 is abbreviated to L. Some specialized results are now considered for this

class of functions.

So if f and g = H f and f , g ∈ L(R), let’s define the Hilbert Transform pair.

We have defined the Hilbert transform by the principal value integral:

H f (x) =
1
π

P
∫ ∞

−∞

f (y)
x− y

dy (2.10)
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This integral is often written in the following form:

H f (x) = lim
ε→0+

Hε f (x), (2.11)

where

Hε f (x) =
1
π

∫
|x−y|>ε

f (y)
x− y

dy (2.12)

The function Hε f is sometimes referred to as the "truncated" Hilbert transform of f. The designa-

tion "truncated" is also used to describe other variants of the standard Hilbert transform. Let

g(x) =
1
π

P
∫ ∞

−∞

f (y)
x− y

dy : (2.13)

then the function f is connected to g by the following result

f (x) = − 1
π

P
∫ ∞

−∞

g(y)
x− y

dy (2.14)

Equation (2.13) and (2.14) constitute a Hilbert transform pair.

Remark. For the case of functions in Lp(R) , p > 1 , it is only necessary to assume that one of the functions

f or g belongs to Lp, in contrast to the requirement just stated that both functions ∈ L(R). For p > 1 ,

f ∈ Lp(R) implies H f (x) ∈ Lp however, for f ∈ L(R), H f (x) in general does not belong to L(R). Consider

the case f (x) = α(α2 + x2) for α > 0. Now f ∈ L(R) and

g(x) = H f (x) =
x

α2 + x2 (2.15)

which does not belong to L(R).

Kober (1942) gave the following result. If f ∈ L(R) a necessary condition that H f ∈ L(R) is

∫ +∞

−∞
f (x)dx = 0. (2.16)

That this condition is not sufficient is attributed by Kober to H.R.Pitt. The latter result can be established

as follows. Let

f (x) =



0 , −∞ < x ≤ 0

x−1 log−2(x)− 2
log2 , 0 < x < 1

2

0 , 1
2 ≤ x < ∞

(2.17)
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Using the change of variable x = e−y (or otherwise noting that the integrand is an exact differential) leads

to

∫ +∞

−∞
f (x)dx =

∫ 1
2

0
x−1 log−2(x)dx− 1

log 2
= − 1

log 2
+
∫ ∞

log 2

dy
y2 = 0. (2.18)

so Equation (2.7) is satisfied. For p > 1, the integral
∫ +∞
−∞ | f (x)|pdx diverges. Now f ∈ L(R) since

∫ +∞

−∞
| f (x)|dx =

∫ 1
2

0

∣∣∣∣x−1 log−2(x)− 2
log 2

∣∣∣∣ dx

=
2

log x2
− 2

log x1
+

4(x2 − x1)

log 2
= 0

(2.19)

where x1 ≈ 0.026042 and x2 ≈ 0.389208 are solutions of x−1 log−2(x)− 2
log 2 = 0

Let g(x) = H f (x); for x > 0 it follows that

−g(−x) =
1
π

P
∫ +∞

−∞

f (t)
x + t

dt

=
1
π

P
∫ 1

2

0

dt
(x + t)t log2 t

− 2
π log 2

∫ 1
2

0

dt
(x + t)

(2.20)

and, since (x + t)−1 > (2x)−1 for t ∈ (0, x) ,

−g(−x) >
1

2πx

∫ x

0

dt
t log2 t

− 2
π log 2

log
(

2x + 1
2x

)
= − 1

2πx

∫ x

0
d[logt]−1 − 2

π log 2
log
(

2x + 1
2x

)
.

(2.21)

The second contribution in the final result is not important for the argument that follows, so this term is

dropped. Hence, for x ∈ (0, 1
2 ),

−g(−x) > − 1
2πx log x

(2.22)

Now, ∫ 0

− 1
2

|g(x)|dx =
∫ 1

2

0
|−g(−x)|dx >

1
2π

∫ 1
2

0

1
x log x

dx = ∞; (2.23)

that is, H f (x) /∈ L(− 1
2 , 0), and since

∫ ∞

−∞
|H f (x)|dx =

∫ − 1
2

−∞
|g(x)|dx +

∫ 0

− 1
2

|g(x)|dx +
∫ ∞

0
|g(x)|dx (2.24)

then H f /∈ L(R), which proves that Equation (2.16) is not a sufficient condition.
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To establish Equation (2.25), suppose f ∈ L(R), H f ∈ L(R), and

F(x) = f (x) + iH f (x) (2.25)

Now we define the Fourier transform:

Definition 2.3. Suppose f is an absolutely integrable function on R, that is
∫ +∞
−∞ | f (x)|dx < ∞ ; then the

Fourier transform of f , denoted by F f , is defined by

F f (x) =
∫ +∞

−∞
f (s)e−ixsds.

Taking the Fourier transform of Equation (2.25)

FF(x) = F f (x) +F iH f (x) = (1 + sgn(x))F f (x), (2.26)

where the second equality follows from the fact that FH f (x) = i · sgn(x)F f (x) and sgn(x) stands

from the signum function.

Following we define the Cauchy integral theorem.

Definition 2.4. if f (z) is holomorphic in a simply connected domain Ω, then for any simply closed contour C

in Ω, tha contour integral is zero ∫
C

f (z)dz = 0. (2.27)

The function F(z) is analytic in the upper half complex plane, and, by the definition (2.4),

∮
C

F(z)dz = 0 (2.28)

where the contour C is a semicircle in the upper half plane centered at the origin and including

the real axis. From Equation (2.18) it follows that

∫ ∞

−∞
f (x)dx = 0 (2.29)

and hence

FF(0) = 0 (2.30)

From Equation (2.26) it follows that

F f (0) = 0 (2.31)
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and this establishes Equation (2.16).

Moreover it is important to present some properties of the Hilbert transform.

4.2 Linearity

An important property of the Hilbert transform operator is that it is a linear operator. A linear

operator L is a mapping from a vector space X into a vector space Y written L : X → Y, such that for

constants α, β ∈ X, and function f , g ∈ X, then

L{α f + βg} = αL f + βLg.

For constants α, β ∈ C and functions f and g, it follows that

H{α f + βg} = αL f + βLg.

In the preceding result, the separate integrals are assumed to exist, and this is true if the func-

tions belong to the class Lp(R) for 1 ≤ p.

The latter condition can be replaced by one where the functions satisfy a suitable asymptotic

constraint as |x| → ±∞ and are uniformly Holder continuous on every finite interval of R.

4.3 Inversion property

Since H f (x) = g(x) implies Hg(x) = − f (x), then

H2 f (x) = H(H f )(x) = − f (x). (2.32)

This is referred to as the inversion formula for the Hilbert transform, and it is also called the

iteration property for the Hilbert transform. An approach to obtain Equation (2.32) makes use of the

Hardy-Poincare-Bertrand formula, which takes the following form:

1
π

∫ ∞

−∞

φ1(x)
x− t

dx · 1
π

∫ ∞

−∞

φ2(x)
y− x

dy =
1
π

P
∫ ∞

−∞
φ2(y)dy · P

∫ ∞

−∞

φ1(x)
(x− t)(y− x)

dx− φ1(t) · φ2(t), (2.33)

where φ1(x) and φ2(x) belong to the classes Lp and Lq, respectively, with the exponents satisfying

1 < p < ∞, 1 < q < ∞, and p−1 + q−1 = 1. Let φ1(x) = e−αx2
with a > 0, and set φ2(y) = f (y). The

function φ1(x) is going to be treated as a convergence factor. From Equation (2.33) it follows that
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1
π

P
∫ ∞

−∞

e−ax2

x− t
dx · 1

π
P
∫ ∞

−∞

f (y)
y− x

dy =
1
π

∫ ∞

−∞
f (y)dy =

1
π
· P
∫ ∞

−∞

e−αx2

(x− t)(y− x)
dx− e−αt2

f (t).

(2.34)

Now,

P
∫ ∞

−∞

e−αx2

(x− t)(y− x)
=

1
y− t

P
∫ ∞

−∞

{
e−αx2

x− t
+

e−αx2

y− x

}
dx (2.35)

If the lim α → 0+ is examined, then the last integral evaluates to zero, and Equation (2.34) be-

comes
1
π

∫ ∞

−∞

dx
t− x

1
π

P
∫ ∞

−∞

f (y)
x− y

dy = − f (t), (2.36)

or, in compact notation,

HH f (t) = − f (t), (2.37)

which is the desired result. The reader is invited to examine critically the validity of taking

lim α→ 0+ inside the integral in the preceding sequence of steps.

The obvious extension of Equation (2.32) becomes for non-negative integer n,

Hn f (x) =


(−1)

n
2 f (x), f or n even

(−1)
(n−1)

2 g(x), f or n odd

(2.38)

This can be proved by repeated application of Equation (2.32).

From Equation (2.32) the operator equivalence can be written as follows:

H2 = −I (2.39)

where I denotes the identity operator. From this result the inverse Hilbert transform operator can be

written symbolically as

H−1 = −H (2.40)

and so

H−1(H f )(x) = f (x) = − 1
π

P
∫ ∞

−∞

H f (t)
x− t

dt (2.41)
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4.4 Derivatives of the Hilbert transform

Theorem 1.1 The Hilbert transform of the derivative of a function is equivalent to the derivative of

the Hilbert transform of a function, that is

H f ′(t) =
d
dt

f̂ (t) (2.42)

Proof We know that

f̂ (t) =
1
π

P
∫ +∞

−∞

f (t)
t− s

ds

if we substitute s with t-z, then

f̂ (t) =
1
π

P
∫ +∞

−∞

f (t− z)
z

and then apply the derivative of t on both sides we get

d
dt

ˆf (t) =
1
π

P
∫ +∞

−∞

f ′(t− z)
z

dz

The substitution z=t-s gives us that

d
dt

f̂ (t) =
1
π

P
∫ +∞

−∞

f ′(s)
t− s

ds

and th relation in (3.2) is valid.

From the proof above we conclude that the relation can be used repeatedly. Let us look an exam-

ple where we also make use of multiple Hilbert transforms(see Section 4.2).

Example 4.3 By (4.2) we may calculate the Hilbert transform of the delta function δ(t) and its

derivatives. At the same time we get the Hilbert transform representation of the delta function.

Consider the Hilbert transform of the data function.

Hδ(t) =
1

πt

The derivative of the delta function is calculated to

Hδ′(t) = − 1
πt2 ,
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and if we apply the Hilbert transform on both sides then we get

δ′(t) = H(− 2
πt3 )

This procedure can be continued.

4.5 Orthogonality properties

Definition 2.5. A complex function is called Hermitian if its real part is even and its imaginary part is odd.

From this we have that the Fourier transform F(ω) of a real function f(t) is Hermitian.

Theorem 4.5 A real function f(t) and its Hilbert transform f̂ (t) are orthogonal if f, f̂ and F belong

to L1(R) or if u and f̂ belong to L2(R).

Theorem 4.6 If f,g and G belong to L1(R) or if f and g belong to L2(R) then

∫ +∞

−∞
f (t)g∗(t)dt =

1
2π

∫ +∞

−∞
F(ω)G∗(ω)dω

Proof From Theorem 4.6 we have that

∫ +∞

−∞
f (t) f̂ (t)dt =

1
2π

∫ +∞

−∞
F(ω)(−isgn(ω)F(ω))∗dω

=
i

2π

∫ +∞

−∞
sgn(ω)F(ω)F∗(ω)dω

=
i

2π

∫ +∞

−∞
sgn(ω)

∣∣F(ω)2∣∣dω

where sgn(ω) is an odd function and the fact that F(ω) is Hermitian gives us that |F(ω)|2 is an

even function. We conclude that ∫ +∞

−∞
f (t) f̂ (t)dt = 0

and a real function and its Hilbert transform are orthogonal.

4.6 Energy aspects of the Hilbert transform

The energy of a function f(t) is closely related to the energy of its Fourier transform F(ω). Theorem

4.6 with f (t) = g(t) is called the Rayleigh theorem and it helps us to define the energy of f(t) and

F(ω) as

Eu =
∫ +∞

−∞
| f (t)|2dt =

1
2π

∫ +∞

−∞
|F(ω)|2dw (2.43)

Here it is natural to assume that f ∈ L2(R) which means that E f is finite. The same theorem is

used to define the energy of the Hilbert transform of f (t) and F(ω), that is
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FIGURE 2.7: A phonocardiogram(red) and its Hilbert envelogram(blue).

E f̂ =
∫ +∞

−∞

∣∣∣ f̂ ∣∣∣2dt =
1

2π
|−isgn(ω)F(ω)|2dω

where |−isgn(ω)|2 = 1 except for ω = 0. But, since F(ω) does not contain any impulses at the

origin we get E f̂ = E f .

A consequence of (4.5) is that f ∈ L2(R) induces that f̂ ∈ L2(R). The accuracy of the approxi-

mated Hilbert transform operator can be measured by comparing the energy in (2.2) and (4.5). How-

ever, a minor difference in energy always exists in real applications due to unavoidable truncation

errors.

4.7 Hilbert Envelope

Having seen the definition and having seen some properties of Hilbert Transform, let us calculate the

Hilbert Envelope. At first, let’s define the analytic signal.

Definition 2.6. An analytic signal is a complex-valued function that has no negative frequency components.

The analytic signal s(t) given by:

s(t) = f (t) + i · h(t)

where f(t) is the input signal and h(t) is its Hilbert Transform as described above.

A Hilbert Envelope is then constructed from the absolute value of the analytic signal:

HilEnv = |s(t)| =
√

f 2(t) + h2(t)
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5 Wavelet Envelope

A wavelet is a mathematical function used to divide a given function or continuous-time signal

into different scale component.Usually one can assign a frequency range to each scale component.

Each scale component can then be studied with a resolution that makes its scale. A wavelet transform

is the representation of a function by wavelets. The wavelets are scaled and translated copies (known

as "daughter wavelet") of a finite-length or fast-design oscillating waveform (known as the "mother

wavelet").

As a mathematical tool, wavelets can be used to extract information from many different kinds of

data, including- but not limited to- audio signals and images. Sets of wavelets are needed to analyze

data fully. "Complementary" wavelets decompose a signal without gaps or overlaps so that the de-

composition process is mathematically reversible. Thus, sets of complementary wavelets are useful

in wavelet based sets of complementary wavelets are useful in wavelet based compression/decom-

pression algorithms where it is desirable to recover the original information with minimal loss.

It’s worthwhile to refer that the wavelet transform is similar to the Fourier Transform (or much

more to the windowed Fourier Transform ) with a completely different merit function. The wavelet

transform is often compared to the Fourier Transform in which signals are represented as a sum of

sinusoids. Less distortion to the spectral characteristics of the de-noised images distinguises wavelet

transform from other techniques. The main difference between wavelet transform and Fourier Trans-

form is that, in the Wavelet Transform, wavelets are only localized infrequency. The Short-time

Fourier Tranform (STFT) is more similar to the wavelet tranform. In this also the wavelets are time

and frequency localized but there are issues with frequency/time resolution trade-off. Wavelets of-

ten give a better signal representation using. Multi-resolution analysis with balanced resolution at

anytime and frequency. While Fourier analysis consists of breaking up the signal into shifted and

scaled versions of the original (or mother) wavelet just by analyzing the wavelets and sine waves,

we can conclude intuitively that signals with sharp changes might be better analyzed with irregular

wavelet than with a smooth sinusoid, just as some foods are better handled with a fork than a spoon.

Also there are many wavelets family, such as:

• Haar

In mathematics, the Haar wavelet is a sequence of rescaled "square-shaped" functions which

together form a wavelet family or basis. Wavelet analysis is similar to Fourier Analysis in that

it allows a target function over an interval to be represented in terms of an orthogonal basis.

The Haar sequence is now recognised as the first known wavelet basis and extensively used as

a teaching example.
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The Haar wavelet is also the simplest possible wavelet. The technical disadvantage of the

Haar is that it is not continuous, and therefore not differentiable. This property can, however,

be an advantage for the analysis of signals with sudden transitions (discrete signals), such as

monitoring of tool failure in machines.

The Haar wavelet’s mother wavelet function ψ(t) can be described as:

ψ(t) =



1 0 ≤ t < 1/2

−1 1/2 ≤ x < 1

0 otherwise

its scaling function φ(t) can be described as:

φ(t) =


1 0 ≤ t < 1

0 otherwise

• Daubencies

The Daubencies wavelets, based on the work of Ingrid Daubencies, are a family of orthogonal

wavelets defining a discrete wavelet transform and characterized by a maximal number of

vanishing moments for some given support. With each wavelet type of this class, there is

a scaling function (called the father wavelet) which generates an orthogonal multiresolution

analysis.

• Coiflets

Coiflets are discrete wavelets designed by Ingrid Daubechies, at the request of Ronald Coif-

man, to have scaling functions with vanishing moments. The wavelet is near symmetric, their

wavelet functions have N/3 vanishing moments and scaling functions N/3− 1, and has been

used in many application using Calderon-Zygmund operators.

• Symlet

In applied mathematics, symlet wavelets are a family of wavelets. They are a modified version

of Daubenchies wavelets with increased symmetry.
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FIGURE 2.8: Wavelet Coiflet 1

FIGURE 2.9: Symlet 2 base wavelet

6 Power Spectral Density Envelope

Power spectrum is a representation of the magnitude of the various frequency components of a

signal. Spectrum simply answer the question "How much power contain each of signal’s frequency

component? ". The transformation from the time domain signal to the frequency domain and appli-

cations in engineering, in communication systems, in statistics made the power spectrum "famous".

There are a couple of techniques for generating the Power spectrum. In our case the Power Spectral

Density (PSD) was calculated using the Short-time Fourier transform (STFT) after Hamming win-

dowing.

In many field of the research a window function also known as an apodization function is a math-

ematical function that is zero-valued outside of some chosen interval, normally symmetric around

the middle of the interval, usually near a maximum in the middle of the interval, usually tapering

away from the middle.

When a window function multiply a data-sequence the product is also zero-valued outside the

interval: all that is left is the part where they overlap, the "view through the window".

All that is left is the part where they overlap, that is the segment of data within the window is

first isolated, and then only that data is multiplied by the window function values.

Instead of looking at the whole signal, the STFT’s main idea is to consider only a small part of the

signal. To this end, the original signal is then multiplied by the window function to give a window

signal. The window function varies over time to obtain frequency information at different times and

a Fourier transform is computed for each resulting window signal. It is very essential to underline

that STFT reflects not only the properties of the original signal but also those of the window function.
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Let us now determine the most vital mathematical formulas practical applications. Let x : Z→ R

be a discrete time signal with a fixed sampling frequency Fs in Hertz. Consider w = {0, 1, . . . N −

1} → R to be a sampled window function of length N ∈ N. One also introduces an additional

parameter h ∈N, which is referred to as the hop size. The hop size parameter is specified in samplees

and determines the step size in which the window is to be shifted acroos the signal. Now, with regard

to these parameters the discrete STFT Yx of the signal x is given by:

Yx(m, k) =
N−1

∑
n=0

x(n + mh)w(n)exp{−2πikn
N

}

where m ∈ Z and 0 ≤ k ≤ K. The number K = N
2 , if we assume that N is even, is the frequency

index corresponding to the Nyquist frequency. The length parameter N determines the duration

of the considered section, that is N
Fs seconds. The complex number Yx(m, k) denotes the kth Fourier

coefficient for mth time frame. As for the temporal dimension, each Fourier coefficient Yx(m, k) is

associated with the physical time position.

Tcoe f (m) =
m · h

Fs

given in seconds. For instance, for the smallest possible hop size h=1, one obtains Tcoe f (m) = m
Fs =

m · T.

In this case, one obtains a spectral vector for each sample of the signal x, which results in a huge

increase in data volume. Furthermore, considering sections that are only shifted by one sample gen-

erally yields very similar spectral vectors. To reduce this type of redundancy, one typically relates

the hop size to the length N of the window. For example, one often chooses h = N
2 , which constitutes

a good trade-off between a reasonable temporal resolution and the data volume comprising all gen-

erated spectral coefficients. As for the frequency dimension, the index k of Yx(m, k) corresponds to

the physical frequency

Fcoe f (k) =
k · Fs

N

given in Hertz. Actually, the majority of the frequency content of the S1 and S2 sounds is below

150Hz, with a peak at 50Hz and concentrated with a high probability ±10 around the peak. Con-

sequently, for this application the final feature was derived from the mean PSD computed only for

frequencies from 40 to 60 Hz, found in overlapping windows of 0,05 seconds in width with 50 %

overlap. This resulted in an envelope of PSD values. Based on these values and according to the

notation described above, if Fs = 1000Hz is the considered sampling frequency in this application
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we have: N=50, k=25 and h=25. The final envelope was derived from the mean PSD betwwen 40 and

60 Hz, that is according to the above, the mean PSD between k=2 and k=3.

Benefits of Power Spectral Density Profile

• Using the PSD profile, we can identify the frequency components having relatively weaker

power levels in the given frequency range of interest.

• The received test signal (control signal ) is studied a spectrum analyzer. The PSD profile in

studied and compared to the PSD of the test signal before it was transmitted through the chan-

nel.

• By studying the PSD profile, we can determine the frequency components with reduced power

levels as a result of channel noise. These frequency components have relatively been more vul-

nerable to the noise when compared to the other frequency components present in the signal.

• We can therefore adjust the power levels of the signal to be transmitted to combat the effect of

channel.

7 Heart Labeling

In order to train the segmentation algorithms on the phonocardiogram (PCG) data, it is paramount

to label S1 and S2 sounds. The positions of the R-peak connected with start of the S1 sound. So,

each R-peak position indicates the start of S1 sound. The mean of S1 sound duration is 122ms with

a standard deviation of 32ms according to [43], thus due to the low variability the interval that is

labeled as S1 sound is assumed constant and equals with [R-peak,R-peak+122]. As for S2 sound,

S2 sound does not coincide with the position of the end-T-wave so it is more difficult to label it.

However, the amplitude of the S2 sound reach a maximum in a neighborhood of the end-T-wave.

As a result, the center of the S2 sound was found by searching for the maximum peak in the Hilbert

envelope of the PCG signal specifying search window around the end-T-Wave. The mean duration of

S2 is again according to 92ms with a standard deviation of 28ms, consequently the longest expected

duration of S2 is max(S2 ± σS2) = max(92 + 28, 92− 28) = 120.
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Chapter 3

Statistical model

1 Markov Renewal Chain

A renewal process is an idealized stochastic model for "events" that occur randomly in time (gener-

ically called renewals or arrivals). The basic mathematical assumption is that the times between suc-

cessive arrivals are independent and identically distributed. We will need the renewal process in

discrete time, which we refer it as renewal chain. Let us now present the Markov renewal chain.

A Markov renewal chain is a random process that generalizes the notion of Markov chains, distin-

guished from the fact that the holding time of each state is geometrically distributed.

Definition 3.1. Consider a state space E of a Markov chain. Consider a set of variables (Yn, Sn), where Sn are

the jump times and τn = Sn− Sn−1 is the inter-arrival times of the states. Then the sequence (Yn, Sn) is called

a Markov renewal process if

Pr(τn+1 ≤ t, Yn+1 = j|(Y0, S0), (Y1, S1), ...., (Yn = i, Sn)) = Pr(τn+1 ≤ t, Yn+1|Yn = i)

∀n ≥ 1, t ≥ 0, i, j ∈ S

As we can see the next state of a Markov renewal process only depends on the current state.

2 Semi-Markov chains

Before we define the Hidden semi-Markov models we have to introduce the semi-Markov chains[8].

First of all, it’s worthwhile to refer that a semi-Markov chain is a stochastic process which generalizes

a Markov chain in the sense that the "memoryless property". As the well-known memoryless prop-

erty is still present, not globally, but only at the specific time instants where we have change from

one state to another state. Now, we consider a random system with finite state space E = {1, . . . , s}

, whose evolution in time is governed by a stochastic process Z = (Zk)k∈N. Let us denote by
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S = (Sn)n∈N the successive time point when state changes in (Zk)k∈N occur and Y = (Yn)n∈N the

successively visited states at these time points. Set also X = (Xn)n∈N∗ for the successive sojourn time

in the visited states, thus Xn = Sn − Sn−1, n ∈ N∗. The relation between process Z and process Y of

the successively visited states is given by Zk = YN(k) where,

N(k) = max{n ∈N|Sn ≤ k} is the discrete-time counting process of the number of jumps in

[1, k] ⊂N.

So we have

Zk = YN(k), k ∈ [Sn−1, Sn)

where YN(k) is assumed to be a Markov chain and Xn is given by X = 1+∑n
k=1 Sk we start the discrete-

time process from t = 1 instead of t = 0 in order to comply with the formalism of the application

context of this thesis. The process (Zk)k≥1 is called discrete-time semi-Markov chain and this is the

type of semi-Markov chain that we deal with in this thesis.

Definition 3.2. A matrix-valued function q = (qij(u)) ∈ ME(N) is said to be a discrete-time semi-Markov

kernel if it satisfies the following three properties:

1. 0 ≤ qij(u), i, j ∈ E, u ∈N

2. qij(0) = 0, i, j ∈ E

3. ∑u∈N ∑j∈E qij(u) = 1, i ∈ E

Definition 3.3. (Markov renewal chain)

The chain (Yn, Sn) is a Markov renewal chain if ∀n ∈ N , ∀i, j ∈ E and ∀k ∈ N, the following equation is

almost surely satisfied :

P(Yn+1 = j, Sn+1 − Sn = u|Y1, Y2, . . . , Yn, S1, ...., Sn) = P(Yn+1 = j, Sn+1 − Sn = u|Yn)

In the case, where the above equation is independent of n, then (Yn, Sn) is homogeneous with

a discrete-time semi-Markov kernel q, which is defined by

qij(u) = P(Yn+1 = j, Xn+1 = u|Yn = i)

where Xn+1 = Sn+1 − Sn.

As for the dynamics of zk are driven by the semi-Markov kernel q above. Let us assume that

the system enters in state i at time t1 and remains there until t2 where (t1 ≤ t2) and leaves for state j,
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(i, j ∈ S). Then Zt1−1 6= i, Zt2 = i, Zt2+1 = j. In fact, the semi-Markov kernel plays in semi-Markov

chains the role that Markov transition matrix plays in Markov chains.

Remark. If (Y, S) is a (homogeneous) Markov renewal chain, we can see that (Yn)n∈N is (homogeneous)

Markov chain. The transition matrix of Yn, p = (pij)i,j∈E ∈ ME is defined by

pij = P(Yn+1 = j|Yn = i), i, j ∈ S, n ∈N

Remark. Another way to express pij is pij = ∑u∈N qij(u) where we used the semi-Markov kernel.

Remark. The process (Yn, Xn)n≥1 is also a Markov chain with transition probabilities

p(i,u′)(j,u) = P(Yn+1 = j, Xn+1 = u|Yn = i, Xn = u′)

= P(Yn+1 = j, Xn+1 = u|Yn = i)

= qij(u)

There is no dependence on u’.

The researchers who used Markov Renewal chains, in order to analyze data and to make esti-

mation, are interested in two types of holding time distributions in a given state and the conditional

distributions depending on the next state to be visited.

Definition 3.4. ∀i, j ∈ E

1. fij(), the conditional distribution of Xn+1, n ∈N

fij(u) = P(Xn+1|Zn = i, Zn+1 = j), u ∈N

2. Fij(), the conditional cumulative distribution of Xn+1, n ∈N

Fij(u) = P(Xn+1 ≤ k|Zn = i, Zn+1 = j) =
u

∑
l=0

f (l), u ∈N

Definition 3.5. The sojourn time distribution in state i is defined as:

di(u) = P(Xn+1 = u|Yn = i) = ∑
j∈E

qij(u), u ∈N

Remark. In this work we assume that

fij(u) = di(u) ∀j ∈ E
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Now we can go ahead and present the Hidden semi-Markov model.

3 Hidden semi-Markov model

In statistics, when we have a set of data, we want to make inference and predictions about them

and that we can do it choosing "useful" statistical models. In our case we have chosen the Hid-

den semi-Markov models[1][35]. Hidden Markov Models (HMMs) are a class of models in which

the distribution that generates an observation depends on the state of a underlying but unobserved

Markov process.It’s worthwhile to refer that HMMs have been applied in the many fields like as

signal-processing, speech recognition and many others. In addition, a Hidden Markov Model is a

statistical model can be used to describe the evolution of observable events that depend on internal

factors, which are not directly observable. In the simplest case, the underlying stochastic process

is a discrete-time finite-state homogeneous Markov chain, which influences another stochastic pro-

cess that produces a sequence of observations. However, the fact that the non-zero probability of

self-transition of a non-absorbing state, the state duration of an HMM is implicity a geometric distri-

bution. This makes the HMM has limitation in some application like as in our. As a result have been

used a Hidden semi-Markov model (HSMM). A HSMM is an extension of HMM. The main difference

between them is the fact that in the HMMs the underlying sequence is a Markov chain while in the

HSMMs the underlying sequence is a Semi-Markov chain as described above. Moreover, the state

durations in HSMMs are not geometrically distributed. Hence, in HSMMs each state has a variable

duration, which is associated with the number of observations produced while the Markov process

is in specific state.

Definition 3.6. A Hidden semi-Markov Model is a doubly discrete time stochastic process (Zk, Yk)k≥1 where

• (Zk) is an unobservable Hidden semi-Markov chain and

• (Yk) is an observable sequence of conditionally independent random variables such that the conditional

distribution of Yk given Zk depends only on Zk.

The output process Yk is related to the semi-Markov chain Zk by the observation (or emission)

probabilities

bi(yk) = P(Yk = yk|Zk = i)

where ∑yk
bi(yk) = 1, as we are in the case of Yk is continuous ∑xt

has to be replaced by
∫

xt
.

Also the observation process is characterized by the conditional independence property as the

output at time k depends only on the state of the underlying semi-Markov chain at time k
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P(Y1:k = y1:k|Z1:k = z1:k) =
k

∏
i=1

P(Yk = yk|Zk = zk)

where for convienience, we denote by Y1:k, Z1:k the state sequence Y1, ....., Yk and Z1, ...., Zk respec-

tively.

Remark. Let us now introduce, an important notation:

• Zk1 :k2 = i, represents that the system stays in state i from t1 to t2, analytically Zk1 = i, Sk1+1 = i . . .

Sk2 = i and Sk1−1 and Sk2+1 may or may not be i.

• Z[k1,k2
= i, represents that Zk enters at state i at time k1 and remains there at least at time k2 but we

don’t know the state at time k2 + 1.

• Zk1 :k2] = i, represents that the system stays in i during the period from k1 to k2 but we know that

Zk2+1 6= i, means that at time k2 the state will end and transit to some other state at time t2 + 1.

• Z[k1:k2] = i, represents that i starts at time k1 and ends at k2 with duration d = t2− t1 + 1. This implies

that the previous state Zt1−1 and the next Zt2+1 must not be i.

In addition, state duration is a random variable, let k be the duration of a state where k ∈ ∆

= {1, 2, . . . , Tmax} and Tmax is the maximum duration allowed in a state.

So we can also write

qij(u) = P(Z[k+1:k+u] = j|Zk] = i)

and

di(u) = P(Zk+1:k+u = j|Z[t+1 = i)

which is the sojourn time distribution of each non-absorbing state and represents the state transition

probability from state i having duration u to a state j 6= i, and the probability that the state i has

duration u.

It is important the fact that in the standard formulation from the classical HSMM the end of the

sequence of observations always coincides with the exit from a state. This very specific assumption

does not seem to be realistic in most application like as in our application.

So, we will use the survivor function in order to estimate the duration of the last visited state.
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Definition 3.7. The survivor function of the sojourn time in a state i is defined as

Di(u) = ∑
v≤u

di(v)

and represents the marginal sojourn time of u by summing over all admitted sojourn time v ≥ u, i.e limited by

the upper bound Tmax.

Note that the classical definition of the survivor function uses strict inequality in previous def-

inition, but we adopt this convention to comply with the application of the thesis.

Remark. We have to make attention to the fact that the first visited state does not coincide with a transition

for one state to another. However the initial distribution of the semi-Markov chain should take into account the

entrance time. So, we denote by πj,u the probability that the initial state is j and the time elapsed from entrance

to this state is u, that is

πj,u = P(S[t−u+1:t] = j), t ≥ 0

It’s worthwhile to refer that in our application the cardiac structure the state sequence follows the

cyclic pattern

S1 sound→ Systole→ S2 sound→ Diastole→ S1 sound . . .

as a result the transitions are deterministic. So we can use conventional models which are simpler

than the general HSMM. This leads us in a problem with fewer parameters and lower computational

complexity.

Moreover the HSMM, we consider that do not allow self-transitions in the states of the semi-

Markov chain and consequently

qii(u) = 0, ∀i ∈ S, u ∈ ∆

In addition, since fij(u) = di(u), we obtain the

qij(u) = pijdi(u).
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FIGURE 3.1: Graphical representation of an HSMM [35]

4 Common problems

Having set the HSMM λ = (π,Α,Β, D) we have to deal with the basic problems, which are the

same as in HMM. These are :

1. Evaluation(Classification): We have the observation sequence Y1:T = y1y2 . . . yT and the HSMM

λ and we want to calculate the quantity P(Y1:T|λ), which is the probability of the observation

sequence given the model.

2. Decoding (Recognition): Like the previous case we have the observation sequence Y1:T =

y1y2 . . . yT and the HSMM λ, we want to find the sequence of hidden states.

3. Training: We desire to adjust the model parameters λ = (π,Α,Β, D) to maximize P(Y1:T|λ)

Different algorithms have been developed for above three problems. The most straightforward

way of solving the evaluation problem is enumerating every possible state sequence of length T

(the number of observations). However, the computation burden for this exhaustive enumeration is

prohibitively high. Fortunately, there is a more efficient algorithm that is based on dynamic program-

ming, called forward-backward procedure. The goal for decoding problem is to find the optimal state

sequence associated with the given observation sequence. The most widely used optimality criterion

is to find the single best state sequence, which is based on dynamic programming methods. For train-

ing problem, there is no known way to obtain analytical solution. However, we can adjust the model

parameter λ = (π,Α,Β, D) such that P(Y1:T|λ) is locally maximized using an iterative procedure,

such as the Baum-Welch method or equivalently the EM (Expectation-Maximization algorithm).

5 Forward-Backward

For the observation sequence Y1:T, the likelihood function of an HSMM for given parameters λ is

given by

P(Y1:T|λ) = ∑
Z1:T

P(Z1:T, Y1:T|λ)
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As we have mentioned in order to compute the P[Y1:T|λ] we use the Forward- Backward, a effi-

cient algorithm which based on dynamic programming. Now we define the forward variables.

The forward variables for HSMM are defined by

aj,k(t) = P(Z[t−k+1:t] = j, Y1:t|λ)

and the backward variables by

β j,k(t) = P(Yt+1:T|Z[t−k+1:t]=j, λ)

and the forward-backward algorithm for general HSMM:

αj,k(t) = ∑
i 6=j,k′

P(Z[t−k−k′+1:t−k] = i, Z[t−d+1:t] = j, Y1:t|λ)

= ∑
i 6=j,k′

αi,k′(t− k)P(Z[t−k+1:t]=j, Yt−d+1:t|Z[t−d−k′+1:t−d])

= ∑
i 6=j,k′

αi,k′(t− k)qij(k)P(Yt−d+1:t|Z[t−k+1:t] = j, λ)

= ∑
i 6=j,k′

αt−k(i, k′)qij(k)bj,k(Yt−k+1:t)

for t > 0, k ∈ D, j ∈ S and

β j,k(t) = ∑
i 6=j,k′

P(Z[t+1:t+k′]=i, Yt+1:T|Z[t−d+1:t]=j,λ)

= ∑
i 6=j,k′

qij(u′)P(Yt+1:T|Z[t+1:t+k′] = i, λ)

= ∑
i 6=j,k′

qji(k′)bi,k′(Yt+1:t+k′)P(Yt+k′+1|Z[t+1:t+k′] = i, λ)

= ∑
i 6=j,k′

hji(k′)bi,k′(Yt+1:t+k′)βi,k′(t + 1)

It’s worthwhile that for the calculation of forward-backward variables have been used the follow-

ing equations

P(Yt−k+1:t|Z[t−k−k′+1:t−k] = i, Z[t−k+1:t] = j, λ) = P(Yt−d+1:t|Z[t−k+1:t] = j, λ)

and

P(Y[t+1:T]|Z[t−k+1:t] = j, Z[t+1:t+k′] = i, λ) = P(Yt+1:T|Z[t+1:t+k′] = i, λ)
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that means the current /future observation are dependent on the current state based on Markov

property.

Also, current/future observation are independent of the previous observation,for example

P(Z[t−k+1:t] = j, Yt−k+1:t|Z[t−k−k′+1:t−k] = i, Y1:t−k, λ) =

P(Z[t−k+1:t] = j, Yt−d+1:t|Z[t−k−k′+1:t−d)=i, λ)

and

P(Yt+k+1:T|Z[t+1:t+k] = i, Yt+1:t+k, λ) = P(Yt+k+1:T|S[t+1:t+k] = i, λ)

Now it is important to set the initial conditions. Let assume that the first state must start at

t = 1, let αj,k(t) = 0, for t < 0, otherwise if it starts at t < 1 αj,k(t) = πj,k for t < 0. Respectively, if we

consider that the last state must end at time t = T, then β j,k(t) = 0 for t > T, otherwise if it ends at

time t > T β j,k(t) = 1 for t > T.

In order to simplify the definition of the forward-backward variables for the HSMM, let

αj(t) = P(Zt] = j, Y1:t|λ) = ∑
κ∈∆

αj,κ(t)

which represents the joint probability that state j ends at time t and the partial observation se-

quence is y1:t, and,

β j(t) = P(Yt+1:T|Zt] = j, λ)

which represents the conditional probability that given that state i ends at time t, the future ob-

servation sequence is yt+1:T. Hence, we can easily obtain the respective simplified recursive formulas

for the HSMM.

6 Viterbi Algorithm

As for the decoding problem, one of the most frequently used methodologies, in recent times is the

Viterbi algorithm. This is a dynamic algorithm that computes the most likely sequence of states. So

we desire to find a state path to maximize P(Z1:T|Y1:T, λ).

The Viterbi algorithm for a HSMM is defined by
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δt(j, k) = max
Z1:t−k

P(S1:t−k, Z[t−k+1:t] = j, Y1:t|λ) =

max
i 6=j

max
k′

max
Z1:t−k−k′

P(S1:t−k−k′ , S[t−k−k′+1:t−k] = i,

S[t−k+1:t] = j, Y1:t|λ) =

max
i 6=j

max
k′

[δt−k(i, k′)qij(k)bj,k(Yt−k+1:t)]

for 1 ≤ t ≤ T, j ∈ S, k ∈ D, δt(j, d) represents the most likely partial state sequence that ends at t

in state j of duration k. In order to find the optimal path we should also record the previous state. So

let ψ(t, Sn, k) = (t− k, Sn−1, k′) be a function where

Zn−1 = previous state survived

k′ = duration of the previous state

t− k = ending time of the previous state

Determinating ψ(t,j,d) by letting

(Zn−1, k′) = arg max
i∈Z′j

max
k′∈D

δt−d(i, k′)qijbj′,k(Yt−d+1:t)

After we can determine the state sequence by finding the last state that maximizes the

likelihood. Assuming that the last state ends at time t = T, then

t1 = T

(j1, k1) = arg maxj∈Z maxu∈∆ δT(j, k)

otherwise,

(t1, Z1, k′1) = arg max
T≤t≤t+Tmax−1

max
j∈Z

max
t−T+1≤u≤Tmax

δT(j, k)

Hence, for n=2,3,. . . , we can trace back the state sequence by letting

(tn, Zn, k′n) = ψ(tn−1, Zn−1, kn−1)

7 EM ALGORITHM

As for the Training problem in order to deal with it and to maximize the P(Y|λ) adjusting model

parameters have been used the EM algorithm. The Expectation-Maximization (EM) algorithm [13] is



Chapter 3. Statistical model 47

a broadly applicable approach to compute maximum likelihood (ML) estimates iteratively. This use

in a variety of incomplete-data problems, where algorithms such as the Newton-Raphson method

may fall through. On each iteration of the EM algorithm there are two steps-called the expectation

step of the E-step and the maximization step or the M-step. The situations where the EM algorithm

is profitably applied can be described as incomplete-data problems, where ML estimation is made

difficult by the absence of some part of data in a more familiar and simpler data structure. The EM al-

gorithm is closely related to the ad hoc approach to estimation with missing data. The latter are then

updated by their predicted values, using these initial parameter estimates. The parameters are then

reestimated, and so on, proceeding iteratively until convergence. But also EM algorithm can be used

in the situations where the incompleteness of the data is not all that natural or evident. These include

statistical models such as random effects, mixtures, convolutions, log linear models, and latent class

and latent variables structures. In our case we would like to maximize the likelihood function but

we cannot do it so using adding latent variables smooth the likelihood. We maximize logL(Y|λ) = ly

instead because it is analytically easier.

In order to use EM, first of all we must have some observed data y, a parametric density p(y|λ),

a description of some complete data z that you wish you had, and the parametric density p(z|λ). We

assume that the complete data can be modeled as a continuous random vector Z with density p(z|λ),

where λ ∈ Ω for some set Ω. Because of the fact that we don’t observe Z directly instead, we observe

a realization y of the random vector Y that depends on Z. Given that you only have y, the goal here

is to find the maximum likelihood estimate (MLE) of λ

λ̂MLE = arg max
λ∈Ω

p(y|λ) (3.1)

Most of times it is much easier to calculate the λ that maximizes the log-likelihood of y because

log is a monotonically increasing function, the solution (3.1) will be the same as the solution to

λ̂MLE = arg max
λ∈Ω

log p(y|λ) (3.2)

However, when we cannot solve either (3.1) neither (3.2) then we can try EM making a guess

about the complete data Z and solving for the λ that maximizes the (expected) log-likelihood of Z.

And once we have an estimate for λ we can make a better guess about the complete data Z, and

iterate. EM is usually described as two steps (the E-step and M-step), but let us first break it down

into five steps:
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1. Let m = 0 and make an initial estimate λ(m) for λ.

2. Given the observed data y and preteding for the moment that your current guess λ(m) is correct

formulate the conditional probability distribution p(z|y, λ(m)) for the complete data z.

3. Using the conditional probability distribution p(z|y, λ(m)) calculated in Step 2, form the condi-

tional expected log likelihood, which is called the Q-function:

Q(λ|λ(m)) =
∫

Z(y)
log p(z|λ)p(z|y, λ(m))dzEZ|y,λm [log p(z|θ)] (3.3)

where the integral is over the set Z(y), which is the closure of the set z|p(z|y, λ) > 0, and we

assume that Z(y) does not depend on λ.

Note that λ is a free variable in (3.3), so the Q-function is a function of λ, but also depends on

current guess λ(m) implicity though the p(z|y, λ(m)) calculated in Step 2.

4. Find the λ that maximizes the Q-function (3.3), the result is your new estimate λ(m+1)

5. Let m = m + 1 and go back to Step 2. The EM algorithm does not specify a stopping criterion;

standard criteria are to iterate until the estimate stops changing: ||λ(m+1) − λ(m)|| < ε for some

ε > 0, or to iterate until the log-likelihood l(λ) = log p(y|λ) stops changing: |l(λ(m+1)) −

l(λ(m))| < ε for some ε > 0.

It is important that the EM estimate is only guaranteed to never get worse. Usually, it will find

a peak in the likelihood p(y|λ), but if the likelihood function p(y|λ) has multiple peaks, EM will not

necessarily find the global maximum of the likelihood. In practise, it is common to start EM from

multiple random initial guesses and choose the one with the largest likelihood as the final guess for

λ.

The traditional description of the EM algorithm consists of only two steps. The above Steps 2 and

3 combined are called the E-step for expectation,and Step 4 is called the M-step for maximization:

E-step: Given the estimate from the previous iteration λ(m) compute the conditional expectation

Q(λ|λ(m)) given in (3.3).

M-step: The (m + 1)th guess of λ is

λ(m+1) = arg max
λ∈Ω

Q(λ|λ(m)). (3.4)
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Since the E-step is just to compute the Q-function which is used in the M-step given by (3.4).

When applying EM to a particular problem, this is usually the best way to think about EM because

then one does not waste time computing parts of the Q-function these do not depend on λ.

7.1 Convergence of EM

Here is what can be proved without extra conditions as the EM algorithm iterates, the (m + 1)th

guess λ(m+1) will never be less likely then the mth guess λ(m). This property is called the monotonicity

of the EM algorithm, and results from the following theorem, which states that improving the Q-

function will at least not make the log-likelihood l(λ) worse.

Theorem 3.1. Let random variables Z and Y have parametric densities with parameter λ ∈ Ω. Suppose the

support of Z does not depend on λ, and the Markov relationship λ→ Z → Y, that is

p(y|z, θ) = p(y|z)

holds for all λ ∈ Ω, z ∈ Z and y ∈ Y . Then for λ ∈ Ω and any y ∈ Y with Z(y) 6= ∅ , l(λ) ≥ l(λ(m)) if

Q(λ(m)) ≥ Q(λ(m)).

For the EM algorithm, the M-step ensures that

λ(m+1) = arg max
θ∈Ω

Q(λ|λ(m))

and hence it must be that Q(λ(m+1)|λ(m)) ≥ Q(λ(m)|λ(m)). Therefore, we can apply Theorem 3.1 and

conclude that l(λ(m+1)) ≥ l(λ(m)).
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l(λ) = log p(y|λ) (by definition)

= log
∫

Z(y)
p(z, y|λ)dz (by the law of total probability)

= log
∫

Z(y)

p(z, y|λ)
p(z|y, λ(m))

p(z|y, λ(m))dz (multiply the top and bottom by the same factor)

= log EZ|y,λ(m) [
p(Z, y|λ)

p(Z|y, λ(m))
] (rewrite the integral as an expectation)

≥ EZ|y,λ(m) [log
P(Z, y|λ)

P(Z|y, λ(m))
] (by Jensen’s inequality)

= EZ|y,λ(m) [log
p(Z|λ)p(y|λ)

p(Z|λ(m))p(y|Z)
] (by Bayes’ rule and the assumed Markov relationship)

= EZ|y,λ(m) [log
p(z|λ)p(y|λ(m))

p(x|λ(m))
]

= EZ|y,λ(m) [log p(z|λ)]− EZ|y,λ((m) [log p(Z|λ(m))] + log p(y|λ(m))

= Q(λ|λ(m))−Q(λ(m)|λ(m)) + l(λ(m))

where the Q-function is defined in (3.3). Note that because of the assumption that the support of

Z does not depend on λ, combined with assumed Markov relationship, we can easily conclude that

Z(y) does not depend on λ, (2.2) can lead to 0
0 and the rest of the proof won’t follow.

We can conclude the first part of the proof by restarting (2.3) as a lower bound on the log-

likelihood

l(λ) ≥ l(λ(m)) + Q(λ|λ(m))−Q(λ(m)|λ(m))

Notice that in the above lower bound, Q(λ|λ(m)) is the only term that depends on λ.

Next since we assume that Q(λ|λ(m)) ≥ Q(λ(m)|λ(m)), we can simply conclude that

l(λ) ≥ l(λ(m)) + Q(λ|λ(m))−Q(λ(m)|λ(m)) ≥ l(λ(m))

which completes the proof.

The monotonicity of the EM algorithm guarantees that as EM iterates, its guesses won’t get

worse in terms of their likelihood, but the monotonicity alone cannot guarantee the convergence

of the sequence λ(m). Indeed, there is no general convergence theorem for the EM algorithm the

convergence of the sequence λ(m) depends on the characteristics of l(λ) and Q(λ|λ′), and also the

starting point λ(0).

Under certain regularity conditions, we can prove that λ(m) converges to a stationary point (for

example, a local maximum or saddle point) of l(λ). However, this convergence is only linear instead
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of using EM algorithm one could (locally) maximize the likelihood using Newton-Raphson updates,

which requires calculating the inverse of, the Hessian matrix, but has quadratic convergence. Super-

linear convergence could instead be achieved using conjugate gradient methods or quasi-Newton

updates such as the Broyden-Fletcher-Goldferb-Shamon ( BFGS) update, which only require com-

puting the gradient of the log-likelihood. The Newton-Raphson method can be expected to home in

on λ∗ fast once λ(m) is close, but EM may be more effective given a poor initial guess in part because

the Hessian matrix for the Newton-Raphson method may not be positive definite and hence makes

the inversion unstable.
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Chapter 4

Results

In the last chapter of this thesis, we present some results that we obtained by applying the method-

ology that we presented related to the problem of segmentation of the cardiac cycle, including a

statistical analysis on a specific dataset. Moreover, we outline the metrics that we used in order to

measure the performance of the proposed algorithm, as well as the final results of each model.

1 Pre-processing and Feature extraction

A broad dataset of heart sounds was published in 2016 by PhysioNet. All the data were collected

from various research groups and obtained in different environments both clinical and non-clinical.

In this assignment, we use recordings of 792 heart sounds from 135 patients taken from the Physionet

dataset, where multiple recordings per patient are generally available in order to include sounds from

several spots over the chest to account for corruptions due to different sources and noise levels. Out

of 792 recordings, 386 sounds correspond to healthy patients with no observed heart abnormalities,

while the rest 406 sounds are aggregated from patients with pathological heart lesions, namely mitral

valve prolapse. The sampling frequency of these recordings is 1000 Hz and their duration varies

from 1 to 35,5 seconds. Together with the heart sound recordings, the PCG-based annotations are

also provided in order to label each state later. Given this dataset we continue to the pre-processing

method. Initially, all the signals are filtered using a Butterworth bandpass filter (see section 2.2) of

order 4, with cutoff frequencies at 25 Hz and 400 Hz, since higher frequencies are not of clinical

significance for analysis. Additionally, we use a filter to eliminate unwanted spikes created by the

presence of abnormalities. Now, using the filtered signal we extract three different features: the

homomorphic envelogram (see section 2.3), the hilbert envelogram (see section 2.4) and the power

spectral density envelope (see section 2.5). After each feature is extracted, it is normalized and then

downsampled to 50 Hz in order to improve the speed of computations. Moreover we use PCG-based

annotations in order to label each observation with the respective state. To do that not only we use
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PCG-based annotations but also we use the counts of Schmidt. Specifically, the S1 sound is considered

to have average duration of 0,122 sec and a standard deviation of 0,022 sec, while the S2 sound an

average duration of 0,092 sec and a standard deviation of 0,022 sec. In contrast, the average duration

of the systolic and diastolic period are varying for each individual since the duration of the heart

cycle is highly variable from subject to subject. As a result, an adapted procedure is needed to tune

better counts corresponding to the sojourn time of the remaining states. To achieve this goal Schmidt

use an auto-correlation analysis preferring to use the homomorphic envelope, as it is smoother than

the original signal. So, Schmidt deduces that

d̄(Sys) = arg{k ∈N : ρκ} − d̄, (S1)

with a standard deviation of 0,025 sec. The average diastolic duration is inferred from the heart cycle

and the duration of the other states, i.e

d̄(Dias) = dHR−
∣∣d̄(S1) + d̄(Sys) + d̄(S2)

∣∣,
where dHR is the estimated duration of the diastolic duration in the recordings was partly corre-

lated with d̄(Dias). Therefore the relation between the diastolic duration and the standard deviation

of the diastolic duration was determined by the formula sd(Dias) = 0, 07 < d̄(Dias) + 0, 006, as es-

tablished by Schmidt. For the implementation of the proposed methodology we used the R statistical

software.

2 Parameter estimation and Decoding

In this section, we present a method for estimating the parameters of the emission distributions

and sojourn time distributions of the different hidden states. We adopt an HSMM in which each

state of the semi-Markov chain corresponds to a specific heart sound ∈ {S1, Systole, S2, Diastole}, as

it is assumed that the signal characteristics in each state are homogeneous. To begin with the training

phase as well as the initialization process that we selected which is in accordance with the method

applied in.

2.1 Training phase

First of all, we randomly split the dataset into a training and a test set. After the training set has

been determined as explained above, it is used in the training phase to fit each of the corresponding

HSMMs. We remind that the probability (or density) of observing yt conditioned on being in state j
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called emission probability and we denoted by bj(yt). We have assumed that bj(yt) corresponds to

a density of a Normal distribution with mean and variance the empirical mean and variance of the

training set which differs for each state j. As for the distribution of the sojourn time we have two

different modeling assumptions. The former is the Poisson and the latter is the Gamma.

Normal emission distributions

If the emission distribution is the Normal then:

bj(yt) =
1

σj
√

2π
exp

(
−1

2
(yt − µj)

2

σ2
j

)

where µj is the mean of the distribution and σj is its standard deviation.

Poisson sojourn distribution

If the distribution of the sojourn time is based on the Poisson distribution then:

dj(u|λj) = exp
{
−λj

}λu
j

u!

where λj is the expected sojourn time in state j.

Gamma sojourn distribution

Also if the distribution of the sojourn time is based on the Gamma distribution, then the density is

given by:

dj(u|k j, θj) =
1

Γ(κj)θ
k j
j

uk j−1e
−u
θj , u > 0

where k j > 0, θj > 0 are the shape and scale parameters respectively.

Remark. If X ∼ Gamma(κ, θ) is a random variable and the shape parameter κ is large relative to the scale

parameter θ, then X can be well approximated by a normal random variable with the same mean and variance.

To initialize the parameters of sojourn time distributions and emission distributions we use the

empirical mean and variance of each state. The Normal emission distribution the µj and σj parame-

ters is initialized with empirical mean and variance of observed data for each state. As for Gamma

sojourn distribution

mj = κjθj, s2
j = κjθ

2
j
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FIGURE 4.1

that is

k j =
m2

j

s2
j

, θj =
s2

j

mj

where mj, s2
j are empirical mean and variance of sojourn time in each state. Finally, as for Poisson

sojourn distribution the λj parameter is initialized with the empirical mean of sojourn time in each

state.

2.2 Application of the EM Algorithm

Finishing the data pre-processing and feature extraction, we continue to determine the set of pa-

rameters that maximize the incomplete likelihood of a given sequence of observations y of heart

sound signal under test and that we can do it using the EM algorithm. As we have mentioned in

(3.2.3), the EM algorithm contains the computations and the maximization of the auxiliary function

(see equation 3.12). So EM algorithm maximizes L(λ) by iteratively maximizing Q(λ|λ(m)) (auxiliary

function) over λ. The next value λ(m+1)

λ(m+1) = arg max{Q(λ|λ(m))}

As referred each iteration of the EM algorithm increases L(λ) and, generally, the sequence of

reestimated parameters λ(m) converge to a local maximum of L(λ). As for Q(λ|λ(m)) it is important
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that given the set of parameters λ this can be rewritten as sum of terms, where each term depending

on a given subset of parameters

Q(λ|λm) = Qπ({πj}J
j=1|λ

(m)) +
J

∑
i=1

Qp({pij}J
j=1|λ

(m)) +
J

∑
j=1

Qd({dj(u)}|λ(m))1(pjj = 0)

+
J

∑
j=1

Qb({bj(yt)}Y
t=1|λ(m))

(4.1)

with

Qπ({πj}J
j=1|λ

(m)) = ∑
j

P(Z0 = j|Y[1:T] = y[1:T] ; λ(m)) log πj (4.2)

Qp({pij}J
j=1|λ

(m)) = ∑
j 6=i

T−1

∑
t=0

P(Zt+1 = j, Zt = i|Y[1:T] = y[1:T] ; λ(m)) log pij (4.3)

Qd({dj(u)}|λ(m)) = ∑
u
{

T−1

∑
t=0

P(Zt+u+1 6= j, Zt+u−v = j, v = 0, 1, . . . , u− 1, Zt 6= j|Y[1:T] = y[1:T] ; λ(m))

+ P(Zu 6= j, Zu−v = j, v = 1, . . . , u|Y[1:T] = y[1:T] ; λ(m))} log dj(u)
(4.4)

and

Qb({bj(yt)}T
t=1|λ(m)) =

T

∑
t=1

P(Yt = yt, Zt = j|Y[1:T] = y[1:T] ; λ(m)) log bj(yt) (4.5)

where λ(m) are the estimated values of λ at the iteration m of the algorithm. As for our application,

the terms that contain the initial and transition probabilities are not updated through the maximiza-

tion step. As the initial distribution is considered to be fixed and transition probabilities are only 0

and 1, since state changes occur in a deterministic way. In contrast the terms that contains emission

probabilities parameters and sojourn time parameters are these whose we have to maximize. So, our

interest lies in the maximization of (4.4) and (4.5). But to maximize the above quantities it is neces-

sary the computation of specific state posterior probabilities, i.e forward variable, backward variable

as well as the following quantities.

L1j(t) = P(Zt+1 6= j, Zt = j|Y[1:T]), 1 ≤ j ≤ J

As a result, in the case of a hidden semi-Markov chain, the forward-backward equations can be

decomposed as in [] as follows:
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L1j(t) = P(Zt+1 6= j, Zt = j|Y[1:T] = y[1:T])

=
P(Y[t+1:T] = y[t+1:T]|Zt+1 6= j, Zt = j)

P(Yt+1:T = yt+1:T|Y[1:t] = y[1:t])
P(Zt+1 6= j, Zt = j|Y[1:T] = y[1:T])

= Bj(t)Fj(t)

which expresses the conditional independence between the past and the future of the process

at stage change times. The notations Bj(t), Fj(t) are used for the backward and forward variables

respectively. More specifically, the forward recursion is given by:

Fj(t) = P(Zt+1 6= j, Zt = j|Y[1:T] = y[1:T])

=
t

∑
u=1

∑
i 6=j

P(Zt+1 6= j, St−v = j, v = 0, . . . , u− 1, St−u = i|Y[1:t] = y[1:t])

+ P(Zt+1 6= j, Zt−v = j, v = 0, . . . , t|Y[1:t] = y1:t)

=
t

∑
u=1

P(Y[t−u+1:t] = y[t−u+1:t]|Zt−v = j, v = 0, . . . , u− 1)
P(Y[t−u+1:t] = y[t−u+1:t]|Y[1:t−u] = y[1:t−u])

× P(Zt+1 6= j, Zt−v = j, v = 0, . . . , u− 2|Zt−u+1 = j, Zt−u 6= j)

×∑
i 6=j

P(Zt−u+1 = j|Zt−u+1 6= i, Zt−u = i)P(Zt−u+1 6= i, Zt−u = i|Y[1:t−u] = y[1:t−u])

+
P(Y[1:t] = y[1:t]|Zt−v = j, v = 0, . . . t)

P(Y[1:t] = y[1:t])
∗ P(St+1 6= j, St−v = j, v = 0, . . . , t)

=
bj(yt)

Nt
[

t

∑
u=1
{

u−1

∏
v=1

bj(yt−v)

Nt−v
}dj(u)∑

i 6=j
pijFi(t− u) + {

t

∏
v=1

bj(yt−v)

Nt−v
}dj(t + 1)πj]

(4.6)

for t = 1, . . . , T− 1,j = 1, . . . , J. Concerning the censoring at time T of the sojourn time in the last

visited state, we obtain for time t = T

Fj(T) = P(ZT = j|Y[1:T] = y[1:T])

=
bj(yT)

NT
[

T

∑
u=1
{

u−1

∏
v=1

bj(yT−v)

NT−v
}Dj(u)∑

i 6=j
pijFi(T − u)

+ {
T

∏
v−1

yT−v

NT−v
}Dj(u)πj]

(4.7)

The exact time spent in the last visited state is unknown, only the minimum time spent in this

state is known. Therefore, the probability mass functions of the sojourn times in state j of the general

forward recursion formula (4.7) are replaced by the corresponding survivor functions (see Definition

3.7).
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The normalizing factor Nt is directly obtained during the forward recursion, that is

Nt = P(Yt = yt|Y[1:T] = y[1:T])

= ∑
j

P(Zj = j, Yt = yt|Y[1:T] = y[1:T])

= ∑
j

bj(yt)[
t

∑
u=1
{

u−1

∏
v=1

bj(yt−v)

Nt−v
}Dj(u)∑

i 6=j
Fi(t− u){

t

∏
v=1

bj(yt−v)

Nt−v
}Dj(t + 1)πj]

(4.8)

The backward recursion consists of computing Lj(t) = P(Zt = j|Y[1:T] = y[1:T]) for each state j

backward from time T to time 0. The backward recursion is initialized for t = T and j = 1, . . . , J

Lj(T) = P(ZT = j|Y[1:T] = y[1:T]) = Fj(T)

The key point here lies in the rewriting of Lj(t) as three terms, L1j(t), Lj(t + 1) computed previ-

ously and a third term which expresses the entrance into state j:

Lj(t) = P(Zt = j|Y[1:T] = y[1:T])

= P(Zt+1 6= j, Zt = j|Y[1:T] = y[1:T]) + P(Zt+1 = j|Y[1:T] = y[1:T])

− P(Zt+1 = j, Zt 6= j|Y[1:T] = y[1:T])

= L1j(t) + Lj(t + 1)− P(Zt+1 = j, Zt 6= j|Y[1:T] = y[1:T])

(4.9)

Now, the backward recursion is based on L1j(t) for t = T − 1, . . . , 1 and j = 1, . . . , J, given by :

Lj(t) = P(Zt = j|Y[1:T] = y[1:T])

= ∑
k 6=j

T−1−t

∑
u=1

P(Zt+u+1 6= k, Zt+u−v = k, v = 0, . . . , u− 1, Zt = j|Y[1:T] = y[1:T])

+ P(ZT−v = k, v = 0, . . . , T − 1− t, Zt = j|Y[1:T] = y[1:T])

(4.10)

For general term in (4.9),we have the following decomposition
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G = P(Zt+u+1 6= k, Zt+u−v = k, v = 0, . . . , u− 1, Zt = j|Y[1:T] = y[1:T])

=
P(Zt+u+1 6= k, Zt+u−v = k, v = 0, . . . , u− 1, Zt = j, Y[1:T] = y[1:T])

P(Zt+u+1 6= k, Zt+u = k, Y[1:T] = y[1:T])

× P(Zt+u+1 6= k, Zt+u = k|Y[1:T] = y[1:T])

=
P(Y[t+u+1:T] = y[t+u+1:T]|Zt+u+1 6= k, Zt+u = k)P(Zt+u+1 6= k, Zt+u = k)|Y[1:T] = y[1:T]

P(Y[t+u+1:T] = yt+u+1:T|Zt+u+1:T 6= k, Zt+u = k)P(Zt+u+1 6= k, Zt+u = k|Y[1:t+u] = y[1:t+u])

×
P(Y[t+1:t+u] = yt+1:t+u|Zt+u−v = k, v = 0, . . . , u− 1)

P(Y[t+1:t+u] = yt+1:t+u|Y[1:t] = y[1:t])

× P(Zt+u+1 6= k, Zt+u−v = k, v = 0, . . . , u− 2|Zt+1 = k, Zt 6= k)

× P(Zt+1 = k|Zt+1 6= j, Zt = j)P(Zt+1 6= j, Zt = j|Y[1:t] = y[1:t])

=
L1k(t + u)
Fk(t + u)

{
u−1

∏
v=0

bk(yt+u−v)

Nt+u−v
}dk(u)pjkFj(t)

(4.11)
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while for the second term in equation (4.10), we have respectively

P(ZT−v = k, v = 0, . . . , T − 1− t, Zt = j|Y[1:T] = y[1:T]) =

{
T−1−t

∏
v=0

bk(yT−v)

NT−v

}
Dk(T − t)pjkFj(t)

(4.12)

Lastly, based on the decomposition described in equations 4.11, 4.12 we obtain for L1j(t):

L1j(t) =

[
∑
k 6=j

[
T−1−t

∑
u=1

L1k(t + u)
Fk(t + u)

{
u−1

∏
v=0

bk(yt+u−v)

Nt+u−v

}
dk(u) +

{
T−1−t

∏
v=0

bk(yT−v)

NT−v

}
Dk(T − t)

]
pjk

]
Fj(t)

(4.13)

Following the equation 4.9, the third term is given by:

P(Zt+1 = j, Zt 6= j|Y[1:T] = y[1:T]) =
T−1−t

∑
u=1

∑
i 6=j

P(Zt+u+1 6= j, Zt+u−v = j, v = 0, . . . , u− 1, Zt = i|Y[1:T] = y[1:T])

+ ∑
i 6=j

P(Zt−v = j, v = 0, . . . , T − 1− t, Zt = i|Y[1:T] = y[1:T])

= [
T−1−t

∑
u=1

L1j(t + u)
Fj(t + u)

{
u−1

∏
v=0

bj(yT−v)

NT−v

}
dj(u)

+

{
T−1−t

∏
v=0

bj(yT−v)

NT−v

}
Dj(T − t)] ∑

i 6=j
pijFi(t)

(4.14)

Immediately, computing Lj(t) may seem more than complex, however the computation of L1j(t)

in (4.13) and (4.14) can be simplified by introducing the above auxiliary quantities:

Gj(t + 1, u) =
L1j(t + u)
Fj(t + u)

{
u−1

∏
v=0

bj(yt+u−v)

Nt+u−v

}
dj(u), u = 1, . . . , T − 1− t

Gj(t + 1, T − t) =

{
T−1−t

∏
v=0

bj(yT−v)

NT−v

}
Dj(T − t)

and

Gj(t + 1) =
P(Y[t+1:T] = y[t+1:T]|Zt+1 = j, Zt 6= j)

P(Y[t+1:T] = y[t+1:T]|Y[1:t] = y[1:t])

=
T−t

∑
u=1

Gj(t + 1, u)
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At each time t, these auxiliary quantities should be precomputed, then

L1j(t) =

{
∑
k 6=j

Gk(t + 1)pjkFj(t)

}

and

P(Zt+1 = j, Zt 6= j|Y[1:T] = y[1:T]) =
P(Y[t+1:T] = y[t+1:T]|Zt+1 = j, Zt 6= j)

P(Y[t+1:T] = yt+1:T|Y[1:t] = y[1:t])

× P(Zt+1 = j, Zt 6= j|Y[1:t] = y[1:t])

= Gj(t + 1)∑
i 6=j

pijFi(t)

Because for each t<T, L1j(t) = Bj(t)Fj(t), the backward recursion based on Bj(t) is directly de-

duced from (4.13)

Bj(t) = ∑
k 6=j

[
T−1−t

∑
u=1

Bk(t + u)

{
u−1

∏
v=0

bk(yt+u−v)

Nt+u−v

}
dk(u)

+

{
T−1−t

∏
v=0

bk(yT−v)

NT−v

}
Dk(T − t)]pjk

and the third term in (4.9) can be written as:

P(Zt+1 = j, Zt 6= j|Y[1:T] = y[1:T]) = [
T−1−t

∑
u=1

Bj(t + u)

×
{

u−1

∏
v=0

bj(yt+u−v)

Nt+u−v

}
dj(u) +

{
T−1−t

∏
v=0

bj(yT−v)

NT−v

}
Dj(T − t)]∑

i 6=j
pijFi(t)

So, the above quantities, namely Fj(t), Bj(t), L1j(t) have been computed, they will be used to the

expectation step of the EM algorithm.

E-step

Recall that the EM algorithm alternates two steps, the E-step which consists in calculating Q(λ|λκ)

and the M-step which consists in choosing the next parameter value λ(κ+1) that maximizes Q(λ|λκ)

over λ. In this step we have to express the expectations of the model parameters needed. This can

be accomplished by using the expressions Fj(t), Bj(t), L1j(t) that computed above. So, we need to

compute the expected number of times ηi,k that the model remains in state i for k time steps, i.e:
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ηi,k = P(Zk+1 6= i, Zk+1−v = i, v = 1, . . . , k|Y, λ)

+
T−1−k

∑
t=1

P(Zt+k+1 6= i, Zt+k−v = i, v = 0, . . . , k− 1, Zt 6= i|Y, λ)
(4.15)

Analyzing the above quantity (4.15), the first term can be expressed for v ≤ T as :

L1j(v)
Fj(v)

{
v−1

∏
u=1

bj(yv−u)

Nv−u

}
Dj(v)πj

while for v > T as:

{
T−1

∏
u=1

bj(yT−u)

NT−u

}
Dj(v)πj

Moreover, the general term in equation (4.15) can be expressed for v ≤ T − 1− t as :

L1j(t + 1 + v)
Fj(t + 1 + v)

{
v

∏
u=1

bj(yt+1+v−u)

Nt+1+v−u

}
pj(v)∑

i 6=j
γijFi(t)

and for v > T − 1− t as

{
T−1−t

∏
u=0

bj(yT−u)

NT−u

}
Dj(v)∑

i 6=j
γi,jFi(t)

Now, the expected number of times that the model will remain in the state i is given by:

ηi =

Tmax(i)

∑
k=0

ηi,k

where Tmax(i) is the maximum sojourn time allowed in state i.

Definition 4.1. The digamma function is defined as the logarithmic derivative of the gamma function that is

ζ(x) =
∂

∂x
ln Γ(x) =

Γ′(x)
Γ(x)

M-step

The second part of the EM algorithm consists of a re-estimation procedure, the M-step. This step

determines the likelihood-increasing next set of parameters λ(κ+1) by

λ(κ+1) = arg max
λ

Q(λ|λ(κ))
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In Equation (4.4) we showed that the Q-function Q(λ|λ(κ)) of a HSMM can be decomposed into four

different terms, each depending on a given subset of λ. Hence, the re-estimation formulate for the

parameters can be derived by maximizing each of the different terms separately. In our application

we need to derive the re-estimation formula for emission distribution parameters and sojourn time

parameters by the maximizing the terms (4.4) and (4.5).

The term of Q− f unction given equation (4.4) and (4.15) treating gamma sojourn time distribu-

tion

Qd({dj(u)|λκ}) = ∑
u

ηκ
j,u log dj(u) (4.16)

dj(u) =
θ

k j
j

Γ(k j)
uk j−1e−θu (4.17)

From (4.16) using the (4.17) arrive at

Qd(dj(u)|λ(κ)) = ∑
u

η
(κ)
j,u [ k j log

(
θj
)
− log

(
Γ(k j)

)
+ (k j − 1) log(u)− θju]

∂Qd(dj(u)|λ(κ))

∂k
= ∑

u
η
(κ)
j,u [ log θj −

Γ′(k j)

Γ(k j)
+ log u] = 0 (4.18)

∂Qd(dj(u)|λ(κ))

∂θ
= ∑

u
η
(κ)
j,u [

k j

θj
− u] = 0⇒ θj =

k j

u
(4.19)

(4.18)
(4.19)
===⇒∑

u
η
(κ)
j,u

[
log k j −

Γ′(k j)

Γ(k j)

]
= 0

where Γ′(k)
Γ(k) is the digamma function as defined in the Definition 4.1 and k j denotes the shape

parameter. So the parameters are calculated using numerical methods.

As for the poisson sojourn time we have (4.16) and we have the following probability function

dj(u) =
eθθu−d

j

(u− d)!

Qd(dj(u)|λκ) =
T

∑
u=1

ηκ
j,u[ θj + (u− d) log θj − log[ (u− d)!] ]
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∂Qd(dj(u)|λκ)

∂θ
=

T

∑
u=1

[
1 +

u− d
θj

]
= 0⇒ θ̂j =

T

∑
u=1

(u− d)ηj,u

for all possible shift parameters d = 1, . . . , min(u : ηj,u > 0) choosing the d which gives the max-

imum likelihood.

Now, we continue with the emission probabilities parameters we have

bj(yt) =
1√

2πσ2
j

exp

(
− 1

2σ2
j
(yt − µj)

2

)

Qb({bj(y[1:T])}|λ(κ)) =
T

∑
t=1

Lj(t)

[
− log(2π)−

1
2 − log σj −

(yt − µj)
2

2σ2

]

∂Qb({bj(y[1:T]|λ(κ))})
∂µj

=
T

∑
t=1

Lj(t)

(
(yt − µj)

2

2σ2

)
= 0⇒

T

∑
t=1

Lj(t)yt −
T

∑
t=1

Lj(t)µj = 0⇒

µj =
∑T

t=1 Lj(t)yt

∑T
t=1 Lj(t)

We set θ2j = σ2
j

∂Q({bj(y[1:T]|λ(κ))})
∂θ2j

=
T

∑
t=1

Lj(t)

[
− 1

2θ2j
+

(yt − µj)
2

2θ2
2j

]
= 0⇒

∑T
t=1 Lj(t)

2θ2j
=

∑T
t=1 Lj(t)(yt − µj)

2

2θ2
2j

θ2j>0
===⇒

θ2j =
∑T

t=1 Lj(t)(yt − µj)
2

∑T
t=1 Lj(t)

After each iteration of the algorithm the auxiliary function (see 4.5) is computed with the updated

parameters of the M-step above. The parameter set that maximizes the quantity in (4.5) is obtained

and was chosen as the optimal parameter set.

2.3 Decoding

Now we move forward to decoding problem. In order to deal with this problem and to find the most

likely state sequence we use a dynamic programming method known as Viterbi algorithm.
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Due to the fact that the state process is a semi-Markov chain, we have for all t

max
z1,...,zT

P(Z[1:T] = z[1:T], Y[1:T] = y[1:T]) = max
zt

( max
zt+1,...,zT

P(Y[t+1:T] = y[t+1:T],

Z[t+1:T] = z[t+1:T]|Zt+1 6= zt, Zt = zt)

× max
z1,...,zt−1

P(Zt+1 6= zt, Z[1:t] = z[1:t], Y[1:t] = y[1:t]))

(4.20)

Following, it have been defined

αj(t) = max
z1,...,zt−1

P(Zt+1 6= j, Zt = j, Z[1:t−1] = z[1:t−1], Y[1:t] = y[1:t]) (4.21)

Hence,decomposition (4.21) can be rewritten as

max
z1,...,zT

P(Z[1:T] = z[1:T], Y[1:T] = y[1:T]) = max
j

( max
zt+1,...,zT

P(Y[t+1:T] = y[t+1:T],

Zt+1:T = zt+1:T|Zt+1 6= j, Zt = j)αj(t))
(4.22)

So,using this decomposition can be built the following recursion t = 1, . . . , T ; j = 1, . . . , J

αj(t) = max
z1,...,zT

P(Zt+1 6= j, Zt = j, Z[1:t−1] = z[1:t−1], Y[1:t] = y[1:t]])

= bj(yt)max

(
max

1≤u≤t

({
u−1

∏
v=1

bj(xt−v)dj(u)

}
max

i 6=j
{pijαi(t− u)}

){
t

∏
v=1

bj(xt−v)

}
dj(t + 1)

)
(4.23)

The right-censoring of the sojourn time in the last visited state makes particular the case

t = T , j = 1, . . . , 4

αj(T) = max
z1,...,zT−1

P(Zt = j, Z[1:T−1] = z[1:T−1], Y[1:T] = y[1:T])

= bj(yT)max[ max
1≤u≤T

[

{
u−1

∏
v=1

bj(yT−v)

}

× Dj(u)max
i 6=j
{pijαi(T − u)}],

{
T

∏
v=1

bj(xT−v)

}
Dj(T + 1)πj]

(4.24)

The likelihood of the optimal state sequence associated with the observed sequence y[1:T] is

maxj{αj(T)}. The Viterbi recursion is the equivalent in terms of dynamic programming of the

forward recursion (summation in (4.6) and (4.7)) replaced by maximization in (4.23) and (4.24).



66 Chapter 4. Results

Therefore, the proposals made for an efficient implementation of the forward recursion can be di-

rectly transposed to the Viterbi algorithm. For each time t and each state j, two backpointers can be

recorded, the first giving the optimal preceding state and the second the optimal preceding time of

transition from this preceding state. These backpointers can be used in a second stage-often referred

to as "backtracking"-to retrieve the optimal state sequence. The backtracking procedure consists in

tracing backward along the couple of backpointers from the optimal final state (at time T) to the

optimal initial state (at time 1).

3 Metrics of performance

The evaluation of segmentation methods is based on their ability to accurately identify the fun-

damental heart sound S1 and S2. The labeling of these sounds was made as described in section 2.7.

The performance of the segmentation algorithms were evaluated using the F1 score, which is defined

as

F1 =
2× P+ × Se

P+ + Se

where Se is sensitivity or recall and P+ is positive predictive value (PPV) or precision. In order to

explain each of these measures we should first define the following notions:

• TP (True Positive) is an outcome where the model correctly identifies S1 and S2 sounds. An

S1 sound was labeled as correctly allocated if the start of the predicted S1 sound was found to

be within 100ms (at sampling frequency 1000Hz) of the R-peak of the ECG. Correspondingly,

an S2 sound was found to be within 100ms (at sampling frequency 1000Hz) of the respective

end-T-wave. This tolerance was necessary since it appears in ECG R-peak detection.

• TN (True Negative) is an outcome where the model correctly predicts the non-existence of the

S1 (or S2) sound.

• FP(False Positive) is an error where the model incorrectly indicates the existence of S1 (or S2)

sound.

• FN (False Negative) is an error where the model does not indicate S1 (or S2) sound when in

reality it is.
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As a result, the precision an the sensitivity can be respectively defined by:

P+ =
TP

TP + FP

Se =
TP

TP + FN

but considered as insufficient since no true negatives are included. However, it is used for compar-

ison purposes. The process of halving the data into training and test set and extracting the results

was reproduced 100 times in order to increase the reliability of the model and the final results are the

averages over all iterations. The proposed procedure is represented in figure(flowchart).

FIGURE 4.2: Flowchart of the proposed procedure.
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4 Results

Inputs Metrics of perfomance

dj(u) Signal Prec Rec Acc Fscore

Poisson

Hom 87,20±0,52 93,97±0,54 84,27±0,51 91,67±0,33

Hilb 85,20±0,52 93,09±0,53 81,69±0,57 90,01±0,33

Psd 80,85±0,37 91,61±0,40 76,47±0,36 86,12±0,45

Orig 83,87±0,55 91,15±0,59 79,29±0,61 88,59±0,35

Gamma

Hom 84,25±0,56 91,38±0,60 80,26±0,63 88,79±0,44

Hilb 79,55±0,54 89,75±0,66 74,80±0,63 84,68±0,48

Psd 79,14±0,52 88,52±0,43 75,49±0,55 85,43±0,37

Orig 84,67±0,49 90,26±0,38 78,81±0,49 87,43±0,36

The gross performance results of the algorithms under consideration on both the training and

test sets, using the different features, are presented in Table(). This table illustrates the scores for

combined S1 and S2 sounds. These gross scores were calculated on a per patient basis, summing the

total number of sounds for each patient in the training and testing set and calculating the different

metrics for each patient. The results over the 100 iterations were then averaged over patients in

both the training and testing sets. The standard deviation of the results over the 100 evaluation

iterations is also shown. As we can see, the highest F-score (last column) is achieved by using

an input signal the Homomorphic envelope results in a smooth envelope that helps enable easy

peak detection; additionally, it efficiently removes the effects of murmurs. Peak conditioning was

performed to remove peaks that dis not correspond to S1 to S2. Also the results show that sojourn

time distribution Poisson achieves better results than Gamma sojourn time distribution. Finally, we

can see that the other features, not only they cannot accomplish higher scores than Homomorphic

envelope but also they fail to improve the performance of the original signal. Moreover, the small

values of the standard deviations indicate that there is relatively small variability of the F-scores with

respect to the choice of the training and the test set, which is induced by the random split of the

data. And last but not least, the qualitative interpretation of the results related to the performance of
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each feature and the selected sojourn time distributions given above for F-score, remains unchanged

for the other metrics of performance. However, the results indicate that the Homomorphic envelope

performs the best in the metric of sensitivity , then in the Precision and lastly at the Accuracy.
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